1 /*
2 * Copyright (c) 2016 Avago Technologies. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful.
9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13 * See the GNU General Public License for more details, a copy of which
14 * can be found in the file COPYING included with this package
15 *
16 */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28
29
30 /* *************************** Data Structures/Defines ****************** */
31
32
33 enum nvme_fc_queue_flags {
34 NVME_FC_Q_CONNECTED = 0,
35 NVME_FC_Q_LIVE,
36 };
37
38 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */
39
40 struct nvme_fc_queue {
41 struct nvme_fc_ctrl *ctrl;
42 struct device *dev;
43 struct blk_mq_hw_ctx *hctx;
44 void *lldd_handle;
45 size_t cmnd_capsule_len;
46 u32 qnum;
47 u32 rqcnt;
48 u32 seqno;
49
50 u64 connection_id;
51 atomic_t csn;
52
53 unsigned long flags;
54 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
55
56 enum nvme_fcop_flags {
57 FCOP_FLAGS_TERMIO = (1 << 0),
58 FCOP_FLAGS_AEN = (1 << 1),
59 };
60
61 struct nvmefc_ls_req_op {
62 struct nvmefc_ls_req ls_req;
63
64 struct nvme_fc_rport *rport;
65 struct nvme_fc_queue *queue;
66 struct request *rq;
67 u32 flags;
68
69 int ls_error;
70 struct completion ls_done;
71 struct list_head lsreq_list; /* rport->ls_req_list */
72 bool req_queued;
73 };
74
75 enum nvme_fcpop_state {
76 FCPOP_STATE_UNINIT = 0,
77 FCPOP_STATE_IDLE = 1,
78 FCPOP_STATE_ACTIVE = 2,
79 FCPOP_STATE_ABORTED = 3,
80 FCPOP_STATE_COMPLETE = 4,
81 };
82
83 struct nvme_fc_fcp_op {
84 struct nvme_request nreq; /*
85 * nvme/host/core.c
86 * requires this to be
87 * the 1st element in the
88 * private structure
89 * associated with the
90 * request.
91 */
92 struct nvmefc_fcp_req fcp_req;
93
94 struct nvme_fc_ctrl *ctrl;
95 struct nvme_fc_queue *queue;
96 struct request *rq;
97
98 atomic_t state;
99 u32 flags;
100 u32 rqno;
101 u32 nents;
102
103 struct nvme_fc_cmd_iu cmd_iu;
104 struct nvme_fc_ersp_iu rsp_iu;
105 };
106
107 struct nvme_fc_lport {
108 struct nvme_fc_local_port localport;
109
110 struct ida endp_cnt;
111 struct list_head port_list; /* nvme_fc_port_list */
112 struct list_head endp_list;
113 struct device *dev; /* physical device for dma */
114 struct nvme_fc_port_template *ops;
115 struct kref ref;
116 atomic_t act_rport_cnt;
117 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
118
119 struct nvme_fc_rport {
120 struct nvme_fc_remote_port remoteport;
121
122 struct list_head endp_list; /* for lport->endp_list */
123 struct list_head ctrl_list;
124 struct list_head ls_req_list;
125 struct device *dev; /* physical device for dma */
126 struct nvme_fc_lport *lport;
127 spinlock_t lock;
128 struct kref ref;
129 atomic_t act_ctrl_cnt;
130 unsigned long dev_loss_end;
131 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
132
133 enum nvme_fcctrl_flags {
134 FCCTRL_TERMIO = (1 << 0),
135 };
136
137 struct nvme_fc_ctrl {
138 spinlock_t lock;
139 struct nvme_fc_queue *queues;
140 struct device *dev;
141 struct nvme_fc_lport *lport;
142 struct nvme_fc_rport *rport;
143 u32 cnum;
144
145 bool ioq_live;
146 bool assoc_active;
147 u64 association_id;
148
149 struct list_head ctrl_list; /* rport->ctrl_list */
150
151 struct blk_mq_tag_set admin_tag_set;
152 struct blk_mq_tag_set tag_set;
153
154 struct delayed_work connect_work;
155
156 struct kref ref;
157 u32 flags;
158 u32 iocnt;
159 wait_queue_head_t ioabort_wait;
160
161 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS];
162
163 struct nvme_ctrl ctrl;
164 };
165
166 static inline struct nvme_fc_ctrl *
to_fc_ctrl(struct nvme_ctrl * ctrl)167 to_fc_ctrl(struct nvme_ctrl *ctrl)
168 {
169 return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
170 }
171
172 static inline struct nvme_fc_lport *
localport_to_lport(struct nvme_fc_local_port * portptr)173 localport_to_lport(struct nvme_fc_local_port *portptr)
174 {
175 return container_of(portptr, struct nvme_fc_lport, localport);
176 }
177
178 static inline struct nvme_fc_rport *
remoteport_to_rport(struct nvme_fc_remote_port * portptr)179 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
180 {
181 return container_of(portptr, struct nvme_fc_rport, remoteport);
182 }
183
184 static inline struct nvmefc_ls_req_op *
ls_req_to_lsop(struct nvmefc_ls_req * lsreq)185 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
186 {
187 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
188 }
189
190 static inline struct nvme_fc_fcp_op *
fcp_req_to_fcp_op(struct nvmefc_fcp_req * fcpreq)191 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
192 {
193 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
194 }
195
196
197
198 /* *************************** Globals **************************** */
199
200
201 static DEFINE_SPINLOCK(nvme_fc_lock);
202
203 static LIST_HEAD(nvme_fc_lport_list);
204 static DEFINE_IDA(nvme_fc_local_port_cnt);
205 static DEFINE_IDA(nvme_fc_ctrl_cnt);
206
207
208
209 /*
210 * These items are short-term. They will eventually be moved into
211 * a generic FC class. See comments in module init.
212 */
213 static struct class *fc_class;
214 static struct device *fc_udev_device;
215
216
217 /* *********************** FC-NVME Port Management ************************ */
218
219 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
220 struct nvme_fc_queue *, unsigned int);
221
222 static void
nvme_fc_free_lport(struct kref * ref)223 nvme_fc_free_lport(struct kref *ref)
224 {
225 struct nvme_fc_lport *lport =
226 container_of(ref, struct nvme_fc_lport, ref);
227 unsigned long flags;
228
229 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
230 WARN_ON(!list_empty(&lport->endp_list));
231
232 /* remove from transport list */
233 spin_lock_irqsave(&nvme_fc_lock, flags);
234 list_del(&lport->port_list);
235 spin_unlock_irqrestore(&nvme_fc_lock, flags);
236
237 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
238 ida_destroy(&lport->endp_cnt);
239
240 put_device(lport->dev);
241
242 kfree(lport);
243 }
244
245 static void
nvme_fc_lport_put(struct nvme_fc_lport * lport)246 nvme_fc_lport_put(struct nvme_fc_lport *lport)
247 {
248 kref_put(&lport->ref, nvme_fc_free_lport);
249 }
250
251 static int
nvme_fc_lport_get(struct nvme_fc_lport * lport)252 nvme_fc_lport_get(struct nvme_fc_lport *lport)
253 {
254 return kref_get_unless_zero(&lport->ref);
255 }
256
257
258 static struct nvme_fc_lport *
nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info * pinfo,struct nvme_fc_port_template * ops,struct device * dev)259 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
260 struct nvme_fc_port_template *ops,
261 struct device *dev)
262 {
263 struct nvme_fc_lport *lport;
264 unsigned long flags;
265
266 spin_lock_irqsave(&nvme_fc_lock, flags);
267
268 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
269 if (lport->localport.node_name != pinfo->node_name ||
270 lport->localport.port_name != pinfo->port_name)
271 continue;
272
273 if (lport->dev != dev) {
274 lport = ERR_PTR(-EXDEV);
275 goto out_done;
276 }
277
278 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
279 lport = ERR_PTR(-EEXIST);
280 goto out_done;
281 }
282
283 if (!nvme_fc_lport_get(lport)) {
284 /*
285 * fails if ref cnt already 0. If so,
286 * act as if lport already deleted
287 */
288 lport = NULL;
289 goto out_done;
290 }
291
292 /* resume the lport */
293
294 lport->ops = ops;
295 lport->localport.port_role = pinfo->port_role;
296 lport->localport.port_id = pinfo->port_id;
297 lport->localport.port_state = FC_OBJSTATE_ONLINE;
298
299 spin_unlock_irqrestore(&nvme_fc_lock, flags);
300
301 return lport;
302 }
303
304 lport = NULL;
305
306 out_done:
307 spin_unlock_irqrestore(&nvme_fc_lock, flags);
308
309 return lport;
310 }
311
312 /**
313 * nvme_fc_register_localport - transport entry point called by an
314 * LLDD to register the existence of a NVME
315 * host FC port.
316 * @pinfo: pointer to information about the port to be registered
317 * @template: LLDD entrypoints and operational parameters for the port
318 * @dev: physical hardware device node port corresponds to. Will be
319 * used for DMA mappings
320 * @lport_p: pointer to a local port pointer. Upon success, the routine
321 * will allocate a nvme_fc_local_port structure and place its
322 * address in the local port pointer. Upon failure, local port
323 * pointer will be set to 0.
324 *
325 * Returns:
326 * a completion status. Must be 0 upon success; a negative errno
327 * (ex: -ENXIO) upon failure.
328 */
329 int
nvme_fc_register_localport(struct nvme_fc_port_info * pinfo,struct nvme_fc_port_template * template,struct device * dev,struct nvme_fc_local_port ** portptr)330 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
331 struct nvme_fc_port_template *template,
332 struct device *dev,
333 struct nvme_fc_local_port **portptr)
334 {
335 struct nvme_fc_lport *newrec;
336 unsigned long flags;
337 int ret, idx;
338
339 if (!template->localport_delete || !template->remoteport_delete ||
340 !template->ls_req || !template->fcp_io ||
341 !template->ls_abort || !template->fcp_abort ||
342 !template->max_hw_queues || !template->max_sgl_segments ||
343 !template->max_dif_sgl_segments || !template->dma_boundary) {
344 ret = -EINVAL;
345 goto out_reghost_failed;
346 }
347
348 /*
349 * look to see if there is already a localport that had been
350 * deregistered and in the process of waiting for all the
351 * references to fully be removed. If the references haven't
352 * expired, we can simply re-enable the localport. Remoteports
353 * and controller reconnections should resume naturally.
354 */
355 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
356
357 /* found an lport, but something about its state is bad */
358 if (IS_ERR(newrec)) {
359 ret = PTR_ERR(newrec);
360 goto out_reghost_failed;
361
362 /* found existing lport, which was resumed */
363 } else if (newrec) {
364 *portptr = &newrec->localport;
365 return 0;
366 }
367
368 /* nothing found - allocate a new localport struct */
369
370 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
371 GFP_KERNEL);
372 if (!newrec) {
373 ret = -ENOMEM;
374 goto out_reghost_failed;
375 }
376
377 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
378 if (idx < 0) {
379 ret = -ENOSPC;
380 goto out_fail_kfree;
381 }
382
383 if (!get_device(dev) && dev) {
384 ret = -ENODEV;
385 goto out_ida_put;
386 }
387
388 INIT_LIST_HEAD(&newrec->port_list);
389 INIT_LIST_HEAD(&newrec->endp_list);
390 kref_init(&newrec->ref);
391 atomic_set(&newrec->act_rport_cnt, 0);
392 newrec->ops = template;
393 newrec->dev = dev;
394 ida_init(&newrec->endp_cnt);
395 newrec->localport.private = &newrec[1];
396 newrec->localport.node_name = pinfo->node_name;
397 newrec->localport.port_name = pinfo->port_name;
398 newrec->localport.port_role = pinfo->port_role;
399 newrec->localport.port_id = pinfo->port_id;
400 newrec->localport.port_state = FC_OBJSTATE_ONLINE;
401 newrec->localport.port_num = idx;
402
403 spin_lock_irqsave(&nvme_fc_lock, flags);
404 list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
405 spin_unlock_irqrestore(&nvme_fc_lock, flags);
406
407 if (dev)
408 dma_set_seg_boundary(dev, template->dma_boundary);
409
410 *portptr = &newrec->localport;
411 return 0;
412
413 out_ida_put:
414 ida_simple_remove(&nvme_fc_local_port_cnt, idx);
415 out_fail_kfree:
416 kfree(newrec);
417 out_reghost_failed:
418 *portptr = NULL;
419
420 return ret;
421 }
422 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
423
424 /**
425 * nvme_fc_unregister_localport - transport entry point called by an
426 * LLDD to deregister/remove a previously
427 * registered a NVME host FC port.
428 * @localport: pointer to the (registered) local port that is to be
429 * deregistered.
430 *
431 * Returns:
432 * a completion status. Must be 0 upon success; a negative errno
433 * (ex: -ENXIO) upon failure.
