1 /*
2 * drivers/net/wan/dscc4/dscc4.c: a DSCC4 HDLC driver for Linux
3 *
4 * This software may be used and distributed according to the terms of the
5 * GNU General Public License.
6 *
7 * The author may be reached as romieu@cogenit.fr.
8 * Specific bug reports/asian food will be welcome.
9 *
10 * Special thanks to the nice people at CS-Telecom for the hardware and the
11 * access to the test/measure tools.
12 *
13 *
14 * Theory of Operation
15 *
16 * I. Board Compatibility
17 *
18 * This device driver is designed for the Siemens PEB20534 4 ports serial
19 * controller as found on Etinc PCISYNC cards. The documentation for the
20 * chipset is available at http://www.infineon.com:
21 * - Data Sheet "DSCC4, DMA Supported Serial Communication Controller with
22 * 4 Channels, PEB 20534 Version 2.1, PEF 20534 Version 2.1";
23 * - Application Hint "Management of DSCC4 on-chip FIFO resources".
24 * - Errata sheet DS5 (courtesy of Michael Skerritt).
25 * Jens David has built an adapter based on the same chipset. Take a look
26 * at http://www.afthd.tu-darmstadt.de/~dg1kjd/pciscc4 for a specific
27 * driver.
28 * Sample code (2 revisions) is available at Infineon.
29 *
30 * II. Board-specific settings
31 *
32 * Pcisync can transmit some clock signal to the outside world on the
33 * *first two* ports provided you put a quartz and a line driver on it and
34 * remove the jumpers. The operation is described on Etinc web site. If you
35 * go DCE on these ports, don't forget to use an adequate cable.
36 *
37 * Sharing of the PCI interrupt line for this board is possible.
38 *
39 * III. Driver operation
40 *
41 * The rx/tx operations are based on a linked list of descriptors. The driver
42 * doesn't use HOLD mode any more. HOLD mode is definitely buggy and the more
43 * I tried to fix it, the more it started to look like (convoluted) software
44 * mutation of LxDA method. Errata sheet DS5 suggests to use LxDA: consider
45 * this a rfc2119 MUST.
46 *
47 * Tx direction
48 * When the tx ring is full, the xmit routine issues a call to netdev_stop.
49 * The device is supposed to be enabled again during an ALLS irq (we could
50 * use HI but as it's easy to lose events, it's fscked).
51 *
52 * Rx direction
53 * The received frames aren't supposed to span over multiple receiving areas.
54 * I may implement it some day but it isn't the highest ranked item.
55 *
56 * IV. Notes
57 * The current error (XDU, RFO) recovery code is untested.
58 * So far, RDO takes his RX channel down and the right sequence to enable it
59 * again is still a mystery. If RDO happens, plan a reboot. More details
60 * in the code (NB: as this happens, TX still works).
61 * Don't mess the cables during operation, especially on DTE ports. I don't
62 * suggest it for DCE either but at least one can get some messages instead
63 * of a complete instant freeze.
64 * Tests are done on Rev. 20 of the silicium. The RDO handling changes with
65 * the documentation/chipset releases.
66 *
67 * TODO:
68 * - test X25.
69 * - use polling at high irq/s,
70 * - performance analysis,
71 * - endianness.
72 *
73 * 2001/12/10 Daniela Squassoni <daniela@cyclades.com>
74 * - Contribution to support the new generic HDLC layer.
75 *
76 * 2002/01 Ueimor
77 * - old style interface removal
78 * - dscc4_release_ring fix (related to DMA mapping)
79 * - hard_start_xmit fix (hint: TxSizeMax)
80 * - misc crapectomy.
81 */
82
83 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
84
85 #include <linux/module.h>
86 #include <linux/sched.h>
87 #include <linux/types.h>
88 #include <linux/errno.h>
89 #include <linux/list.h>
90 #include <linux/ioport.h>
91 #include <linux/pci.h>
92 #include <linux/kernel.h>
93 #include <linux/mm.h>
94 #include <linux/slab.h>
95
96 #include <asm/cache.h>
97 #include <asm/byteorder.h>
98 #include <linux/uaccess.h>
99 #include <asm/io.h>
100 #include <asm/irq.h>
101
102 #include <linux/init.h>
103 #include <linux/interrupt.h>
104 #include <linux/string.h>
105
106 #include <linux/if_arp.h>
107 #include <linux/netdevice.h>
108 #include <linux/skbuff.h>
109 #include <linux/delay.h>
110 #include <linux/hdlc.h>
111 #include <linux/mutex.h>
112
113 /* Version */
114 static const char version[] = "$Id: dscc4.c,v 1.173 2003/09/20 23:55:34 romieu Exp $ for Linux\n";
115 static int debug;
116 static int quartz;
117
118 #ifdef CONFIG_DSCC4_PCI_RST
119 static DEFINE_MUTEX(dscc4_mutex);
120 static u32 dscc4_pci_config_store[16];
121 #endif
122
123 #define DRV_NAME "dscc4"
124
125 #undef DSCC4_POLLING
126
127 /* Module parameters */
128
129 MODULE_AUTHOR("Maintainer: Francois Romieu <romieu@cogenit.fr>");
130 MODULE_DESCRIPTION("Siemens PEB20534 PCI Controller");
131 MODULE_LICENSE("GPL");
132 module_param(debug, int, 0);
133 MODULE_PARM_DESC(debug,"Enable/disable extra messages");
134 module_param(quartz, int, 0);
135 MODULE_PARM_DESC(quartz,"If present, on-board quartz frequency (Hz)");
136
137 /* Structures */
138
139 struct thingie {
140 int define;
141 u32 bits;
142 };
143
144 struct TxFD {
145 __le32 state;
146 __le32 next;
147 __le32 data;
148 __le32 complete;
149 u32 jiffies; /* Allows sizeof(TxFD) == sizeof(RxFD) + extra hack */
150 /* FWIW, datasheet calls that "dummy" and says that card
151 * never looks at it; neither does the driver */
152 };
153
154 struct RxFD {
155 __le32 state1;
156 __le32 next;
157 __le32 data;
158 __le32 state2;
159 __le32 end;
160 };
161
162 #define DUMMY_SKB_SIZE 64
163 #define TX_LOW 8
164 #define TX_RING_SIZE 32
165 #define RX_RING_SIZE 32
166 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct TxFD)
167 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct RxFD)
168 #define IRQ_RING_SIZE 64 /* Keep it a multiple of 32 */
169 #define TX_TIMEOUT (HZ/10)
170 #define DSCC4_HZ_MAX 33000000
171 #define BRR_DIVIDER_MAX 64*0x00004000 /* Cf errata DS5 p.10 */
172 #define dev_per_card 4
173 #define SCC_REGISTERS_MAX 23 /* Cf errata DS5 p.4 */
174
175 #define SOURCE_ID(flags) (((flags) >> 28) & 0x03)
176 #define TO_SIZE(state) (((state) >> 16) & 0x1fff)
177
178 /*
179 * Given the operating range of Linux HDLC, the 2 defines below could be
180 * made simpler. However they are a fine reminder for the limitations of
181 * the driver: it's better to stay < TxSizeMax and < RxSizeMax.
