1 /*
2  * Intel Wireless WiMAX Connection 2400m
3  * Firmware uploader
4  *
5  *
6  * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  *   * Redistributions of source code must retain the above copyright
13  *     notice, this list of conditions and the following disclaimer.
14  *   * Redistributions in binary form must reproduce the above copyright
15  *     notice, this list of conditions and the following disclaimer in
16  *     the documentation and/or other materials provided with the
17  *     distribution.
18  *   * Neither the name of Intel Corporation nor the names of its
19  *     contributors may be used to endorse or promote products derived
20  *     from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *
35  * Intel Corporation <linux-wimax@intel.com>
36  * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
38  *  - Initial implementation
39  *
40  *
41  * THE PROCEDURE
42  *
43  * The 2400m and derived devices work in two modes: boot-mode or
44  * normal mode. In boot mode we can execute only a handful of commands
45  * targeted at uploading the firmware and launching it.
46  *
47  * The 2400m enters boot mode when it is first connected to the
48  * system, when it crashes and when you ask it to reboot. There are
49  * two submodes of the boot mode: signed and non-signed. Signed takes
50  * firmwares signed with a certain private key, non-signed takes any
51  * firmware. Normal hardware takes only signed firmware.
52  *
53  * On boot mode, in USB, we write to the device using the bulk out
54  * endpoint and read from it in the notification endpoint.
55  *
56  * Upon entrance to boot mode, the device sends (preceded with a few
57  * zero length packets (ZLPs) on the notification endpoint in USB) a
58  * reboot barker (4 le32 words with the same value). We ack it by
59  * sending the same barker to the device. The device acks with a
60  * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
61  * then is fully booted. At this point we can upload the firmware.
62  *
63  * Note that different iterations of the device and EEPROM
64  * configurations will send different [re]boot barkers; these are
65  * collected in i2400m_barker_db along with the firmware
66  * characteristics they require.
67  *
68  * This process is accomplished by the i2400m_bootrom_init()
69  * function. All the device interaction happens through the
70  * i2400m_bm_cmd() [boot mode command]. Special return values will
71  * indicate if the device did reset during the process.
72  *
73  * After this, we read the MAC address and then (if needed)
74  * reinitialize the device. We need to read it ahead of time because
75  * in the future, we might not upload the firmware until userspace
76  * 'ifconfig up's the device.
77  *
78  * We can then upload the firmware file. The file is composed of a BCF
79  * header (basic data, keys and signatures) and a list of write
80  * commands and payloads. Optionally more BCF headers might follow the
81  * main payload. We first upload the header [i2400m_dnload_init()] and
82  * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
83  * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
84  * the new firmware [i2400m_dnload_finalize()].
85  *
86  * Once firmware is uploaded, we are good to go :)
87  *
88  * When we don't know in which mode we are, we first try by sending a
89  * warm reset request that will take us to boot-mode. If we time out
90  * waiting for a reboot barker, that means maybe we are already in
91  * boot mode, so we send a reboot barker.
92  *
93  * COMMAND EXECUTION
94  *
95  * This code (and process) is single threaded; for executing commands,
96  * we post a URB to the notification endpoint, post the command, wait
97  * for data on the notification buffer. We don't need to worry about
98  * others as we know we are the only ones in there.
99  *
100  * BACKEND IMPLEMENTATION
101  *
102  * This code is bus-generic; the bus-specific driver provides back end
103  * implementations to send a boot mode command to the device and to
104  * read an acknolwedgement from it (or an asynchronous notification)
105  * from it.
106  *
107  * FIRMWARE LOADING
108  *
109  * Note that in some cases, we can't just load a firmware file (for
110  * example, when resuming). For that, we might cache the firmware
111  * file. Thus, when doing the bootstrap, if there is a cache firmware
112  * file, it is used; if not, loading from disk is attempted.
113  *
114  * ROADMAP
115  *
116  * i2400m_barker_db_init              Called by i2400m_driver_init()
117  *   i2400m_barker_db_add
118  *
119  * i2400m_barker_db_exit              Called by i2400m_driver_exit()
120  *
121  * i2400m_dev_bootstrap               Called by __i2400m_dev_start()
122  *   request_firmware
123  *   i2400m_fw_bootstrap
124  *     i2400m_fw_check
125  *       i2400m_fw_hdr_check
126  *     i2400m_fw_dnload
127  *   release_firmware
128  *
129  * i2400m_fw_dnload
130  *   i2400m_bootrom_init
131  *     i2400m_bm_cmd
132  *     i2400m_reset
133  *   i2400m_dnload_init
134  *     i2400m_dnload_init_signed
135  *     i2400m_dnload_init_nonsigned
136  *       i2400m_download_chunk
137  *         i2400m_bm_cmd
138  *   i2400m_dnload_bcf
139  *     i2400m_bm_cmd
140  *   i2400m_dnload_finalize
141  *     i2400m_bm_cmd
142  *
143  * i2400m_bm_cmd
144  *   i2400m->bus_bm_cmd_send()
145  *   i2400m->bus_bm_wait_for_ack
146  *   __i2400m_bm_ack_verify
147  *     i2400m_is_boot_barker
148  *
149  * i2400m_bm_cmd_prepare              Used by bus-drivers to prep
150  *                                    commands before sending
151  *
152  * i2400m_pm_notifier                 Called on Power Management events
153  *   i2400m_fw_cache
154  *   i2400m_fw_uncache
155  */
156 #include <linux/firmware.h>
157 #include <linux/sched.h>
158 #include <linux/slab.h>
159 #include <linux/usb.h>
160 #include <linux/export.h>
161 #include "i2400m.h"
162 
163 
164 #define D_SUBMODULE fw
165 #include "debug-levels.h"
166 
167 
168 static const __le32 i2400m_ACK_BARKER[4] = {
169 	cpu_to_le32(I2400M_ACK_BARKER),
170 	cpu_to_le32(I2400M_ACK_BARKER),
171 	cpu_to_le32(I2400M_ACK_BARKER),
172 	cpu_to_le32(I2400M_ACK_BARKER)
173 };
174 
175 
176 /**
177  * Prepare a boot-mode command for delivery
178  *
179  * @cmd: pointer to bootrom header to prepare
180  *
181  * Computes checksum if so needed. After calling this function, DO NOT
182  * modify the command or header as the checksum won't work anymore.
183  *
184  * We do it from here because some times we cannot do it in the
185  * original context the command was sent (it is a const), so when we
186  * copy it to our staging buffer, we add the checksum there.
187  */
i2400m_bm_cmd_prepare(struct i2400m_bootrom_header * cmd)188 void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *cmd)
189 {
190 	if (i2400m_brh_get_use_checksum(cmd)) {
191 		int i;
192 		u32 checksum = 0;
193 		const u32 *checksum_ptr = (void *) cmd->payload;
194 		for (i = 0; i < cmd->data_size / 4; i++)
195 			checksum += cpu_to_le32(*checksum_ptr++);
196 		checksum += cmd->command + cmd->target_addr + cmd->data_size;
197 		cmd->block_checksum = cpu_to_le32(checksum);
198 	}
199 }
200 EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare);
201 
202 
203 /*
204  * Database of known barkers.
205  *
206  * A barker is what the device sends indicating he is ready to be
207  * bootloaded. Different versions of the device will send different
208  * barkers. Depending on the barker, it might mean the device wants
209  * some kind of firmware or the other.
210  */
211 static struct i2400m_barker_db {
212 	__le32 data[4];
213 } *i2400m_barker_db;
214 static size_t i2400m_barker_db_used, i2400m_barker_db_size;
215 
216 
217 static
i2400m_zrealloc_2x(void ** ptr,size_t * _count,size_t el_size,gfp_t gfp_flags)218 int i2400m_zrealloc_2x(void **ptr, size_t *_count, size_t el_size,
219 		       gfp_t gfp_flags)
220 {
221 	size_t old_count = *_count,
222 		new_count = old_count ? 2 * old_count : 2,
223 		old_size = el_size * old_count,
224 		new_size = el_size * new_count;
225 	void *nptr = krealloc(*ptr, new_size, gfp_flags);
226 	if (nptr) {
227 		/* zero the other half or the whole thing if old_count
228 		 * was zero */
229 		if (old_size == 0)
230 			memset(nptr, 0, new_size);
231 		else
232 			memset(nptr + old_size, 0, old_size);
233 		*_count = new_count;
234 		*ptr = nptr;
235 		return 0;
236 	} else
237 		return -ENOMEM;
238 }
239 
240 
241 /*
242  * Add a barker to the database
243  *
244  * This cannot used outside of this module and only at at module_init
245  * time. This is to avoid the need to do locking.
