1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Intel IXP4xx HSS (synchronous serial port) driver for Linux
4 *
5 * Copyright (C) 2007-2008 Krzysztof Hałasa <khc@pm.waw.pl>
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/module.h>
11 #include <linux/bitops.h>
12 #include <linux/cdev.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/fs.h>
16 #include <linux/hdlc.h>
17 #include <linux/io.h>
18 #include <linux/kernel.h>
19 #include <linux/platform_device.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/soc/ixp4xx/npe.h>
23 #include <linux/soc/ixp4xx/qmgr.h>
24
25 #define DEBUG_DESC 0
26 #define DEBUG_RX 0
27 #define DEBUG_TX 0
28 #define DEBUG_PKT_BYTES 0
29 #define DEBUG_CLOSE 0
30
31 #define DRV_NAME "ixp4xx_hss"
32
33 #define PKT_EXTRA_FLAGS 0 /* orig 1 */
34 #define PKT_NUM_PIPES 1 /* 1, 2 or 4 */
35 #define PKT_PIPE_FIFO_SIZEW 4 /* total 4 dwords per HSS */
36
37 #define RX_DESCS 16 /* also length of all RX queues */
38 #define TX_DESCS 16 /* also length of all TX queues */
39
40 #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
41 #define RX_SIZE (HDLC_MAX_MRU + 4) /* NPE needs more space */
42 #define MAX_CLOSE_WAIT 1000 /* microseconds */
43 #define HSS_COUNT 2
44 #define FRAME_SIZE 256 /* doesn't matter at this point */
45 #define FRAME_OFFSET 0
46 #define MAX_CHANNELS (FRAME_SIZE / 8)
47
48 #define NAPI_WEIGHT 16
49
50 /* Queue IDs */
51 #define HSS0_CHL_RXTRIG_QUEUE 12 /* orig size = 32 dwords */
52 #define HSS0_PKT_RX_QUEUE 13 /* orig size = 32 dwords */
53 #define HSS0_PKT_TX0_QUEUE 14 /* orig size = 16 dwords */
54 #define HSS0_PKT_TX1_QUEUE 15
55 #define HSS0_PKT_TX2_QUEUE 16
56 #define HSS0_PKT_TX3_QUEUE 17
57 #define HSS0_PKT_RXFREE0_QUEUE 18 /* orig size = 16 dwords */
58 #define HSS0_PKT_RXFREE1_QUEUE 19
59 #define HSS0_PKT_RXFREE2_QUEUE 20
60 #define HSS0_PKT_RXFREE3_QUEUE 21
61 #define HSS0_PKT_TXDONE_QUEUE 22 /* orig size = 64 dwords */
62
63 #define HSS1_CHL_RXTRIG_QUEUE 10
64 #define HSS1_PKT_RX_QUEUE 0
65 #define HSS1_PKT_TX0_QUEUE 5
66 #define HSS1_PKT_TX1_QUEUE 6
67 #define HSS1_PKT_TX2_QUEUE 7
68 #define HSS1_PKT_TX3_QUEUE 8
69 #define HSS1_PKT_RXFREE0_QUEUE 1
70 #define HSS1_PKT_RXFREE1_QUEUE 2
71 #define HSS1_PKT_RXFREE2_QUEUE 3
72 #define HSS1_PKT_RXFREE3_QUEUE 4
73 #define HSS1_PKT_TXDONE_QUEUE 9
74
75 #define NPE_PKT_MODE_HDLC 0
76 #define NPE_PKT_MODE_RAW 1
77 #define NPE_PKT_MODE_56KMODE 2
78 #define NPE_PKT_MODE_56KENDIAN_MSB 4
79
80 /* PKT_PIPE_HDLC_CFG_WRITE flags */
81 #define PKT_HDLC_IDLE_ONES 0x1 /* default = flags */
82 #define PKT_HDLC_CRC_32 0x2 /* default = CRC-16 */
83 #define PKT_HDLC_MSB_ENDIAN 0x4 /* default = LE */
84
85
86 /* hss_config, PCRs */
87 /* Frame sync sampling, default = active low */
88 #define PCR_FRM_SYNC_ACTIVE_HIGH 0x40000000
89 #define PCR_FRM_SYNC_FALLINGEDGE 0x80000000
90 #define PCR_FRM_SYNC_RISINGEDGE 0xC0000000
91
92 /* Frame sync pin: input (default) or output generated off a given clk edge */
93 #define PCR_FRM_SYNC_OUTPUT_FALLING 0x20000000
94 #define PCR_FRM_SYNC_OUTPUT_RISING 0x30000000
95
96 /* Frame and data clock sampling on edge, default = falling */
97 #define PCR_FCLK_EDGE_RISING 0x08000000
98 #define PCR_DCLK_EDGE_RISING 0x04000000
99
100 /* Clock direction, default = input */
101 #define PCR_SYNC_CLK_DIR_OUTPUT 0x02000000
102
103 /* Generate/Receive frame pulses, default = enabled */
104 #define PCR_FRM_PULSE_DISABLED 0x01000000
105
106 /* Data rate is full (default) or half the configured clk speed */
107 #define PCR_HALF_CLK_RATE 0x00200000
108
109 /* Invert data between NPE and HSS FIFOs? (default = no) */
110 #define PCR_DATA_POLARITY_INVERT 0x00100000
111
112 /* TX/RX endianness, default = LSB */
113 #define PCR_MSB_ENDIAN 0x00080000
114
115 /* Normal (default) / open drain mode (TX only) */
116 #define PCR_TX_PINS_OPEN_DRAIN 0x00040000
117
118 /* No framing bit transmitted and expected on RX? (default = framing bit) */
119 #define PCR_SOF_NO_FBIT 0x00020000
120
121 /* Drive data pins? */
122 #define PCR_TX_DATA_ENABLE 0x00010000
123
124 /* Voice 56k type: drive the data pins low (default), high, high Z */
125 #define PCR_TX_V56K_HIGH 0x00002000
126 #define PCR_TX_V56K_HIGH_IMP 0x00004000
127
128 /* Unassigned type: drive the data pins low (default), high, high Z */
129 #define PCR_TX_UNASS_HIGH 0x00000800
130 #define PCR_TX_UNASS_HIGH_IMP 0x00001000
131
132 /* T1 @ 1.544MHz only: Fbit dictated in FIFO (default) or high Z */
133 #define PCR_TX_FB_HIGH_IMP 0x00000400
134
135 /* 56k data endiannes - which bit unused: high (default) or low */
136 #define PCR_TX_56KE_BIT_0_UNUSED 0x00000200
137
138 /* 56k data transmission type: 32/8 bit data (default) or 56K data */
139 #define PCR_TX_56KS_56K_DATA 0x00000100
140
141 /* hss_config, cCR */
142 /* Number of packetized clients, default = 1 */
143 #define CCR_NPE_HFIFO_2_HDLC 0x04000000
144 #define CCR_NPE_HFIFO_3_OR_4HDLC 0x08000000
145
146 /* default = no loopback */
147 #define CCR_LOOPBACK 0x02000000
148
149 /* HSS number, default = 0 (first) */
150 #define CCR_SECOND_HSS 0x01000000
151
152
153 /* hss_config, clkCR: main:10, num:10, denom:12 */
154 #define CLK42X_SPEED_EXP ((0x3FF << 22) | ( 2 << 12) | 15) /*65 KHz*/
155
156 #define CLK42X_SPEED_512KHZ (( 130 << 22) | ( 2 << 12) | 15)
157 #define CLK42X_SPEED_1536KHZ (( 43 << 22) | ( 18 << 12) | 47)
158 #define CLK42X_SPEED_1544KHZ (( 43 << 22) | ( 33 << 12) | 192)
159 #define CLK42X_SPEED_2048KHZ (( 32 << 22) | ( 34 << 12) | 63)
160 #define CLK42X_SPEED_4096KHZ (( 16 << 22) | ( 34 << 12) | 127)
161 #define CLK42X_SPEED_8192KHZ (( 8 << 22) | ( 34 << 12) | 255)
162
163 #define CLK46X_SPEED_512KHZ (( 130 << 22) | ( 24 << 12) | 127)
164 #define CLK46X_SPEED_1536KHZ (( 43 << 22) | (152 << 12) | 383)
165 #define CLK46X_SPEED_1544KHZ (( 43 << 22) | ( 66 << 12) | 385)
166 #define CLK46X_SPEED_2048KHZ (( 32 << 22) | (280 << 12) | 511)
167 #define CLK46X_SPEED_4096KHZ (( 16 << 22) | (280 << 12) | 1023)
168 #define CLK46X_SPEED_8192KHZ (( 8 << 22) | (280 << 12) | 2047)
169
170 /*
171 * HSS_CONFIG_CLOCK_CR register consists of 3 parts:
172 * A (10 bits), B (10 bits) and C (12 bits).