182 */
183 #define TO_STATE_TX(len) cpu_to_le32(((len) & TxSizeMax) << 16)
184 #define TO_STATE_RX(len) cpu_to_le32((RX_MAX(len) % RxSizeMax) << 16)
185 #define RX_MAX(len) ((((len) >> 5) + 1) << 5) /* Cf RLCR */
186 #define SCC_REG_START(dpriv) (SCC_START+(dpriv->dev_id)*SCC_OFFSET)
187
188 struct dscc4_pci_priv {
189 __le32 *iqcfg;
190 int cfg_cur;
191 spinlock_t lock;
192 struct pci_dev *pdev;
193
194 struct dscc4_dev_priv *root;
195 dma_addr_t iqcfg_dma;
196 u32 xtal_hz;
197 };
198
199 struct dscc4_dev_priv {
200 struct sk_buff *rx_skbuff[RX_RING_SIZE];
201 struct sk_buff *tx_skbuff[TX_RING_SIZE];
202
203 struct RxFD *rx_fd;
204 struct TxFD *tx_fd;
205 __le32 *iqrx;
206 __le32 *iqtx;
207
208 /* FIXME: check all the volatile are required */
209 volatile u32 tx_current;
210 u32 rx_current;
211 u32 iqtx_current;
212 u32 iqrx_current;
213
214 volatile u32 tx_dirty;
215 volatile u32 ltda;
216 u32 rx_dirty;
217 u32 lrda;
218
219 dma_addr_t tx_fd_dma;
220 dma_addr_t rx_fd_dma;
221 dma_addr_t iqtx_dma;
222 dma_addr_t iqrx_dma;
223
224 u32 scc_regs[SCC_REGISTERS_MAX]; /* Cf errata DS5 p.4 */
225
226 struct dscc4_pci_priv *pci_priv;
227 spinlock_t lock;
228
229 int dev_id;
230 volatile u32 flags;
231 u32 timer_help;
232
233 unsigned short encoding;
234 unsigned short parity;
235 struct net_device *dev;
236 sync_serial_settings settings;
237 void __iomem *base_addr;
238 u32 __pad __attribute__ ((aligned (4)));
239 };
240
241 /* GLOBAL registers definitions */
242 #define GCMDR 0x00
243 #define GSTAR 0x04
244 #define GMODE 0x08
245 #define IQLENR0 0x0C
246 #define IQLENR1 0x10
247 #define IQRX0 0x14
248 #define IQTX0 0x24
249 #define IQCFG 0x3c
250 #define FIFOCR1 0x44
251 #define FIFOCR2 0x48
252 #define FIFOCR3 0x4c
253 #define FIFOCR4 0x34
254 #define CH0CFG 0x50
255 #define CH0BRDA 0x54
256 #define CH0BTDA 0x58
257 #define CH0FRDA 0x98
258 #define CH0FTDA 0xb0
259 #define CH0LRDA 0xc8
260 #define CH0LTDA 0xe0
261
262 /* SCC registers definitions */
263 #define SCC_START 0x0100
264 #define SCC_OFFSET 0x80
265 #define CMDR 0x00
266 #define STAR 0x04
267 #define CCR0 0x08
268 #define CCR1 0x0c
269 #define CCR2 0x10
270 #define BRR 0x2C
271 #define RLCR 0x40
272 #define IMR 0x54
273 #define ISR 0x58
274
275 #define GPDIR 0x0400
276 #define GPDATA 0x0404
277 #define GPIM 0x0408
278
279 /* Bit masks */
280 #define EncodingMask 0x00700000
281 #define CrcMask 0x00000003
282
283 #define IntRxScc0 0x10000000
284 #define IntTxScc0 0x01000000
285
286 #define TxPollCmd 0x00000400
287 #define RxActivate 0x08000000
288 #define MTFi 0x04000000
289 #define Rdr 0x00400000
290 #define Rdt 0x00200000
291 #define Idr 0x00100000
292 #define Idt 0x00080000
293 #define TxSccRes 0x01000000
294 #define RxSccRes 0x00010000
295 #define TxSizeMax 0x1fff /* Datasheet DS1 - 11.1.1.1 */
296 #define RxSizeMax 0x1ffc /* Datasheet DS1 - 11.1.2.1 */
297
298 #define Ccr0ClockMask 0x0000003f
299 #define Ccr1LoopMask 0x00000200
300 #define IsrMask 0x000fffff
301 #define BrrExpMask 0x00000f00
302 #define BrrMultMask 0x0000003f
303 #define EncodingMask 0x00700000
304 #define Hold cpu_to_le32(0x40000000)
305 #define SccBusy 0x10000000
306 #define PowerUp 0x80000000
307 #define Vis 0x00001000
308 #define FrameOk (FrameVfr | FrameCrc)
309 #define FrameVfr 0x80
310 #define FrameRdo 0x40
311 #define FrameCrc 0x20
312 #define FrameRab 0x10
313 #define FrameAborted cpu_to_le32(0x00000200)
314 #define FrameEnd cpu_to_le32(0x80000000)
315 #define DataComplete cpu_to_le32(0x40000000)
316 #define LengthCheck 0x00008000
317 #define SccEvt 0x02000000
318 #define NoAck 0x00000200
319 #define Action 0x00000001
320 #define HiDesc cpu_to_le32(0x20000000)
321
322 /* SCC events */
323 #define RxEvt 0xf0000000
324 #define TxEvt 0x0f000000
325 #define Alls 0x00040000
326 #define Xdu 0x00010000
327 #define Cts 0x00004000
328 #define Xmr 0x00002000
329 #define Xpr 0x00001000
330 #define Rdo 0x00000080
331 #define Rfs 0x00000040
332 #define Cd 0x00000004
333 #define Rfo 0x00000002
334 #define Flex 0x00000001
335
336 /* DMA core events */
337 #define Cfg 0x00200000
338 #define Hi 0x00040000
339 #define Fi 0x00020000
340 #define Err 0x00010000
341 #define Arf 0x00000002
342 #define ArAck 0x00000001
343
344 /* State flags */
345 #define Ready 0x00000000
346 #define NeedIDR 0x00000001
347 #define NeedIDT 0x00000002
348 #define RdoSet 0x00000004
349 #define FakeReset 0x00000008
350
351 /* Don't mask RDO. Ever. */
352 #ifdef DSCC4_POLLING
353 #define EventsMask 0xfffeef7f
354 #else
355 #define EventsMask 0xfffa8f7a
356 #endif
357
358 /* Functions prototypes */
359 static void dscc4_rx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
360 static void dscc4_tx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
361 static int dscc4_found1(struct pci_dev *, void __iomem *ioaddr);
362 static int dscc4_init_one(struct pci_dev *, const struct pci_device_id *ent);
363 static int dscc4_open(struct net_device *);
364 static netdev_tx_t dscc4_start_xmit(struct sk_buff *,
365 struct net_device *);
366 static int dscc4_close(struct net_device *);
367 static int dscc4_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
368 static int dscc4_init_ring(struct net_device *);
369 static void dscc4_release_ring(struct dscc4_dev_priv *);
370 static void dscc4_tx_timeout(struct net_device *);
371 static irqreturn_t dscc4_irq(int irq, void *dev_id);
372 static int dscc4_hdlc_attach(struct net_device *, unsigned short, unsigned short);
373 static int dscc4_set_iface(struct dscc4_dev_priv *, struct net_device *);
374 #ifdef DSCC4_POLLING
375 static int dscc4_tx_poll(struct dscc4_dev_priv *, struct net_device *);
376 #endif
377
dscc4_priv(struct net_device * dev)378 static inline struct dscc4_dev_priv *dscc4_priv(struct net_device *dev)
379 {
380 return dev_to_hdlc(dev)->priv;
381 }
382
dscc4_to_dev(struct dscc4_dev_priv * p)383 static inline struct net_device *dscc4_to_dev(struct dscc4_dev_priv *p)
384 {
385 return p->dev;
386 }
387
scc_patchl(u32 mask,u32 value,struct dscc4_dev_priv * dpriv,struct net_device * dev,int offset)388 static void scc_patchl(u32 mask, u32 value, struct dscc4_dev_priv *dpriv,
389 struct net_device *dev, int offset)
390 {
391 u32 state;
392
393 /* Cf scc_writel for concern regarding thread-safety */
394 state = dpriv->scc_regs[offset >> 2];
395 state &= ~mask;
396 state |= value;
397 dpriv->scc_regs[offset >> 2] = state;
398 writel(state, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
399 }
400
scc_writel(u32 bits,struct dscc4_dev_priv * dpriv,struct net_device * dev,int offset)401 static void scc_writel(u32 bits, struct dscc4_dev_priv *dpriv,
402 struct net_device *dev, int offset)
403 {
404 /*
405 * Thread-UNsafe.
406 * As of 2002/02/16, there are no thread racing for access.
407 */
408 dpriv->scc_regs[offset >> 2] = bits;
409 writel(bits, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
410 }
411
scc_readl(struct dscc4_dev_priv * dpriv,int offset)412 static inline u32 scc_readl(struct dscc4_dev_priv *dpriv, int offset)
413 {
414 return dpriv->scc_regs[offset >> 2];
415 }
416
scc_readl_star(struct dscc4_dev_priv * dpriv,struct net_device * dev)417 static u32 scc_readl_star(struct dscc4_dev_priv *dpriv, struct net_device *dev)
418 {
419 /* Cf errata DS5 p.4 */
420 readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
421 return readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
422 }
423
dscc4_do_tx(struct dscc4_dev_priv * dpriv,struct net_device * dev)424 static inline void dscc4_do_tx(struct dscc4_dev_priv *dpriv,
425 struct net_device *dev)
426 {
427 dpriv->ltda = dpriv->tx_fd_dma +
428 ((dpriv->tx_current-1)%TX_RING_SIZE)*sizeof(struct TxFD);
429 writel(dpriv->ltda, dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
430 /* Flush posted writes *NOW* */
431 readl(dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
432 }
433
dscc4_rx_update(struct dscc4_dev_priv * dpriv,struct net_device * dev)434 static inline void dscc4_rx_update(struct dscc4_dev_priv *dpriv,
435 struct net_device *dev)
436 {
437 dpriv->lrda = dpriv->rx_fd_dma +
438 ((dpriv->rx_dirty - 1)%RX_RING_SIZE)*sizeof(struct RxFD);
439 writel(dpriv->lrda, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
440 }
441
dscc4_tx_done(struct dscc4_dev_priv * dpriv)442 static inline unsigned int dscc4_tx_done(struct dscc4_dev_priv *dpriv)
443 {
444 return dpriv->tx_current == dpriv->tx_dirty;
445 }
446
dscc4_tx_quiescent(struct dscc4_dev_priv * dpriv,struct net_device * dev)447 static inline unsigned int dscc4_tx_quiescent(struct dscc4_dev_priv *dpriv,
448 struct net_device *dev)
449 {
450 return readl(dpriv->base_addr + CH0FTDA + dpriv->dev_id*4) == dpriv->ltda;
451 }
452
state_check(u32 state,struct dscc4_dev_priv * dpriv,struct net_device * dev,const char * msg)453 static int state_check(u32 state, struct dscc4_dev_priv *dpriv,
454 struct net_device *dev, const char *msg)
455 {
456 int ret = 0;
457
458 if (debug > 1) {
459 if (SOURCE_ID(state) != dpriv->dev_id) {
460 printk(KERN_DEBUG "%s (%s): Source Id=%d, state=%08x\n",
461 dev->name, msg, SOURCE_ID(state), state );
462 ret = -1;
463 }
464 if (state & 0x0df80c00) {
465 printk(KERN_DEBUG "%s (%s): state=%08x (UFO alert)\n",
466 dev->name, msg, state);
467 ret = -1;
468 }
469 }
470 return ret;
471 }
472
dscc4_tx_print(struct net_device * dev,struct dscc4_dev_priv * dpriv,char * msg)473 static void dscc4_tx_print(struct net_device *dev,