434 */
435 int
nvme_fc_unregister_localport(struct nvme_fc_local_port * portptr)436 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
437 {
438 struct nvme_fc_lport *lport = localport_to_lport(portptr);
439 unsigned long flags;
440
441 if (!portptr)
442 return -EINVAL;
443
444 spin_lock_irqsave(&nvme_fc_lock, flags);
445
446 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
447 spin_unlock_irqrestore(&nvme_fc_lock, flags);
448 return -EINVAL;
449 }
450 portptr->port_state = FC_OBJSTATE_DELETED;
451
452 spin_unlock_irqrestore(&nvme_fc_lock, flags);
453
454 if (atomic_read(&lport->act_rport_cnt) == 0)
455 lport->ops->localport_delete(&lport->localport);
456
457 nvme_fc_lport_put(lport);
458
459 return 0;
460 }
461 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
462
463 /*
464 * TRADDR strings, per FC-NVME are fixed format:
465 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
466 * udev event will only differ by prefix of what field is
467 * being specified:
468 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
469 * 19 + 43 + null_fudge = 64 characters
470 */
471 #define FCNVME_TRADDR_LENGTH 64
472
473 static void
nvme_fc_signal_discovery_scan(struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)474 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
475 struct nvme_fc_rport *rport)
476 {
477 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/
478 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/
479 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
480
481 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
482 return;
483
484 snprintf(hostaddr, sizeof(hostaddr),
485 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
486 lport->localport.node_name, lport->localport.port_name);
487 snprintf(tgtaddr, sizeof(tgtaddr),
488 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
489 rport->remoteport.node_name, rport->remoteport.port_name);
490 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
491 }
492
493 static void
nvme_fc_free_rport(struct kref * ref)494 nvme_fc_free_rport(struct kref *ref)
495 {
496 struct nvme_fc_rport *rport =
497 container_of(ref, struct nvme_fc_rport, ref);
498 struct nvme_fc_lport *lport =
499 localport_to_lport(rport->remoteport.localport);
500 unsigned long flags;
501
502 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
503 WARN_ON(!list_empty(&rport->ctrl_list));
504
505 /* remove from lport list */
506 spin_lock_irqsave(&nvme_fc_lock, flags);
507 list_del(&rport->endp_list);
508 spin_unlock_irqrestore(&nvme_fc_lock, flags);
509
510 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
511
512 kfree(rport);
513
514 nvme_fc_lport_put(lport);
515 }
516
517 static void
nvme_fc_rport_put(struct nvme_fc_rport * rport)518 nvme_fc_rport_put(struct nvme_fc_rport *rport)
519 {
520 kref_put(&rport->ref, nvme_fc_free_rport);
521 }
522
523 static int
nvme_fc_rport_get(struct nvme_fc_rport * rport)524 nvme_fc_rport_get(struct nvme_fc_rport *rport)
525 {
526 return kref_get_unless_zero(&rport->ref);
527 }
528
529 static void
nvme_fc_resume_controller(struct nvme_fc_ctrl * ctrl)530 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
531 {
532 switch (ctrl->ctrl.state) {
533 case NVME_CTRL_NEW:
534 case NVME_CTRL_CONNECTING:
535 /*
536 * As all reconnects were suppressed, schedule a
537 * connect.
538 */
539 dev_info(ctrl->ctrl.device,
540 "NVME-FC{%d}: connectivity re-established. "
541 "Attempting reconnect\n", ctrl->cnum);
542
543 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
544 break;
545
546 case NVME_CTRL_RESETTING:
547 /*
548 * Controller is already in the process of terminating the
549 * association. No need to do anything further. The reconnect
550 * step will naturally occur after the reset completes.
551 */
552 break;
553
554 default:
555 /* no action to take - let it delete */
556 break;
557 }
558 }
559
560 static struct nvme_fc_rport *
nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport * lport,struct nvme_fc_port_info * pinfo)561 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
562 struct nvme_fc_port_info *pinfo)
563 {
564 struct nvme_fc_rport *rport;
565 struct nvme_fc_ctrl *ctrl;
566 unsigned long flags;
567
568 spin_lock_irqsave(&nvme_fc_lock, flags);
569
570 list_for_each_entry(rport, &lport->endp_list, endp_list) {
571 if (rport->remoteport.node_name != pinfo->node_name ||
572 rport->remoteport.port_name != pinfo->port_name)
573 continue;
574
575 if (!nvme_fc_rport_get(rport)) {
576 rport = ERR_PTR(-ENOLCK);
577 goto out_done;
578 }
579
580 spin_unlock_irqrestore(&nvme_fc_lock, flags);
581
582 spin_lock_irqsave(&rport->lock, flags);
583
584 /* has it been unregistered */
585 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
586 /* means lldd called us twice */
587 spin_unlock_irqrestore(&rport->lock, flags);
588 nvme_fc_rport_put(rport);
589 return ERR_PTR(-ESTALE);
590 }
591
592 rport->remoteport.port_role = pinfo->port_role;
593 rport->remoteport.port_id = pinfo->port_id;
594 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
595 rport->dev_loss_end = 0;
596
597 /*
598 * kick off a reconnect attempt on all associations to the
599 * remote port. A successful reconnects will resume i/o.
600 */
601 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
602 nvme_fc_resume_controller(ctrl);
603
604 spin_unlock_irqrestore(&rport->lock, flags);
605
606 return rport;
607 }
608
609 rport = NULL;
610
611 out_done:
612 spin_unlock_irqrestore(&nvme_fc_lock, flags);
613
614 return rport;
615 }
616
617 static inline void
__nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport * rport,struct nvme_fc_port_info * pinfo)618 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
619 struct nvme_fc_port_info *pinfo)
620 {
621 if (pinfo->dev_loss_tmo)
622 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
623 else
624 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
625 }
626
627 /**
628 * nvme_fc_register_remoteport - transport entry point called by an
629 * LLDD to register the existence of a NVME
630 * subsystem FC port on its fabric.
631 * @localport: pointer to the (registered) local port that the remote
632 * subsystem port is connected to.
633 * @pinfo: pointer to information about the port to be registered
634 * @rport_p: pointer to a remote port pointer. Upon success, the routine
635 * will allocate a nvme_fc_remote_port structure and place its
636 * address in the remote port pointer. Upon failure, remote port
637 * pointer will be set to 0.
638 *
639 * Returns:
640 * a completion status. Must be 0 upon success; a negative errno
641 * (ex: -ENXIO) upon failure.
642 */
643 int
nvme_fc_register_remoteport(struct nvme_fc_local_port * localport,struct nvme_fc_port_info * pinfo,struct nvme_fc_remote_port ** portptr)644 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
645 struct nvme_fc_port_info *pinfo,
646 struct nvme_fc_remote_port **portptr)
647 {
648 struct nvme_fc_lport *lport = localport_to_lport(localport);
649 struct nvme_fc_rport *newrec;
650 unsigned long flags;
651 int ret, idx;
652
653 if (!nvme_fc_lport_get(lport)) {
654 ret = -ESHUTDOWN;
655 goto out_reghost_failed;
656 }
657
658 /*
659 * look to see if there is already a remoteport that is waiting
660 * for a reconnect (within dev_loss_tmo) with the same WWN's.
661 * If so, transition to it and reconnect.
662 */
663 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
664
665 /* found an rport, but something about its state is bad */
666 if (IS_ERR(newrec)) {
667 ret = PTR_ERR(newrec);
668 goto out_lport_put;
669
670 /* found existing rport, which was resumed */
671 } else if (newrec) {
672 nvme_fc_lport_put(lport);
673 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
674 nvme_fc_signal_discovery_scan(lport, newrec);
675 *portptr = &newrec->remoteport;
676 return 0;
677 }
678
679 /* nothing found - allocate a new remoteport struct */
680
681 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
682 GFP_KERNEL);
683 if (!newrec) {
684 ret = -ENOMEM;
685 goto out_lport_put;
686 }
687
688 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
689 if (idx < 0) {
690 ret = -ENOSPC;
691 goto out_kfree_rport;
692 }
693
694 INIT_LIST_HEAD(&newrec->endp_list);
695 INIT_LIST_HEAD(&newrec->ctrl_list);
696 INIT_LIST_HEAD(&newrec->ls_req_list);
697 kref_init(&newrec->ref);
698 atomic_set(&newrec->act_ctrl_cnt, 0);
699 spin_lock_init(&newrec->lock);
700 newrec->remoteport.localport = &lport->localport;
701 newrec->dev = lport->dev;
702 newrec->lport = lport;
703 newrec->remoteport.private = &newrec[1];
704 newrec->remoteport.port_role = pinfo->port_role;
705 newrec->remoteport.node_name = pinfo->node_name;
706 newrec->remoteport.port_name = pinfo->port_name;
707 newrec->remoteport.port_id = pinfo->port_id;
708 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
709 newrec->remoteport.port_num = idx;
710 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
711
712 spin_lock_irqsave(&nvme_fc_lock, flags);
713 list_add_tail(&newrec->endp_list, &lport->endp_list);
714 spin_unlock_irqrestore(&nvme_fc_lock, flags);
715
716 nvme_fc_signal_discovery_scan(lport, newrec);
717
718 *portptr = &newrec->remoteport;
719 return 0;
720
721 out_kfree_rport:
722 kfree(newrec);
723 out_lport_put:
724 nvme_fc_lport_put(lport);
725 out_reghost_failed:
726 *portptr = NULL;
727 return ret;
728 }
729 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
730
731 static int
nvme_fc_abort_lsops(struct nvme_fc_rport * rport)732 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
733 {
734 struct nvmefc_ls_req_op *lsop;
735 unsigned long flags;
736
737 restart:
738 spin_lock_irqsave(&rport->lock, flags);
739
740 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
741 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
742 lsop->flags |= FCOP_FLAGS_TERMIO;
743 spin_unlock_irqrestore(&rport->lock, flags);
744 rport->lport->ops->ls_abort(&rport->lport->localport,
745 &rport->remoteport,
746 &lsop->ls_req);
747 goto restart;
748 }
749 }
750 spin_unlock_irqrestore(&rport->lock, flags);
751
752 return 0;
753 }
754
755 static void
nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl * ctrl)756 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
757 {
758 dev_info(ctrl->ctrl.device,
759 "NVME-FC{%d}: controller connectivity lost. Awaiting "
760 "Reconnect", ctrl->cnum);
761
762 switch (ctrl->ctrl.state) {
763 case NVME_CTRL_NEW:
764 case NVME_CTRL_LIVE:
765 /*
766 * Schedule a controller reset. The reset will terminate the
767 * association and schedule the reconnect timer. Reconnects
768 * will be attempted until either the ctlr_loss_tmo
769 * (max_retries * connect_delay) expires or the remoteport's
770 * dev_loss_tmo expires.
771 */
772 if (nvme_reset_ctrl(&ctrl->ctrl)) {
773 dev_warn(ctrl->ctrl.device,
774 "NVME-FC{%d}: Couldn't schedule reset.\n",
775 ctrl->cnum);
776 nvme_delete_ctrl(&ctrl->ctrl);
777 }
778 break;
779
780 case NVME_CTRL_CONNECTING:
781 /*
782 * The association has already been terminated and the
783 * controller is attempting reconnects. No need to do anything
784 * futher. Reconnects will be attempted until either the
785 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
786 * remoteport's dev_loss_tmo expires.
787 */
788 break;
789
790 case NVME_CTRL_RESETTING:
791 /*
792 * Controller is already in the process of terminating the
793 * association. No need to do anything further. The reconnect
794 * step will kick in naturally after the association is
795 * terminated.
796 */
797 break;
798
799 case NVME_CTRL_DELETING:
800 default:
801 /* no action to take - let it delete */
802 break;
803 }
804 }
805
806 /**
807 * nvme_fc_unregister_remoteport - transport entry point called by an
808 * LLDD to deregister/remove a previously
809 * registered a NVME subsystem FC port.
810 * @remoteport: pointer to the (registered) remote port that is to be
811 * deregistered.
812 *
813 * Returns:
814 * a completion status. Must be 0 upon success; a negative errno
815 * (ex: -ENXIO) upon failure.
816 */
817 int
nvme_fc_unregister_remoteport(struct nvme_fc_remote_port * portptr)818 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
819 {
820 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
821 struct nvme_fc_ctrl *ctrl;
822 unsigned long flags;
823
824 if (!portptr)
825 return -EINVAL;
826
827 spin_lock_irqsave(&rport->lock, flags);
828
829 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
830 spin_unlock_irqrestore(&rport->lock, flags);
831 return -EINVAL;
832 }
833 portptr->port_state = FC_OBJSTATE_DELETED;
834
835 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
836
837 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
838 /* if dev_loss_tmo==0, dev loss is immediate */
839 if (!portptr->dev_loss_tmo) {
840 dev_warn(ctrl->ctrl.device,
841 "NVME-FC{%d}: controller connectivity lost.\n",
842 ctrl->cnum);
843 nvme_delete_ctrl(&ctrl->ctrl);
844 } else
845 nvme_fc_ctrl_connectivity_loss(ctrl);
846 }
847
848 spin_unlock_irqrestore(&rport->lock, flags);
849
850 nvme_fc_abort_lsops(rport);
851
852 if (atomic_read(&rport->act_ctrl_cnt) == 0)
853 rport->lport->ops->remoteport_delete(portptr);
854
855 /*
856 * release the reference, which will allow, if all controllers
857 * go away, which should only occur after dev_loss_tmo occurs,
858 * for the rport to be torn down.