173 * IXP42x HSS clock generator operation (verified with an oscilloscope):
174 * Each clock bit takes 7.5 ns (1 / 133.xx MHz).
175 * The clock sequence consists of (C - B) states of 0s and 1s, each state is
176 * A bits wide. It's followed by (B + 1) states of 0s and 1s, each state is
177 * (A + 1) bits wide.
178 *
179 * The resulting average clock frequency (assuming 33.333 MHz oscillator) is:
180 * freq = 66.666 MHz / (A + (B + 1) / (C + 1))
181 * minimum freq = 66.666 MHz / (A + 1)
182 * maximum freq = 66.666 MHz / A
183 *
184 * Example: A = 2, B = 2, C = 7, CLOCK_CR register = 2 << 22 | 2 << 12 | 7
185 * freq = 66.666 MHz / (2 + (2 + 1) / (7 + 1)) = 28.07 MHz (Mb/s).
186 * The clock sequence is: 1100110011 (5 doubles) 000111000 (3 triples).
187 * The sequence takes (C - B) * A + (B + 1) * (A + 1) = 5 * 2 + 3 * 3 bits
188 * = 19 bits (each 7.5 ns long) = 142.5 ns (then the sequence repeats).
189 * The sequence consists of 4 complete clock periods, thus the average
190 * frequency (= clock rate) is 4 / 142.5 ns = 28.07 MHz (Mb/s).
191 * (max specified clock rate for IXP42x HSS is 8.192 Mb/s).
192 */
193
194 /* hss_config, LUT entries */
195 #define TDMMAP_UNASSIGNED 0
196 #define TDMMAP_HDLC 1 /* HDLC - packetized */
197 #define TDMMAP_VOICE56K 2 /* Voice56K - 7-bit channelized */
198 #define TDMMAP_VOICE64K 3 /* Voice64K - 8-bit channelized */
199
200 /* offsets into HSS config */
201 #define HSS_CONFIG_TX_PCR 0x00 /* port configuration registers */
202 #define HSS_CONFIG_RX_PCR 0x04
203 #define HSS_CONFIG_CORE_CR 0x08 /* loopback control, HSS# */
204 #define HSS_CONFIG_CLOCK_CR 0x0C /* clock generator control */
205 #define HSS_CONFIG_TX_FCR 0x10 /* frame configuration registers */
206 #define HSS_CONFIG_RX_FCR 0x14
207 #define HSS_CONFIG_TX_LUT 0x18 /* channel look-up tables */
208 #define HSS_CONFIG_RX_LUT 0x38
209
210
211 /* NPE command codes */
212 /* writes the ConfigWord value to the location specified by offset */
213 #define PORT_CONFIG_WRITE 0x40
214
215 /* triggers the NPE to load the contents of the configuration table */
216 #define PORT_CONFIG_LOAD 0x41
217
218 /* triggers the NPE to return an HssErrorReadResponse message */
219 #define PORT_ERROR_READ 0x42
220
221 /* triggers the NPE to reset internal status and enable the HssPacketized
222 operation for the flow specified by pPipe */
223 #define PKT_PIPE_FLOW_ENABLE 0x50
224 #define PKT_PIPE_FLOW_DISABLE 0x51
225 #define PKT_NUM_PIPES_WRITE 0x52
226 #define PKT_PIPE_FIFO_SIZEW_WRITE 0x53
227 #define PKT_PIPE_HDLC_CFG_WRITE 0x54
228 #define PKT_PIPE_IDLE_PATTERN_WRITE 0x55
229 #define PKT_PIPE_RX_SIZE_WRITE 0x56
230 #define PKT_PIPE_MODE_WRITE 0x57
231
232 /* HDLC packet status values - desc->status */
233 #define ERR_SHUTDOWN 1 /* stop or shutdown occurrence */
234 #define ERR_HDLC_ALIGN 2 /* HDLC alignment error */
235 #define ERR_HDLC_FCS 3 /* HDLC Frame Check Sum error */
236 #define ERR_RXFREE_Q_EMPTY 4 /* RX-free queue became empty while receiving
237 this packet (if buf_len < pkt_len) */
238 #define ERR_HDLC_TOO_LONG 5 /* HDLC frame size too long */
239 #define ERR_HDLC_ABORT 6 /* abort sequence received */
240 #define ERR_DISCONNECTING 7 /* disconnect is in progress */
241
242
243 #ifdef __ARMEB__
244 typedef struct sk_buff buffer_t;
245 #define free_buffer dev_kfree_skb
246 #define free_buffer_irq dev_consume_skb_irq
247 #else
248 typedef void buffer_t;
249 #define free_buffer kfree
250 #define free_buffer_irq kfree
251 #endif
252
253 struct port {
254 struct device *dev;
255 struct npe *npe;
256 struct net_device *netdev;
257 struct napi_struct napi;
258 struct hss_plat_info *plat;
259 buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
260 struct desc *desc_tab; /* coherent */
261 u32 desc_tab_phys;
262 unsigned int id;
263 unsigned int clock_type, clock_rate, loopback;
264 unsigned int initialized, carrier;
265 u8 hdlc_cfg;
266 u32 clock_reg;
267 };
268
269 /* NPE message structure */
270 struct msg {
271 #ifdef __ARMEB__
272 u8 cmd, unused, hss_port, index;
273 union {
274 struct { u8 data8a, data8b, data8c, data8d; };
275 struct { u16 data16a, data16b; };
276 struct { u32 data32; };
277 };
278 #else
279 u8 index, hss_port, unused, cmd;
280 union {
281 struct { u8 data8d, data8c, data8b, data8a; };
282 struct { u16 data16b, data16a; };
283 struct { u32 data32; };
284 };
285 #endif
286 };
287
288 /* HDLC packet descriptor */
289 struct desc {
290 u32 next; /* pointer to next buffer, unused */
291
292 #ifdef __ARMEB__
293 u16 buf_len; /* buffer length */
294 u16 pkt_len; /* packet length */
295 u32 data; /* pointer to data buffer in RAM */
296 u8 status;
297 u8 error_count;
298 u16 __reserved;
299 #else
300 u16 pkt_len; /* packet length */
301 u16 buf_len; /* buffer length */
302 u32 data; /* pointer to data buffer in RAM */
303 u16 __reserved;
304 u8 error_count;
305 u8 status;
306 #endif
307 u32 __reserved1[4];
308 };
309
310
311 #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
312 (n) * sizeof(struct desc))
313 #define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
314
315 #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
316 ((n) + RX_DESCS) * sizeof(struct desc))
317 #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
318
319 /*****************************************************************************