474 struct dscc4_dev_priv *dpriv,
475 char *msg)
476 {
477 printk(KERN_DEBUG "%s: tx_current=%02d tx_dirty=%02d (%s)\n",
478 dev->name, dpriv->tx_current, dpriv->tx_dirty, msg);
479 }
480
dscc4_release_ring(struct dscc4_dev_priv * dpriv)481 static void dscc4_release_ring(struct dscc4_dev_priv *dpriv)
482 {
483 struct device *d = &dpriv->pci_priv->pdev->dev;
484 struct TxFD *tx_fd = dpriv->tx_fd;
485 struct RxFD *rx_fd = dpriv->rx_fd;
486 struct sk_buff **skbuff;
487 int i;
488
489 dma_free_coherent(d, TX_TOTAL_SIZE, tx_fd, dpriv->tx_fd_dma);
490 dma_free_coherent(d, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
491
492 skbuff = dpriv->tx_skbuff;
493 for (i = 0; i < TX_RING_SIZE; i++) {
494 if (*skbuff) {
495 dma_unmap_single(d, le32_to_cpu(tx_fd->data),
496 (*skbuff)->len, DMA_TO_DEVICE);
497 dev_kfree_skb(*skbuff);
498 }
499 skbuff++;
500 tx_fd++;
501 }
502
503 skbuff = dpriv->rx_skbuff;
504 for (i = 0; i < RX_RING_SIZE; i++) {
505 if (*skbuff) {
506 dma_unmap_single(d, le32_to_cpu(rx_fd->data),
507 RX_MAX(HDLC_MAX_MRU),
508 DMA_FROM_DEVICE);
509 dev_kfree_skb(*skbuff);
510 }
511 skbuff++;
512 rx_fd++;
513 }
514 }
515
try_get_rx_skb(struct dscc4_dev_priv * dpriv,struct net_device * dev)516 static inline int try_get_rx_skb(struct dscc4_dev_priv *dpriv,
517 struct net_device *dev)
518 {
519 unsigned int dirty = dpriv->rx_dirty%RX_RING_SIZE;
520 struct device *d = &dpriv->pci_priv->pdev->dev;
521 struct RxFD *rx_fd = dpriv->rx_fd + dirty;
522 const int len = RX_MAX(HDLC_MAX_MRU);
523 struct sk_buff *skb;
524 dma_addr_t addr;
525
526 skb = dev_alloc_skb(len);
527 if (!skb)
528 goto err_out;
529
530 skb->protocol = hdlc_type_trans(skb, dev);
531 addr = dma_map_single(d, skb->data, len, DMA_FROM_DEVICE);
532 if (dma_mapping_error(d, addr))
533 goto err_free_skb;
534
535 dpriv->rx_skbuff[dirty] = skb;
536 rx_fd->data = cpu_to_le32(addr);
537 return 0;
538
539 err_free_skb:
540 dev_kfree_skb_any(skb);
541 err_out:
542 rx_fd->data = 0;
543 return -1;
544 }
545
546 /*
547 * IRQ/thread/whatever safe
548 */
dscc4_wait_ack_cec(struct dscc4_dev_priv * dpriv,struct net_device * dev,char * msg)549 static int dscc4_wait_ack_cec(struct dscc4_dev_priv *dpriv,
550 struct net_device *dev, char *msg)
551 {
552 s8 i = 0;
553
554 do {
555 if (!(scc_readl_star(dpriv, dev) & SccBusy)) {
556 printk(KERN_DEBUG "%s: %s ack (%d try)\n", dev->name,
557 msg, i);
558 goto done;
559 }
560 schedule_timeout_uninterruptible(msecs_to_jiffies(100));
561 rmb();
562 } while (++i > 0);
563 netdev_err(dev, "%s timeout\n", msg);
564 done:
565 return (i >= 0) ? i : -EAGAIN;
566 }
567
dscc4_do_action(struct net_device * dev,char * msg)568 static int dscc4_do_action(struct net_device *dev, char *msg)
569 {
570 void __iomem *ioaddr = dscc4_priv(dev)->base_addr;
571 s16 i = 0;
572
573 writel(Action, ioaddr + GCMDR);
574 ioaddr += GSTAR;
575 do {
576 u32 state = readl(ioaddr);
577
578 if (state & ArAck) {
579 netdev_dbg(dev, "%s ack\n", msg);
580 writel(ArAck, ioaddr);
581 goto done;
582 } else if (state & Arf) {
583 netdev_err(dev, "%s failed\n", msg);
584 writel(Arf, ioaddr);
585 i = -1;
586 goto done;
587 }
588 rmb();
589 } while (++i > 0);
590 netdev_err(dev, "%s timeout\n", msg);
591 done:
592 return i;
593 }
594
dscc4_xpr_ack(struct dscc4_dev_priv * dpriv)595 static inline int dscc4_xpr_ack(struct dscc4_dev_priv *dpriv)
596 {
597 int cur = dpriv->iqtx_current%IRQ_RING_SIZE;
598 s8 i = 0;
599
600 do {
601 if (!(dpriv->flags & (NeedIDR | NeedIDT)) ||
602 (dpriv->iqtx[cur] & cpu_to_le32(Xpr)))
603 break;
604 smp_rmb();
605 schedule_timeout_uninterruptible(msecs_to_jiffies(100));
606 } while (++i > 0);
607
608 return (i >= 0 ) ? i : -EAGAIN;
609 }
610
611 #if 0 /* dscc4_{rx/tx}_reset are both unreliable - more tweak needed */
612 static void dscc4_rx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
613 {
614 unsigned long flags;
615
616 spin_lock_irqsave(&dpriv->pci_priv->lock, flags);
617 /* Cf errata DS5 p.6 */
618 writel(0x00000000, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
619 scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
620 readl(dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
621 writel(MTFi|Rdr, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
622 writel(Action, dpriv->base_addr + GCMDR);
623 spin_unlock_irqrestore(&dpriv->pci_priv->lock, flags);
624 }
625
626 #endif
627
628 #if 0
629 static void dscc4_tx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
630 {
631 u16 i = 0;
632
633 /* Cf errata DS5 p.7 */
634 scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
635 scc_writel(0x00050000, dpriv, dev, CCR2);
636 /*
637 * Must be longer than the time required to fill the fifo.
638 */
639 while (!dscc4_tx_quiescent(dpriv, dev) && ++i) {
640 udelay(1);
641 wmb();
642 }
643
644 writel(MTFi|Rdt, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
645 if (dscc4_do_action(dev, "Rdt") < 0)
646 netdev_err(dev, "Tx reset failed\n");
647 }
648 #endif
649
650 /* TODO: (ab)use this function to refill a completely depleted RX ring. */
dscc4_rx_skb(struct dscc4_dev_priv * dpriv,struct net_device * dev)651 static inline void dscc4_rx_skb(struct dscc4_dev_priv *dpriv,
652 struct net_device *dev)
653 {
654 struct RxFD *rx_fd = dpriv->rx_fd + dpriv->rx_current%RX_RING_SIZE;
655 struct device *d = &dpriv->pci_priv->pdev->dev;
656 struct sk_buff *skb;
657 int pkt_len;
658
659 skb = dpriv->rx_skbuff[dpriv->rx_current++%RX_RING_SIZE];
660 if (!skb) {
661 printk(KERN_DEBUG "%s: skb=0 (%s)\n", dev->name, __func__);
662 goto refill;
663 }
664 pkt_len = TO_SIZE(le32_to_cpu(rx_fd->state2));
665 dma_unmap_single(d, le32_to_cpu(rx_fd->data),
666 RX_MAX(HDLC_MAX_MRU), DMA_FROM_DEVICE);
667 if ((skb->data[--pkt_len] & FrameOk) == FrameOk) {
668 dev->stats.rx_packets++;
669 dev->stats.rx_bytes += pkt_len;
670 skb_put(skb, pkt_len);
671 if (netif_running(dev))
672 skb->protocol = hdlc_type_trans(skb, dev);
673 netif_rx(skb);
674 } else {
675 if (skb->data[pkt_len] & FrameRdo)
676 dev->stats.rx_fifo_errors++;
677 else if (!(skb->data[pkt_len] & FrameCrc))
678 dev->stats.rx_crc_errors++;
679 else if ((skb->data[pkt_len] & (FrameVfr | FrameRab)) !=
680 (FrameVfr | FrameRab))
681 dev->stats.rx_length_errors++;
682 dev->stats.rx_errors++;
683 dev_kfree_skb_irq(skb);
684 }
685 refill:
686 while ((dpriv->rx_dirty - dpriv->rx_current) % RX_RING_SIZE) {
687 if (try_get_rx_skb(dpriv, dev) < 0)
688 break;
689 dpriv->rx_dirty++;
690 }
691 dscc4_rx_update(dpriv, dev);
692 rx_fd->state2 = 0x00000000;
693 rx_fd->end = cpu_to_le32(0xbabeface);
694 }
695
dscc4_free1(struct pci_dev * pdev)696 static void dscc4_free1(struct pci_dev *pdev)
697 {
698 struct dscc4_pci_priv *ppriv;
699 struct dscc4_dev_priv *root;
700 int i;
701
702 ppriv = pci_get_drvdata(pdev);
703 root = ppriv->root;
704
705 for (i = 0; i < dev_per_card; i++)
706 unregister_hdlc_device(dscc4_to_dev(root + i));
707
708 for (i = 0; i < dev_per_card; i++)
709 free_netdev(root[i].dev);
710 kfree(root);
711 kfree(ppriv);
712 }
713
dscc4_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)714 static int dscc4_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
715 {
716 struct dscc4_pci_priv *priv;
717 struct dscc4_dev_priv *dpriv;
718 void __iomem *ioaddr;
719 int i, rc;
720
721 printk(KERN_DEBUG "%s", version);
722
723 rc = pci_enable_device(pdev);
724 if (rc < 0)
725 goto out;
726
727 rc = pci_request_region(pdev, 0, "registers");
728 if (rc < 0) {
729 pr_err("can't reserve MMIO region (regs)\n");
730 goto err_disable_0;
731 }
732 rc = pci_request_region(pdev, 1, "LBI interface");
733 if (rc < 0) {
734 pr_err("can't reserve MMIO region (lbi)\n");
735 goto err_free_mmio_region_1;
736 }
737
738 ioaddr = pci_ioremap_bar(pdev, 0);
739 if (!ioaddr) {
740 pr_err("cannot remap MMIO region %llx @ %llx\n",
741 (unsigned long long)pci_resource_len(pdev, 0),
742 (unsigned long long)pci_resource_start(pdev, 0));
743 rc = -EIO;
744 goto err_free_mmio_regions_2;
745 }
746 printk(KERN_DEBUG "Siemens DSCC4, MMIO at %#llx (regs), %#llx (lbi), IRQ %d\n",
747 (unsigned long long)pci_resource_start(pdev, 0),
748 (unsigned long long)pci_resource_start(pdev, 1), pdev->irq);
749
750 /* Cf errata DS5 p.2 */
751 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xf8);
752 pci_set_master(pdev);
753
754 rc = dscc4_found1(pdev, ioaddr);
755 if (rc < 0)
756 goto err_iounmap_3;
757
758 priv = pci_get_drvdata(pdev);
759
760 rc = request_irq(pdev->irq, dscc4_irq, IRQF_SHARED, DRV_NAME, priv->root);
761 if (rc < 0) {
762 pr_warn("IRQ %d busy\n", pdev->irq);
763 goto err_release_4;
764 }
765
766 /* power up/little endian/dma core controlled via lrda/ltda */
767 writel(0x00000001, ioaddr + GMODE);
768 /* Shared interrupt queue */
769 {
770 u32 bits;
771
772 bits = (IRQ_RING_SIZE >> 5) - 1;
773 bits |= bits << 4;
774 bits |= bits << 8;
775 bits |= bits << 16;
776 writel(bits, ioaddr + IQLENR0);
777 }
778 /* Global interrupt queue */
779 writel((u32)(((IRQ_RING_SIZE >> 5) - 1) << 20), ioaddr + IQLENR1);
780
781 rc = -ENOMEM;
782
783 priv->iqcfg = (__le32 *)dma_alloc_coherent(&pdev->dev,
784 IRQ_RING_SIZE*sizeof(__le32), &priv->iqcfg_dma, GFP_KERNEL);
785 if (!priv->iqcfg)
786 goto err_free_irq_5;
787 writel(priv->iqcfg_dma, ioaddr + IQCFG);
788
789 /*
790 * SCC 0-3 private rx/tx irq structures
791 * IQRX/TXi needs to be set soon. Learned it the hard way...