246  */
247 static
i2400m_barker_db_add(u32 barker_id)248 int i2400m_barker_db_add(u32 barker_id)
249 {
250 	int result;
251 
252 	struct i2400m_barker_db *barker;
253 	if (i2400m_barker_db_used >= i2400m_barker_db_size) {
254 		result = i2400m_zrealloc_2x(
255 			(void **) &i2400m_barker_db, &i2400m_barker_db_size,
256 			sizeof(i2400m_barker_db[0]), GFP_KERNEL);
257 		if (result < 0)
258 			return result;
259 	}
260 	barker = i2400m_barker_db + i2400m_barker_db_used++;
261 	barker->data[0] = le32_to_cpu(barker_id);
262 	barker->data[1] = le32_to_cpu(barker_id);
263 	barker->data[2] = le32_to_cpu(barker_id);
264 	barker->data[3] = le32_to_cpu(barker_id);
265 	return 0;
266 }
267 
268 
i2400m_barker_db_exit(void)269 void i2400m_barker_db_exit(void)
270 {
271 	kfree(i2400m_barker_db);
272 	i2400m_barker_db = NULL;
273 	i2400m_barker_db_size = 0;
274 	i2400m_barker_db_used = 0;
275 }
276 
277 
278 /*
279  * Helper function to add all the known stable barkers to the barker
280  * database.
281  */
282 static
i2400m_barker_db_known_barkers(void)283 int i2400m_barker_db_known_barkers(void)
284 {
285 	int result;
286 
287 	result = i2400m_barker_db_add(I2400M_NBOOT_BARKER);
288 	if (result < 0)
289 		goto error_add;
290 	result = i2400m_barker_db_add(I2400M_SBOOT_BARKER);
291 	if (result < 0)
292 		goto error_add;
293 	result = i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050);
294 	if (result < 0)
295 		goto error_add;
296 error_add:
297        return result;
298 }
299 
300 
301 /*
302  * Initialize the barker database
303  *
304  * This can only be used from the module_init function for this
305  * module; this is to avoid the need to do locking.
306  *
307  * @options: command line argument with extra barkers to
308  *     recognize. This is a comma-separated list of 32-bit hex
309  *     numbers. They are appended to the existing list. Setting 0
310  *     cleans the existing list and starts a new one.
311  */
i2400m_barker_db_init(const char * _options)312 int i2400m_barker_db_init(const char *_options)
313 {
314 	int result;
315 	char *options = NULL, *options_orig, *token;
316 
317 	i2400m_barker_db = NULL;
318 	i2400m_barker_db_size = 0;
319 	i2400m_barker_db_used = 0;
320 
321 	result = i2400m_barker_db_known_barkers();
322 	if (result < 0)
323 		goto error_add;
324 	/* parse command line options from i2400m.barkers */
325 	if (_options != NULL) {
326 		unsigned barker;
327 
328 		options_orig = kstrdup(_options, GFP_KERNEL);
329 		if (options_orig == NULL) {
330 			result = -ENOMEM;
331 			goto error_parse;
332 		}
333 		options = options_orig;
334 
335 		while ((token = strsep(&options, ",")) != NULL) {
336 			if (*token == '\0')	/* eat joint commas */
337 				continue;
338 			if (sscanf(token, "%x", &barker) != 1
339 			    || barker > 0xffffffff) {
340 				printk(KERN_ERR "%s: can't recognize "
341 				       "i2400m.barkers value '%s' as "
342 				       "a 32-bit number\n",
343 				       __func__, token);
344 				result = -EINVAL;
345 				goto error_parse;
346 			}
347 			if (barker == 0) {
348 				/* clean list and start new */
349 				i2400m_barker_db_exit();
350 				continue;
351 			}
352 			result = i2400m_barker_db_add(barker);
353 			if (result < 0)
354 				goto error_parse_add;
355 		}
356 		kfree(options_orig);
357 	}
358 	return 0;
359 
360 error_parse_add:
361 error_parse:
362 	kfree(options_orig);
363 error_add:
364 	kfree(i2400m_barker_db);
365 	return result;
366 }
367 
368 
369 /*
370  * Recognize a boot barker
371  *
372  * @buf: buffer where the boot barker.
373  * @buf_size: size of the buffer (has to be 16 bytes). It is passed
374  *     here so the function can check it for the caller.
375  *
376  * Note that as a side effect, upon identifying the obtained boot
377  * barker, this function will set i2400m->barker to point to the right
378  * barker database entry. Subsequent calls to the function will result
379  * in verifying that the same type of boot barker is returned when the
380  * device [re]boots (as long as the same device instance is used).
381  *
382  * Return: 0 if @buf matches a known boot barker. -ENOENT if the
383  *     buffer in @buf doesn't match any boot barker in the database or
384  *     -EILSEQ if the buffer doesn't have the right size.
385  */
i2400m_is_boot_barker(struct i2400m * i2400m,const void * buf,size_t buf_size)386 int i2400m_is_boot_barker(struct i2400m *i2400m,
387 			  const void *buf, size_t buf_size)
388 {
389 	int result;
390 	struct device *dev = i2400m_dev(i2400m);
391 	struct i2400m_barker_db *barker;
392 	int i;
393 
394 	result = -ENOENT;
395 	if (buf_size != sizeof(i2400m_barker_db[i].data))
396 		return result;
397 
398 	/* Short circuit if we have already discovered the barker
399 	 * associated with the device. */
400 	if (i2400m->barker &&
401 	    !memcmp(buf, i2400m->barker, sizeof(i2400m->barker->data)))
402 		return 0;
403 
404 	for (i = 0; i < i2400m_barker_db_used; i++) {
405 		barker = &i2400m_barker_db[i];
406 		BUILD_BUG_ON(sizeof(barker->data) != 16);
407 		if (memcmp(buf, barker->data, sizeof(barker->data)))
408 			continue;
409 
410 		if (i2400m->barker == NULL) {
411 			i2400m->barker = barker;
412 			d_printf(1, dev, "boot barker set to #%u/%08x\n",
413 				 i, le32_to_cpu(barker->data[0]));
414 			if (barker->data[0] == le32_to_cpu(I2400M_NBOOT_BARKER))
415 				i2400m->sboot = 0;
416 			else
417 				i2400m->sboot = 1;
418 		} else if (i2400m->barker != barker) {
419 			dev_err(dev, "HW inconsistency: device "
420 				"reports a different boot barker "
421 				"than set (from %08x to %08x)\n",
422 				le32_to_cpu(i2400m->barker->data[0]),
423 				le32_to_cpu(barker->data[0]));
424 			result = -EIO;
425 		} else
426 			d_printf(2, dev, "boot barker confirmed #%u/%08x\n",
427 				 i, le32_to_cpu(barker->data[0]));
428 		result = 0;
429 		break;
430 	}
431 	return result;
432 }
433 EXPORT_SYMBOL_GPL(i2400m_is_boot_barker);
434 
435 
436 /*
437  * Verify the ack data received
438  *
439  * Given a reply to a boot mode command, chew it and verify everything
440  * is ok.
441  *
442  * @opcode: opcode which generated this ack. For error messages.
443  * @ack: pointer to ack data we received
444  * @ack_size: size of that data buffer
445  * @flags: I2400M_BM_CMD_* flags we called the command with.