859 */
860 nvme_fc_rport_put(rport);
861
862 return 0;
863 }
864 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
865
866 /**
867 * nvme_fc_rescan_remoteport - transport entry point called by an
868 * LLDD to request a nvme device rescan.
869 * @remoteport: pointer to the (registered) remote port that is to be
870 * rescanned.
871 *
872 * Returns: N/A
873 */
874 void
nvme_fc_rescan_remoteport(struct nvme_fc_remote_port * remoteport)875 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
876 {
877 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
878
879 nvme_fc_signal_discovery_scan(rport->lport, rport);
880 }
881 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
882
883 int
nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port * portptr,u32 dev_loss_tmo)884 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
885 u32 dev_loss_tmo)
886 {
887 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
888 unsigned long flags;
889
890 spin_lock_irqsave(&rport->lock, flags);
891
892 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
893 spin_unlock_irqrestore(&rport->lock, flags);
894 return -EINVAL;
895 }
896
897 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
898 rport->remoteport.dev_loss_tmo = dev_loss_tmo;
899
900 spin_unlock_irqrestore(&rport->lock, flags);
901
902 return 0;
903 }
904 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
905
906
907 /* *********************** FC-NVME DMA Handling **************************** */
908
909 /*
910 * The fcloop device passes in a NULL device pointer. Real LLD's will
911 * pass in a valid device pointer. If NULL is passed to the dma mapping
912 * routines, depending on the platform, it may or may not succeed, and
913 * may crash.
914 *
915 * As such:
916 * Wrapper all the dma routines and check the dev pointer.
917 *
918 * If simple mappings (return just a dma address, we'll noop them,
919 * returning a dma address of 0.
920 *
921 * On more complex mappings (dma_map_sg), a pseudo routine fills
922 * in the scatter list, setting all dma addresses to 0.
923 */
924
925 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)926 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
927 enum dma_data_direction dir)
928 {
929 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
930 }
931
932 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)933 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
934 {
935 return dev ? dma_mapping_error(dev, dma_addr) : 0;
936 }
937
938 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)939 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
940 enum dma_data_direction dir)
941 {
942 if (dev)
943 dma_unmap_single(dev, addr, size, dir);
944 }
945
946 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)947 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
948 enum dma_data_direction dir)
949 {
950 if (dev)
951 dma_sync_single_for_cpu(dev, addr, size, dir);
952 }
953
954 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)955 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
956 enum dma_data_direction dir)
957 {
958 if (dev)
959 dma_sync_single_for_device(dev, addr, size, dir);
960 }
961
962 /* pseudo dma_map_sg call */
963 static int
fc_map_sg(struct scatterlist * sg,int nents)964 fc_map_sg(struct scatterlist *sg, int nents)
965 {
966 struct scatterlist *s;
967 int i;
968
969 WARN_ON(nents == 0 || sg[0].length == 0);
970
971 for_each_sg(sg, s, nents, i) {
972 s->dma_address = 0L;
973 #ifdef CONFIG_NEED_SG_DMA_LENGTH
974 s->dma_length = s->length;
975 #endif
976 }
977 return nents;
978 }
979
980 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)981 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
982 enum dma_data_direction dir)
983 {
984 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
985 }
986
987 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)988 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
989 enum dma_data_direction dir)
990 {
991 if (dev)
992 dma_unmap_sg(dev, sg, nents, dir);
993 }
994
995 /* *********************** FC-NVME LS Handling **************************** */
996
997 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
998 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
999
1000
1001 static void
__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op * lsop)1002 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1003 {
1004 struct nvme_fc_rport *rport = lsop->rport;
1005 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1006 unsigned long flags;
1007
1008 spin_lock_irqsave(&rport->lock, flags);
1009
1010 if (!lsop->req_queued) {
1011 spin_unlock_irqrestore(&rport->lock, flags);
1012 return;
1013 }
1014
1015 list_del(&lsop->lsreq_list);
1016
1017 lsop->req_queued = false;
1018
1019 spin_unlock_irqrestore(&rport->lock, flags);
1020
1021 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1022 (lsreq->rqstlen + lsreq->rsplen),
1023 DMA_BIDIRECTIONAL);
1024
1025 nvme_fc_rport_put(rport);
1026 }
1027
1028 static int
__nvme_fc_send_ls_req(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))1029 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1030 struct nvmefc_ls_req_op *lsop,
1031 void (*done)(struct nvmefc_ls_req *req, int status))
1032 {
1033 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1034 unsigned long flags;
1035 int ret = 0;
1036
1037 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1038 return -ECONNREFUSED;
1039
1040 if (!nvme_fc_rport_get(rport))
1041 return -ESHUTDOWN;
1042
1043 lsreq->done = done;
1044 lsop->rport = rport;
1045 lsop->req_queued = false;
1046 INIT_LIST_HEAD(&lsop->lsreq_list);
1047 init_completion(&lsop->ls_done);
1048
1049 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1050 lsreq->rqstlen + lsreq->rsplen,
1051 DMA_BIDIRECTIONAL);
1052 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1053 ret = -EFAULT;
1054 goto out_putrport;
1055 }
1056 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1057
1058 spin_lock_irqsave(&rport->lock, flags);
1059
1060 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1061
1062 lsop->req_queued = true;
1063
1064 spin_unlock_irqrestore(&rport->lock, flags);
1065
1066 ret = rport->lport->ops->ls_req(&rport->lport->localport,
1067 &rport->remoteport, lsreq);
1068 if (ret)
1069 goto out_unlink;
1070
1071 return 0;
1072
1073 out_unlink:
1074 lsop->ls_error = ret;
1075 spin_lock_irqsave(&rport->lock, flags);
1076 lsop->req_queued = false;
1077 list_del(&lsop->lsreq_list);
1078 spin_unlock_irqrestore(&rport->lock, flags);
1079 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1080 (lsreq->rqstlen + lsreq->rsplen),
1081 DMA_BIDIRECTIONAL);
1082 out_putrport:
1083 nvme_fc_rport_put(rport);
1084
1085 return ret;
1086 }
1087
1088 static void
nvme_fc_send_ls_req_done(struct nvmefc_ls_req * lsreq,int status)1089 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1090 {
1091 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1092
1093 lsop->ls_error = status;
1094 complete(&lsop->ls_done);
1095 }
1096
1097 static int
nvme_fc_send_ls_req(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop)1098 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1099 {
1100 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1101 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1102 int ret;
1103
1104 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1105
1106 if (!ret) {
1107 /*
1108 * No timeout/not interruptible as we need the struct
1109 * to exist until the lldd calls us back. Thus mandate
1110 * wait until driver calls back. lldd responsible for
1111 * the timeout action
1112 */
1113 wait_for_completion(&lsop->ls_done);
1114
1115 __nvme_fc_finish_ls_req(lsop);
1116
1117 ret = lsop->ls_error;
1118 }
1119
1120 if (ret)
1121 return ret;
1122
1123 /* ACC or RJT payload ? */
1124 if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1125 return -ENXIO;
1126
1127 return 0;
1128 }
1129
1130 static int
nvme_fc_send_ls_req_async(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))1131 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1132 struct nvmefc_ls_req_op *lsop,
1133 void (*done)(struct nvmefc_ls_req *req, int status))
1134 {
1135 /* don't wait for completion */
1136
1137 return __nvme_fc_send_ls_req(rport, lsop, done);
1138 }
1139
1140 /* Validation Error indexes into the string table below */
1141 enum {
1142 VERR_NO_ERROR = 0,
1143 VERR_LSACC = 1,
1144 VERR_LSDESC_RQST = 2,
1145 VERR_LSDESC_RQST_LEN = 3,
1146 VERR_ASSOC_ID = 4,
1147 VERR_ASSOC_ID_LEN = 5,
1148 VERR_CONN_ID = 6,
1149 VERR_CONN_ID_LEN = 7,
1150 VERR_CR_ASSOC = 8,
1151 VERR_CR_ASSOC_ACC_LEN = 9,
1152 VERR_CR_CONN = 10,
1153 VERR_CR_CONN_ACC_LEN = 11,
1154 VERR_DISCONN = 12,
1155 VERR_DISCONN_ACC_LEN = 13,
1156 };
1157
1158 static char *validation_errors[] = {
1159 "OK",
1160 "Not LS_ACC",
1161 "Not LSDESC_RQST",
1162 "Bad LSDESC_RQST Length",
1163 "Not Association ID",
1164 "Bad Association ID Length",
1165 "Not Connection ID",
1166 "Bad Connection ID Length",
1167 "Not CR_ASSOC Rqst",
1168 "Bad CR_ASSOC ACC Length",
1169 "Not CR_CONN Rqst",
1170 "Bad CR_CONN ACC Length",
1171 "Not Disconnect Rqst",
1172 "Bad Disconnect ACC Length",
1173 };
1174
1175 static int
nvme_fc_connect_admin_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,u16 qsize,u16 ersp_ratio)1176 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1177 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1178 {
1179 struct nvmefc_ls_req_op *lsop;
1180 struct nvmefc_ls_req *lsreq;
1181 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1182 struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1183 int ret, fcret = 0;
1184
1185 lsop = kzalloc((sizeof(*lsop) +
1186 ctrl->lport->ops->lsrqst_priv_sz +
1187 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1188 if (!lsop) {
1189 ret = -ENOMEM;
1190 goto out_no_memory;
1191 }
1192 lsreq = &lsop->ls_req;
1193
1194 lsreq->private = (void *)&lsop[1];
1195 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1196 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1197 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1198
1199 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1200 assoc_rqst->desc_list_len =
1201 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1202
1203 assoc_rqst->assoc_cmd.desc_tag =
1204 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1205 assoc_rqst->assoc_cmd.desc_len =
1206 fcnvme_lsdesc_len(
1207 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1208
1209 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1210 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1211 /* Linux supports only Dynamic controllers */
1212 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1213 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1214 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1215 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1216 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1217 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1218
1219 lsop->queue = queue;
1220 lsreq->rqstaddr = assoc_rqst;
1221 lsreq->rqstlen = sizeof(*assoc_rqst);
1222 lsreq->rspaddr = assoc_acc;
1223 lsreq->rsplen = sizeof(*assoc_acc);
1224 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1225
1226 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1227 if (ret)
1228 goto out_free_buffer;
1229
1230 /* process connect LS completion */
1231
1232 /* validate the ACC response */
1233 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1234 fcret = VERR_LSACC;
1235 else if (assoc_acc->hdr.desc_list_len !=
1236 fcnvme_lsdesc_len(
1237 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1238 fcret = VERR_CR_ASSOC_ACC_LEN;
1239 else if (assoc_acc->hdr.rqst.desc_tag !=
1240 cpu_to_be32(FCNVME_LSDESC_RQST))
1241 fcret = VERR_LSDESC_RQST;
1242 else if (assoc_acc->hdr.rqst.desc_len !=
1243 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1244 fcret = VERR_LSDESC_RQST_LEN;
1245 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1246 fcret = VERR_CR_ASSOC;
1247 else if (assoc_acc->associd.desc_tag !=
1248 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1249 fcret = VERR_ASSOC_ID;
1250 else if (assoc_acc->associd.desc_len !=
1251 fcnvme_lsdesc_len(
1252 sizeof(struct fcnvme_lsdesc_assoc_id)))
1253 fcret = VERR_ASSOC_ID_LEN;
1254 else if (assoc_acc->connectid.desc_tag !=
1255 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1256 fcret = VERR_CONN_ID;
1257 else if (assoc_acc->connectid.desc_len !=
1258 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1259 fcret = VERR_CONN_ID_LEN;
1260
1261 if (fcret) {
1262 ret = -EBADF;
1263 dev_err(ctrl->dev,
1264 "q %d connect failed: %s\n",
1265 queue->qnum, validation_errors[fcret]);
1266 } else {
1267 ctrl->association_id =
1268 be64_to_cpu(assoc_acc->associd.association_id);
1269 queue->connection_id =
1270 be64_to_cpu(assoc_acc->connectid.connection_id);
1271 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1272 }
1273
1274 out_free_buffer:
1275 kfree(lsop);
1276 out_no_memory:
1277 if (ret)
1278 dev_err(ctrl->dev,
1279 "queue %d connect admin queue failed (%d).\n",
1280 queue->qnum, ret);
1281 return ret;
1282 }
1283
1284 static int
nvme_fc_connect_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,u16 qsize,u16 ersp_ratio)1285 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1286 u16 qsize, u16 ersp_ratio)
1287 {
1288 struct nvmefc_ls_req_op *lsop;
1289 struct nvmefc_ls_req *lsreq;
1290 struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1291 struct fcnvme_ls_cr_conn_acc *conn_acc;
1292 int ret, fcret = 0;
1293
1294 lsop = kzalloc((sizeof(*lsop) +
1295 ctrl->lport->ops->lsrqst_priv_sz +
1296 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1297 if (!lsop) {
1298 ret = -ENOMEM;
1299 goto out_no_memory;
1300 }
1301 lsreq = &lsop->ls_req;
1302
1303 lsreq->private = (void *)&lsop[1];
1304 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1305 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1306 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1307
1308 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1309 conn_rqst->desc_list_len = cpu_to_be32(
1310 sizeof(struct fcnvme_lsdesc_assoc_id) +
1311 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1312
1313 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1314 conn_rqst->associd.desc_len =
1315 fcnvme_lsdesc_len(
1316 sizeof(struct fcnvme_lsdesc_assoc_id));
1317 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1318 conn_rqst->connect_cmd.desc_tag =
1319 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1320 conn_rqst->connect_cmd.desc_len =
1321 fcnvme_lsdesc_len(
1322 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1323 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1324 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
1325 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1326
1327 lsop->queue = queue;
1328 lsreq->rqstaddr = conn_rqst;
1329 lsreq->rqstlen = sizeof(*conn_rqst);
1330 lsreq->rspaddr = conn_acc;
1331 lsreq->rsplen = sizeof(*conn_acc);
1332 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1333
1334 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1335 if (ret)
1336 goto out_free_buffer;
1337
1338 /* process connect LS completion */
1339
1340 /* validate the ACC response */
1341 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1342 fcret = VERR_LSACC;
1343 else if (conn_acc->hdr.desc_list_len !=
1344 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1345 fcret = VERR_CR_CONN_ACC_LEN;
1346 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1347 fcret = VERR_LSDESC_RQST;
1348 else if (conn_acc->hdr.rqst.desc_len !=
1349 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1350 fcret = VERR_LSDESC_RQST_LEN;
1351 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1352 fcret = VERR_CR_CONN;
1353 else if (conn_acc->connectid.desc_tag !=
1354 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1355 fcret = VERR_CONN_ID;
1356 else if (conn_acc->connectid.desc_len !=
1357 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1358 fcret = VERR_CONN_ID_LEN;
1359
1360 if (fcret) {
1361 ret = -EBADF;
1362 dev_err(ctrl->dev,
1363 "q %d connect failed: %s\n",
1364 queue->qnum, validation_errors[fcret]);
1365 } else {
1366 queue->connection_id =
1367 be64_to_cpu(conn_acc->connectid.connection_id);
1368 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1369 }
1370
1371 out_free_buffer:
1372 kfree(lsop);
1373 out_no_memory:
1374 if (ret)
1375 dev_err(ctrl->dev,
1376 "queue %d connect command failed (%d).\n",
1377 queue->qnum, ret);
1378 return ret;
1379 }
1380
1381 static void
nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)1382 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1383 {
1384 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1385
1386 __nvme_fc_finish_ls_req(lsop);
1387
1388 /* fc-nvme iniator doesn't care about success or failure of cmd */
1389
1390 kfree(lsop);
1391 }
1392
1393 /*
1394 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1395 * the FC-NVME Association. Terminating the association also
1396 * terminates the FC-NVME connections (per queue, both admin and io
1397 * queues) that are part of the association. E.g. things are torn
1398 * down, and the related FC-NVME Association ID and Connection IDs
1399 * become invalid.