792 */
793 for (i = 0; i < dev_per_card; i++) {
794 dpriv = priv->root + i;
795 dpriv->iqtx = (__le32 *)dma_alloc_coherent(&pdev->dev,
796 IRQ_RING_SIZE*sizeof(u32), &dpriv->iqtx_dma,
797 GFP_KERNEL);
798 if (!dpriv->iqtx)
799 goto err_free_iqtx_6;
800 writel(dpriv->iqtx_dma, ioaddr + IQTX0 + i*4);
801 }
802 for (i = 0; i < dev_per_card; i++) {
803 dpriv = priv->root + i;
804 dpriv->iqrx = (__le32 *)dma_alloc_coherent(&pdev->dev,
805 IRQ_RING_SIZE*sizeof(u32), &dpriv->iqrx_dma,
806 GFP_KERNEL);
807 if (!dpriv->iqrx)
808 goto err_free_iqrx_7;
809 writel(dpriv->iqrx_dma, ioaddr + IQRX0 + i*4);
810 }
811
812 /* Cf application hint. Beware of hard-lock condition on threshold. */
813 writel(0x42104000, ioaddr + FIFOCR1);
814 //writel(0x9ce69800, ioaddr + FIFOCR2);
815 writel(0xdef6d800, ioaddr + FIFOCR2);
816 //writel(0x11111111, ioaddr + FIFOCR4);
817 writel(0x18181818, ioaddr + FIFOCR4);
818 // FIXME: should depend on the chipset revision
819 writel(0x0000000e, ioaddr + FIFOCR3);
820
821 writel(0xff200001, ioaddr + GCMDR);
822
823 rc = 0;
824 out:
825 return rc;
826
827 err_free_iqrx_7:
828 while (--i >= 0) {
829 dpriv = priv->root + i;
830 dma_free_coherent(&pdev->dev, IRQ_RING_SIZE*sizeof(u32),
831 dpriv->iqrx, dpriv->iqrx_dma);
832 }
833 i = dev_per_card;
834 err_free_iqtx_6:
835 while (--i >= 0) {
836 dpriv = priv->root + i;
837 dma_free_coherent(&pdev->dev, IRQ_RING_SIZE*sizeof(u32),
838 dpriv->iqtx, dpriv->iqtx_dma);
839 }
840 dma_free_coherent(&pdev->dev, IRQ_RING_SIZE*sizeof(u32), priv->iqcfg,
841 priv->iqcfg_dma);
842 err_free_irq_5:
843 free_irq(pdev->irq, priv->root);
844 err_release_4:
845 dscc4_free1(pdev);
846 err_iounmap_3:
847 iounmap (ioaddr);
848 err_free_mmio_regions_2:
849 pci_release_region(pdev, 1);
850 err_free_mmio_region_1:
851 pci_release_region(pdev, 0);
852 err_disable_0:
853 pci_disable_device(pdev);
854 goto out;
855 };
856
857 /*
858 * Let's hope the default values are decent enough to protect my
859 * feet from the user's gun - Ueimor
860 */
dscc4_init_registers(struct dscc4_dev_priv * dpriv,struct net_device * dev)861 static void dscc4_init_registers(struct dscc4_dev_priv *dpriv,
862 struct net_device *dev)
863 {
864 /* No interrupts, SCC core disabled. Let's relax */
865 scc_writel(0x00000000, dpriv, dev, CCR0);
866
867 scc_writel(LengthCheck | (HDLC_MAX_MRU >> 5), dpriv, dev, RLCR);
868
869 /*
870 * No address recognition/crc-CCITT/cts enabled
871 * Shared flags transmission disabled - cf errata DS5 p.11
872 * Carrier detect disabled - cf errata p.14
873 * FIXME: carrier detection/polarity may be handled more gracefully.
874 */
875 scc_writel(0x02408000, dpriv, dev, CCR1);
876
877 /* crc not forwarded - Cf errata DS5 p.11 */
878 scc_writel(0x00050008 & ~RxActivate, dpriv, dev, CCR2);
879 // crc forwarded
880 //scc_writel(0x00250008 & ~RxActivate, dpriv, dev, CCR2);
881 }
882
dscc4_set_quartz(struct dscc4_dev_priv * dpriv,int hz)883 static inline int dscc4_set_quartz(struct dscc4_dev_priv *dpriv, int hz)
884 {
885 int ret = 0;
886
887 if ((hz < 0) || (hz > DSCC4_HZ_MAX))
888 ret = -EOPNOTSUPP;
889 else
890 dpriv->pci_priv->xtal_hz = hz;
891
892 return ret;
893 }
894
895 static const struct net_device_ops dscc4_ops = {
896 .ndo_open = dscc4_open,
897 .ndo_stop = dscc4_close,
898 .ndo_start_xmit = hdlc_start_xmit,
899 .ndo_do_ioctl = dscc4_ioctl,
900 .ndo_tx_timeout = dscc4_tx_timeout,
901 };
902
dscc4_found1(struct pci_dev * pdev,void __iomem * ioaddr)903 static int dscc4_found1(struct pci_dev *pdev, void __iomem *ioaddr)
904 {
905 struct dscc4_pci_priv *ppriv;
906 struct dscc4_dev_priv *root;
907 int i, ret = -ENOMEM;
908
909 root = kcalloc(dev_per_card, sizeof(*root), GFP_KERNEL);
910 if (!root)
911 goto err_out;
912
913 for (i = 0; i < dev_per_card; i++) {
914 root[i].dev = alloc_hdlcdev(root + i);
915 if (!root[i].dev)
916 goto err_free_dev;
917 }
918
919 ppriv = kzalloc(sizeof(*ppriv), GFP_KERNEL);
920 if (!ppriv)
921 goto err_free_dev;
922
923 ppriv->root = root;
924 spin_lock_init(&ppriv->lock);
925
926 for (i = 0; i < dev_per_card; i++) {
927 struct dscc4_dev_priv *dpriv = root + i;
928 struct net_device *d = dscc4_to_dev(dpriv);
929 hdlc_device *hdlc = dev_to_hdlc(d);
930
931 d->base_addr = (unsigned long)ioaddr;
932 d->irq = pdev->irq;
933 d->netdev_ops = &dscc4_ops;
934 d->watchdog_timeo = TX_TIMEOUT;
935 SET_NETDEV_DEV(d, &pdev->dev);
936
937 dpriv->dev_id = i;
938 dpriv->pci_priv = ppriv;
939 dpriv->base_addr = ioaddr;
940 spin_lock_init(&dpriv->lock);
941
942 hdlc->xmit = dscc4_start_xmit;
943 hdlc->attach = dscc4_hdlc_attach;
944
945 dscc4_init_registers(dpriv, d);
946 dpriv->parity = PARITY_CRC16_PR0_CCITT;
947 dpriv->encoding = ENCODING_NRZ;
948
949 ret = dscc4_init_ring(d);
950 if (ret < 0)
951 goto err_unregister;
952
953 ret = register_hdlc_device(d);
954 if (ret < 0) {
955 pr_err("unable to register\n");
956 dscc4_release_ring(dpriv);
957 goto err_unregister;
958 }
959 }
960
961 ret = dscc4_set_quartz(root, quartz);
962 if (ret < 0)
963 goto err_unregister;
964
965 pci_set_drvdata(pdev, ppriv);
966 return ret;
967
968 err_unregister:
969 while (i-- > 0) {
970 dscc4_release_ring(root + i);
971 unregister_hdlc_device(dscc4_to_dev(root + i));
972 }
973 kfree(ppriv);
974 i = dev_per_card;
975 err_free_dev:
976 while (i-- > 0)
977 free_netdev(root[i].dev);
978 kfree(root);
979 err_out:
980 return ret;
981 };
982
dscc4_tx_timeout(struct net_device * dev)983 static void dscc4_tx_timeout(struct net_device *dev)
984 {
985 /* FIXME: something is missing there */
986 }
987
dscc4_loopback_check(struct dscc4_dev_priv * dpriv)988 static int dscc4_loopback_check(struct dscc4_dev_priv *dpriv)
989 {
990 sync_serial_settings *settings = &dpriv->settings;
991
992 if (settings->loopback && (settings->clock_type != CLOCK_INT)) {
993 struct net_device *dev = dscc4_to_dev(dpriv);
994
995 netdev_info(dev, "loopback requires clock\n");
996 return -1;
997 }
998 return 0;
999 }
1000
1001 #ifdef CONFIG_DSCC4_PCI_RST
1002 /*
1003 * Some DSCC4-based cards wires the GPIO port and the PCI #RST pin together
1004 * so as to provide a safe way to reset the asic while not the whole machine
1005 * rebooting.