446  *
447  * Way too long function -- maybe it should be further split
448  */
449 static
__i2400m_bm_ack_verify(struct i2400m * i2400m,int opcode,struct i2400m_bootrom_header * ack,size_t ack_size,int flags)450 ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
451 			       struct i2400m_bootrom_header *ack,
452 			       size_t ack_size, int flags)
453 {
454 	ssize_t result = -ENOMEM;
455 	struct device *dev = i2400m_dev(i2400m);
456 
457 	d_fnstart(8, dev, "(i2400m %p opcode %d ack %p size %zu)\n",
458 		  i2400m, opcode, ack, ack_size);
459 	if (ack_size < sizeof(*ack)) {
460 		result = -EIO;
461 		dev_err(dev, "boot-mode cmd %d: HW BUG? notification didn't "
462 			"return enough data (%zu bytes vs %zu expected)\n",
463 			opcode, ack_size, sizeof(*ack));
464 		goto error_ack_short;
465 	}
466 	result = i2400m_is_boot_barker(i2400m, ack, ack_size);
467 	if (result >= 0) {
468 		result = -ERESTARTSYS;
469 		d_printf(6, dev, "boot-mode cmd %d: HW boot barker\n", opcode);
470 		goto error_reboot;
471 	}
472 	if (ack_size == sizeof(i2400m_ACK_BARKER)
473 		 && memcmp(ack, i2400m_ACK_BARKER, sizeof(*ack)) == 0) {
474 		result = -EISCONN;
475 		d_printf(3, dev, "boot-mode cmd %d: HW reboot ack barker\n",
476 			 opcode);
477 		goto error_reboot_ack;
478 	}
479 	result = 0;
480 	if (flags & I2400M_BM_CMD_RAW)
481 		goto out_raw;
482 	ack->data_size = le32_to_cpu(ack->data_size);
483 	ack->target_addr = le32_to_cpu(ack->target_addr);
484 	ack->block_checksum = le32_to_cpu(ack->block_checksum);
485 	d_printf(5, dev, "boot-mode cmd %d: notification for opcode %u "
486 		 "response %u csum %u rr %u da %u\n",
487 		 opcode, i2400m_brh_get_opcode(ack),
488 		 i2400m_brh_get_response(ack),
489 		 i2400m_brh_get_use_checksum(ack),
490 		 i2400m_brh_get_response_required(ack),
491 		 i2400m_brh_get_direct_access(ack));
492 	result = -EIO;
493 	if (i2400m_brh_get_signature(ack) != 0xcbbc) {
494 		dev_err(dev, "boot-mode cmd %d: HW BUG? wrong signature "
495 			"0x%04x\n", opcode, i2400m_brh_get_signature(ack));
496 		goto error_ack_signature;
497 	}
498 	if (opcode != -1 && opcode != i2400m_brh_get_opcode(ack)) {
499 		dev_err(dev, "boot-mode cmd %d: HW BUG? "
500 			"received response for opcode %u, expected %u\n",
501 			opcode, i2400m_brh_get_opcode(ack), opcode);
502 		goto error_ack_opcode;
503 	}
504 	if (i2400m_brh_get_response(ack) != 0) {	/* failed? */
505 		dev_err(dev, "boot-mode cmd %d: error; hw response %u\n",
506 			opcode, i2400m_brh_get_response(ack));
507 		goto error_ack_failed;
508 	}
509 	if (ack_size < ack->data_size + sizeof(*ack)) {
510 		dev_err(dev, "boot-mode cmd %d: SW BUG "
511 			"driver provided only %zu bytes for %zu bytes "
512 			"of data\n", opcode, ack_size,
513 			(size_t) le32_to_cpu(ack->data_size) + sizeof(*ack));
514 		goto error_ack_short_buffer;
515 	}
516 	result = ack_size;
517 	/* Don't you love this stack of empty targets? Well, I don't
518 	 * either, but it helps track exactly who comes in here and
519 	 * why :) */
520 error_ack_short_buffer:
521 error_ack_failed:
522 error_ack_opcode:
523 error_ack_signature:
524 out_raw:
525 error_reboot_ack:
526 error_reboot:
527 error_ack_short:
528 	d_fnend(8, dev, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
529 		i2400m, opcode, ack, ack_size, (int) result);
530 	return result;
531 }
532 
533 
534 /**
535  * i2400m_bm_cmd - Execute a boot mode command
536  *
537  * @cmd: buffer containing the command data (pointing at the header).
538  *     This data can be ANYWHERE (for USB, we will copy it to an
539  *     specific buffer). Make sure everything is in proper little
540  *     endian.
541  *
542  *     A raw buffer can be also sent, just cast it and set flags to
543  *     I2400M_BM_CMD_RAW.
544  *
545  *     This function will generate a checksum for you if the
546  *     checksum bit in the command is set (unless I2400M_BM_CMD_RAW
547  *     is set).
548  *
549  *     You can use the i2400m->bm_cmd_buf to stage your commands and
550  *     send them.
551  *
552  *     If NULL, no command is sent (we just wait for an ack).
553  *
554  * @cmd_size: size of the command. Will be auto padded to the
555  *     bus-specific drivers padding requirements.
556  *
557  * @ack: buffer where to place the acknowledgement. If it is a regular
558  *     command response, all fields will be returned with the right,
559  *     native endianess.
560  *
561  *     You *cannot* use i2400m->bm_ack_buf for this buffer.
562  *
563  * @ack_size: size of @ack, 16 aligned; you need to provide at least
564  *     sizeof(*ack) bytes and then enough to contain the return data
565  *     from the command
566  *
567  * @flags: see I2400M_BM_CMD_* above.
568  *
569  * @returns: bytes received by the notification; if < 0, an errno code
570  *     denoting an error or:
571  *
572  *     -ERESTARTSYS  The device has rebooted
573  *
574  * Executes a boot-mode command and waits for a response, doing basic
575  * validation on it; if a zero length response is received, it retries
576  * waiting for a response until a non-zero one is received (timing out
577  * after %I2400M_BOOT_RETRIES retries).
578  */
579 static
i2400m_bm_cmd(struct i2400m * i2400m,const struct i2400m_bootrom_header * cmd,size_t cmd_size,struct i2400m_bootrom_header * ack,size_t ack_size,int flags)580 ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
581 		      const struct i2400m_bootrom_header *cmd, size_t cmd_size,
582 		      struct i2400m_bootrom_header *ack, size_t ack_size,
583 		      int flags)
584 {
585 	ssize_t result = -ENOMEM, rx_bytes;
586 	struct device *dev = i2400m_dev(i2400m);
587 	int opcode = cmd == NULL ? -1 : i2400m_brh_get_opcode(cmd);
588 
589 	d_fnstart(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
590 		  i2400m, cmd, cmd_size, ack, ack_size);
591 	BUG_ON(ack_size < sizeof(*ack));
592 	BUG_ON(i2400m->boot_mode == 0);
593 
594 	if (cmd != NULL) {		/* send the command */
595 		result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
596 		if (result < 0)
597 			goto error_cmd_send;
598 		if ((flags & I2400M_BM_CMD_RAW) == 0)
599 			d_printf(5, dev,
600 				 "boot-mode cmd %d csum %u rr %u da %u: "
601 				 "addr 0x%04x size %u block csum 0x%04x\n",
602 				 opcode, i2400m_brh_get_use_checksum(cmd),
603 				 i2400m_brh_get_response_required(cmd),
604 				 i2400m_brh_get_direct_access(cmd),
605 				 cmd->target_addr, cmd->data_size,
606 				 cmd->block_checksum);
607 	}
608 	result = i2400m->bus_bm_wait_for_ack(i2400m, ack, ack_size);
609 	if (result < 0) {
610 		dev_err(dev, "boot-mode cmd %d: error waiting for an ack: %d\n",
611 			opcode, (int) result);	/* bah, %zd doesn't work */
612 		goto error_wait_for_ack;
613 	}
614 	rx_bytes = result;
615 	/* verify the ack and read more if necessary [result is the
616 	 * final amount of bytes we get in the ack]  */
617 	result = __i2400m_bm_ack_verify(i2400m, opcode, ack, ack_size, flags);
618 	if (result < 0)
619 		goto error_bad_ack;
620 	/* Don't you love this stack of empty targets? Well, I don't
621 	 * either, but it helps track exactly who comes in here and
622 	 * why :) */
623 	result = rx_bytes;
624 error_bad_ack:
625 error_wait_for_ack:
626 error_cmd_send:
627 	d_fnend(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
628 		i2400m, cmd, cmd_size, ack, ack_size, (int) result);
629 	return result;
630 }
631 
632 
633 /**
634  * i2400m_download_chunk - write a single chunk of data to the device's memory
635  *
636  * @i2400m: device descriptor
637  * @buf: the buffer to write
638  * @buf_len: length of the buffer to write
639  * @addr: address in the device memory space
640  * @direct: bootrom write mode
641  * @do_csum: should a checksum validation be performed
642  */
i2400m_download_chunk(struct i2400m * i2400m,const void * chunk,size_t __chunk_len,unsigned long addr,unsigned int direct,unsigned int do_csum)643 static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
644 				 size_t __chunk_len, unsigned long addr,
645 				 unsigned int direct, unsigned int do_csum)
646 {
647 	int ret;
648 	size_t chunk_len = ALIGN(__chunk_len, I2400M_PL_ALIGN);
649 	struct device *dev = i2400m_dev(i2400m);
650 	struct {
651 		struct i2400m_bootrom_header cmd;
652 		u8 cmd_payload[];
653 	} __packed *buf;
654 	struct i2400m_bootrom_header ack;
655 
656 	d_fnstart(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
657 		  "direct %u do_csum %u)\n", i2400m, chunk, __chunk_len,
658 		  addr, direct, do_csum);
659 	buf = i2400m->bm_cmd_buf;
660 	memcpy(buf->cmd_payload, chunk, __chunk_len);
661 	memset(buf->cmd_payload + __chunk_len, 0xad, chunk_len - __chunk_len);
662 
663 	buf->cmd.command = i2400m_brh_command(I2400M_BRH_WRITE,
664 					      __chunk_len & 0x3 ? 0 : do_csum,
665 					      __chunk_len & 0xf ? 0 : direct);
666 	buf->cmd.target_addr = cpu_to_le32(addr);
667 	buf->cmd.data_size = cpu_to_le32(__chunk_len);
668 	ret = i2400m_bm_cmd(i2400m, &buf->cmd, sizeof(buf->cmd) + chunk_len,
669 			    &ack, sizeof(ack), 0);
670 	if (ret >= 0)
671 		ret = 0;
672 	d_fnend(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
673 		"direct %u do_csum %u) = %d\n", i2400m, chunk, __chunk_len,
674 		addr, direct, do_csum, ret);
675 	return ret;
676 }
677 
678 
679 /*
680  * Download a BCF file's sections to the device
681  *
682  * @i2400m: device descriptor
683  * @bcf: pointer to firmware data (first header followed by the
684  *     payloads). Assumed verified and consistent.