1400 *
1401 * The behavior of the fc-nvme initiator is such that it's
1402 * understanding of the association and connections will implicitly
1403 * be torn down. The action is implicit as it may be due to a loss of
1404 * connectivity with the fc-nvme target, so you may never get a
1405 * response even if you tried. As such, the action of this routine
1406 * is to asynchronously send the LS, ignore any results of the LS, and
1407 * continue on with terminating the association. If the fc-nvme target
1408 * is present and receives the LS, it too can tear down.
1409 */
1410 static void
nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl * ctrl)1411 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1412 {
1413 struct fcnvme_ls_disconnect_rqst *discon_rqst;
1414 struct fcnvme_ls_disconnect_acc *discon_acc;
1415 struct nvmefc_ls_req_op *lsop;
1416 struct nvmefc_ls_req *lsreq;
1417 int ret;
1418
1419 lsop = kzalloc((sizeof(*lsop) +
1420 ctrl->lport->ops->lsrqst_priv_sz +
1421 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1422 GFP_KERNEL);
1423 if (!lsop)
1424 /* couldn't sent it... too bad */
1425 return;
1426
1427 lsreq = &lsop->ls_req;
1428
1429 lsreq->private = (void *)&lsop[1];
1430 discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1431 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1432 discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1433
1434 discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1435 discon_rqst->desc_list_len = cpu_to_be32(
1436 sizeof(struct fcnvme_lsdesc_assoc_id) +
1437 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1438
1439 discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1440 discon_rqst->associd.desc_len =
1441 fcnvme_lsdesc_len(
1442 sizeof(struct fcnvme_lsdesc_assoc_id));
1443
1444 discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1445
1446 discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1447 FCNVME_LSDESC_DISCONN_CMD);
1448 discon_rqst->discon_cmd.desc_len =
1449 fcnvme_lsdesc_len(
1450 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1451 discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1452 discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1453
1454 lsreq->rqstaddr = discon_rqst;
1455 lsreq->rqstlen = sizeof(*discon_rqst);
1456 lsreq->rspaddr = discon_acc;
1457 lsreq->rsplen = sizeof(*discon_acc);
1458 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1459
1460 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1461 nvme_fc_disconnect_assoc_done);
1462 if (ret)
1463 kfree(lsop);
1464
1465 /* only meaningful part to terminating the association */
1466 ctrl->association_id = 0;
1467 }
1468
1469
1470 /* *********************** NVME Ctrl Routines **************************** */
1471
1472 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1473
1474 static void
__nvme_fc_exit_request(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op)1475 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1476 struct nvme_fc_fcp_op *op)
1477 {
1478 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1479 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1480 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1481 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1482
1483 atomic_set(&op->state, FCPOP_STATE_UNINIT);
1484 }
1485
1486 static void
nvme_fc_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1487 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1488 unsigned int hctx_idx)
1489 {
1490 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1491
1492 return __nvme_fc_exit_request(set->driver_data, op);
1493 }
1494
1495 static int
__nvme_fc_abort_op(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op)1496 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1497 {
1498 unsigned long flags;
1499 int opstate;
1500
1501 spin_lock_irqsave(&ctrl->lock, flags);
1502 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1503 if (opstate != FCPOP_STATE_ACTIVE)
1504 atomic_set(&op->state, opstate);
1505 else if (ctrl->flags & FCCTRL_TERMIO)
1506 ctrl->iocnt++;
1507 spin_unlock_irqrestore(&ctrl->lock, flags);
1508
1509 if (opstate != FCPOP_STATE_ACTIVE)
1510 return -ECANCELED;
1511
1512 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1513 &ctrl->rport->remoteport,
1514 op->queue->lldd_handle,
1515 &op->fcp_req);
1516
1517 return 0;
1518 }
1519
1520 static void
nvme_fc_abort_aen_ops(struct nvme_fc_ctrl * ctrl)1521 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1522 {
1523 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1524 int i;
1525
1526 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1527 __nvme_fc_abort_op(ctrl, aen_op);
1528 }
1529
1530 static inline void
__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op,int opstate)1531 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1532 struct nvme_fc_fcp_op *op, int opstate)
1533 {
1534 unsigned long flags;
1535
1536 if (opstate == FCPOP_STATE_ABORTED) {
1537 spin_lock_irqsave(&ctrl->lock, flags);
1538 if (ctrl->flags & FCCTRL_TERMIO) {
1539 if (!--ctrl->iocnt)
1540 wake_up(&ctrl->ioabort_wait);
1541 }
1542 spin_unlock_irqrestore(&ctrl->lock, flags);
1543 }
1544 }
1545
1546 static void
nvme_fc_fcpio_done(struct nvmefc_fcp_req * req)1547 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1548 {
1549 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1550 struct request *rq = op->rq;
1551 struct nvmefc_fcp_req *freq = &op->fcp_req;
1552 struct nvme_fc_ctrl *ctrl = op->ctrl;
1553 struct nvme_fc_queue *queue = op->queue;
1554 struct nvme_completion *cqe = &op->rsp_iu.cqe;
1555 struct nvme_command *sqe = &op->cmd_iu.sqe;
1556 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1557 union nvme_result result;
1558 bool terminate_assoc = true;
1559 int opstate;
1560
1561 /*
1562 * WARNING:
1563 * The current linux implementation of a nvme controller
1564 * allocates a single tag set for all io queues and sizes
1565 * the io queues to fully hold all possible tags. Thus, the
1566 * implementation does not reference or care about the sqhd
1567 * value as it never needs to use the sqhd/sqtail pointers
1568 * for submission pacing.
1569 *
1570 * This affects the FC-NVME implementation in two ways:
1571 * 1) As the value doesn't matter, we don't need to waste
1572 * cycles extracting it from ERSPs and stamping it in the
1573 * cases where the transport fabricates CQEs on successful
1574 * completions.
1575 * 2) The FC-NVME implementation requires that delivery of
1576 * ERSP completions are to go back to the nvme layer in order
1577 * relative to the rsn, such that the sqhd value will always
1578 * be "in order" for the nvme layer. As the nvme layer in
1579 * linux doesn't care about sqhd, there's no need to return
1580 * them in order.
1581 *
1582 * Additionally:
1583 * As the core nvme layer in linux currently does not look at
1584 * every field in the cqe - in cases where the FC transport must
1585 * fabricate a CQE, the following fields will not be set as they
1586 * are not referenced:
1587 * cqe.sqid, cqe.sqhd, cqe.command_id
1588 *
1589 * Failure or error of an individual i/o, in a transport
1590 * detected fashion unrelated to the nvme completion status,
1591 * potentially cause the initiator and target sides to get out
1592 * of sync on SQ head/tail (aka outstanding io count allowed).
1593 * Per FC-NVME spec, failure of an individual command requires
1594 * the connection to be terminated, which in turn requires the
1595 * association to be terminated.
1596 */
1597
1598 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1599
1600 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1601 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1602
1603 if (opstate == FCPOP_STATE_ABORTED)
1604 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1605 else if (freq->status)
1606 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1607
1608 /*
1609 * For the linux implementation, if we have an unsuccesful
1610 * status, they blk-mq layer can typically be called with the
1611 * non-zero status and the content of the cqe isn't important.
1612 */
1613 if (status)
1614 goto done;
1615
1616 /*
1617 * command completed successfully relative to the wire
1618 * protocol. However, validate anything received and
1619 * extract the status and result from the cqe (create it
1620 * where necessary).
1621 */
1622
1623 switch (freq->rcv_rsplen) {
1624
1625 case 0:
1626 case NVME_FC_SIZEOF_ZEROS_RSP:
1627 /*
1628 * No response payload or 12 bytes of payload (which
1629 * should all be zeros) are considered successful and
1630 * no payload in the CQE by the transport.
1631 */
1632 if (freq->transferred_length !=
1633 be32_to_cpu(op->cmd_iu.data_len)) {
1634 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1635 goto done;
1636 }
1637 result.u64 = 0;
1638 break;
1639
1640 case sizeof(struct nvme_fc_ersp_iu):
1641 /*
1642 * The ERSP IU contains a full completion with CQE.
1643 * Validate ERSP IU and look at cqe.