1006 *
1007 * This code doesn't need to be efficient. Keep It Simple
1008 */
dscc4_pci_reset(struct pci_dev * pdev,void __iomem * ioaddr)1009 static void dscc4_pci_reset(struct pci_dev *pdev, void __iomem *ioaddr)
1010 {
1011 int i;
1012
1013 mutex_lock(&dscc4_mutex);
1014 for (i = 0; i < 16; i++)
1015 pci_read_config_dword(pdev, i << 2, dscc4_pci_config_store + i);
1016
1017 /* Maximal LBI clock divider (who cares ?) and whole GPIO range. */
1018 writel(0x001c0000, ioaddr + GMODE);
1019 /* Configure GPIO port as output */
1020 writel(0x0000ffff, ioaddr + GPDIR);
1021 /* Disable interruption */
1022 writel(0x0000ffff, ioaddr + GPIM);
1023
1024 writel(0x0000ffff, ioaddr + GPDATA);
1025 writel(0x00000000, ioaddr + GPDATA);
1026
1027 /* Flush posted writes */
1028 readl(ioaddr + GSTAR);
1029
1030 schedule_timeout_uninterruptible(msecs_to_jiffies(100));
1031
1032 for (i = 0; i < 16; i++)
1033 pci_write_config_dword(pdev, i << 2, dscc4_pci_config_store[i]);
1034 mutex_unlock(&dscc4_mutex);
1035 }
1036 #else
1037 #define dscc4_pci_reset(pdev,ioaddr) do {} while (0)
1038 #endif /* CONFIG_DSCC4_PCI_RST */
1039
dscc4_open(struct net_device * dev)1040 static int dscc4_open(struct net_device *dev)
1041 {
1042 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1043 int ret = -EAGAIN;
1044
1045 if ((dscc4_loopback_check(dpriv) < 0))
1046 goto err;
1047
1048 if ((ret = hdlc_open(dev)))
1049 goto err;
1050
1051 /*
1052 * Due to various bugs, there is no way to reliably reset a
1053 * specific port (manufacturer's dependent special PCI #RST wiring
1054 * apart: it affects all ports). Thus the device goes in the best
1055 * silent mode possible at dscc4_close() time and simply claims to
1056 * be up if it's opened again. It still isn't possible to change
1057 * the HDLC configuration without rebooting but at least the ports
1058 * can be up/down ifconfig'ed without killing the host.
1059 */
1060 if (dpriv->flags & FakeReset) {
1061 dpriv->flags &= ~FakeReset;
1062 scc_patchl(0, PowerUp, dpriv, dev, CCR0);
1063 scc_patchl(0, 0x00050000, dpriv, dev, CCR2);
1064 scc_writel(EventsMask, dpriv, dev, IMR);
1065 netdev_info(dev, "up again\n");
1066 goto done;
1067 }
1068
1069 /* IDT+IDR during XPR */
1070 dpriv->flags = NeedIDR | NeedIDT;
1071
1072 scc_patchl(0, PowerUp | Vis, dpriv, dev, CCR0);
1073
1074 /*
1075 * The following is a bit paranoid...
1076 *
1077 * NB: the datasheet "...CEC will stay active if the SCC is in
1078 * power-down mode or..." and CCR2.RAC = 1 are two different
1079 * situations.
1080 */
1081 if (scc_readl_star(dpriv, dev) & SccBusy) {
1082 netdev_err(dev, "busy - try later\n");
1083 ret = -EAGAIN;
1084 goto err_out;
1085 } else
1086 netdev_info(dev, "available - good\n");
1087
1088 scc_writel(EventsMask, dpriv, dev, IMR);
1089
1090 /* Posted write is flushed in the wait_ack loop */
1091 scc_writel(TxSccRes | RxSccRes, dpriv, dev, CMDR);
1092
1093 if ((ret = dscc4_wait_ack_cec(dpriv, dev, "Cec")) < 0)
1094 goto err_disable_scc_events;
1095
1096 /*
1097 * I would expect XPR near CE completion (before ? after ?).
1098 * At worst, this code won't see a late XPR and people
1099 * will have to re-issue an ifconfig (this is harmless).
1100 * WARNING, a really missing XPR usually means a hardware
1101 * reset is needed. Suggestions anyone ?
1102 */
1103 if ((ret = dscc4_xpr_ack(dpriv)) < 0) {
1104 pr_err("XPR timeout\n");
1105 goto err_disable_scc_events;
1106 }
1107
1108 if (debug > 2)
1109 dscc4_tx_print(dev, dpriv, "Open");
1110
1111 done:
1112 netif_start_queue(dev);
1113
1114 netif_carrier_on(dev);
1115
1116 return 0;
1117
1118 err_disable_scc_events:
1119 scc_writel(0xffffffff, dpriv, dev, IMR);
1120 scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1121 err_out:
1122 hdlc_close(dev);
1123 err:
1124 return ret;
1125 }
1126
1127 #ifdef DSCC4_POLLING
dscc4_tx_poll(struct dscc4_dev_priv * dpriv,struct net_device * dev)1128 static int dscc4_tx_poll(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1129 {
1130 /* FIXME: it's gonna be easy (TM), for sure */
1131 }
1132 #endif /* DSCC4_POLLING */
1133
dscc4_start_xmit(struct sk_buff * skb,struct net_device * dev)1134 static netdev_tx_t dscc4_start_xmit(struct sk_buff *skb,
1135 struct net_device *dev)
1136 {
1137 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1138 struct device *d = &dpriv->pci_priv->pdev->dev;
1139 struct TxFD *tx_fd;
1140 dma_addr_t addr;
1141 int next;
1142
1143 addr = dma_map_single(d, skb->data, skb->len, DMA_TO_DEVICE);
1144 if (dma_mapping_error(d, addr)) {
1145 dev_kfree_skb_any(skb);
1146 dev->stats.tx_dropped++;
1147 return NETDEV_TX_OK;
1148 }
1149
1150 next = dpriv->tx_current%TX_RING_SIZE;
1151 dpriv->tx_skbuff[next] = skb;
1152 tx_fd = dpriv->tx_fd + next;
1153 tx_fd->state = FrameEnd | TO_STATE_TX(skb->len);
1154 tx_fd->data = cpu_to_le32(addr);
1155 tx_fd->complete = 0x00000000;
1156 tx_fd->jiffies = jiffies;
1157 mb();
1158
1159 #ifdef DSCC4_POLLING
1160 spin_lock(&dpriv->lock);
1161 while (dscc4_tx_poll(dpriv, dev));
1162 spin_unlock(&dpriv->lock);
1163 #endif
1164
1165 if (debug > 2)
1166 dscc4_tx_print(dev, dpriv, "Xmit");
1167 /* To be cleaned(unsigned int)/optimized. Later, ok ? */
1168 if (!((++dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE))
1169 netif_stop_queue(dev);
1170
1171 if (dscc4_tx_quiescent(dpriv, dev))
1172 dscc4_do_tx(dpriv, dev);
1173
1174 return NETDEV_TX_OK;
1175 }
1176
dscc4_close(struct net_device * dev)1177 static int dscc4_close(struct net_device *dev)
1178 {
1179 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1180
1181 netif_stop_queue(dev);
1182
1183 scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1184 scc_patchl(0x00050000, 0, dpriv, dev, CCR2);
1185 scc_writel(0xffffffff, dpriv, dev, IMR);
1186
1187 dpriv->flags |= FakeReset;
1188
1189 hdlc_close(dev);
1190
1191 return 0;
1192 }
1193
dscc4_check_clock_ability(int port)1194 static inline int dscc4_check_clock_ability(int port)
1195 {
1196 int ret = 0;
1197
1198 #ifdef CONFIG_DSCC4_PCISYNC
1199 if (port >= 2)
1200 ret = -1;
1201 #endif
1202 return ret;
1203 }
1204
1205 /*
1206 * DS1 p.137: "There are a total of 13 different clocking modes..."
1207 * ^^
1208 * Design choices:
1209 * - by default, assume a clock is provided on pin RxClk/TxClk (clock mode 0a).
1210 * Clock mode 3b _should_ work but the testing seems to make this point
1211 * dubious (DIY testing requires setting CCR0 at 0x00000033).
1212 * This is supposed to provide least surprise "DTE like" behavior.
1213 * - if line rate is specified, clocks are assumed to be locally generated.
1214 * A quartz must be available (on pin XTAL1). Modes 6b/7b are used. Choosing
1215 * between these it automagically done according on the required frequency
1216 * scaling. Of course some rounding may take place.
1217 * - no high speed mode (40Mb/s). May be trivial to do but I don't have an
1218 * appropriate external clocking device for testing.
1219 * - no time-slot/clock mode 5: shameless laziness.
1220 *
1221 * The clock signals wiring can be (is ?) manufacturer dependent. Good luck.
1222 *
1223 * BIG FAT WARNING: if the device isn't provided enough clocking signal, it
1224 * won't pass the init sequence. For example, straight back-to-back DTE without
1225 * external clock will fail when dscc4_open() (<- 'ifconfig hdlcx xxx') is
1226 * called.