320 * global variables
321 ****************************************************************************/
322
323 static int ports_open;
324 static struct dma_pool *dma_pool;
325 static spinlock_t npe_lock;
326
327 static const struct {
328 int tx, txdone, rx, rxfree;
329 }queue_ids[2] = {{HSS0_PKT_TX0_QUEUE, HSS0_PKT_TXDONE_QUEUE, HSS0_PKT_RX_QUEUE,
330 HSS0_PKT_RXFREE0_QUEUE},
331 {HSS1_PKT_TX0_QUEUE, HSS1_PKT_TXDONE_QUEUE, HSS1_PKT_RX_QUEUE,
332 HSS1_PKT_RXFREE0_QUEUE},
333 };
334
335 /*****************************************************************************
336 * utility functions
337 ****************************************************************************/
338
dev_to_port(struct net_device * dev)339 static inline struct port* dev_to_port(struct net_device *dev)
340 {
341 return dev_to_hdlc(dev)->priv;
342 }
343
344 #ifndef __ARMEB__
memcpy_swab32(u32 * dest,u32 * src,int cnt)345 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
346 {
347 int i;
348 for (i = 0; i < cnt; i++)
349 dest[i] = swab32(src[i]);
350 }
351 #endif
352
353 /*****************************************************************************
354 * HSS access
355 ****************************************************************************/
356
hss_npe_send(struct port * port,struct msg * msg,const char * what)357 static void hss_npe_send(struct port *port, struct msg *msg, const char* what)
358 {
359 u32 *val = (u32*)msg;
360 if (npe_send_message(port->npe, msg, what)) {
361 pr_crit("HSS-%i: unable to send command [%08X:%08X] to %s\n",
362 port->id, val[0], val[1], npe_name(port->npe));
363 BUG();
364 }
365 }
366
hss_config_set_lut(struct port * port)367 static void hss_config_set_lut(struct port *port)
368 {
369 struct msg msg;
370 int ch;
371
372 memset(&msg, 0, sizeof(msg));
373 msg.cmd = PORT_CONFIG_WRITE;
374 msg.hss_port = port->id;
375
376 for (ch = 0; ch < MAX_CHANNELS; ch++) {
377 msg.data32 >>= 2;
378 msg.data32 |= TDMMAP_HDLC << 30;
379
380 if (ch % 16 == 15) {
381 msg.index = HSS_CONFIG_TX_LUT + ((ch / 4) & ~3);
382 hss_npe_send(port, &msg, "HSS_SET_TX_LUT");
383
384 msg.index += HSS_CONFIG_RX_LUT - HSS_CONFIG_TX_LUT;
385 hss_npe_send(port, &msg, "HSS_SET_RX_LUT");
386 }
387 }
388 }
389
hss_config(struct port * port)390 static void hss_config(struct port *port)
391 {
392 struct msg msg;
393
394 memset(&msg, 0, sizeof(msg));
395 msg.cmd = PORT_CONFIG_WRITE;
396 msg.hss_port = port->id;
397 msg.index = HSS_CONFIG_TX_PCR;
398 msg.data32 = PCR_FRM_PULSE_DISABLED | PCR_MSB_ENDIAN |
399 PCR_TX_DATA_ENABLE | PCR_SOF_NO_FBIT;
400 if (port->clock_type == CLOCK_INT)
401 msg.data32 |= PCR_SYNC_CLK_DIR_OUTPUT;
402 hss_npe_send(port, &msg, "HSS_SET_TX_PCR");
403
404 msg.index = HSS_CONFIG_RX_PCR;
405 msg.data32 ^= PCR_TX_DATA_ENABLE | PCR_DCLK_EDGE_RISING;
406 hss_npe_send(port, &msg, "HSS_SET_RX_PCR");
407
408 memset(&msg, 0, sizeof(msg));
409 msg.cmd = PORT_CONFIG_WRITE;
410 msg.hss_port = port->id;
411 msg.index = HSS_CONFIG_CORE_CR;
412 msg.data32 = (port->loopback ? CCR_LOOPBACK : 0) |
413 (port->id ? CCR_SECOND_HSS : 0);
414 hss_npe_send(port, &msg, "HSS_SET_CORE_CR");
415
416 memset(&msg, 0, sizeof(msg));
417 msg.cmd = PORT_CONFIG_WRITE;
418 msg.hss_port = port->id;
419 msg.index = HSS_CONFIG_CLOCK_CR;
420 msg.data32 = port->clock_reg;
421 hss_npe_send(port, &msg, "HSS_SET_CLOCK_CR");
422
423 memset(&msg, 0, sizeof(msg));
424 msg.cmd = PORT_CONFIG_WRITE;
425 msg.hss_port = port->id;
426 msg.index = HSS_CONFIG_TX_FCR;
427 msg.data16a = FRAME_OFFSET;
428 msg.data16b = FRAME_SIZE - 1;
429 hss_npe_send(port, &msg, "HSS_SET_TX_FCR");
430
431 memset(&msg, 0, sizeof(msg));
432 msg.cmd = PORT_CONFIG_WRITE;
433 msg.hss_port = port->id;
434 msg.index = HSS_CONFIG_RX_FCR;
435 msg.data16a = FRAME_OFFSET;
436 msg.data16b = FRAME_SIZE - 1;
437 hss_npe_send(port, &msg, "HSS_SET_RX_FCR");
438
439 hss_config_set_lut(port);
440
441 memset(&msg, 0, sizeof(msg));
442 msg.cmd = PORT_CONFIG_LOAD;
443 msg.hss_port = port->id;
444 hss_npe_send(port, &msg, "HSS_LOAD_CONFIG");
445
446 if (npe_recv_message(port->npe, &msg, "HSS_LOAD_CONFIG") ||
447 /* HSS_LOAD_CONFIG for port #1 returns port_id = #4 */
448 msg.cmd != PORT_CONFIG_LOAD || msg.data32) {
449 pr_crit("HSS-%i: HSS_LOAD_CONFIG failed\n", port->id);
450 BUG();
451 }
452
453 /* HDLC may stop working without this - check FIXME */
454 npe_recv_message(port->npe, &msg, "FLUSH_IT");
455 }
456
hss_set_hdlc_cfg(struct port * port)457 static void hss_set_hdlc_cfg(struct port *port)
458 {
459 struct msg msg;
460
461 memset(&msg, 0, sizeof(msg));
462 msg.cmd = PKT_PIPE_HDLC_CFG_WRITE;
463 msg.hss_port = port->id;
464 msg.data8a = port->hdlc_cfg; /* rx_cfg */
465 msg.data8b = port->hdlc_cfg | (PKT_EXTRA_FLAGS << 3); /* tx_cfg */
466 hss_npe_send(port, &msg, "HSS_SET_HDLC_CFG");
467 }
468
hss_get_status(struct port * port)469 static u32 hss_get_status(struct port *port)
470 {
471 struct msg msg;
472
473 memset(&msg, 0, sizeof(msg));
474 msg.cmd = PORT_ERROR_READ;
475 msg.hss_port = port->id;
476 hss_npe_send(port, &msg, "PORT_ERROR_READ");
477 if (npe_recv_message(port->npe, &msg, "PORT_ERROR_READ")) {
478 pr_crit("HSS-%i: unable to read HSS status\n", port->id);
479 BUG();
480 }
481
482 return msg.data32;
483 }
484