1644 */
1645 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1646 (freq->rcv_rsplen / 4) ||
1647 be32_to_cpu(op->rsp_iu.xfrd_len) !=
1648 freq->transferred_length ||
1649 op->rsp_iu.status_code ||
1650 sqe->common.command_id != cqe->command_id)) {
1651 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1652 goto done;
1653 }
1654 result = cqe->result;
1655 status = cqe->status;
1656 break;
1657
1658 default:
1659 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1660 goto done;
1661 }
1662
1663 terminate_assoc = false;
1664
1665 done:
1666 if (op->flags & FCOP_FLAGS_AEN) {
1667 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1668 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1669 atomic_set(&op->state, FCPOP_STATE_IDLE);
1670 op->flags = FCOP_FLAGS_AEN; /* clear other flags */
1671 nvme_fc_ctrl_put(ctrl);
1672 goto check_error;
1673 }
1674
1675 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1676 nvme_end_request(rq, status, result);
1677
1678 check_error:
1679 if (terminate_assoc)
1680 nvme_fc_error_recovery(ctrl, "transport detected io error");
1681 }
1682
1683 static int
__nvme_fc_init_request(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,struct nvme_fc_fcp_op * op,struct request * rq,u32 rqno)1684 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1685 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1686 struct request *rq, u32 rqno)
1687 {
1688 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1689 int ret = 0;
1690
1691 memset(op, 0, sizeof(*op));
1692 op->fcp_req.cmdaddr = &op->cmd_iu;
1693 op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1694 op->fcp_req.rspaddr = &op->rsp_iu;
1695 op->fcp_req.rsplen = sizeof(op->rsp_iu);
1696 op->fcp_req.done = nvme_fc_fcpio_done;
1697 op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1698 op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1699 op->ctrl = ctrl;
1700 op->queue = queue;
1701 op->rq = rq;
1702 op->rqno = rqno;
1703
1704 cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1705 cmdiu->fc_id = NVME_CMD_FC_ID;
1706 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1707
1708 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1709 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1710 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1711 dev_err(ctrl->dev,
1712 "FCP Op failed - cmdiu dma mapping failed.\n");
1713 ret = EFAULT;
1714 goto out_on_error;
1715 }
1716
1717 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1718 &op->rsp_iu, sizeof(op->rsp_iu),
1719 DMA_FROM_DEVICE);
1720 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1721 dev_err(ctrl->dev,
1722 "FCP Op failed - rspiu dma mapping failed.\n");
1723 ret = EFAULT;
1724 }
1725
1726 atomic_set(&op->state, FCPOP_STATE_IDLE);
1727 out_on_error:
1728 return ret;
1729 }
1730
1731 static int
nvme_fc_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1732 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1733 unsigned int hctx_idx, unsigned int numa_node)
1734 {
1735 struct nvme_fc_ctrl *ctrl = set->driver_data;
1736 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1737 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1738 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1739
1740 nvme_req(rq)->ctrl = &ctrl->ctrl;
1741 return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1742 }
1743
1744 static int
nvme_fc_init_aen_ops(struct nvme_fc_ctrl * ctrl)1745 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1746 {
1747 struct nvme_fc_fcp_op *aen_op;
1748 struct nvme_fc_cmd_iu *cmdiu;
1749 struct nvme_command *sqe;
1750 void *private;
1751 int i, ret;
1752
1753 aen_op = ctrl->aen_ops;
1754 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1755 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1756 GFP_KERNEL);
1757 if (!private)
1758 return -ENOMEM;
1759
1760 cmdiu = &aen_op->cmd_iu;
1761 sqe = &cmdiu->sqe;
1762 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1763 aen_op, (struct request *)NULL,
1764 (NVME_AQ_BLK_MQ_DEPTH + i));
1765 if (ret) {
1766 kfree(private);
1767 return ret;
1768 }
1769
1770 aen_op->flags = FCOP_FLAGS_AEN;
1771 aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1772 aen_op->fcp_req.private = private;
1773
1774 memset(sqe, 0, sizeof(*sqe));
1775 sqe->common.opcode = nvme_admin_async_event;
1776 /* Note: core layer may overwrite the sqe.command_id value */
1777 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1778 }
1779 return 0;
1780 }
1781
1782 static void
nvme_fc_term_aen_ops(struct nvme_fc_ctrl * ctrl)1783 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1784 {
1785 struct nvme_fc_fcp_op *aen_op;
1786 int i;
1787
1788 aen_op = ctrl->aen_ops;
1789 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1790 if (!aen_op->fcp_req.private)
1791 continue;
1792
1793 __nvme_fc_exit_request(ctrl, aen_op);
1794
1795 kfree(aen_op->fcp_req.private);
1796 aen_op->fcp_req.private = NULL;
1797 }
1798 }
1799
1800 static inline void
__nvme_fc_init_hctx(struct blk_mq_hw_ctx * hctx,struct nvme_fc_ctrl * ctrl,unsigned int qidx)1801 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1802 unsigned int qidx)
1803 {
1804 struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1805
1806 hctx->driver_data = queue;
1807 queue->hctx = hctx;
1808 }
1809
1810 static int
nvme_fc_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1811 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1812 unsigned int hctx_idx)
1813 {
1814 struct nvme_fc_ctrl *ctrl = data;
1815
1816 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1817
1818 return 0;
1819 }
1820
1821 static int
nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1822 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1823 unsigned int hctx_idx)
1824 {
1825 struct nvme_fc_ctrl *ctrl = data;
1826
1827 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1828
1829 return 0;
1830 }
1831
1832 static void
nvme_fc_init_queue(struct nvme_fc_ctrl * ctrl,int idx)1833 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1834 {
1835 struct nvme_fc_queue *queue;
1836
1837 queue = &ctrl->queues[idx];
1838 memset(queue, 0, sizeof(*queue));
1839 queue->ctrl = ctrl;
1840 queue->qnum = idx;
1841 atomic_set(&queue->csn, 1);
1842 queue->dev = ctrl->dev;
1843
1844 if (idx > 0)
1845 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1846 else
1847 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1848
1849 /*
1850 * Considered whether we should allocate buffers for all SQEs
1851 * and CQEs and dma map them - mapping their respective entries
1852 * into the request structures (kernel vm addr and dma address)
1853 * thus the driver could use the buffers/mappings directly.
1854 * It only makes sense if the LLDD would use them for its
1855 * messaging api. It's very unlikely most adapter api's would use
1856 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1857 * structures were used instead.
1858 */
1859 }
1860
1861 /*
1862 * This routine terminates a queue at the transport level.
1863 * The transport has already ensured that all outstanding ios on
1864 * the queue have been terminated.
1865 * The transport will send a Disconnect LS request to terminate
1866 * the queue's connection. Termination of the admin queue will also
1867 * terminate the association at the target.
1868 */
1869 static void
nvme_fc_free_queue(struct nvme_fc_queue * queue)1870 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1871 {
1872 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1873 return;
1874
1875 clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1876 /*
1877 * Current implementation never disconnects a single queue.
1878 * It always terminates a whole association. So there is never
1879 * a disconnect(queue) LS sent to the target.
1880 */
1881
1882 queue->connection_id = 0;
1883 atomic_set(&queue->csn, 1);
1884 }
1885
1886 static void
__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,unsigned int qidx)1887 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1888 struct nvme_fc_queue *queue, unsigned int qidx)
1889 {
1890 if (ctrl->lport->ops->delete_queue)
1891 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1892 queue->lldd_handle);
1893 queue->lldd_handle = NULL;
1894 }
1895
1896 static void
nvme_fc_free_io_queues(struct nvme_fc_ctrl * ctrl)1897 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1898 {
1899 int i;
1900
1901 for (i = 1; i < ctrl->ctrl.queue_count; i++)
1902 nvme_fc_free_queue(&ctrl->queues[i]);
1903 }
1904
1905 static int
__nvme_fc_create_hw_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,unsigned int qidx,u16 qsize)1906 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1907 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1908 {
1909 int ret = 0;
1910
1911 queue->lldd_handle = NULL;
1912 if (ctrl->lport->ops->create_queue)
1913 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1914 qidx, qsize, &queue->lldd_handle);
1915
1916 return ret;
1917 }
1918
1919 static void
nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl * ctrl)1920 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1921 {
1922 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1923 int i;
1924
1925 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1926 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1927 }
1928
1929 static int
nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl * ctrl,u16 qsize)1930 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1931 {
1932 struct nvme_fc_queue *queue = &ctrl->queues[1];
1933 int i, ret;
1934
1935 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1936 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1937 if (ret)
1938 goto delete_queues;
1939 }
1940
1941 return 0;
1942
1943 delete_queues:
1944 for (; i >= 0; i--)
1945 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1946 return ret;
1947 }
1948
1949 static int
nvme_fc_connect_io_queues(struct nvme_fc_ctrl * ctrl,u16 qsize)1950 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1951 {
1952 int i, ret = 0;
1953
1954 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1955 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1956 (qsize / 5));
1957 if (ret)
1958 break;
1959 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1960 if (ret)
1961 break;
1962
1963 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
1964 }
1965
1966 return ret;
1967 }
1968
1969 static void
nvme_fc_init_io_queues(struct nvme_fc_ctrl * ctrl)1970 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1971 {
1972 int i;
1973
1974 for (i = 1; i < ctrl->ctrl.queue_count; i++)
1975 nvme_fc_init_queue(ctrl, i);
1976 }
1977
1978 static void
nvme_fc_ctrl_free(struct kref * ref)1979 nvme_fc_ctrl_free(struct kref *ref)
1980 {
1981 struct nvme_fc_ctrl *ctrl =
1982 container_of(ref, struct nvme_fc_ctrl, ref);
1983 unsigned long flags;
1984
1985 if (ctrl->ctrl.tagset) {
1986 blk_cleanup_queue(ctrl->ctrl.connect_q);
1987 blk_mq_free_tag_set(&ctrl->tag_set);
1988 }
1989
1990 /* remove from rport list */
1991 spin_lock_irqsave(&ctrl->rport->lock, flags);
1992 list_del(&ctrl->ctrl_list);
1993 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1994
1995 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1996 blk_cleanup_queue(ctrl->ctrl.admin_q);
1997 blk_mq_free_tag_set(&ctrl->admin_tag_set);
1998
1999 kfree(ctrl->queues);
2000
2001 put_device(ctrl->dev);
2002 nvme_fc_rport_put(ctrl->rport);
2003
2004 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2005 if (ctrl->ctrl.opts)
2006 nvmf_free_options(ctrl->ctrl.opts);
2007 kfree(ctrl);
2008 }
2009
2010 static void
nvme_fc_ctrl_put(struct nvme_fc_ctrl * ctrl)2011 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2012 {
2013 kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2014 }
2015
2016 static int
nvme_fc_ctrl_get(struct nvme_fc_ctrl * ctrl)2017 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2018 {
2019 return kref_get_unless_zero(&ctrl->ref);
2020 }
2021
2022 /*
2023 * All accesses from nvme core layer done - can now free the
2024 * controller. Called after last nvme_put_ctrl() call
2025 */
2026 static void
nvme_fc_nvme_ctrl_freed(struct nvme_ctrl * nctrl)2027 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2028 {
2029 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2030
2031 WARN_ON(nctrl != &ctrl->ctrl);
2032
2033 nvme_fc_ctrl_put(ctrl);
2034 }
2035
2036 static void
nvme_fc_error_recovery(struct nvme_fc_ctrl * ctrl,char * errmsg)2037 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2038 {
2039 /* only proceed if in LIVE state - e.g. on first error */
2040 if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2041 return;
2042
2043 dev_warn(ctrl->ctrl.device,
2044 "NVME-FC{%d}: transport association error detected: %s\n",
2045 ctrl->cnum, errmsg);
2046 dev_warn(ctrl->ctrl.device,
2047 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2048
2049 nvme_reset_ctrl(&ctrl->ctrl);
2050 }
2051
2052 static enum blk_eh_timer_return
nvme_fc_timeout(struct request * rq,bool reserved)2053 nvme_fc_timeout(struct request *rq, bool reserved)
2054 {
2055 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2056 struct nvme_fc_ctrl *ctrl = op->ctrl;
2057
2058 /*
2059 * we can't individually ABTS an io without affecting the queue,
2060 * thus killing the queue, and thus the association.
2061 * So resolve by performing a controller reset, which will stop
2062 * the host/io stack, terminate the association on the link,
2063 * and recreate an association on the link.
2064 */
2065 nvme_fc_error_recovery(ctrl, "io timeout error");
2066
2067 /*
2068 * the io abort has been initiated. Have the reset timer
2069 * restarted and the abort completion will complete the io
2070 * shortly. Avoids a synchronous wait while the abort finishes.
2071 */
2072 return BLK_EH_RESET_TIMER;
2073 }
2074
2075 static int
nvme_fc_map_data(struct nvme_fc_ctrl * ctrl,struct request * rq,struct nvme_fc_fcp_op * op)2076 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2077 struct nvme_fc_fcp_op *op)
2078 {
2079 struct nvmefc_fcp_req *freq = &op->fcp_req;
2080 enum dma_data_direction dir;
2081 int ret;
2082
2083 freq->sg_cnt = 0;
2084
2085 if (!blk_rq_payload_bytes(rq))
2086 return 0;
2087
2088 freq->sg_table.sgl = freq->first_sgl;
2089 ret = sg_alloc_table_chained(&freq->sg_table,
2090 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
2091 if (ret)
2092 return -ENOMEM;
2093
2094 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2095 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2096 dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2097 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2098 op->nents, dir);
2099 if (unlikely(freq->sg_cnt <= 0)) {
2100 sg_free_table_chained(&freq->sg_table, true);
2101 freq->sg_cnt = 0;
2102 return -EFAULT;
2103 }
2104
2105 /*
2106 * TODO: blk_integrity_rq(rq) for DIF
2107 */
2108 return 0;
2109 }
2110
2111 static void
nvme_fc_unmap_data(struct nvme_fc_ctrl * ctrl,struct request * rq,struct nvme_fc_fcp_op * op)2112 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2113 struct nvme_fc_fcp_op *op)
2114 {
2115 struct nvmefc_fcp_req *freq = &op->fcp_req;
2116
2117 if (!freq->sg_cnt)
2118 return;
2119
2120 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2121 ((rq_data_dir(rq) == WRITE) ?