1227 *
1228 * Typos lurk in datasheet (missing divier in clock mode 7a figure 51 p.153
1229 * DS0 for example)
1230 *
1231 * Clock mode related bits of CCR0:
1232 * +------------ TOE: output TxClk (0b/2b/3a/3b/6b/7a/7b only)
1233 * | +---------- SSEL: sub-mode select 0 -> a, 1 -> b
1234 * | | +-------- High Speed: say 0
1235 * | | | +-+-+-- Clock Mode: 0..7
1236 * | | | | | |
1237 * -+-+-+-+-+-+-+-+
1238 * x|x|5|4|3|2|1|0| lower bits
1239 *
1240 * Division factor of BRR: k = (N+1)x2^M (total divider = 16xk in mode 6b)
1241 * +-+-+-+------------------ M (0..15)
1242 * | | | | +-+-+-+-+-+-- N (0..63)
1243 * 0 0 0 0 | | | | 0 0 | | | | | |
1244 * ...-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1245 * f|e|d|c|b|a|9|8|7|6|5|4|3|2|1|0| lower bits
1246 *
1247 */
dscc4_set_clock(struct net_device * dev,u32 * bps,u32 * state)1248 static int dscc4_set_clock(struct net_device *dev, u32 *bps, u32 *state)
1249 {
1250 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1251 int ret = -1;
1252 u32 brr;
1253
1254 *state &= ~Ccr0ClockMask;
1255 if (*bps) { /* Clock generated - required for DCE */
1256 u32 n = 0, m = 0, divider;
1257 int xtal;
1258
1259 xtal = dpriv->pci_priv->xtal_hz;
1260 if (!xtal)
1261 goto done;
1262 if (dscc4_check_clock_ability(dpriv->dev_id) < 0)
1263 goto done;
1264 divider = xtal / *bps;
1265 if (divider > BRR_DIVIDER_MAX) {
1266 divider >>= 4;
1267 *state |= 0x00000036; /* Clock mode 6b (BRG/16) */
1268 } else
1269 *state |= 0x00000037; /* Clock mode 7b (BRG) */
1270 if (divider >> 22) {
1271 n = 63;
1272 m = 15;
1273 } else if (divider) {
1274 /* Extraction of the 6 highest weighted bits */
1275 m = 0;
1276 while (0xffffffc0 & divider) {
1277 m++;
1278 divider >>= 1;
1279 }
1280 n = divider;
1281 }
1282 brr = (m << 8) | n;
1283 divider = n << m;
1284 if (!(*state & 0x00000001)) /* ?b mode mask => clock mode 6b */
1285 divider <<= 4;
1286 *bps = xtal / divider;
1287 } else {
1288 /*
1289 * External clock - DTE
1290 * "state" already reflects Clock mode 0a (CCR0 = 0xzzzzzz00).
1291 * Nothing more to be done
1292 */
1293 brr = 0;
1294 }
1295 scc_writel(brr, dpriv, dev, BRR);
1296 ret = 0;
1297 done:
1298 return ret;
1299 }
1300
dscc4_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)1301 static int dscc4_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1302 {
1303 sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1304 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1305 const size_t size = sizeof(dpriv->settings);
1306 int ret = 0;
1307
1308 if (dev->flags & IFF_UP)
1309 return -EBUSY;
1310
1311 if (cmd != SIOCWANDEV)
1312 return -EOPNOTSUPP;
1313
1314 switch(ifr->ifr_settings.type) {
1315 case IF_GET_IFACE:
1316 ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
1317 if (ifr->ifr_settings.size < size) {
1318 ifr->ifr_settings.size = size; /* data size wanted */
1319 return -ENOBUFS;
1320 }
1321 if (copy_to_user(line, &dpriv->settings, size))
1322 return -EFAULT;
1323 break;
1324
1325 case IF_IFACE_SYNC_SERIAL:
1326 if (!capable(CAP_NET_ADMIN))
1327 return -EPERM;
1328
1329 if (dpriv->flags & FakeReset) {
1330 netdev_info(dev, "please reset the device before this command\n");
1331 return -EPERM;
1332 }
1333 if (copy_from_user(&dpriv->settings, line, size))
1334 return -EFAULT;
1335 ret = dscc4_set_iface(dpriv, dev);
1336 break;
1337
1338 default:
1339 ret = hdlc_ioctl(dev, ifr, cmd);
1340 break;
1341 }
1342
1343 return ret;
1344 }
1345
dscc4_match(const struct thingie * p,int value)1346 static int dscc4_match(const struct thingie *p, int value)
1347 {
1348 int i;
1349
1350 for (i = 0; p[i].define != -1; i++) {
1351 if (value == p[i].define)
1352 break;
1353 }
1354 if (p[i].define == -1)
1355 return -1;
1356 else
1357 return i;
1358 }
1359
dscc4_clock_setting(struct dscc4_dev_priv * dpriv,struct net_device * dev)1360 static int dscc4_clock_setting(struct dscc4_dev_priv *dpriv,
1361 struct net_device *dev)
1362 {
1363 sync_serial_settings *settings = &dpriv->settings;
1364 int ret = -EOPNOTSUPP;
1365 u32 bps, state;
1366
1367 bps = settings->clock_rate;
1368 state = scc_readl(dpriv, CCR0);
1369 if (dscc4_set_clock(dev, &bps, &state) < 0)
1370 goto done;
1371 if (bps) { /* DCE */
1372 printk(KERN_DEBUG "%s: generated RxClk (DCE)\n", dev->name);
1373 if (settings->clock_rate != bps) {
1374 printk(KERN_DEBUG "%s: clock adjusted (%08d -> %08d)\n",
1375 dev->name, settings->clock_rate, bps);
1376 settings->clock_rate = bps;
1377 }
1378 } else { /* DTE */
1379 state |= PowerUp | Vis;
1380 printk(KERN_DEBUG "%s: external RxClk (DTE)\n", dev->name);
1381 }
1382 scc_writel(state, dpriv, dev, CCR0);
1383 ret = 0;
1384 done:
1385 return ret;
1386 }
1387
dscc4_encoding_setting(struct dscc4_dev_priv * dpriv,struct net_device * dev)1388 static int dscc4_encoding_setting(struct dscc4_dev_priv *dpriv,
1389 struct net_device *dev)
1390 {
1391 static const struct thingie encoding[] = {
1392 { ENCODING_NRZ, 0x00000000 },
1393 { ENCODING_NRZI, 0x00200000 },
1394 { ENCODING_FM_MARK, 0x00400000 },
1395 { ENCODING_FM_SPACE, 0x00500000 },
1396 { ENCODING_MANCHESTER, 0x00600000 },
1397 { -1, 0}
1398 };
1399 int i, ret = 0;
1400
1401 i = dscc4_match(encoding, dpriv->encoding);
1402 if (i >= 0)
1403 scc_patchl(EncodingMask, encoding[i].bits, dpriv, dev, CCR0);
1404 else
1405 ret = -EOPNOTSUPP;
1406 return ret;
1407 }
1408
dscc4_loopback_setting(struct dscc4_dev_priv * dpriv,struct net_device * dev)1409 static int dscc4_loopback_setting(struct dscc4_dev_priv *dpriv,
1410 struct net_device *dev)
1411 {
1412 sync_serial_settings *settings = &dpriv->settings;
1413 u32 state;
1414
1415 state = scc_readl(dpriv, CCR1);
1416 if (settings->loopback) {
1417 printk(KERN_DEBUG "%s: loopback\n", dev->name);
1418 state |= 0x00000100;
1419 } else {
1420 printk(KERN_DEBUG "%s: normal\n", dev->name);
1421 state &= ~0x00000100;
1422 }
1423 scc_writel(state, dpriv, dev, CCR1);
1424 return 0;
1425 }
1426
dscc4_crc_setting(struct dscc4_dev_priv * dpriv,struct net_device * dev)1427 static int dscc4_crc_setting(struct dscc4_dev_priv *dpriv,
1428 struct net_device *dev)
1429 {
1430 static const struct thingie crc[] = {
1431 { PARITY_CRC16_PR0_CCITT, 0x00000010 },
1432 { PARITY_CRC16_PR1_CCITT, 0x00000000 },
1433 { PARITY_CRC32_PR0_CCITT, 0x00000011 },
1434 { PARITY_CRC32_PR1_CCITT, 0x00000001 }
1435 };
1436 int i, ret = 0;
1437
1438 i = dscc4_match(crc, dpriv->parity);
1439 if (i >= 0)
1440 scc_patchl(CrcMask, crc[i].bits, dpriv, dev, CCR1);
1441 else
1442 ret = -EOPNOTSUPP;
1443 return ret;
1444 }
1445
dscc4_set_iface(struct dscc4_dev_priv * dpriv,struct net_device * dev)1446 static int dscc4_set_iface(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1447 {
1448 struct {
1449 int (*action)(struct dscc4_dev_priv *, struct net_device *);
1450 } *p, do_setting[] = {
1451 { dscc4_encoding_setting },
1452 { dscc4_clock_setting },
1453 { dscc4_loopback_setting },
1454 { dscc4_crc_setting },
1455 { NULL }
1456 };
1457 int ret = 0;
1458
1459 for (p = do_setting; p->action; p++) {
1460 if ((ret = p->action(dpriv, dev)) < 0)
1461 break;
1462 }
1463 return ret;
1464 }
1465
dscc4_irq(int irq,void * token)1466 static irqreturn_t dscc4_irq(int irq, void *token)
1467 {
1468 struct dscc4_dev_priv *root = token;
1469 struct dscc4_pci_priv *priv;
1470 struct net_device *dev;
1471 void __iomem *ioaddr;
1472 u32 state;
1473 unsigned long flags;
1474 int i, handled = 1;
1475
1476 priv = root->pci_priv;
1477 dev = dscc4_to_dev(root);
1478
1479 spin_lock_irqsave(&priv->lock, flags);
1480
1481 ioaddr = root->base_addr;
1482
1483 state = readl(ioaddr + GSTAR);
1484 if (!state) {
1485 handled = 0;
1486 goto out;
1487 }
1488 if (debug > 3)
1489 printk(KERN_DEBUG "%s: GSTAR = 0x%08x\n", DRV_NAME, state);
1490 writel(state, ioaddr + GSTAR);
1491
1492 if (state & Arf) {
1493 netdev_err(dev, "failure (Arf). Harass the maintainer\n");
1494 goto out;
1495 }
1496 state &= ~ArAck;
1497 if (state & Cfg) {
1498 if (debug > 0)
1499 printk(KERN_DEBUG "%s: CfgIV\n", DRV_NAME);
1500 if (priv->iqcfg[priv->cfg_cur++%IRQ_RING_SIZE] & cpu_to_le32(Arf))
1501 netdev_err(dev, "CFG failed\n");
1502 if (!(state &= ~Cfg))
1503 goto out;
1504 }
1505 if (state & RxEvt) {
1506 i = dev_per_card - 1;
1507 do {
1508 dscc4_rx_irq(priv, root + i);
1509 } while (--i >= 0);
1510 state &= ~RxEvt;
1511 }
1512 if (state & TxEvt) {
1513 i = dev_per_card - 1;
1514 do {
1515 dscc4_tx_irq(priv, root + i);
1516 } while (--i >= 0);
1517 state &= ~TxEvt;
1518 }
1519 out:
1520 spin_unlock_irqrestore(&priv->lock, flags);
1521 return IRQ_RETVAL(handled);
1522 }
1523
dscc4_tx_irq(struct dscc4_pci_priv * ppriv,struct dscc4_dev_priv * dpriv)1524 static void dscc4_tx_irq(struct dscc4_pci_priv *ppriv,
1525 struct dscc4_dev_priv *dpriv)
1526 {
1527 struct net_device *dev = dscc4_to_dev(dpriv);
1528 u32 state;
1529 int cur, loop = 0;
1530
1531 try:
1532 cur = dpriv->iqtx_current%IRQ_RING_SIZE;
1533 state = le32_to_cpu(dpriv->iqtx[cur]);
1534 if (!state) {
1535 if (debug > 4)
1536 printk(KERN_DEBUG "%s: Tx ISR = 0x%08x\n", dev->name,
1537 state);
1538 if ((debug > 1) && (loop > 1))
1539 printk(KERN_DEBUG "%s: Tx irq loop=%d\n", dev->name, loop);
1540 if (loop && netif_queue_stopped(dev))
1541 if ((dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE)
1542 netif_wake_queue(dev);
1543
1544 if (netif_running(dev) && dscc4_tx_quiescent(dpriv, dev) &&
1545 !dscc4_tx_done(dpriv))
1546 dscc4_do_tx(dpriv, dev);
1547 return;
1548 }
1549 loop++;
1550 dpriv->iqtx[cur] = 0;
1551 dpriv->iqtx_current++;
1552
1553 if (state_check(state, dpriv, dev, "Tx") < 0)
1554 return;
1555
1556 if (state & SccEvt) {
1557 if (state & Alls) {
1558 struct sk_buff *skb;
1559 struct TxFD *tx_fd;
1560
1561 if (debug > 2)
1562 dscc4_tx_print(dev, dpriv, "Alls");
1563 /*
1564 * DataComplete can't be trusted for Tx completion.