685  * @bcf_len: length (in bytes) of the @bcf buffer.
686  *
687  * Returns: < 0 errno code on error or the offset to the jump instruction.
688  *
689  * Given a BCF file, downloads each section (a command and a payload)
690  * to the device's address space. Actually, it just executes each
691  * command i the BCF file.
692  *
693  * The section size has to be aligned to 4 bytes AND the padding has
694  * to be taken from the firmware file, as the signature takes it into
695  * account.
696  */
697 static
i2400m_dnload_bcf(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf,size_t bcf_len)698 ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
699 			  const struct i2400m_bcf_hdr *bcf, size_t bcf_len)
700 {
701 	ssize_t ret;
702 	struct device *dev = i2400m_dev(i2400m);
703 	size_t offset,		/* iterator offset */
704 		data_size,	/* Size of the data payload */
705 		section_size,	/* Size of the whole section (cmd + payload) */
706 		section = 1;
707 	const struct i2400m_bootrom_header *bh;
708 	struct i2400m_bootrom_header ack;
709 
710 	d_fnstart(3, dev, "(i2400m %p bcf %p bcf_len %zu)\n",
711 		  i2400m, bcf, bcf_len);
712 	/* Iterate over the command blocks in the BCF file that start
713 	 * after the header */
714 	offset = le32_to_cpu(bcf->header_len) * sizeof(u32);
715 	while (1) {	/* start sending the file */
716 		bh = (void *) bcf + offset;
717 		data_size = le32_to_cpu(bh->data_size);
718 		section_size = ALIGN(sizeof(*bh) + data_size, 4);
719 		d_printf(7, dev,
720 			 "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
721 			 section, offset, sizeof(*bh) + data_size,
722 			 le32_to_cpu(bh->target_addr));
723 		/*
724 		 * We look for JUMP cmd from the bootmode header,
725 		 * either I2400M_BRH_SIGNED_JUMP for secure boot
726 		 * or I2400M_BRH_JUMP for unsecure boot, the last chunk
727 		 * should be the bootmode header with JUMP cmd.
728 		 */
729 		if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP ||
730 			i2400m_brh_get_opcode(bh) == I2400M_BRH_JUMP) {
731 			d_printf(5, dev,  "jump found @%zu\n", offset);
732 			break;
733 		}
734 		if (offset + section_size > bcf_len) {
735 			dev_err(dev, "fw %s: bad section #%zu, "
736 				"end (@%zu) beyond EOF (@%zu)\n",
737 				i2400m->fw_name, section,
738 				offset + section_size,  bcf_len);
739 			ret = -EINVAL;
740 			goto error_section_beyond_eof;
741 		}
742 		__i2400m_msleep(20);
743 		ret = i2400m_bm_cmd(i2400m, bh, section_size,
744 				    &ack, sizeof(ack), I2400M_BM_CMD_RAW);
745 		if (ret < 0) {
746 			dev_err(dev, "fw %s: section #%zu (@%zu %zu B) "
747 				"failed %d\n", i2400m->fw_name, section,
748 				offset, sizeof(*bh) + data_size, (int) ret);
749 			goto error_send;
750 		}
751 		offset += section_size;
752 		section++;
753 	}
754 	ret = offset;
755 error_section_beyond_eof:
756 error_send:
757 	d_fnend(3, dev, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
758 		i2400m, bcf, bcf_len, (int) ret);
759 	return ret;
760 }
761 
762 
763 /*
764  * Indicate if the device emitted a reboot barker that indicates
765  * "signed boot"
766  */
767 static
i2400m_boot_is_signed(struct i2400m * i2400m)768 unsigned i2400m_boot_is_signed(struct i2400m *i2400m)
769 {
770 	return likely(i2400m->sboot);
771 }
772 
773 
774 /*
775  * Do the final steps of uploading firmware
776  *
777  * @bcf_hdr: BCF header we are actually using
778  * @bcf: pointer to the firmware image (which matches the first header
779  *     that is followed by the actual payloads).
780  * @offset: [byte] offset into @bcf for the command we need to send.
781  *
782  * Depending on the boot mode (signed vs non-signed), different
783  * actions need to be taken.
784  */
785 static
i2400m_dnload_finalize(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr,const struct i2400m_bcf_hdr * bcf,size_t offset)786 int i2400m_dnload_finalize(struct i2400m *i2400m,
787 			   const struct i2400m_bcf_hdr *bcf_hdr,
788 			   const struct i2400m_bcf_hdr *bcf, size_t offset)
789 {
790 	int ret = 0;
791 	struct device *dev = i2400m_dev(i2400m);
792 	struct i2400m_bootrom_header *cmd, ack;
793 	struct {
794 		struct i2400m_bootrom_header cmd;
795 		u8 cmd_pl[0];
796 	} __packed *cmd_buf;
797 	size_t signature_block_offset, signature_block_size;
798 
799 	d_fnstart(3, dev, "offset %zu\n", offset);
800 	cmd = (void *) bcf + offset;
801 	if (i2400m_boot_is_signed(i2400m) == 0) {
802 		struct i2400m_bootrom_header jump_ack;
803 		d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
804 			le32_to_cpu(cmd->target_addr));
805 		cmd_buf = i2400m->bm_cmd_buf;
806 		memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
807 		cmd = &cmd_buf->cmd;
808 		/* now cmd points to the actual bootrom_header in cmd_buf */
809 		i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
810 		cmd->data_size = 0;
811 		ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
812 				    &jump_ack, sizeof(jump_ack), 0);
813 	} else {
814 		d_printf(1, dev, "secure boot, jumping to 0x%08x\n",
815 			 le32_to_cpu(cmd->target_addr));
816 		cmd_buf = i2400m->bm_cmd_buf;
817 		memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
818 		signature_block_offset =
819 			sizeof(*bcf_hdr)
820 			+ le32_to_cpu(bcf_hdr->key_size) * sizeof(u32)
821 			+ le32_to_cpu(bcf_hdr->exponent_size) * sizeof(u32);
822 		signature_block_size =
823 			le32_to_cpu(bcf_hdr->modulus_size) * sizeof(u32);
824 		memcpy(cmd_buf->cmd_pl,
825 		       (void *) bcf_hdr + signature_block_offset,
826 		       signature_block_size);
827 		ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
828 				    sizeof(cmd_buf->cmd) + signature_block_size,
829 				    &ack, sizeof(ack), I2400M_BM_CMD_RAW);
830 	}
831 	d_fnend(3, dev, "returning %d\n", ret);
832 	return ret;
833 }
834 
835 
836 /**
837  * i2400m_bootrom_init - Reboots a powered device into boot mode
838  *
839  * @i2400m: device descriptor
840  * @flags:
841  *      I2400M_BRI_SOFT: a reboot barker has been seen
842  *          already, so don't wait for it.