2122 DMA_TO_DEVICE : DMA_FROM_DEVICE));
2123
2124 nvme_cleanup_cmd(rq);
2125
2126 sg_free_table_chained(&freq->sg_table, true);
2127
2128 freq->sg_cnt = 0;
2129 }
2130
2131 /*
2132 * In FC, the queue is a logical thing. At transport connect, the target
2133 * creates its "queue" and returns a handle that is to be given to the
2134 * target whenever it posts something to the corresponding SQ. When an
2135 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2136 * command contained within the SQE, an io, and assigns a FC exchange
2137 * to it. The SQE and the associated SQ handle are sent in the initial
2138 * CMD IU sents on the exchange. All transfers relative to the io occur
2139 * as part of the exchange. The CQE is the last thing for the io,
2140 * which is transferred (explicitly or implicitly) with the RSP IU
2141 * sent on the exchange. After the CQE is received, the FC exchange is
2142 * terminaed and the Exchange may be used on a different io.
2143 *
2144 * The transport to LLDD api has the transport making a request for a
2145 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2146 * resource and transfers the command. The LLDD will then process all
2147 * steps to complete the io. Upon completion, the transport done routine
2148 * is called.
2149 *
2150 * So - while the operation is outstanding to the LLDD, there is a link
2151 * level FC exchange resource that is also outstanding. This must be
2152 * considered in all cleanup operations.
2153 */
2154 static blk_status_t
nvme_fc_start_fcp_op(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,struct nvme_fc_fcp_op * op,u32 data_len,enum nvmefc_fcp_datadir io_dir)2155 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2156 struct nvme_fc_fcp_op *op, u32 data_len,
2157 enum nvmefc_fcp_datadir io_dir)
2158 {
2159 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2160 struct nvme_command *sqe = &cmdiu->sqe;
2161 u32 csn;
2162 int ret, opstate;
2163
2164 /*
2165 * before attempting to send the io, check to see if we believe
2166 * the target device is present
2167 */
2168 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2169 return BLK_STS_RESOURCE;
2170
2171 if (!nvme_fc_ctrl_get(ctrl))
2172 return BLK_STS_IOERR;
2173
2174 /* format the FC-NVME CMD IU and fcp_req */
2175 cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2176 csn = atomic_inc_return(&queue->csn);
2177 cmdiu->csn = cpu_to_be32(csn);
2178 cmdiu->data_len = cpu_to_be32(data_len);
2179 switch (io_dir) {
2180 case NVMEFC_FCP_WRITE:
2181 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2182 break;
2183 case NVMEFC_FCP_READ:
2184 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2185 break;
2186 case NVMEFC_FCP_NODATA:
2187 cmdiu->flags = 0;
2188 break;
2189 }
2190 op->fcp_req.payload_length = data_len;
2191 op->fcp_req.io_dir = io_dir;
2192 op->fcp_req.transferred_length = 0;
2193 op->fcp_req.rcv_rsplen = 0;
2194 op->fcp_req.status = NVME_SC_SUCCESS;
2195 op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2196
2197 /*
2198 * validate per fabric rules, set fields mandated by fabric spec
2199 * as well as those by FC-NVME spec.
2200 */
2201 WARN_ON_ONCE(sqe->common.metadata);
2202 sqe->common.flags |= NVME_CMD_SGL_METABUF;
2203
2204 /*
2205 * format SQE DPTR field per FC-NVME rules:
2206 * type=0x5 Transport SGL Data Block Descriptor
2207 * subtype=0xA Transport-specific value
2208 * address=0
2209 * length=length of the data series
2210 */
2211 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2212 NVME_SGL_FMT_TRANSPORT_A;
2213 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2214 sqe->rw.dptr.sgl.addr = 0;
2215
2216 if (!(op->flags & FCOP_FLAGS_AEN)) {
2217 ret = nvme_fc_map_data(ctrl, op->rq, op);
2218 if (ret < 0) {
2219 nvme_cleanup_cmd(op->rq);
2220 nvme_fc_ctrl_put(ctrl);
2221 if (ret == -ENOMEM || ret == -EAGAIN)
2222 return BLK_STS_RESOURCE;
2223 return BLK_STS_IOERR;
2224 }
2225 }
2226
2227 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2228 sizeof(op->cmd_iu), DMA_TO_DEVICE);
2229
2230 atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2231
2232 if (!(op->flags & FCOP_FLAGS_AEN))
2233 blk_mq_start_request(op->rq);
2234
2235 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2236 &ctrl->rport->remoteport,
2237 queue->lldd_handle, &op->fcp_req);
2238
2239 if (ret) {
2240 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2241 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2242
2243 if (!(op->flags & FCOP_FLAGS_AEN))
2244 nvme_fc_unmap_data(ctrl, op->rq, op);
2245
2246 nvme_fc_ctrl_put(ctrl);
2247
2248 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2249 ret != -EBUSY)
2250 return BLK_STS_IOERR;
2251
2252 return BLK_STS_RESOURCE;
2253 }
2254
2255 return BLK_STS_OK;
2256 }
2257
2258 static blk_status_t
nvme_fc_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2259 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2260 const struct blk_mq_queue_data *bd)
2261 {
2262 struct nvme_ns *ns = hctx->queue->queuedata;
2263 struct nvme_fc_queue *queue = hctx->driver_data;
2264 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2265 struct request *rq = bd->rq;
2266 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2267 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2268 struct nvme_command *sqe = &cmdiu->sqe;
2269 enum nvmefc_fcp_datadir io_dir;
2270 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2271 u32 data_len;
2272 blk_status_t ret;
2273
2274 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2275 !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2276 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2277
2278 ret = nvme_setup_cmd(ns, rq, sqe);
2279 if (ret)
2280 return ret;
2281
2282 data_len = blk_rq_payload_bytes(rq);
2283 if (data_len)
2284 io_dir = ((rq_data_dir(rq) == WRITE) ?
2285 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2286 else
2287 io_dir = NVMEFC_FCP_NODATA;
2288
2289 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2290 }
2291
2292 static struct blk_mq_tags *
nvme_fc_tagset(struct nvme_fc_queue * queue)2293 nvme_fc_tagset(struct nvme_fc_queue *queue)
2294 {
2295 if (queue->qnum == 0)
2296 return queue->ctrl->admin_tag_set.tags[queue->qnum];
2297
2298 return queue->ctrl->tag_set.tags[queue->qnum - 1];
2299 }
2300
2301 static int
nvme_fc_poll(struct blk_mq_hw_ctx * hctx,unsigned int tag)2302 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2303
2304 {
2305 struct nvme_fc_queue *queue = hctx->driver_data;
2306 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2307 struct request *req;
2308 struct nvme_fc_fcp_op *op;
2309
2310 req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2311 if (!req)
2312 return 0;
2313
2314 op = blk_mq_rq_to_pdu(req);
2315
2316 if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2317 (ctrl->lport->ops->poll_queue))
2318 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2319 queue->lldd_handle);
2320
2321 return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2322 }
2323
2324 static void
nvme_fc_submit_async_event(struct nvme_ctrl * arg)2325 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2326 {
2327 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2328 struct nvme_fc_fcp_op *aen_op;
2329 unsigned long flags;
2330 bool terminating = false;
2331 blk_status_t ret;
2332
2333 spin_lock_irqsave(&ctrl->lock, flags);
2334 if (ctrl->flags & FCCTRL_TERMIO)
2335 terminating = true;
2336 spin_unlock_irqrestore(&ctrl->lock, flags);
2337
2338 if (terminating)
2339 return;
2340
2341 aen_op = &ctrl->aen_ops[0];
2342
2343 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2344 NVMEFC_FCP_NODATA);
2345 if (ret)
2346 dev_err(ctrl->ctrl.device,
2347 "failed async event work\n");
2348 }
2349
2350 static void
nvme_fc_complete_rq(struct request * rq)2351 nvme_fc_complete_rq(struct request *rq)
2352 {
2353 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2354 struct nvme_fc_ctrl *ctrl = op->ctrl;
2355
2356 atomic_set(&op->state, FCPOP_STATE_IDLE);
2357
2358 nvme_fc_unmap_data(ctrl, rq, op);
2359 nvme_complete_rq(rq);
2360 nvme_fc_ctrl_put(ctrl);
2361 }
2362
2363 /*
2364 * This routine is used by the transport when it needs to find active
2365 * io on a queue that is to be terminated. The transport uses
2366 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2367 * this routine to kill them on a 1 by 1 basis.
2368 *
2369 * As FC allocates FC exchange for each io, the transport must contact
2370 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2371 * After terminating the exchange the LLDD will call the transport's
2372 * normal io done path for the request, but it will have an aborted
2373 * status. The done path will return the io request back to the block
2374 * layer with an error status.
2375 */
2376 static void
nvme_fc_terminate_exchange(struct request * req,void * data,bool reserved)2377 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2378 {
2379 struct nvme_ctrl *nctrl = data;
2380 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2381 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2382
2383 __nvme_fc_abort_op(ctrl, op);
2384 }
2385
2386
2387 static const struct blk_mq_ops nvme_fc_mq_ops = {
2388 .queue_rq = nvme_fc_queue_rq,
2389 .complete = nvme_fc_complete_rq,
2390 .init_request = nvme_fc_init_request,
2391 .exit_request = nvme_fc_exit_request,
2392 .init_hctx = nvme_fc_init_hctx,
2393 .poll = nvme_fc_poll,
2394 .timeout = nvme_fc_timeout,
2395 };
2396
2397 static int
nvme_fc_create_io_queues(struct nvme_fc_ctrl * ctrl)2398 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2399 {
2400 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2401 unsigned int nr_io_queues;
2402 int ret;
2403
2404 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2405 ctrl->lport->ops->max_hw_queues);
2406 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2407 if (ret) {
2408 dev_info(ctrl->ctrl.device,
2409 "set_queue_count failed: %d\n", ret);
2410 return ret;
2411 }
2412
2413 ctrl->ctrl.queue_count = nr_io_queues + 1;
2414 if (!nr_io_queues)
2415 return 0;
2416
2417 nvme_fc_init_io_queues(ctrl);
2418
2419 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2420 ctrl->tag_set.ops = &nvme_fc_mq_ops;
2421 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2422 ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2423 ctrl->tag_set.numa_node = NUMA_NO_NODE;
2424 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2425 ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2426 (SG_CHUNK_SIZE *
2427 sizeof(struct scatterlist)) +
2428 ctrl->lport->ops->fcprqst_priv_sz;
2429 ctrl->tag_set.driver_data = ctrl;
2430 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2431 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2432
2433 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2434 if (ret)
2435 return ret;
2436
2437 ctrl->ctrl.tagset = &ctrl->tag_set;
2438
2439 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2440 if (IS_ERR(ctrl->ctrl.connect_q)) {
2441 ret = PTR_ERR(ctrl->ctrl.connect_q);
2442 goto out_free_tag_set;
2443 }
2444
2445 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2446 if (ret)
2447 goto out_cleanup_blk_queue;
2448
2449 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2450 if (ret)
2451 goto out_delete_hw_queues;
2452
2453 ctrl->ioq_live = true;
2454
2455 return 0;
2456
2457 out_delete_hw_queues:
2458 nvme_fc_delete_hw_io_queues(ctrl);
2459 out_cleanup_blk_queue:
2460 blk_cleanup_queue(ctrl->ctrl.connect_q);
2461 out_free_tag_set:
2462 blk_mq_free_tag_set(&ctrl->tag_set);
2463 nvme_fc_free_io_queues(ctrl);
2464
2465 /* force put free routine to ignore io queues */
2466 ctrl->ctrl.tagset = NULL;
2467
2468 return ret;
2469 }
2470
2471 static int
nvme_fc_recreate_io_queues(struct nvme_fc_ctrl * ctrl)2472 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2473 {
2474 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2475 unsigned int nr_io_queues;
2476 int ret;
2477
2478 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2479 ctrl->lport->ops->max_hw_queues);
2480 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2481 if (ret) {
2482 dev_info(ctrl->ctrl.device,
2483 "set_queue_count failed: %d\n", ret);
2484 return ret;
2485 }
2486
2487 ctrl->ctrl.queue_count = nr_io_queues + 1;
2488 /* check for io queues existing */
2489 if (ctrl->ctrl.queue_count == 1)
2490 return 0;
2491
2492 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2493 if (ret)
2494 goto out_free_io_queues;
2495
2496 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2497 if (ret)
2498 goto out_delete_hw_queues;
2499
2500 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2501
2502 return 0;
2503
2504 out_delete_hw_queues:
2505 nvme_fc_delete_hw_io_queues(ctrl);
2506 out_free_io_queues:
2507 nvme_fc_free_io_queues(ctrl);
2508 return ret;
2509 }
2510
2511 static void
nvme_fc_rport_active_on_lport(struct nvme_fc_rport * rport)2512 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2513 {
2514 struct nvme_fc_lport *lport = rport->lport;
2515
2516 atomic_inc(&lport->act_rport_cnt);
2517 }
2518
2519 static void
nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport * rport)2520 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2521 {
2522 struct nvme_fc_lport *lport = rport->lport;
2523 u32 cnt;
2524
2525 cnt = atomic_dec_return(&lport->act_rport_cnt);
2526 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2527 lport->ops->localport_delete(&lport->localport);
2528 }
2529
2530 static int
nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl * ctrl)2531 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2532 {
2533 struct nvme_fc_rport *rport = ctrl->rport;
2534 u32 cnt;
2535
2536 if (ctrl->assoc_active)
2537 return 1;
2538
2539 ctrl->assoc_active = true;
2540 cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2541 if (cnt == 1)
2542 nvme_fc_rport_active_on_lport(rport);
2543
2544 return 0;
2545 }
2546
2547 static int
nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl * ctrl)2548 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2549 {
2550 struct nvme_fc_rport *rport = ctrl->rport;
2551 struct nvme_fc_lport *lport = rport->lport;
2552 u32 cnt;
2553
2554 /* ctrl->assoc_active=false will be set independently */
2555
2556 cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2557 if (cnt == 0) {
2558 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2559 lport->ops->remoteport_delete(&rport->remoteport);
2560 nvme_fc_rport_inactive_on_lport(rport);
2561 }
2562
2563 return 0;
2564 }
2565
2566 /*
2567 * This routine restarts the controller on the host side, and
2568 * on the link side, recreates the controller association.