1565 * Cf errata DS5 p.8
1566 */
1567 cur = dpriv->tx_dirty%TX_RING_SIZE;
1568 tx_fd = dpriv->tx_fd + cur;
1569 skb = dpriv->tx_skbuff[cur];
1570 if (skb) {
1571 dma_unmap_single(&ppriv->pdev->dev,
1572 le32_to_cpu(tx_fd->data),
1573 skb->len, DMA_TO_DEVICE);
1574 if (tx_fd->state & FrameEnd) {
1575 dev->stats.tx_packets++;
1576 dev->stats.tx_bytes += skb->len;
1577 }
1578 dev_kfree_skb_irq(skb);
1579 dpriv->tx_skbuff[cur] = NULL;
1580 ++dpriv->tx_dirty;
1581 } else {
1582 if (debug > 1)
1583 netdev_err(dev, "Tx: NULL skb %d\n",
1584 cur);
1585 }
1586 /*
1587 * If the driver ends sending crap on the wire, it
1588 * will be way easier to diagnose than the (not so)
1589 * random freeze induced by null sized tx frames.
1590 */
1591 tx_fd->data = tx_fd->next;
1592 tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1593 tx_fd->complete = 0x00000000;
1594 tx_fd->jiffies = 0;
1595
1596 if (!(state &= ~Alls))
1597 goto try;
1598 }
1599 /*
1600 * Transmit Data Underrun
1601 */
1602 if (state & Xdu) {
1603 netdev_err(dev, "Tx Data Underrun. Ask maintainer\n");
1604 dpriv->flags = NeedIDT;
1605 /* Tx reset */
1606 writel(MTFi | Rdt,
1607 dpriv->base_addr + 0x0c*dpriv->dev_id + CH0CFG);
1608 writel(Action, dpriv->base_addr + GCMDR);
1609 return;
1610 }
1611 if (state & Cts) {
1612 netdev_info(dev, "CTS transition\n");
1613 if (!(state &= ~Cts)) /* DEBUG */
1614 goto try;
1615 }
1616 if (state & Xmr) {
1617 /* Frame needs to be sent again - FIXME */
1618 netdev_err(dev, "Tx ReTx. Ask maintainer\n");
1619 if (!(state &= ~Xmr)) /* DEBUG */
1620 goto try;
1621 }
1622 if (state & Xpr) {
1623 void __iomem *scc_addr;
1624 unsigned long ring;
1625 unsigned int i;
1626
1627 /*
1628 * - the busy condition happens (sometimes);
1629 * - it doesn't seem to make the handler unreliable.
1630 */
1631 for (i = 1; i; i <<= 1) {
1632 if (!(scc_readl_star(dpriv, dev) & SccBusy))
1633 break;
1634 }
1635 if (!i)
1636 netdev_info(dev, "busy in irq\n");
1637
1638 scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1639 /* Keep this order: IDT before IDR */
1640 if (dpriv->flags & NeedIDT) {
1641 if (debug > 2)
1642 dscc4_tx_print(dev, dpriv, "Xpr");
1643 ring = dpriv->tx_fd_dma +
1644 (dpriv->tx_dirty%TX_RING_SIZE)*
1645 sizeof(struct TxFD);
1646 writel(ring, scc_addr + CH0BTDA);
1647 dscc4_do_tx(dpriv, dev);
1648 writel(MTFi | Idt, scc_addr + CH0CFG);
1649 if (dscc4_do_action(dev, "IDT") < 0)
1650 goto err_xpr;
1651 dpriv->flags &= ~NeedIDT;
1652 }
1653 if (dpriv->flags & NeedIDR) {
1654 ring = dpriv->rx_fd_dma +
1655 (dpriv->rx_current%RX_RING_SIZE)*
1656 sizeof(struct RxFD);
1657 writel(ring, scc_addr + CH0BRDA);
1658 dscc4_rx_update(dpriv, dev);
1659 writel(MTFi | Idr, scc_addr + CH0CFG);
1660 if (dscc4_do_action(dev, "IDR") < 0)
1661 goto err_xpr;
1662 dpriv->flags &= ~NeedIDR;
1663 smp_wmb();
1664 /* Activate receiver and misc */
1665 scc_writel(0x08050008, dpriv, dev, CCR2);
1666 }
1667 err_xpr:
1668 if (!(state &= ~Xpr))
1669 goto try;
1670 }
1671 if (state & Cd) {
1672 if (debug > 0)
1673 netdev_info(dev, "CD transition\n");
1674 if (!(state &= ~Cd)) /* DEBUG */
1675 goto try;
1676 }
1677 } else { /* ! SccEvt */
1678 if (state & Hi) {
1679 #ifdef DSCC4_POLLING
1680 while (!dscc4_tx_poll(dpriv, dev));
1681 #endif
1682 netdev_info(dev, "Tx Hi\n");
1683 state &= ~Hi;
1684 }
1685 if (state & Err) {
1686 netdev_info(dev, "Tx ERR\n");
1687 dev->stats.tx_errors++;
1688 state &= ~Err;
1689 }
1690 }
1691 goto try;
1692 }
1693
dscc4_rx_irq(struct dscc4_pci_priv * priv,struct dscc4_dev_priv * dpriv)1694 static void dscc4_rx_irq(struct dscc4_pci_priv *priv,
1695 struct dscc4_dev_priv *dpriv)
1696 {
1697 struct net_device *dev = dscc4_to_dev(dpriv);
1698 u32 state;
1699 int cur;
1700
1701 try:
1702 cur = dpriv->iqrx_current%IRQ_RING_SIZE;
1703 state = le32_to_cpu(dpriv->iqrx[cur]);
1704 if (!state)
1705 return;
1706 dpriv->iqrx[cur] = 0;
1707 dpriv->iqrx_current++;
1708
1709 if (state_check(state, dpriv, dev, "Rx") < 0)
1710 return;
1711
1712 if (!(state & SccEvt)){
1713 struct RxFD *rx_fd;
1714
1715 if (debug > 4)
1716 printk(KERN_DEBUG "%s: Rx ISR = 0x%08x\n", dev->name,
1717 state);
1718 state &= 0x00ffffff;
1719 if (state & Err) { /* Hold or reset */
1720 printk(KERN_DEBUG "%s: Rx ERR\n", dev->name);
1721 cur = dpriv->rx_current%RX_RING_SIZE;
1722 rx_fd = dpriv->rx_fd + cur;
1723 /*
1724 * Presume we're not facing a DMAC receiver reset.
1725 * As We use the rx size-filtering feature of the
1726 * DSCC4, the beginning of a new frame is waiting in
1727 * the rx fifo. I bet a Receive Data Overflow will
1728 * happen most of time but let's try and avoid it.
1729 * Btw (as for RDO) if one experiences ERR whereas
1730 * the system looks rather idle, there may be a
1731 * problem with latency. In this case, increasing
1732 * RX_RING_SIZE may help.