843  *
844  *      I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
845  *          for a reboot barker notification. This is a one shot; if
846  *          the state machine needs to send a reboot command it will.
847  *
848  * Returns:
849  *
850  *     < 0 errno code on error, 0 if ok.
851  *
852  * Description:
853  *
854  * Tries hard enough to put the device in boot-mode. There are two
855  * main phases to this:
856  *
857  * a. (1) send a reboot command and (2) get a reboot barker
858  *
859  * b. (1) echo/ack the reboot sending the reboot barker back and (2)
860  *        getting an ack barker in return
861  *
862  * We want to skip (a) in some cases [soft]. The state machine is
863  * horrible, but it is basically: on each phase, send what has to be
864  * sent (if any), wait for the answer and act on the answer. We might
865  * have to backtrack and retry, so we keep a max tries counter for
866  * that.
867  *
868  * It sucks because we don't know ahead of time which is going to be
869  * the reboot barker (the device might send different ones depending
870  * on its EEPROM config) and once the device reboots and waits for the
871  * echo/ack reboot barker being sent back, it doesn't understand
872  * anything else. So we can be left at the point where we don't know
873  * what to send to it -- cold reset and bus reset seem to have little
874  * effect. So the function iterates (in this case) through all the
875  * known barkers and tries them all until an ACK is
876  * received. Otherwise, it gives up.
877  *
878  * If we get a timeout after sending a warm reset, we do it again.
879  */
i2400m_bootrom_init(struct i2400m * i2400m,enum i2400m_bri flags)880 int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
881 {
882 	int result;
883 	struct device *dev = i2400m_dev(i2400m);
884 	struct i2400m_bootrom_header *cmd;
885 	struct i2400m_bootrom_header ack;
886 	int count = i2400m->bus_bm_retries;
887 	int ack_timeout_cnt = 1;
888 	unsigned i;
889 
890 	BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_barker_db[0].data));
891 	BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));
892 
893 	d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
894 	result = -ENOMEM;
895 	cmd = i2400m->bm_cmd_buf;
896 	if (flags & I2400M_BRI_SOFT)
897 		goto do_reboot_ack;
898 do_reboot:
899 	ack_timeout_cnt = 1;
900 	if (--count < 0)
901 		goto error_timeout;
902 	d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
903 		 count);
904 	if ((flags & I2400M_BRI_NO_REBOOT) == 0)
905 		i2400m_reset(i2400m, I2400M_RT_WARM);
906 	result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
907 			       I2400M_BM_CMD_RAW);
908 	flags &= ~I2400M_BRI_NO_REBOOT;
909 	switch (result) {
910 	case -ERESTARTSYS:
911 		/*
912 		 * at this point, i2400m_bm_cmd(), through
913 		 * __i2400m_bm_ack_process(), has updated
914 		 * i2400m->barker and we are good to go.
915 		 */
916 		d_printf(4, dev, "device reboot: got reboot barker\n");
917 		break;
918 	case -EISCONN:	/* we don't know how it got here...but we follow it */
919 		d_printf(4, dev, "device reboot: got ack barker - whatever\n");
920 		goto do_reboot;
921 	case -ETIMEDOUT:
922 		/*
923 		 * Device has timed out, we might be in boot mode
924 		 * already and expecting an ack; if we don't know what
925 		 * the barker is, we just send them all. Cold reset
926 		 * and bus reset don't work. Beats me.
927 		 */
928 		if (i2400m->barker != NULL) {
929 			dev_err(dev, "device boot: reboot barker timed out, "
930 				"trying (set) %08x echo/ack\n",
931 				le32_to_cpu(i2400m->barker->data[0]));
932 			goto do_reboot_ack;
933 		}
934 		for (i = 0; i < i2400m_barker_db_used; i++) {
935 			struct i2400m_barker_db *barker = &i2400m_barker_db[i];
936 			memcpy(cmd, barker->data, sizeof(barker->data));
937 			result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
938 					       &ack, sizeof(ack),
939 					       I2400M_BM_CMD_RAW);
940 			if (result == -EISCONN) {
941 				dev_warn(dev, "device boot: got ack barker "
942 					 "after sending echo/ack barker "
943 					 "#%d/%08x; rebooting j.i.c.\n",
944 					 i, le32_to_cpu(barker->data[0]));
945 				flags &= ~I2400M_BRI_NO_REBOOT;
946 				goto do_reboot;
947 			}
948 		}
949 		dev_err(dev, "device boot: tried all the echo/acks, could "
950 			"not get device to respond; giving up");
951 		result = -ESHUTDOWN;
952 	case -EPROTO:
953 	case -ESHUTDOWN:	/* dev is gone */
954 	case -EINTR:		/* user cancelled */
955 		goto error_dev_gone;
956 	default:
957 		dev_err(dev, "device reboot: error %d while waiting "
958 			"for reboot barker - rebooting\n", result);
959 		d_dump(1, dev, &ack, result);
960 		goto do_reboot;
961 	}
962 	/* At this point we ack back with 4 REBOOT barkers and expect
963 	 * 4 ACK barkers. This is ugly, as we send a raw command --
964 	 * hence the cast. _bm_cmd() will catch the reboot ack
965 	 * notification and report it as -EISCONN. */
966 do_reboot_ack:
967 	d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
968 	memcpy(cmd, i2400m->barker->data, sizeof(i2400m->barker->data));
969 	result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
970 			       &ack, sizeof(ack), I2400M_BM_CMD_RAW);
971 	switch (result) {
972 	case -ERESTARTSYS:
973 		d_printf(4, dev, "reboot ack: got reboot barker - retrying\n");
974 		if (--count < 0)
975 			goto error_timeout;
976 		goto do_reboot_ack;
977 	case -EISCONN:
978 		d_printf(4, dev, "reboot ack: got ack barker - good\n");
979 		break;
980 	case -ETIMEDOUT:	/* no response, maybe it is the other type? */
981 		if (ack_timeout_cnt-- < 0) {
982 			d_printf(4, dev, "reboot ack timedout: retrying\n");
983 			goto do_reboot_ack;
984 		} else {
985 			dev_err(dev, "reboot ack timedout too long: "
986 				"trying reboot\n");
987 			goto do_reboot;
988 		}
989 		break;
990 	case -EPROTO:
991 	case -ESHUTDOWN:	/* dev is gone */
992 		goto error_dev_gone;
993 	default:
994 		dev_err(dev, "device reboot ack: error %d while waiting for "
995 			"reboot ack barker - rebooting\n", result);
996 		goto do_reboot;
997 	}
998 	d_printf(2, dev, "device reboot ack: got ack barker - boot done\n");
999 	result = 0;
1000 exit_timeout:
1001 error_dev_gone:
1002 	d_fnend(4, dev, "(i2400m %p flags 0x%08x) = %d\n",
1003 		i2400m, flags, result);
1004 	return result;
1005 
1006 error_timeout:
1007 	dev_err(dev, "Timed out waiting for reboot ack\n");
1008 	result = -ETIMEDOUT;
1009 	goto exit_timeout;
1010 }
1011 
1012 
1013 /*
1014  * Read the MAC addr
1015  *
1016  * The position this function reads is fixed in device memory and
1017  * always available, even without firmware.
1018  *
1019  * Note we specify we want to read only six bytes, but provide space
1020  * for 16, as we always get it rounded up.
1021  */
i2400m_read_mac_addr(struct i2400m * i2400m)1022 int i2400m_read_mac_addr(struct i2400m *i2400m)
1023 {
1024 	int result;
1025 	struct device *dev = i2400m_dev(i2400m);
1026 	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
1027 	struct i2400m_bootrom_header *cmd;
1028 	struct {
1029 		struct i2400m_bootrom_header ack;
1030 		u8 ack_pl[16];
1031 	} __packed ack_buf;
1032 
1033 	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1034 	cmd = i2400m->bm_cmd_buf;
1035 	cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
1036 	cmd->target_addr = cpu_to_le32(0x00203fe8);
1037 	cmd->data_size = cpu_to_le32(6);
1038 	result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
1039 			       &ack_buf.ack, sizeof(ack_buf), 0);
1040 	if (result < 0) {
1041 		dev_err(dev, "BM: read mac addr failed: %d\n", result);
1042 		goto error_read_mac;
1043 	}
1044 	d_printf(2, dev, "mac addr is %pM\n", ack_buf.ack_pl);
1045 	if (i2400m->bus_bm_mac_addr_impaired == 1) {
1046 		ack_buf.ack_pl[0] = 0x00;
1047 		ack_buf.ack_pl[1] = 0x16;
1048 		ack_buf.ack_pl[2] = 0xd3;
1049 		get_random_bytes(&ack_buf.ack_pl[3], 3);
1050 		dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
1051 			"mac addr is %pM\n", ack_buf.ack_pl);
1052 		result = 0;
1053 	}
1054 	net_dev->addr_len = ETH_ALEN;
1055 	memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
1056 error_read_mac:
1057 	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
1058 	return result;
1059 }
1060 
1061 
1062 /*
1063  * Initialize a non signed boot
1064  *
1065  * This implies sending some magic values to the device's memory. Note
1066  * we convert the values to little endian in the same array
1067  * declaration.