hss_start_hdlc(struct port * port)485 static void hss_start_hdlc(struct port *port)
486 {
487 struct msg msg;
488
489 memset(&msg, 0, sizeof(msg));
490 msg.cmd = PKT_PIPE_FLOW_ENABLE;
491 msg.hss_port = port->id;
492 msg.data32 = 0;
493 hss_npe_send(port, &msg, "HSS_ENABLE_PKT_PIPE");
494 }
495
hss_stop_hdlc(struct port * port)496 static void hss_stop_hdlc(struct port *port)
497 {
498 struct msg msg;
499
500 memset(&msg, 0, sizeof(msg));
501 msg.cmd = PKT_PIPE_FLOW_DISABLE;
502 msg.hss_port = port->id;
503 hss_npe_send(port, &msg, "HSS_DISABLE_PKT_PIPE");
504 hss_get_status(port); /* make sure it's halted */
505 }
506
hss_load_firmware(struct port * port)507 static int hss_load_firmware(struct port *port)
508 {
509 struct msg msg;
510 int err;
511
512 if (port->initialized)
513 return 0;
514
515 if (!npe_running(port->npe) &&
516 (err = npe_load_firmware(port->npe, npe_name(port->npe),
517 port->dev)))
518 return err;
519
520 /* HDLC mode configuration */
521 memset(&msg, 0, sizeof(msg));
522 msg.cmd = PKT_NUM_PIPES_WRITE;
523 msg.hss_port = port->id;
524 msg.data8a = PKT_NUM_PIPES;
525 hss_npe_send(port, &msg, "HSS_SET_PKT_PIPES");
526
527 msg.cmd = PKT_PIPE_FIFO_SIZEW_WRITE;
528 msg.data8a = PKT_PIPE_FIFO_SIZEW;
529 hss_npe_send(port, &msg, "HSS_SET_PKT_FIFO");
530
531 msg.cmd = PKT_PIPE_MODE_WRITE;
532 msg.data8a = NPE_PKT_MODE_HDLC;
533 /* msg.data8b = inv_mask */
534 /* msg.data8c = or_mask */
535 hss_npe_send(port, &msg, "HSS_SET_PKT_MODE");
536
537 msg.cmd = PKT_PIPE_RX_SIZE_WRITE;
538 msg.data16a = HDLC_MAX_MRU; /* including CRC */
539 hss_npe_send(port, &msg, "HSS_SET_PKT_RX_SIZE");
540
541 msg.cmd = PKT_PIPE_IDLE_PATTERN_WRITE;
542 msg.data32 = 0x7F7F7F7F; /* ??? FIXME */
543 hss_npe_send(port, &msg, "HSS_SET_PKT_IDLE");
544
545 port->initialized = 1;
546 return 0;
547 }
548
549 /*****************************************************************************
550 * packetized (HDLC) operation
551 ****************************************************************************/
552
debug_pkt(struct net_device * dev,const char * func,u8 * data,int len)553 static inline void debug_pkt(struct net_device *dev, const char *func,
554 u8 *data, int len)
555 {
556 #if DEBUG_PKT_BYTES
557 int i;
558
559 printk(KERN_DEBUG "%s: %s(%i)", dev->name, func, len);
560 for (i = 0; i < len; i++) {
561 if (i >= DEBUG_PKT_BYTES)
562 break;
563 printk("%s%02X", !(i % 4) ? " " : "", data[i]);
564 }
565 printk("\n");
566 #endif
567 }
568
569
debug_desc(u32 phys,struct desc * desc)570 static inline void debug_desc(u32 phys, struct desc *desc)
571 {
572 #if DEBUG_DESC
573 printk(KERN_DEBUG "%X: %X %3X %3X %08X %X %X\n",
574 phys, desc->next, desc->buf_len, desc->pkt_len,
575 desc->data, desc->status, desc->error_count);
576 #endif
577 }
578
queue_get_desc(unsigned int queue,struct port * port,int is_tx)579 static inline int queue_get_desc(unsigned int queue, struct port *port,
580 int is_tx)
581 {
582 u32 phys, tab_phys, n_desc;
583 struct desc *tab;
584
585 if (!(phys = qmgr_get_entry(queue)))
586 return -1;
587
588 BUG_ON(phys & 0x1F);
589 tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
590 tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
591 n_desc = (phys - tab_phys) / sizeof(struct desc);
592 BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
593 debug_desc(phys, &tab[n_desc]);
594 BUG_ON(tab[n_desc].next);
595 return n_desc;
596 }
597
queue_put_desc(unsigned int queue,u32 phys,struct desc * desc)598 static inline void queue_put_desc(unsigned int queue, u32 phys,
599 struct desc *desc)
600 {
601 debug_desc(phys, desc);
602 BUG_ON(phys & 0x1F);
603 qmgr_put_entry(queue, phys);
604 /* Don't check for queue overflow here, we've allocated sufficient
605 length and queues >= 32 don't support this check anyway. */
606 }
607
608
dma_unmap_tx(struct port * port,struct desc * desc)609 static inline void dma_unmap_tx(struct port *port, struct desc *desc)
610 {
611 #ifdef __ARMEB__
612 dma_unmap_single(&port->netdev->dev, desc->data,
613 desc->buf_len, DMA_TO_DEVICE);
614 #else
615 dma_unmap_single(&port->netdev->dev, desc->data & ~3,
616 ALIGN((desc->data & 3) + desc->buf_len, 4),
617 DMA_TO_DEVICE);
618 #endif
619 }
620
621
hss_hdlc_set_carrier(void * pdev,int carrier)622 static void hss_hdlc_set_carrier(void *pdev, int carrier)
623 {
624 struct net_device *netdev = pdev;
625 struct port *port = dev_to_port(netdev);
626 unsigned long flags;
627
628 spin_lock_irqsave(&npe_lock, flags);
629 port->carrier = carrier;
630 if (!port->loopback) {
631 if (carrier)
632 netif_carrier_on(netdev);
633 else
634 netif_carrier_off(netdev);
635 }
636 spin_unlock_irqrestore(&npe_lock, flags);
637 }
638
hss_hdlc_rx_irq(void * pdev)639 static void hss_hdlc_rx_irq(void *pdev)
640 {
641 struct net_device *dev = pdev;
642 struct port *port = dev_to_port(dev);
643
644 #if DEBUG_RX
645 printk(KERN_DEBUG "%s: hss_hdlc_rx_irq\n", dev->name);
646 #endif
647 qmgr_disable_irq(queue_ids[port->id].rx);
648 napi_schedule(&port->napi);
649 }
650
hss_hdlc_poll(struct napi_struct * napi,int budget)651 static int hss_hdlc_poll(struct napi_struct *napi, int budget)
652 {
653 struct port *port = container_of(napi, struct port, napi);
654 struct net_device *dev = port->netdev;
655 unsigned int rxq = queue_ids[port->id].rx;
656 unsigned int rxfreeq = queue_ids[port->id].rxfree;