2569 */
2570 static int
nvme_fc_create_association(struct nvme_fc_ctrl * ctrl)2571 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2572 {
2573 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2574 int ret;
2575 bool changed;
2576
2577 ++ctrl->ctrl.nr_reconnects;
2578
2579 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2580 return -ENODEV;
2581
2582 if (nvme_fc_ctlr_active_on_rport(ctrl))
2583 return -ENOTUNIQ;
2584
2585 /*
2586 * Create the admin queue
2587 */
2588
2589 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2590 NVME_AQ_DEPTH);
2591 if (ret)
2592 goto out_free_queue;
2593
2594 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2595 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
2596 if (ret)
2597 goto out_delete_hw_queue;
2598
2599 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2600
2601 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2602 if (ret)
2603 goto out_disconnect_admin_queue;
2604
2605 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2606
2607 /*
2608 * Check controller capabilities
2609 *
2610 * todo:- add code to check if ctrl attributes changed from
2611 * prior connection values
2612 */
2613
2614 ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2615 if (ret) {
2616 dev_err(ctrl->ctrl.device,
2617 "prop_get NVME_REG_CAP failed\n");
2618 goto out_disconnect_admin_queue;
2619 }
2620
2621 ctrl->ctrl.sqsize =
2622 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
2623
2624 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2625 if (ret)
2626 goto out_disconnect_admin_queue;
2627
2628 ctrl->ctrl.max_hw_sectors =
2629 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2630
2631 ret = nvme_init_identify(&ctrl->ctrl);
2632 if (ret)
2633 goto out_disconnect_admin_queue;
2634
2635 /* sanity checks */
2636
2637 /* FC-NVME does not have other data in the capsule */
2638 if (ctrl->ctrl.icdoff) {
2639 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2640 ctrl->ctrl.icdoff);
2641 goto out_disconnect_admin_queue;
2642 }
2643
2644 /* FC-NVME supports normal SGL Data Block Descriptors */
2645
2646 if (opts->queue_size > ctrl->ctrl.maxcmd) {
2647 /* warn if maxcmd is lower than queue_size */
2648 dev_warn(ctrl->ctrl.device,
2649 "queue_size %zu > ctrl maxcmd %u, reducing "
2650 "to queue_size\n",
2651 opts->queue_size, ctrl->ctrl.maxcmd);
2652 opts->queue_size = ctrl->ctrl.maxcmd;
2653 }
2654
2655 if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
2656 /* warn if sqsize is lower than queue_size */
2657 dev_warn(ctrl->ctrl.device,
2658 "queue_size %zu > ctrl sqsize %u, clamping down\n",
2659 opts->queue_size, ctrl->ctrl.sqsize + 1);
2660 opts->queue_size = ctrl->ctrl.sqsize + 1;
2661 }
2662
2663 ret = nvme_fc_init_aen_ops(ctrl);
2664 if (ret)
2665 goto out_term_aen_ops;
2666
2667 /*
2668 * Create the io queues
2669 */
2670
2671 if (ctrl->ctrl.queue_count > 1) {
2672 if (!ctrl->ioq_live)
2673 ret = nvme_fc_create_io_queues(ctrl);
2674 else
2675 ret = nvme_fc_recreate_io_queues(ctrl);
2676 if (ret)
2677 goto out_term_aen_ops;
2678 }
2679
2680 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2681
2682 ctrl->ctrl.nr_reconnects = 0;
2683
2684 if (changed)
2685 nvme_start_ctrl(&ctrl->ctrl);
2686
2687 return 0; /* Success */
2688
2689 out_term_aen_ops:
2690 nvme_fc_term_aen_ops(ctrl);
2691 out_disconnect_admin_queue:
2692 /* send a Disconnect(association) LS to fc-nvme target */
2693 nvme_fc_xmt_disconnect_assoc(ctrl);
2694 out_delete_hw_queue:
2695 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2696 out_free_queue:
2697 nvme_fc_free_queue(&ctrl->queues[0]);
2698 ctrl->assoc_active = false;
2699 nvme_fc_ctlr_inactive_on_rport(ctrl);
2700
2701 return ret;
2702 }
2703
2704 /*
2705 * This routine stops operation of the controller on the host side.
2706 * On the host os stack side: Admin and IO queues are stopped,
2707 * outstanding ios on them terminated via FC ABTS.
2708 * On the link side: the association is terminated.
2709 */
2710 static void
nvme_fc_delete_association(struct nvme_fc_ctrl * ctrl)2711 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2712 {
2713 unsigned long flags;
2714
2715 if (!ctrl->assoc_active)
2716 return;
2717 ctrl->assoc_active = false;
2718
2719 spin_lock_irqsave(&ctrl->lock, flags);
2720 ctrl->flags |= FCCTRL_TERMIO;
2721 ctrl->iocnt = 0;
2722 spin_unlock_irqrestore(&ctrl->lock, flags);
2723
2724 /*
2725 * If io queues are present, stop them and terminate all outstanding
2726 * ios on them. As FC allocates FC exchange for each io, the
2727 * transport must contact the LLDD to terminate the exchange,
2728 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2729 * to tell us what io's are busy and invoke a transport routine
2730 * to kill them with the LLDD. After terminating the exchange
2731 * the LLDD will call the transport's normal io done path, but it
2732 * will have an aborted status. The done path will return the
2733 * io requests back to the block layer as part of normal completions
2734 * (but with error status).
2735 */
2736 if (ctrl->ctrl.queue_count > 1) {
2737 nvme_stop_queues(&ctrl->ctrl);
2738 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2739 nvme_fc_terminate_exchange, &ctrl->ctrl);
2740 }
2741
2742 /*
2743 * Other transports, which don't have link-level contexts bound
2744 * to sqe's, would try to gracefully shutdown the controller by
2745 * writing the registers for shutdown and polling (call
2746 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2747 * just aborted and we will wait on those contexts, and given
2748 * there was no indication of how live the controlelr is on the
2749 * link, don't send more io to create more contexts for the
2750 * shutdown. Let the controller fail via keepalive failure if
2751 * its still present.
2752 */
2753
2754 /*
2755 * clean up the admin queue. Same thing as above.
2756 * use blk_mq_tagset_busy_itr() and the transport routine to
2757 * terminate the exchanges.
2758 */
2759 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2760 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2761 nvme_fc_terminate_exchange, &ctrl->ctrl);
2762
2763 /* kill the aens as they are a separate path */
2764 nvme_fc_abort_aen_ops(ctrl);
2765
2766 /* wait for all io that had to be aborted */
2767 spin_lock_irq(&ctrl->lock);
2768 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2769 ctrl->flags &= ~FCCTRL_TERMIO;
2770 spin_unlock_irq(&ctrl->lock);
2771
2772 nvme_fc_term_aen_ops(ctrl);
2773
2774 /*
2775 * send a Disconnect(association) LS to fc-nvme target
2776 * Note: could have been sent at top of process, but
2777 * cleaner on link traffic if after the aborts complete.
2778 * Note: if association doesn't exist, association_id will be 0
2779 */
2780 if (ctrl->association_id)
2781 nvme_fc_xmt_disconnect_assoc(ctrl);
2782
2783 if (ctrl->ctrl.tagset) {
2784 nvme_fc_delete_hw_io_queues(ctrl);
2785 nvme_fc_free_io_queues(ctrl);
2786 }
2787
2788 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2789 nvme_fc_free_queue(&ctrl->queues[0]);
2790
2791 /* re-enable the admin_q so anything new can fast fail */
2792 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2793
2794 /* resume the io queues so that things will fast fail */
2795 nvme_start_queues(&ctrl->ctrl);
2796
2797 nvme_fc_ctlr_inactive_on_rport(ctrl);
2798 }
2799
2800 static void
nvme_fc_delete_ctrl(struct nvme_ctrl * nctrl)2801 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2802 {
2803 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2804
2805 cancel_delayed_work_sync(&ctrl->connect_work);
2806 /*
2807 * kill the association on the link side. this will block
2808 * waiting for io to terminate
2809 */
2810 nvme_fc_delete_association(ctrl);
2811 }
2812
2813 static void
nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl * ctrl,int status)2814 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2815 {
2816 struct nvme_fc_rport *rport = ctrl->rport;
2817 struct nvme_fc_remote_port *portptr = &rport->remoteport;
2818 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2819 bool recon = true;
2820
2821 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2822 return;
2823
2824 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2825 dev_info(ctrl->ctrl.device,
2826 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2827 ctrl->cnum, status);
2828 else if (time_after_eq(jiffies, rport->dev_loss_end))
2829 recon = false;
2830
2831 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2832 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2833 dev_info(ctrl->ctrl.device,
2834 "NVME-FC{%d}: Reconnect attempt in %ld "
2835 "seconds\n",
2836 ctrl->cnum, recon_delay / HZ);
2837 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2838 recon_delay = rport->dev_loss_end - jiffies;
2839
2840 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2841 } else {
2842 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2843 dev_warn(ctrl->ctrl.device,
2844 "NVME-FC{%d}: Max reconnect attempts (%d) "
2845 "reached.\n",
2846 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2847 else
2848 dev_warn(ctrl->ctrl.device,
2849 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2850 "while waiting for remoteport connectivity.\n",
2851 ctrl->cnum, portptr->dev_loss_tmo);
2852 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2853 }
2854 }
2855
2856 static void
nvme_fc_reset_ctrl_work(struct work_struct * work)2857 nvme_fc_reset_ctrl_work(struct work_struct *work)
2858 {
2859 struct nvme_fc_ctrl *ctrl =
2860 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2861 int ret;
2862
2863 nvme_stop_ctrl(&ctrl->ctrl);
2864
2865 /* will block will waiting for io to terminate */
2866 nvme_fc_delete_association(ctrl);
2867
2868 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2869 dev_err(ctrl->ctrl.device,
2870 "NVME-FC{%d}: error_recovery: Couldn't change state "
2871 "to CONNECTING\n", ctrl->cnum);
2872 return;
2873 }
2874
2875 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2876 ret = nvme_fc_create_association(ctrl);
2877 else
2878 ret = -ENOTCONN;
2879
2880 if (ret)
2881 nvme_fc_reconnect_or_delete(ctrl, ret);
2882 else
2883 dev_info(ctrl->ctrl.device,
2884 "NVME-FC{%d}: controller reset complete\n",
2885 ctrl->cnum);
2886 }
2887
2888 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2889 .name = "fc",
2890 .module = THIS_MODULE,
2891 .flags = NVME_F_FABRICS,
2892 .reg_read32 = nvmf_reg_read32,
2893 .reg_read64 = nvmf_reg_read64,
2894 .reg_write32 = nvmf_reg_write32,
2895 .free_ctrl = nvme_fc_nvme_ctrl_freed,
2896 .submit_async_event = nvme_fc_submit_async_event,
2897 .delete_ctrl = nvme_fc_delete_ctrl,
2898 .get_address = nvmf_get_address,
2899 };
2900
2901 static void
nvme_fc_connect_ctrl_work(struct work_struct * work)2902 nvme_fc_connect_ctrl_work(struct work_struct *work)
2903 {
2904 int ret;
2905
2906 struct nvme_fc_ctrl *ctrl =
2907 container_of(to_delayed_work(work),
2908 struct nvme_fc_ctrl, connect_work);
2909
2910 ret = nvme_fc_create_association(ctrl);
2911 if (ret)
2912 nvme_fc_reconnect_or_delete(ctrl, ret);
2913 else
2914 dev_info(ctrl->ctrl.device,
2915 "NVME-FC{%d}: controller connect complete\n",
2916 ctrl->cnum);
2917 }
2918
2919
2920 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2921 .queue_rq = nvme_fc_queue_rq,
2922 .complete = nvme_fc_complete_rq,
2923 .init_request = nvme_fc_init_request,
2924 .exit_request = nvme_fc_exit_request,
2925 .init_hctx = nvme_fc_init_admin_hctx,
2926 .timeout = nvme_fc_timeout,
2927 };
2928
2929
2930 /*
2931 * Fails a controller request if it matches an existing controller
2932 * (association) with the same tuple:
2933 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
2934 *
2935 * The ports don't need to be compared as they are intrinsically
2936 * already matched by the port pointers supplied.