1068  */
1069 static
i2400m_dnload_init_nonsigned(struct i2400m * i2400m)1070 int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
1071 {
1072 	unsigned i = 0;
1073 	int ret = 0;
1074 	struct device *dev = i2400m_dev(i2400m);
1075 	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1076 	if (i2400m->bus_bm_pokes_table) {
1077 		while (i2400m->bus_bm_pokes_table[i].address) {
1078 			ret = i2400m_download_chunk(
1079 				i2400m,
1080 				&i2400m->bus_bm_pokes_table[i].data,
1081 				sizeof(i2400m->bus_bm_pokes_table[i].data),
1082 				i2400m->bus_bm_pokes_table[i].address, 1, 1);
1083 			if (ret < 0)
1084 				break;
1085 			i++;
1086 		}
1087 	}
1088 	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1089 	return ret;
1090 }
1091 
1092 
1093 /*
1094  * Initialize the signed boot process
1095  *
1096  * @i2400m: device descriptor
1097  *
1098  * @bcf_hdr: pointer to the firmware header; assumes it is fully in
1099  *     memory (it has gone through basic validation).
1100  *
1101  * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
1102  *     rebooted.
1103  *
1104  * This writes the firmware BCF header to the device using the
1105  * HASH_PAYLOAD_ONLY command.
1106  */
1107 static
i2400m_dnload_init_signed(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr)1108 int i2400m_dnload_init_signed(struct i2400m *i2400m,
1109 			      const struct i2400m_bcf_hdr *bcf_hdr)
1110 {
1111 	int ret;
1112 	struct device *dev = i2400m_dev(i2400m);
1113 	struct {
1114 		struct i2400m_bootrom_header cmd;
1115 		struct i2400m_bcf_hdr cmd_pl;
1116 	} __packed *cmd_buf;
1117 	struct i2400m_bootrom_header ack;
1118 
1119 	d_fnstart(5, dev, "(i2400m %p bcf_hdr %p)\n", i2400m, bcf_hdr);
1120 	cmd_buf = i2400m->bm_cmd_buf;
1121 	cmd_buf->cmd.command =
1122 		i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY, 0, 0);
1123 	cmd_buf->cmd.target_addr = 0;
1124 	cmd_buf->cmd.data_size = cpu_to_le32(sizeof(cmd_buf->cmd_pl));
1125 	memcpy(&cmd_buf->cmd_pl, bcf_hdr, sizeof(*bcf_hdr));
1126 	ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd, sizeof(*cmd_buf),
1127 			    &ack, sizeof(ack), 0);
1128 	if (ret >= 0)
1129 		ret = 0;
1130 	d_fnend(5, dev, "(i2400m %p bcf_hdr %p) = %d\n", i2400m, bcf_hdr, ret);
1131 	return ret;
1132 }
1133 
1134 
1135 /*
1136  * Initialize the firmware download at the device size
1137  *
1138  * Multiplex to the one that matters based on the device's mode
1139  * (signed or non-signed).
1140  */
1141 static
i2400m_dnload_init(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr)1142 int i2400m_dnload_init(struct i2400m *i2400m,
1143 		       const struct i2400m_bcf_hdr *bcf_hdr)
1144 {
1145 	int result;
1146 	struct device *dev = i2400m_dev(i2400m);
1147 
1148 	if (i2400m_boot_is_signed(i2400m)) {
1149 		d_printf(1, dev, "signed boot\n");
1150 		result = i2400m_dnload_init_signed(i2400m, bcf_hdr);
1151 		if (result == -ERESTARTSYS)
1152 			return result;
1153 		if (result < 0)
1154 			dev_err(dev, "firmware %s: signed boot download "
1155 				"initialization failed: %d\n",
1156 				i2400m->fw_name, result);
1157 	} else {
1158 		/* non-signed boot process without pokes */
1159 		d_printf(1, dev, "non-signed boot\n");
1160 		result = i2400m_dnload_init_nonsigned(i2400m);
1161 		if (result == -ERESTARTSYS)
1162 			return result;
1163 		if (result < 0)
1164 			dev_err(dev, "firmware %s: non-signed download "
1165 				"initialization failed: %d\n",
1166 				i2400m->fw_name, result);
1167 	}
1168 	return result;
1169 }
1170 
1171 
1172 /*
1173  * Run consistency tests on the firmware file and load up headers
1174  *
1175  * Check for the firmware being made for the i2400m device,
1176  * etc...These checks are mostly informative, as the device will make
1177  * them too; but the driver's response is more informative on what
1178  * went wrong.
1179  *
1180  * This will also look at all the headers present on the firmware
1181  * file, and update i2400m->fw_bcf_hdr to point to them.
1182  */
1183 static
i2400m_fw_hdr_check(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr,size_t index,size_t offset)1184 int i2400m_fw_hdr_check(struct i2400m *i2400m,
1185 			const struct i2400m_bcf_hdr *bcf_hdr,
1186 			size_t index, size_t offset)
1187 {
1188 	struct device *dev = i2400m_dev(i2400m);
1189 
1190 	unsigned module_type, header_len, major_version, minor_version,
1191 		module_id, module_vendor, date, size;
1192 
1193 	module_type = le32_to_cpu(bcf_hdr->module_type);
1194 	header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1195 	major_version = (le32_to_cpu(bcf_hdr->header_version) & 0xffff0000)
1196 		>> 16;
1197 	minor_version = le32_to_cpu(bcf_hdr->header_version) & 0x0000ffff;
1198 	module_id = le32_to_cpu(bcf_hdr->module_id);
1199 	module_vendor = le32_to_cpu(bcf_hdr->module_vendor);
1200 	date = le32_to_cpu(bcf_hdr->date);
1201 	size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1202 
1203 	d_printf(1, dev, "firmware %s #%zd@%08zx: BCF header "
1204 		 "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
1205 		 i2400m->fw_name, index, offset,
1206 		 module_type, module_vendor, module_id,
1207 		 major_version, minor_version, header_len, size, date);
1208 
1209 	/* Hard errors */
1210 	if (major_version != 1) {
1211 		dev_err(dev, "firmware %s #%zd@%08zx: major header version "
1212 			"v%u.%u not supported\n",
1213 			i2400m->fw_name, index, offset,
1214 			major_version, minor_version);
1215 		return -EBADF;
1216 	}
1217 
1218 	if (module_type != 6) {		/* built for the right hardware? */
1219 		dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1220 			"type 0x%x; aborting\n",
1221 			i2400m->fw_name, index, offset,
1222 			module_type);
1223 		return -EBADF;
1224 	}
1225 
1226 	if (module_vendor != 0x8086) {
1227 		dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1228 			"vendor 0x%x; aborting\n",
1229 			i2400m->fw_name, index, offset, module_vendor);
1230 		return -EBADF;
1231 	}
1232 
1233 	if (date < 0x20080300)
1234 		dev_warn(dev, "firmware %s #%zd@%08zx: build date %08x "
1235 			 "too old; unsupported\n",
1236 			 i2400m->fw_name, index, offset, date);
1237 	return 0;
1238 }
1239 
1240 
1241 /*
1242  * Run consistency tests on the firmware file and load up headers
1243  *
1244  * Check for the firmware being made for the i2400m device,
1245  * etc...These checks are mostly informative, as the device will make
1246  * them too; but the driver's response is more informative on what
1247  * went wrong.
1248  *
1249  * This will also look at all the headers present on the firmware
1250  * file, and update i2400m->fw_hdrs to point to them.