657 int received = 0;
658
659 #if DEBUG_RX
660 printk(KERN_DEBUG "%s: hss_hdlc_poll\n", dev->name);
661 #endif
662
663 while (received < budget) {
664 struct sk_buff *skb;
665 struct desc *desc;
666 int n;
667 #ifdef __ARMEB__
668 struct sk_buff *temp;
669 u32 phys;
670 #endif
671
672 if ((n = queue_get_desc(rxq, port, 0)) < 0) {
673 #if DEBUG_RX
674 printk(KERN_DEBUG "%s: hss_hdlc_poll"
675 " napi_complete\n", dev->name);
676 #endif
677 napi_complete(napi);
678 qmgr_enable_irq(rxq);
679 if (!qmgr_stat_empty(rxq) &&
680 napi_reschedule(napi)) {
681 #if DEBUG_RX
682 printk(KERN_DEBUG "%s: hss_hdlc_poll"
683 " napi_reschedule succeeded\n",
684 dev->name);
685 #endif
686 qmgr_disable_irq(rxq);
687 continue;
688 }
689 #if DEBUG_RX
690 printk(KERN_DEBUG "%s: hss_hdlc_poll all done\n",
691 dev->name);
692 #endif
693 return received; /* all work done */
694 }
695
696 desc = rx_desc_ptr(port, n);
697 #if 0 /* FIXME - error_count counts modulo 256, perhaps we should use it */
698 if (desc->error_count)
699 printk(KERN_DEBUG "%s: hss_hdlc_poll status 0x%02X"
700 " errors %u\n", dev->name, desc->status,
701 desc->error_count);
702 #endif
703 skb = NULL;
704 switch (desc->status) {
705 case 0:
706 #ifdef __ARMEB__
707 if ((skb = netdev_alloc_skb(dev, RX_SIZE)) != NULL) {
708 phys = dma_map_single(&dev->dev, skb->data,
709 RX_SIZE,
710 DMA_FROM_DEVICE);
711 if (dma_mapping_error(&dev->dev, phys)) {
712 dev_kfree_skb(skb);
713 skb = NULL;
714 }
715 }
716 #else
717 skb = netdev_alloc_skb(dev, desc->pkt_len);
718 #endif
719 if (!skb)
720 dev->stats.rx_dropped++;
721 break;
722 case ERR_HDLC_ALIGN:
723 case ERR_HDLC_ABORT:
724 dev->stats.rx_frame_errors++;
725 dev->stats.rx_errors++;
726 break;
727 case ERR_HDLC_FCS:
728 dev->stats.rx_crc_errors++;
729 dev->stats.rx_errors++;
730 break;
731 case ERR_HDLC_TOO_LONG:
732 dev->stats.rx_length_errors++;
733 dev->stats.rx_errors++;
734 break;
735 default: /* FIXME - remove printk */
736 netdev_err(dev, "hss_hdlc_poll: status 0x%02X errors %u\n",
737 desc->status, desc->error_count);
738 dev->stats.rx_errors++;
739 }
740
741 if (!skb) {
742 /* put the desc back on RX-ready queue */
743 desc->buf_len = RX_SIZE;
744 desc->pkt_len = desc->status = 0;
745 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
746 continue;
747 }
748
749 /* process received frame */
750 #ifdef __ARMEB__
751 temp = skb;
752 skb = port->rx_buff_tab[n];
753 dma_unmap_single(&dev->dev, desc->data,
754 RX_SIZE, DMA_FROM_DEVICE);
755 #else
756 dma_sync_single_for_cpu(&dev->dev, desc->data,
757 RX_SIZE, DMA_FROM_DEVICE);
758 memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
759 ALIGN(desc->pkt_len, 4) / 4);
760 #endif
761 skb_put(skb, desc->pkt_len);
762
763 debug_pkt(dev, "hss_hdlc_poll", skb->data, skb->len);
764
765 skb->protocol = hdlc_type_trans(skb, dev);
766 dev->stats.rx_packets++;
767 dev->stats.rx_bytes += skb->len;
768 netif_receive_skb(skb);
769
770 /* put the new buffer on RX-free queue */
771 #ifdef __ARMEB__
772 port->rx_buff_tab[n] = temp;
773 desc->data = phys;
774 #endif
775 desc->buf_len = RX_SIZE;
776 desc->pkt_len = 0;
777 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
778 received++;
779 }
780 #if DEBUG_RX
781 printk(KERN_DEBUG "hss_hdlc_poll: end, not all work done\n");
782 #endif
783 return received; /* not all work done */
784 }
785
786
hss_hdlc_txdone_irq(void * pdev)787 static void hss_hdlc_txdone_irq(void *pdev)
788 {
789 struct net_device *dev = pdev;
790 struct port *port = dev_to_port(dev);
791 int n_desc;
792
793 #if DEBUG_TX
794 printk(KERN_DEBUG DRV_NAME ": hss_hdlc_txdone_irq\n");
795 #endif
796 while ((n_desc = queue_get_desc(queue_ids[port->id].txdone,
797 port, 1)) >= 0) {
798 struct desc *desc;
799 int start;
800
801 desc = tx_desc_ptr(port, n_desc);
802
803 dev->stats.tx_packets++;
804 dev->stats.tx_bytes += desc->pkt_len;
805
806 dma_unmap_tx(port, desc);
807 #if DEBUG_TX
808 printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq free %p\n",
809 dev->name, port->tx_buff_tab[n_desc]);
810 #endif
811 free_buffer_irq(port->tx_buff_tab[n_desc]);
812 port->tx_buff_tab[n_desc] = NULL;
813
814 start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
815 queue_put_desc(port->plat->txreadyq,
816 tx_desc_phys(port, n_desc), desc);
817 if (start) { /* TX-ready queue was empty */
818 #if DEBUG_TX
819 printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq xmit"
820 " ready\n", dev->name);
821 #endif
822 netif_wake_queue(dev);
823 }
824 }
825 }
826
hss_hdlc_xmit(struct sk_buff * skb,struct net_device * dev)827 static int hss_hdlc_xmit(struct sk_buff *skb, struct net_device *dev)
828 {
829 struct port *port = dev_to_port(dev);
830 unsigned int txreadyq = port->plat->txreadyq;
831 int len, offset, bytes, n;
832 void *mem;
833 u32 phys;
834 struct desc *desc;
835
836 #if DEBUG_TX
837 printk(KERN_DEBUG "%s: hss_hdlc_xmit\n", dev->name);
838 #endif
839
840 if (unlikely(skb->len > HDLC_MAX_MRU)) {
841 dev_kfree_skb(skb);
842 dev->stats.tx_errors++;
843 return NETDEV_TX_OK;
844 }
845
846 debug_pkt(dev, "hss_hdlc_xmit", skb->data, skb->len);
847
848 len = skb->len;
849 #ifdef __ARMEB__
850 offset = 0; /* no need to keep alignment */
851 bytes = len;
852 mem = skb->data;
853 #else
854 offset = (int)skb->data & 3; /* keep 32-bit alignment */