2937 */
2938 static bool
nvme_fc_existing_controller(struct nvme_fc_rport * rport,struct nvmf_ctrl_options * opts)2939 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
2940 struct nvmf_ctrl_options *opts)
2941 {
2942 struct nvme_fc_ctrl *ctrl;
2943 unsigned long flags;
2944 bool found = false;
2945
2946 spin_lock_irqsave(&rport->lock, flags);
2947 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
2948 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
2949 if (found)
2950 break;
2951 }
2952 spin_unlock_irqrestore(&rport->lock, flags);
2953
2954 return found;
2955 }
2956
2957 static struct nvme_ctrl *
nvme_fc_init_ctrl(struct device * dev,struct nvmf_ctrl_options * opts,struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)2958 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2959 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2960 {
2961 struct nvme_fc_ctrl *ctrl;
2962 unsigned long flags;
2963 int ret, idx;
2964
2965 if (!(rport->remoteport.port_role &
2966 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
2967 ret = -EBADR;
2968 goto out_fail;
2969 }
2970
2971 if (!opts->duplicate_connect &&
2972 nvme_fc_existing_controller(rport, opts)) {
2973 ret = -EALREADY;
2974 goto out_fail;
2975 }
2976
2977 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2978 if (!ctrl) {
2979 ret = -ENOMEM;
2980 goto out_fail;
2981 }
2982
2983 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2984 if (idx < 0) {
2985 ret = -ENOSPC;
2986 goto out_free_ctrl;
2987 }
2988
2989 ctrl->ctrl.opts = opts;
2990 ctrl->ctrl.nr_reconnects = 0;
2991 INIT_LIST_HEAD(&ctrl->ctrl_list);
2992 ctrl->lport = lport;
2993 ctrl->rport = rport;
2994 ctrl->dev = lport->dev;
2995 ctrl->cnum = idx;
2996 ctrl->ioq_live = false;
2997 ctrl->assoc_active = false;
2998 init_waitqueue_head(&ctrl->ioabort_wait);
2999
3000 get_device(ctrl->dev);
3001 kref_init(&ctrl->ref);
3002
3003 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3004 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3005 spin_lock_init(&ctrl->lock);
3006
3007 /* io queue count */
3008 ctrl->ctrl.queue_count = min_t(unsigned int,
3009 opts->nr_io_queues,
3010 lport->ops->max_hw_queues);
3011 ctrl->ctrl.queue_count++; /* +1 for admin queue */
3012
3013 ctrl->ctrl.sqsize = opts->queue_size - 1;
3014 ctrl->ctrl.kato = opts->kato;
3015 ctrl->ctrl.cntlid = 0xffff;
3016
3017 ret = -ENOMEM;
3018 ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3019 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3020 if (!ctrl->queues)
3021 goto out_free_ida;
3022
3023 nvme_fc_init_queue(ctrl, 0);
3024
3025 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3026 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3027 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3028 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3029 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
3030 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
3031 (SG_CHUNK_SIZE *
3032 sizeof(struct scatterlist)) +
3033 ctrl->lport->ops->fcprqst_priv_sz;
3034 ctrl->admin_tag_set.driver_data = ctrl;
3035 ctrl->admin_tag_set.nr_hw_queues = 1;
3036 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3037 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3038
3039 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3040 if (ret)
3041 goto out_free_queues;
3042 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3043
3044 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3045 if (IS_ERR(ctrl->ctrl.admin_q)) {
3046 ret = PTR_ERR(ctrl->ctrl.admin_q);
3047 goto out_free_admin_tag_set;
3048 }
3049
3050 /*
3051 * Would have been nice to init io queues tag set as well.
3052 * However, we require interaction from the controller
3053 * for max io queue count before we can do so.
3054 * Defer this to the connect path.
3055 */
3056
3057 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3058 if (ret)
3059 goto out_cleanup_admin_q;
3060
3061 /* at this point, teardown path changes to ref counting on nvme ctrl */
3062
3063 spin_lock_irqsave(&rport->lock, flags);
3064 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3065 spin_unlock_irqrestore(&rport->lock, flags);
3066
3067 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3068 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3069 dev_err(ctrl->ctrl.device,
3070 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3071 goto fail_ctrl;
3072 }
3073
3074 nvme_get_ctrl(&ctrl->ctrl);
3075
3076 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3077 nvme_put_ctrl(&ctrl->ctrl);
3078 dev_err(ctrl->ctrl.device,
3079 "NVME-FC{%d}: failed to schedule initial connect\n",
3080 ctrl->cnum);
3081 goto fail_ctrl;
3082 }
3083
3084 flush_delayed_work(&ctrl->connect_work);
3085
3086 dev_info(ctrl->ctrl.device,
3087 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3088 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3089
3090 return &ctrl->ctrl;
3091
3092 fail_ctrl:
3093 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3094 cancel_work_sync(&ctrl->ctrl.reset_work);
3095 cancel_delayed_work_sync(&ctrl->connect_work);
3096
3097 ctrl->ctrl.opts = NULL;
3098
3099 /* initiate nvme ctrl ref counting teardown */
3100 nvme_uninit_ctrl(&ctrl->ctrl);
3101
3102 /* Remove core ctrl ref. */
3103 nvme_put_ctrl(&ctrl->ctrl);
3104
3105 /* as we're past the point where we transition to the ref
3106 * counting teardown path, if we return a bad pointer here,
3107 * the calling routine, thinking it's prior to the
3108 * transition, will do an rport put. Since the teardown
3109 * path also does a rport put, we do an extra get here to
3110 * so proper order/teardown happens.
3111 */
3112 nvme_fc_rport_get(rport);
3113
3114 return ERR_PTR(-EIO);
3115
3116 out_cleanup_admin_q:
3117 blk_cleanup_queue(ctrl->ctrl.admin_q);
3118 out_free_admin_tag_set:
3119 blk_mq_free_tag_set(&ctrl->admin_tag_set);
3120 out_free_queues:
3121 kfree(ctrl->queues);
3122 out_free_ida:
3123 put_device(ctrl->dev);
3124 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3125 out_free_ctrl:
3126 kfree(ctrl);
3127 out_fail:
3128 /* exit via here doesn't follow ctlr ref points */
3129 return ERR_PTR(ret);
3130 }
3131
3132
3133 struct nvmet_fc_traddr {
3134 u64 nn;
3135 u64 pn;
3136 };
3137
3138 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)3139 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3140 {
3141 u64 token64;
3142
3143 if (match_u64(sstr, &token64))
3144 return -EINVAL;
3145 *val = token64;
3146
3147 return 0;
3148 }
3149
3150 /*
3151 * This routine validates and extracts the WWN's from the TRADDR string.
3152 * As kernel parsers need the 0x to determine number base, universally
3153 * build string to parse with 0x prefix before parsing name strings.
3154 */
3155 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)3156 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3157 {
3158 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3159 substring_t wwn = { name, &name[sizeof(name)-1] };
3160 int nnoffset, pnoffset;
3161
3162 /* validate it string one of the 2 allowed formats */
3163 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3164 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3165 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3166 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3167 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3168 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3169 NVME_FC_TRADDR_OXNNLEN;
3170 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3171 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3172 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3173 "pn-", NVME_FC_TRADDR_NNLEN))) {
3174 nnoffset = NVME_FC_TRADDR_NNLEN;
3175 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3176 } else
3177 goto out_einval;
3178
3179 name[0] = '0';
3180 name[1] = 'x';
3181 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3182
3183 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3184 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3185 goto out_einval;
3186
3187 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3188 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3189 goto out_einval;
3190
3191 return 0;
3192
3193 out_einval:
3194 pr_warn("%s: bad traddr string\n", __func__);
3195 return -EINVAL;
3196 }
3197
3198 static struct nvme_ctrl *
nvme_fc_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)3199 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3200 {
3201 struct nvme_fc_lport *lport;
3202 struct nvme_fc_rport *rport;
3203 struct nvme_ctrl *ctrl;
3204 struct nvmet_fc_traddr laddr = { 0L, 0L };
3205 struct nvmet_fc_traddr raddr = { 0L, 0L };
3206 unsigned long flags;
3207 int ret;
3208
3209 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3210 if (ret || !raddr.nn || !raddr.pn)
3211 return ERR_PTR(-EINVAL);
3212
3213 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3214 if (ret || !laddr.nn || !laddr.pn)
3215 return ERR_PTR(-EINVAL);
3216
3217 /* find the host and remote ports to connect together */
3218 spin_lock_irqsave(&nvme_fc_lock, flags);
3219 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3220 if (lport->localport.node_name != laddr.nn ||
3221 lport->localport.port_name != laddr.pn)
3222 continue;
3223
3224 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3225 if (rport->remoteport.node_name != raddr.nn ||
3226 rport->remoteport.port_name != raddr.pn)
3227 continue;
3228
3229 /* if fail to get reference fall through. Will error */
3230 if (!nvme_fc_rport_get(rport))
3231 break;
3232
3233 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3234
3235 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3236 if (IS_ERR(ctrl))
3237 nvme_fc_rport_put(rport);
3238 return ctrl;
3239 }
3240 }
3241 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3242
3243 pr_warn("%s: %s - %s combination not found\n",
3244 __func__, opts->traddr, opts->host_traddr);
3245 return ERR_PTR(-ENOENT);
3246 }
3247
3248
3249 static struct nvmf_transport_ops nvme_fc_transport = {
3250 .name = "fc",
3251 .module = THIS_MODULE,
3252 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3253 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3254 .create_ctrl = nvme_fc_create_ctrl,
3255 };
3256
nvme_fc_init_module(void)3257 static int __init nvme_fc_init_module(void)
3258 {
3259 int ret;
3260
3261 /*
3262 * NOTE:
3263 * It is expected that in the future the kernel will combine
3264 * the FC-isms that are currently under scsi and now being
3265 * added to by NVME into a new standalone FC class. The SCSI
3266 * and NVME protocols and their devices would be under this
3267 * new FC class.
3268 *
3269 * As we need something to post FC-specific udev events to,
3270 * specifically for nvme probe events, start by creating the
3271 * new device class. When the new standalone FC class is
3272 * put in place, this code will move to a more generic
3273 * location for the class.
3274 */
3275 fc_class = class_create(THIS_MODULE, "fc");
3276 if (IS_ERR(fc_class)) {
3277 pr_err("couldn't register class fc\n");
3278 return PTR_ERR(fc_class);
3279 }
3280
3281 /*
3282 * Create a device for the FC-centric udev events
3283 */
3284 fc_udev_device = device_create(fc_class, NULL, MKDEV(0, 0), NULL,
3285 "fc_udev_device");
3286 if (IS_ERR(fc_udev_device)) {
3287 pr_err("couldn't create fc_udev device!\n");
3288 ret = PTR_ERR(fc_udev_device);
3289 goto out_destroy_class;
3290 }
3291
3292 ret = nvmf_register_transport(&nvme_fc_transport);
3293 if (ret)
3294 goto out_destroy_device;
3295
3296 return 0;
3297
3298 out_destroy_device:
3299 device_destroy(fc_class, MKDEV(0, 0));
3300 out_destroy_class:
3301 class_destroy(fc_class);
3302 return ret;
3303 }
3304
nvme_fc_exit_module(void)3305 static void __exit nvme_fc_exit_module(void)
3306 {
3307 /* sanity check - all lports should be removed */
3308 if (!list_empty(&nvme_fc_lport_list))
3309 pr_warn("%s: localport list not empty\n", __func__);
3310
3311 nvmf_unregister_transport(&nvme_fc_transport);
3312
3313 ida_destroy(&nvme_fc_local_port_cnt);
3314 ida_destroy(&nvme_fc_ctrl_cnt);
3315
3316 device_destroy(fc_class, MKDEV(0, 0));
3317 class_destroy(fc_class);
3318 }
3319
3320 module_init(nvme_fc_init_module);
3321 module_exit(nvme_fc_exit_module);
3322
3323 MODULE_LICENSE("GPL v2");
3324