1251  */
1252 static
i2400m_fw_check(struct i2400m * i2400m,const void * bcf,size_t bcf_size)1253 int i2400m_fw_check(struct i2400m *i2400m, const void *bcf, size_t bcf_size)
1254 {
1255 	int result;
1256 	struct device *dev = i2400m_dev(i2400m);
1257 	size_t headers = 0;
1258 	const struct i2400m_bcf_hdr *bcf_hdr;
1259 	const void *itr, *next, *top;
1260 	size_t slots = 0, used_slots = 0;
1261 
1262 	for (itr = bcf, top = itr + bcf_size;
1263 	     itr < top;
1264 	     headers++, itr = next) {
1265 		size_t leftover, offset, header_len, size;
1266 
1267 		leftover = top - itr;
1268 		offset = itr - bcf;
1269 		if (leftover <= sizeof(*bcf_hdr)) {
1270 			dev_err(dev, "firmware %s: %zu B left at @%zx, "
1271 				"not enough for BCF header\n",
1272 				i2400m->fw_name, leftover, offset);
1273 			break;
1274 		}
1275 		bcf_hdr = itr;
1276 		/* Only the first header is supposed to be followed by
1277 		 * payload */
1278 		header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1279 		size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1280 		if (headers == 0)
1281 			next = itr + size;
1282 		else
1283 			next = itr + header_len;
1284 
1285 		result = i2400m_fw_hdr_check(i2400m, bcf_hdr, headers, offset);
1286 		if (result < 0)
1287 			continue;
1288 		if (used_slots + 1 >= slots) {
1289 			/* +1 -> we need to account for the one we'll
1290 			 * occupy and at least an extra one for
1291 			 * always being NULL */
1292 			result = i2400m_zrealloc_2x(
1293 				(void **) &i2400m->fw_hdrs, &slots,
1294 				sizeof(i2400m->fw_hdrs[0]),
1295 				GFP_KERNEL);
1296 			if (result < 0)
1297 				goto error_zrealloc;
1298 		}
1299 		i2400m->fw_hdrs[used_slots] = bcf_hdr;
1300 		used_slots++;
1301 	}
1302 	if (headers == 0) {
1303 		dev_err(dev, "firmware %s: no usable headers found\n",
1304 			i2400m->fw_name);
1305 		result = -EBADF;
1306 	} else
1307 		result = 0;
1308 error_zrealloc:
1309 	return result;
1310 }
1311 
1312 
1313 /*
1314  * Match a barker to a BCF header module ID
1315  *
1316  * The device sends a barker which tells the firmware loader which
1317  * header in the BCF file has to be used. This does the matching.
1318  */
1319 static
i2400m_bcf_hdr_match(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr)1320 unsigned i2400m_bcf_hdr_match(struct i2400m *i2400m,
1321 			      const struct i2400m_bcf_hdr *bcf_hdr)
1322 {
1323 	u32 barker = le32_to_cpu(i2400m->barker->data[0])
1324 		& 0x7fffffff;
1325 	u32 module_id = le32_to_cpu(bcf_hdr->module_id)
1326 		& 0x7fffffff;	/* high bit used for something else */
1327 
1328 	/* special case for 5x50 */
1329 	if (barker == I2400M_SBOOT_BARKER && module_id == 0)
1330 		return 1;
1331 	if (module_id == barker)
1332 		return 1;
1333 	return 0;
1334 }
1335 
1336 static
i2400m_bcf_hdr_find(struct i2400m * i2400m)1337 const struct i2400m_bcf_hdr *i2400m_bcf_hdr_find(struct i2400m *i2400m)
1338 {
1339 	struct device *dev = i2400m_dev(i2400m);
1340 	const struct i2400m_bcf_hdr **bcf_itr, *bcf_hdr;
1341 	unsigned i = 0;
1342 	u32 barker = le32_to_cpu(i2400m->barker->data[0]);
1343 
1344 	d_printf(2, dev, "finding BCF header for barker %08x\n", barker);
1345 	if (barker == I2400M_NBOOT_BARKER) {
1346 		bcf_hdr = i2400m->fw_hdrs[0];
1347 		d_printf(1, dev, "using BCF header #%u/%08x for non-signed "
1348 			 "barker\n", 0, le32_to_cpu(bcf_hdr->module_id));
1349 		return bcf_hdr;
1350 	}
1351 	for (bcf_itr = i2400m->fw_hdrs; *bcf_itr != NULL; bcf_itr++, i++) {
1352 		bcf_hdr = *bcf_itr;
1353 		if (i2400m_bcf_hdr_match(i2400m, bcf_hdr)) {
1354 			d_printf(1, dev, "hit on BCF hdr #%u/%08x\n",
1355 				 i, le32_to_cpu(bcf_hdr->module_id));
1356 			return bcf_hdr;
1357 		} else
1358 			d_printf(1, dev, "miss on BCF hdr #%u/%08x\n",
1359 				 i, le32_to_cpu(bcf_hdr->module_id));
1360 	}
1361 	dev_err(dev, "cannot find a matching BCF header for barker %08x\n",
1362 		barker);
1363 	return NULL;
1364 }
1365 
1366 
1367 /*
1368  * Download the firmware to the device
1369  *
1370  * @i2400m: device descriptor
1371  * @bcf: pointer to loaded (and minimally verified for consistency)
1372  *    firmware
1373  * @bcf_size: size of the @bcf buffer (header plus payloads)
1374  *
1375  * The process for doing this is described in this file's header.
1376  *
1377  * Note we only reinitialize boot-mode if the flags say so. Some hw
1378  * iterations need it, some don't. In any case, if we loop, we always
1379  * need to reinitialize the boot room, hence the flags modification.
1380  */
1381 static
i2400m_fw_dnload(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf,size_t fw_size,enum i2400m_bri flags)1382 int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
1383 		     size_t fw_size, enum i2400m_bri flags)
1384 {
1385 	int ret = 0;
1386 	struct device *dev = i2400m_dev(i2400m);
1387 	int count = i2400m->bus_bm_retries;
1388 	const struct i2400m_bcf_hdr *bcf_hdr;
1389 	size_t bcf_size;
1390 
1391 	d_fnstart(5, dev, "(i2400m %p bcf %p fw size %zu)\n",
1392 		  i2400m, bcf, fw_size);
1393 	i2400m->boot_mode = 1;
1394 	wmb();		/* Make sure other readers see it */
1395 hw_reboot:
1396 	if (count-- == 0) {
1397 		ret = -ERESTARTSYS;
1398 		dev_err(dev, "device rebooted too many times, aborting\n");
1399 		goto error_too_many_reboots;
1400 	}
1401 	if (flags & I2400M_BRI_MAC_REINIT) {
1402 		ret = i2400m_bootrom_init(i2400m, flags);
1403 		if (ret < 0) {
1404 			dev_err(dev, "bootrom init failed: %d\n", ret);
1405 			goto error_bootrom_init;
1406 		}
1407 	}
1408 	flags |= I2400M_BRI_MAC_REINIT;
1409 
1410 	/*
1411 	 * Initialize the download, push the bytes to the device and
1412 	 * then jump to the new firmware. Note @ret is passed with the
1413 	 * offset of the jump instruction to _dnload_finalize()
1414 	 *
1415 	 * Note we need to use the BCF header in the firmware image
1416 	 * that matches the barker that the device sent when it
1417 	 * rebooted, so it has to be passed along.