855 bytes = ALIGN(offset + len, 4);
856 if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
857 dev_kfree_skb(skb);
858 dev->stats.tx_dropped++;
859 return NETDEV_TX_OK;
860 }
861 memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
862 dev_kfree_skb(skb);
863 #endif
864
865 phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
866 if (dma_mapping_error(&dev->dev, phys)) {
867 #ifdef __ARMEB__
868 dev_kfree_skb(skb);
869 #else
870 kfree(mem);
871 #endif
872 dev->stats.tx_dropped++;
873 return NETDEV_TX_OK;
874 }
875
876 n = queue_get_desc(txreadyq, port, 1);
877 BUG_ON(n < 0);
878 desc = tx_desc_ptr(port, n);
879
880 #ifdef __ARMEB__
881 port->tx_buff_tab[n] = skb;
882 #else
883 port->tx_buff_tab[n] = mem;
884 #endif
885 desc->data = phys + offset;
886 desc->buf_len = desc->pkt_len = len;
887
888 wmb();
889 queue_put_desc(queue_ids[port->id].tx, tx_desc_phys(port, n), desc);
890
891 if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
892 #if DEBUG_TX
893 printk(KERN_DEBUG "%s: hss_hdlc_xmit queue full\n", dev->name);
894 #endif
895 netif_stop_queue(dev);
896 /* we could miss TX ready interrupt */
897 if (!qmgr_stat_below_low_watermark(txreadyq)) {
898 #if DEBUG_TX
899 printk(KERN_DEBUG "%s: hss_hdlc_xmit ready again\n",
900 dev->name);
901 #endif
902 netif_wake_queue(dev);
903 }
904 }
905
906 #if DEBUG_TX
907 printk(KERN_DEBUG "%s: hss_hdlc_xmit end\n", dev->name);
908 #endif
909 return NETDEV_TX_OK;
910 }
911
912
request_hdlc_queues(struct port * port)913 static int request_hdlc_queues(struct port *port)
914 {
915 int err;
916
917 err = qmgr_request_queue(queue_ids[port->id].rxfree, RX_DESCS, 0, 0,
918 "%s:RX-free", port->netdev->name);
919 if (err)
920 return err;
921
922 err = qmgr_request_queue(queue_ids[port->id].rx, RX_DESCS, 0, 0,
923 "%s:RX", port->netdev->name);
924 if (err)
925 goto rel_rxfree;
926
927 err = qmgr_request_queue(queue_ids[port->id].tx, TX_DESCS, 0, 0,
928 "%s:TX", port->netdev->name);
929 if (err)
930 goto rel_rx;
931
932 err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
933 "%s:TX-ready", port->netdev->name);
934 if (err)
935 goto rel_tx;
936
937 err = qmgr_request_queue(queue_ids[port->id].txdone, TX_DESCS, 0, 0,
938 "%s:TX-done", port->netdev->name);
939 if (err)
940 goto rel_txready;
941 return 0;
942
943 rel_txready:
944 qmgr_release_queue(port->plat->txreadyq);
945 rel_tx:
946 qmgr_release_queue(queue_ids[port->id].tx);
947 rel_rx:
948 qmgr_release_queue(queue_ids[port->id].rx);
949 rel_rxfree:
950 qmgr_release_queue(queue_ids[port->id].rxfree);
951 printk(KERN_DEBUG "%s: unable to request hardware queues\n",
952 port->netdev->name);
953 return err;
954 }
955
release_hdlc_queues(struct port * port)956 static void release_hdlc_queues(struct port *port)
957 {
958 qmgr_release_queue(queue_ids[port->id].rxfree);
959 qmgr_release_queue(queue_ids[port->id].rx);
960 qmgr_release_queue(queue_ids[port->id].txdone);
961 qmgr_release_queue(queue_ids[port->id].tx);
962 qmgr_release_queue(port->plat->txreadyq);
963 }
964
init_hdlc_queues(struct port * port)965 static int init_hdlc_queues(struct port *port)
966 {
967 int i;
968
969 if (!ports_open) {
970 dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
971 POOL_ALLOC_SIZE, 32, 0);
972 if (!dma_pool)
973 return -ENOMEM;
974 }
975
976 if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
977 &port->desc_tab_phys)))
978 return -ENOMEM;
979 memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
980 memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
981 memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
982
983 /* Setup RX buffers */
984 for (i = 0; i < RX_DESCS; i++) {
985 struct desc *desc = rx_desc_ptr(port, i);
986 buffer_t *buff;
987 void *data;
988 #ifdef __ARMEB__
989 if (!(buff = netdev_alloc_skb(port->netdev, RX_SIZE)))
990 return -ENOMEM;
991 data = buff->data;
992 #else
993 if (!(buff = kmalloc(RX_SIZE, GFP_KERNEL)))
994 return -ENOMEM;
995 data = buff;
996 #endif
997 desc->buf_len = RX_SIZE;
998 desc->data = dma_map_single(&port->netdev->dev, data,
999 RX_SIZE, DMA_FROM_DEVICE);
1000 if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1001 free_buffer(buff);
1002 return -EIO;
1003 }
1004 port->rx_buff_tab[i] = buff;
1005 }
1006
1007 return 0;
1008 }
1009
destroy_hdlc_queues(struct port * port)1010 static void destroy_hdlc_queues(struct port *port)
1011 {
1012 int i;
1013
1014 if (port->desc_tab) {
1015 for (i = 0; i < RX_DESCS; i++) {
1016 struct desc *desc = rx_desc_ptr(port, i);
1017 buffer_t *buff = port->rx_buff_tab[i];
1018 if (buff) {
1019 dma_unmap_single(&port->netdev->dev,
1020 desc->data, RX_SIZE,
1021 DMA_FROM_DEVICE);
1022 free_buffer(buff);
1023 }
1024 }
1025 for (i = 0; i < TX_DESCS; i++) {
1026 struct desc *desc = tx_desc_ptr(port, i);
1027 buffer_t *buff = port->tx_buff_tab[i];
1028 if (buff) {
1029 dma_unmap_tx(port, desc);
1030 free_buffer(buff);
1031 }
1032 }
1033 dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1034 port->desc_tab = NULL;
1035 }
1036
1037 if (!ports_open && dma_pool) {
1038 dma_pool_destroy(dma_pool);
1039 dma_pool = NULL;
1040 }
1041 }
1042
hss_hdlc_open(struct net_device * dev)1043 static int hss_hdlc_open(struct net_device *dev)
1044 {
1045 struct port *port = dev_to_port(dev);
1046 unsigned long flags;