1418 	 */
1419 	ret = -EBADF;
1420 	bcf_hdr = i2400m_bcf_hdr_find(i2400m);
1421 	if (bcf_hdr == NULL)
1422 		goto error_bcf_hdr_find;
1423 
1424 	ret = i2400m_dnload_init(i2400m, bcf_hdr);
1425 	if (ret == -ERESTARTSYS)
1426 		goto error_dev_rebooted;
1427 	if (ret < 0)
1428 		goto error_dnload_init;
1429 
1430 	/*
1431 	 * bcf_size refers to one header size plus the fw sections size
1432 	 * indicated by the header,ie. if there are other extended headers
1433 	 * at the tail, they are not counted
1434 	 */
1435 	bcf_size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1436 	ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
1437 	if (ret == -ERESTARTSYS)
1438 		goto error_dev_rebooted;
1439 	if (ret < 0) {
1440 		dev_err(dev, "fw %s: download failed: %d\n",
1441 			i2400m->fw_name, ret);
1442 		goto error_dnload_bcf;
1443 	}
1444 
1445 	ret = i2400m_dnload_finalize(i2400m, bcf_hdr, bcf, ret);
1446 	if (ret == -ERESTARTSYS)
1447 		goto error_dev_rebooted;
1448 	if (ret < 0) {
1449 		dev_err(dev, "fw %s: "
1450 			"download finalization failed: %d\n",
1451 			i2400m->fw_name, ret);
1452 		goto error_dnload_finalize;
1453 	}
1454 
1455 	d_printf(2, dev, "fw %s successfully uploaded\n",
1456 		 i2400m->fw_name);
1457 	i2400m->boot_mode = 0;
1458 	wmb();		/* Make sure i2400m_msg_to_dev() sees boot_mode */
1459 error_dnload_finalize:
1460 error_dnload_bcf:
1461 error_dnload_init:
1462 error_bcf_hdr_find:
1463 error_bootrom_init:
1464 error_too_many_reboots:
1465 	d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
1466 		i2400m, bcf, fw_size, ret);
1467 	return ret;
1468 
1469 error_dev_rebooted:
1470 	dev_err(dev, "device rebooted, %d tries left\n", count);
1471 	/* we got the notification already, no need to wait for it again */
1472 	flags |= I2400M_BRI_SOFT;
1473 	goto hw_reboot;
1474 }
1475 
1476 static
i2400m_fw_bootstrap(struct i2400m * i2400m,const struct firmware * fw,enum i2400m_bri flags)1477 int i2400m_fw_bootstrap(struct i2400m *i2400m, const struct firmware *fw,
1478 			enum i2400m_bri flags)
1479 {
1480 	int ret;
1481 	struct device *dev = i2400m_dev(i2400m);
1482 	const struct i2400m_bcf_hdr *bcf;	/* Firmware data */
1483 
1484 	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1485 	bcf = (void *) fw->data;
1486 	ret = i2400m_fw_check(i2400m, bcf, fw->size);
1487 	if (ret >= 0)
1488 		ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
1489 	if (ret < 0)
1490 		dev_err(dev, "%s: cannot use: %d, skipping\n",
1491 			i2400m->fw_name, ret);
1492 	kfree(i2400m->fw_hdrs);
1493 	i2400m->fw_hdrs = NULL;
1494 	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1495 	return ret;
1496 }
1497 
1498 
1499 /* Refcounted container for firmware data */
1500 struct i2400m_fw {
1501 	struct kref kref;
1502 	const struct firmware *fw;
1503 };
1504 
1505 
1506 static
i2400m_fw_destroy(struct kref * kref)1507 void i2400m_fw_destroy(struct kref *kref)
1508 {
1509 	struct i2400m_fw *i2400m_fw =
1510 		container_of(kref, struct i2400m_fw, kref);
1511 	release_firmware(i2400m_fw->fw);
1512 	kfree(i2400m_fw);
1513 }
1514 
1515 
1516 static
i2400m_fw_get(struct i2400m_fw * i2400m_fw)1517 struct i2400m_fw *i2400m_fw_get(struct i2400m_fw *i2400m_fw)
1518 {
1519 	if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1520 		kref_get(&i2400m_fw->kref);
1521 	return i2400m_fw;
1522 }
1523 
1524 
1525 static
i2400m_fw_put(struct i2400m_fw * i2400m_fw)1526 void i2400m_fw_put(struct i2400m_fw *i2400m_fw)
1527 {
1528 	kref_put(&i2400m_fw->kref, i2400m_fw_destroy);
1529 }
1530 
1531 
1532 /**
1533  * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
1534  *
1535  * @i2400m: device descriptor
1536  *
1537  * Returns: >= 0 if ok, < 0 errno code on error.
1538  *
1539  * This sets up the firmware upload environment, loads the firmware
1540  * file from disk, verifies and then calls the firmware upload process
1541  * per se.
1542  *
1543  * Can be called either from probe, or after a warm reset.  Can not be
1544  * called from within an interrupt.  All the flow in this code is
1545  * single-threade; all I/Os are synchronous.
1546  */
i2400m_dev_bootstrap(struct i2400m * i2400m,enum i2400m_bri flags)1547 int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
1548 {
1549 	int ret, itr;
1550 	struct device *dev = i2400m_dev(i2400m);
1551 	struct i2400m_fw *i2400m_fw;
1552 	const struct firmware *fw;
1553 	const char *fw_name;
1554 
1555 	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1556 
1557 	ret = -ENODEV;
1558 	spin_lock(&i2400m->rx_lock);
1559 	i2400m_fw = i2400m_fw_get(i2400m->fw_cached);
1560 	spin_unlock(&i2400m->rx_lock);
1561 	if (i2400m_fw == (void *) ~0) {
1562 		dev_err(dev, "can't load firmware now!");
1563 		goto out;
1564 	} else if (i2400m_fw != NULL) {
1565 		dev_info(dev, "firmware %s: loading from cache\n",
1566 			 i2400m->fw_name);
1567 		ret = i2400m_fw_bootstrap(i2400m, i2400m_fw->fw, flags);
1568 		i2400m_fw_put(i2400m_fw);
1569 		goto out;
1570 	}
1571 
1572 	/* Load firmware files to memory. */
1573 	for (itr = 0, ret = -ENOENT; ; itr++) {
1574 		fw_name = i2400m->bus_fw_names[itr];
1575 		if (fw_name == NULL) {
1576 			dev_err(dev, "Could not find a usable firmware image\n");
1577 			break;
1578 		}
1579 		d_printf(1, dev, "trying firmware %s (%d)\n", fw_name, itr);
1580 		ret = request_firmware(&fw, fw_name, dev);
1581 		if (ret < 0) {
1582 			dev_err(dev, "fw %s: cannot load file: %d\n",
1583 				fw_name, ret);
1584 			continue;
1585 		}
1586 		i2400m->fw_name = fw_name;
1587 		ret = i2400m_fw_bootstrap(i2400m, fw, flags);
1588 		release_firmware(fw);
1589 		if (ret >= 0)	/* firmware loaded successfully */
1590 			break;
1591 		i2400m->fw_name = NULL;
1592 	}
1593 out:
1594 	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1595 	return ret;
1596 }
1597 EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap);
1598 
1599 
i2400m_fw_cache(struct i2400m * i2400m)1600 void i2400m_fw_cache(struct i2400m *i2400m)
1601 {
1602 	int result;
1603 	struct i2400m_fw *i2400m_fw;
1604 	struct device *dev = i2400m_dev(i2400m);
1605 
1606 	/* if there is anything there, free it -- now, this'd be weird */
1607 	spin_lock(&i2400m->rx_lock);
1608 	i2400m_fw = i2400m->fw_cached;
1609 	spin_unlock(&i2400m->rx_lock);
1610 	if (i2400m_fw != NULL && i2400m_fw != (void *) ~0) {
1611 		i2400m_fw_put(i2400m_fw);
1612 		WARN(1, "%s:%u: still cached fw still present?\n",
1613 		     __func__, __LINE__);
1614 	}
1615 
1616 	if (i2400m->fw_name == NULL) {
1617 		dev_err(dev, "firmware n/a: can't cache\n");
1618 		i2400m_fw = (void *) ~0;
1619 		goto out;
1620 	}
1621 
1622 	i2400m_fw = kzalloc(sizeof(*i2400m_fw), GFP_ATOMIC);
1623 	if (i2400m_fw == NULL)
1624 		goto out;
1625 	kref_init(&i2400m_fw->kref);
1626 	result = request_firmware(&i2400m_fw->fw, i2400m->fw_name, dev);
1627 	if (result < 0) {
1628 		dev_err(dev, "firmware %s: failed to cache: %d\n",
1629 			i2400m->fw_name, result);
1630 		kfree(i2400m_fw);
1631 		i2400m_fw = (void *) ~0;
1632 	} else
1633 		dev_info(dev, "firmware %s: cached\n", i2400m->fw_name);
1634 out:
1635 	spin_lock(&i2400m->rx_lock);
1636 	i2400m->fw_cached = i2400m_fw;
1637 	spin_unlock(&i2400m->rx_lock);
1638 }
1639 
1640 
i2400m_fw_uncache(struct i2400m * i2400m)1641 void i2400m_fw_uncache(struct i2400m *i2400m)
1642 {
1643 	struct i2400m_fw *i2400m_fw;
1644 
1645 	spin_lock(&i2400m->rx_lock);
1646 	i2400m_fw = i2400m->fw_cached;
1647 	i2400m->fw_cached = NULL;
1648 	spin_unlock(&i2400m->rx_lock);
1649 
1650 	if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1651 		i2400m_fw_put(i2400m_fw);
1652 }
1653 
1654