1047 int i, err = 0;
1048
1049 if ((err = hdlc_open(dev)))
1050 return err;
1051
1052 if ((err = hss_load_firmware(port)))
1053 goto err_hdlc_close;
1054
1055 if ((err = request_hdlc_queues(port)))
1056 goto err_hdlc_close;
1057
1058 if ((err = init_hdlc_queues(port)))
1059 goto err_destroy_queues;
1060
1061 spin_lock_irqsave(&npe_lock, flags);
1062 if (port->plat->open)
1063 if ((err = port->plat->open(port->id, dev,
1064 hss_hdlc_set_carrier)))
1065 goto err_unlock;
1066 spin_unlock_irqrestore(&npe_lock, flags);
1067
1068 /* Populate queues with buffers, no failure after this point */
1069 for (i = 0; i < TX_DESCS; i++)
1070 queue_put_desc(port->plat->txreadyq,
1071 tx_desc_phys(port, i), tx_desc_ptr(port, i));
1072
1073 for (i = 0; i < RX_DESCS; i++)
1074 queue_put_desc(queue_ids[port->id].rxfree,
1075 rx_desc_phys(port, i), rx_desc_ptr(port, i));
1076
1077 napi_enable(&port->napi);
1078 netif_start_queue(dev);
1079
1080 qmgr_set_irq(queue_ids[port->id].rx, QUEUE_IRQ_SRC_NOT_EMPTY,
1081 hss_hdlc_rx_irq, dev);
1082
1083 qmgr_set_irq(queue_ids[port->id].txdone, QUEUE_IRQ_SRC_NOT_EMPTY,
1084 hss_hdlc_txdone_irq, dev);
1085 qmgr_enable_irq(queue_ids[port->id].txdone);
1086
1087 ports_open++;
1088
1089 hss_set_hdlc_cfg(port);
1090 hss_config(port);
1091
1092 hss_start_hdlc(port);
1093
1094 /* we may already have RX data, enables IRQ */
1095 napi_schedule(&port->napi);
1096 return 0;
1097
1098 err_unlock:
1099 spin_unlock_irqrestore(&npe_lock, flags);
1100 err_destroy_queues:
1101 destroy_hdlc_queues(port);
1102 release_hdlc_queues(port);
1103 err_hdlc_close:
1104 hdlc_close(dev);
1105 return err;
1106 }
1107
hss_hdlc_close(struct net_device * dev)1108 static int hss_hdlc_close(struct net_device *dev)
1109 {
1110 struct port *port = dev_to_port(dev);
1111 unsigned long flags;
1112 int i, buffs = RX_DESCS; /* allocated RX buffers */
1113
1114 spin_lock_irqsave(&npe_lock, flags);
1115 ports_open--;
1116 qmgr_disable_irq(queue_ids[port->id].rx);
1117 netif_stop_queue(dev);
1118 napi_disable(&port->napi);
1119
1120 hss_stop_hdlc(port);
1121
1122 while (queue_get_desc(queue_ids[port->id].rxfree, port, 0) >= 0)
1123 buffs--;
1124 while (queue_get_desc(queue_ids[port->id].rx, port, 0) >= 0)
1125 buffs--;
1126
1127 if (buffs)
1128 netdev_crit(dev, "unable to drain RX queue, %i buffer(s) left in NPE\n",
1129 buffs);
1130
1131 buffs = TX_DESCS;
1132 while (queue_get_desc(queue_ids[port->id].tx, port, 1) >= 0)
1133 buffs--; /* cancel TX */
1134
1135 i = 0;
1136 do {
1137 while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1138 buffs--;
1139 if (!buffs)
1140 break;
1141 } while (++i < MAX_CLOSE_WAIT);
1142
1143 if (buffs)
1144 netdev_crit(dev, "unable to drain TX queue, %i buffer(s) left in NPE\n",
1145 buffs);
1146 #if DEBUG_CLOSE
1147 if (!buffs)
1148 printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
1149 #endif
1150 qmgr_disable_irq(queue_ids[port->id].txdone);
1151
1152 if (port->plat->close)
1153 port->plat->close(port->id, dev);
1154 spin_unlock_irqrestore(&npe_lock, flags);
1155
1156 destroy_hdlc_queues(port);
1157 release_hdlc_queues(port);
1158 hdlc_close(dev);
1159 return 0;
1160 }
1161
1162
hss_hdlc_attach(struct net_device * dev,unsigned short encoding,unsigned short parity)1163 static int hss_hdlc_attach(struct net_device *dev, unsigned short encoding,
1164 unsigned short parity)
1165 {
1166 struct port *port = dev_to_port(dev);
1167
1168 if (encoding != ENCODING_NRZ)
1169 return -EINVAL;
1170
1171 switch(parity) {
1172 case PARITY_CRC16_PR1_CCITT:
1173 port->hdlc_cfg = 0;
1174 return 0;
1175
1176 case PARITY_CRC32_PR1_CCITT:
1177 port->hdlc_cfg = PKT_HDLC_CRC_32;
1178 return 0;
1179
1180 default:
1181 return -EINVAL;
1182 }
1183 }
1184
check_clock(u32 rate,u32 a,u32 b,u32 c,u32 * best,u32 * best_diff,u32 * reg)1185 static u32 check_clock(u32 rate, u32 a, u32 b, u32 c,
1186 u32 *best, u32 *best_diff, u32 *reg)
1187 {
1188 /* a is 10-bit, b is 10-bit, c is 12-bit */
1189 u64 new_rate;
1190 u32 new_diff;
1191
1192 new_rate = ixp4xx_timer_freq * (u64)(c + 1);
1193 do_div(new_rate, a * (c + 1) + b + 1);
1194 new_diff = abs((u32)new_rate - rate);
1195
1196 if (new_diff < *best_diff) {
1197 *best = new_rate;
1198 *best_diff = new_diff;
1199 *reg = (a << 22) | (b << 12) | c;
1200 }
1201 return new_diff;
1202 }
1203
find_best_clock(u32 rate,u32 * best,u32 * reg)1204 static void find_best_clock(u32 rate, u32 *best, u32 *reg)
1205 {
1206 u32 a, b, diff = 0xFFFFFFFF;
1207
1208 a = ixp4xx_timer_freq / rate;
1209
1210 if (a > 0x3FF) { /* 10-bit value - we can go as slow as ca. 65 kb/s */
1211 check_clock(rate, 0x3FF, 1, 1, best, &diff, reg);
1212 return;
1213 }
1214 if (a == 0) { /* > 66.666 MHz */
1215 a = 1; /* minimum divider is 1 (a = 0, b = 1, c = 1) */
1216 rate = ixp4xx_timer_freq;
1217 }
1218
1219 if (rate * a == ixp4xx_timer_freq) { /* don't divide by 0 later */
1220 check_clock(rate, a - 1, 1, 1, best, &diff, reg);
1221 return;
1222 }
1223
1224 for (b = 0; b < 0x400; b++) {
1225 u64 c = (b + 1) * (u64)rate;
1226 do_div(c, ixp4xx_timer_freq - rate * a);
1227 c--;
1228 if (c >= 0xFFF) { /* 12-bit - no need to check more 'b's */
1229 if (b == 0 && /* also try a bit higher rate */
1230 !check_clock(rate, a - 1, 1, 1, best, &diff, reg))
1231 return;
1232 check_clock(rate, a, b, 0xFFF, best, &diff, reg);
1233 return;
1234 }
1235 if (!check_clock(rate, a, b, c, best, &diff, reg))
1236 return;
1237 if (!check_clock(rate, a, b, c + 1, best, &diff, reg))
1238 return;
1239 }
1240 }
1241
hss_hdlc_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)1242 static int hss_hdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1243 {
1244 const size_t size = sizeof(sync_serial_settings);
1245 sync_serial_settings new_line;
1246 sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1247 struct port *port = dev_to_port(dev);
1248 unsigned long flags;
1249 int clk;
1250
1251 if (cmd != SIOCWANDEV)
1252 return hdlc_ioctl(dev, ifr, cmd);
1253
1254 switch(ifr->ifr_settings.type) {
1255 case IF_GET_IFACE:
1256 ifr->ifr_settings.type = IF_IFACE_V35;
1257 if (ifr->ifr_settings.size < size) {
1258 ifr->ifr_settings.size = size; /* data size wanted */
1259 return -ENOBUFS;
1260 }
1261 memset(&new_line, 0, sizeof(new_line));
1262 new_line.clock_type = port->clock_type;
1263 new_line.clock_rate = port->clock_rate;
1264 new_line.loopback = port->loopback;
1265 if (copy_to_user(line, &new_line, size))
1266 return -EFAULT;
1267 return 0;
1268
1269 case IF_IFACE_SYNC_SERIAL:
1270 case IF_IFACE_V35:
1271 if(!capable(CAP_NET_ADMIN))
1272 return -EPERM;
1273 if (copy_from_user(&new_line, line, size))
1274 return -EFAULT;
1275
1276 clk = new_line.clock_type;
1277 if (port->plat->set_clock)
1278 clk = port->plat->set_clock(port->id, clk);
1279
1280 if (clk != CLOCK_EXT && clk != CLOCK_INT)
1281 return -EINVAL; /* No such clock setting */
1282
1283 if (new_line.loopback != 0 && new_line.loopback != 1)
1284 return -EINVAL;
1285
1286 port->clock_type = clk; /* Update settings */
1287 if (clk == CLOCK_INT)
1288 find_best_clock(new_line.clock_rate, &port->clock_rate,
1289 &port->clock_reg);
1290 else {
1291 port->clock_rate = 0;
1292 port->clock_reg = CLK42X_SPEED_2048KHZ;
1293 }
1294 port->loopback = new_line.loopback;
1295
1296 spin_lock_irqsave(&npe_lock, flags);
1297
1298 if (dev->flags & IFF_UP)
1299 hss_config(port);
1300
1301 if (port->loopback || port->carrier)
1302 netif_carrier_on(port->netdev);
1303 else
1304 netif_carrier_off(port->netdev);
1305 spin_unlock_irqrestore(&npe_lock, flags);
1306
1307 return 0;
1308
1309 default:
1310 return hdlc_ioctl(dev, ifr, cmd);
1311 }
1312 }
1313
1314 /*****************************************************************************
1315 * initialization
1316 ****************************************************************************/
1317
1318 static const struct net_device_ops hss_hdlc_ops = {
1319 .ndo_open = hss_hdlc_open,
1320 .ndo_stop = hss_hdlc_close,
1321 .ndo_start_xmit = hdlc_start_xmit,
1322 .ndo_do_ioctl = hss_hdlc_ioctl,
1323 };
1324
hss_init_one(struct platform_device * pdev)1325 static int hss_init_one(struct platform_device *pdev)
1326 {
1327 struct port *port;
1328 struct net_device *dev;
1329 hdlc_device *hdlc;
1330 int err;
1331
1332 if ((port = kzalloc(sizeof(*port), GFP_KERNEL)) == NULL)
1333 return -ENOMEM;
1334
1335 if ((port->npe = npe_request(0)) == NULL) {
1336 err = -ENODEV;
1337 goto err_free;
1338 }
1339
1340 if ((port->netdev = dev = alloc_hdlcdev(port)) == NULL) {
1341 err = -ENOMEM;
1342 goto err_plat;
1343 }
1344
1345 SET_NETDEV_DEV(dev, &pdev->dev);
1346 hdlc = dev_to_hdlc(dev);
1347 hdlc->attach = hss_hdlc_attach;
1348 hdlc->xmit = hss_hdlc_xmit;
1349 dev->netdev_ops = &hss_hdlc_ops;
1350 dev->tx_queue_len = 100;
1351 port->clock_type = CLOCK_EXT;
1352 port->clock_rate = 0;
1353 port->clock_reg = CLK42X_SPEED_2048KHZ;
1354 port->id = pdev->id;
1355 port->dev = &pdev->dev;
1356 port->plat = pdev->dev.platform_data;
1357 netif_napi_add(dev, &port->napi, hss_hdlc_poll, NAPI_WEIGHT);
1358
1359 if ((err = register_hdlc_device(dev)))
1360 goto err_free_netdev;
1361
1362 platform_set_drvdata(pdev, port);
1363
1364 netdev_info(dev, "initialized\n");
1365 return 0;
1366
1367 err_free_netdev:
1368 free_netdev(dev);
1369 err_plat:
1370 npe_release(port->npe);
1371 err_free:
1372 kfree(port);
1373 return err;
1374 }
1375
hss_remove_one(struct platform_device * pdev)1376 static int hss_remove_one(struct platform_device *pdev)
1377 {
1378 struct port *port = platform_get_drvdata(pdev);
1379
1380 unregister_hdlc_device(port->netdev);
1381 free_netdev(port->netdev);
1382 npe_release(port->npe);
1383 kfree(port);
1384 return 0;
1385 }
1386
1387 static struct platform_driver ixp4xx_hss_driver = {
1388 .driver.name = DRV_NAME,
1389 .probe = hss_init_one,
1390 .remove = hss_remove_one,
1391 };
1392
hss_init_module(void)1393 static int __init hss_init_module(void)
1394 {
1395 if ((ixp4xx_read_feature_bits() &
1396 (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) !=
1397 (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS))
1398 return -ENODEV;
1399
1400 spin_lock_init(&npe_lock);
1401
1402 return platform_driver_register(&ixp4xx_hss_driver);
1403 }
1404
hss_cleanup_module(void)1405 static void __exit hss_cleanup_module(void)
1406 {
1407 platform_driver_unregister(&ixp4xx_hss_driver);
1408 }
1409
1410 MODULE_AUTHOR("Krzysztof Halasa");
1411 MODULE_DESCRIPTION("Intel IXP4xx HSS driver");
1412 MODULE_LICENSE("GPL v2");
1413 MODULE_ALIAS("platform:ixp4xx_hss");
1414 module_init(hss_init_module);
1415 module_exit(hss_cleanup_module);
1416