1733 */
1734 //while (dpriv->rx_needs_refill) {
1735 while (!(rx_fd->state1 & Hold)) {
1736 rx_fd++;
1737 cur++;
1738 if (!(cur = cur%RX_RING_SIZE))
1739 rx_fd = dpriv->rx_fd;
1740 }
1741 //dpriv->rx_needs_refill--;
1742 try_get_rx_skb(dpriv, dev);
1743 if (!rx_fd->data)
1744 goto try;
1745 rx_fd->state1 &= ~Hold;
1746 rx_fd->state2 = 0x00000000;
1747 rx_fd->end = cpu_to_le32(0xbabeface);
1748 //}
1749 goto try;
1750 }
1751 if (state & Fi) {
1752 dscc4_rx_skb(dpriv, dev);
1753 goto try;
1754 }
1755 if (state & Hi ) { /* HI bit */
1756 netdev_info(dev, "Rx Hi\n");
1757 state &= ~Hi;
1758 goto try;
1759 }
1760 } else { /* SccEvt */
1761 if (debug > 1) {
1762 //FIXME: verifier la presence de tous les evenements
1763 static struct {
1764 u32 mask;
1765 const char *irq_name;
1766 } evts[] = {
1767 { 0x00008000, "TIN"},
1768 { 0x00000020, "RSC"},
1769 { 0x00000010, "PCE"},
1770 { 0x00000008, "PLLA"},
1771 { 0, NULL}
1772 }, *evt;
1773
1774 for (evt = evts; evt->irq_name; evt++) {
1775 if (state & evt->mask) {
1776 printk(KERN_DEBUG "%s: %s\n",
1777 dev->name, evt->irq_name);
1778 if (!(state &= ~evt->mask))
1779 goto try;
1780 }
1781 }
1782 } else {
1783 if (!(state &= ~0x0000c03c))
1784 goto try;
1785 }
1786 if (state & Cts) {
1787 netdev_info(dev, "CTS transition\n");
1788 if (!(state &= ~Cts)) /* DEBUG */
1789 goto try;
1790 }
1791 /*
1792 * Receive Data Overflow (FIXME: fscked)
1793 */
1794 if (state & Rdo) {
1795 struct RxFD *rx_fd;
1796 void __iomem *scc_addr;
1797 int cur;
1798
1799 //if (debug)
1800 // dscc4_rx_dump(dpriv);
1801 scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1802
1803 scc_patchl(RxActivate, 0, dpriv, dev, CCR2);
1804 /*
1805 * This has no effect. Why ?
1806 * ORed with TxSccRes, one sees the CFG ack (for
1807 * the TX part only).
1808 */
1809 scc_writel(RxSccRes, dpriv, dev, CMDR);
1810 dpriv->flags |= RdoSet;
1811
1812 /*
1813 * Let's try and save something in the received data.
1814 * rx_current must be incremented at least once to
1815 * avoid HOLD in the BRDA-to-be-pointed desc.
1816 */
1817 do {
1818 cur = dpriv->rx_current++%RX_RING_SIZE;
1819 rx_fd = dpriv->rx_fd + cur;
1820 if (!(rx_fd->state2 & DataComplete))
1821 break;
1822 if (rx_fd->state2 & FrameAborted) {
1823 dev->stats.rx_over_errors++;
1824 rx_fd->state1 |= Hold;
1825 rx_fd->state2 = 0x00000000;
1826 rx_fd->end = cpu_to_le32(0xbabeface);
1827 } else
1828 dscc4_rx_skb(dpriv, dev);
1829 } while (1);
1830
1831 if (debug > 0) {
1832 if (dpriv->flags & RdoSet)
1833 printk(KERN_DEBUG
1834 "%s: no RDO in Rx data\n", DRV_NAME);
1835 }
1836 #ifdef DSCC4_RDO_EXPERIMENTAL_RECOVERY
1837 /*
1838 * FIXME: must the reset be this violent ?
1839 */
1840 #warning "FIXME: CH0BRDA"
1841 writel(dpriv->rx_fd_dma +
1842 (dpriv->rx_current%RX_RING_SIZE)*
1843 sizeof(struct RxFD), scc_addr + CH0BRDA);
1844 writel(MTFi|Rdr|Idr, scc_addr + CH0CFG);
1845 if (dscc4_do_action(dev, "RDR") < 0) {
1846 netdev_err(dev, "RDO recovery failed(RDR)\n");
1847 goto rdo_end;
1848 }
1849 writel(MTFi|Idr, scc_addr + CH0CFG);
1850 if (dscc4_do_action(dev, "IDR") < 0) {
1851 netdev_err(dev, "RDO recovery failed(IDR)\n");
1852 goto rdo_end;
1853 }
1854 rdo_end:
1855 #endif
1856 scc_patchl(0, RxActivate, dpriv, dev, CCR2);
1857 goto try;
1858 }
1859 if (state & Cd) {
1860 netdev_info(dev, "CD transition\n");
1861 if (!(state &= ~Cd)) /* DEBUG */
1862 goto try;
1863 }
1864 if (state & Flex) {
1865 printk(KERN_DEBUG "%s: Flex. Ttttt...\n", DRV_NAME);
1866 if (!(state &= ~Flex))
1867 goto try;
1868 }
1869 }
1870 }
1871
1872 /*
1873 * I had expected the following to work for the first descriptor
1874 * (tx_fd->state = 0xc0000000)
1875 * - Hold=1 (don't try and branch to the next descripto);
1876 * - No=0 (I want an empty data section, i.e. size=0);
1877 * - Fe=1 (required by No=0 or we got an Err irq and must reset).
1878 * It failed and locked solid. Thus the introduction of a dummy skb.
1879 * Problem is acknowledged in errata sheet DS5. Joy :o/
1880 */
dscc4_init_dummy_skb(struct dscc4_dev_priv * dpriv)1881 static struct sk_buff *dscc4_init_dummy_skb(struct dscc4_dev_priv *dpriv)
1882 {
1883 struct sk_buff *skb;
1884
1885 skb = dev_alloc_skb(DUMMY_SKB_SIZE);
1886 if (skb) {
1887 struct device *d = &dpriv->pci_priv->pdev->dev;
1888 int last = dpriv->tx_dirty%TX_RING_SIZE;
1889 struct TxFD *tx_fd = dpriv->tx_fd + last;
1890 dma_addr_t addr;
1891
1892 skb->len = DUMMY_SKB_SIZE;
1893 skb_copy_to_linear_data(skb, version,
1894 strlen(version) % DUMMY_SKB_SIZE);
1895 addr = dma_map_single(d, skb->data, DUMMY_SKB_SIZE,
1896 DMA_TO_DEVICE);
1897 if (dma_mapping_error(d, addr)) {
1898 dev_kfree_skb_any(skb);
1899 return NULL;
1900 }
1901 tx_fd->state = FrameEnd | TO_STATE_TX(DUMMY_SKB_SIZE);
1902 tx_fd->data = cpu_to_le32(addr);
1903 dpriv->tx_skbuff[last] = skb;
1904 }
1905 return skb;
1906 }
1907
dscc4_init_ring(struct net_device * dev)1908 static int dscc4_init_ring(struct net_device *dev)
1909 {
1910 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1911 struct device *d = &dpriv->pci_priv->pdev->dev;
1912 struct TxFD *tx_fd;
1913 struct RxFD *rx_fd;
1914 void *ring;
1915 int i;
1916
1917 ring = dma_alloc_coherent(d, RX_TOTAL_SIZE, &dpriv->rx_fd_dma,
1918 GFP_KERNEL);
1919 if (!ring)
1920 goto err_out;
1921 dpriv->rx_fd = rx_fd = (struct RxFD *) ring;
1922
1923 ring = dma_alloc_coherent(d, TX_TOTAL_SIZE, &dpriv->tx_fd_dma,
1924 GFP_KERNEL);
1925 if (!ring)
1926 goto err_free_dma_rx;
1927 dpriv->tx_fd = tx_fd = (struct TxFD *) ring;
1928
1929 memset(dpriv->tx_skbuff, 0, sizeof(struct sk_buff *)*TX_RING_SIZE);
1930 dpriv->tx_dirty = 0xffffffff;
1931 i = dpriv->tx_current = 0;
1932 do {
1933 tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1934 tx_fd->complete = 0x00000000;
1935 /* FIXME: NULL should be ok - to be tried */
1936 tx_fd->data = cpu_to_le32(dpriv->tx_fd_dma);
1937 (tx_fd++)->next = cpu_to_le32(dpriv->tx_fd_dma +
1938 (++i%TX_RING_SIZE)*sizeof(*tx_fd));
1939 } while (i < TX_RING_SIZE);
1940
1941 if (!dscc4_init_dummy_skb(dpriv))
1942 goto err_free_dma_tx;
1943
1944 memset(dpriv->rx_skbuff, 0, sizeof(struct sk_buff *)*RX_RING_SIZE);
1945 i = dpriv->rx_dirty = dpriv->rx_current = 0;
1946 do {
1947 /* size set by the host. Multiple of 4 bytes please */
1948 rx_fd->state1 = HiDesc;
1949 rx_fd->state2 = 0x00000000;
1950 rx_fd->end = cpu_to_le32(0xbabeface);
1951 rx_fd->state1 |= TO_STATE_RX(HDLC_MAX_MRU);
1952 // FIXME: return value verifiee mais traitement suspect
1953 if (try_get_rx_skb(dpriv, dev) >= 0)
1954 dpriv->rx_dirty++;
1955 (rx_fd++)->next = cpu_to_le32(dpriv->rx_fd_dma +
1956 (++i%RX_RING_SIZE)*sizeof(*rx_fd));
1957 } while (i < RX_RING_SIZE);
1958
1959 return 0;
1960
1961 err_free_dma_tx:
1962 dma_free_coherent(d, TX_TOTAL_SIZE, ring, dpriv->tx_fd_dma);
1963 err_free_dma_rx:
1964 dma_free_coherent(d, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
1965 err_out:
1966 return -ENOMEM;
1967 }
1968
dscc4_remove_one(struct pci_dev * pdev)1969 static void dscc4_remove_one(struct pci_dev *pdev)
1970 {
1971 struct dscc4_pci_priv *ppriv;
1972 struct dscc4_dev_priv *root;
1973 void __iomem *ioaddr;
1974 int i;
1975
1976 ppriv = pci_get_drvdata(pdev);
1977 root = ppriv->root;
1978
1979 ioaddr = root->base_addr;
1980
1981 dscc4_pci_reset(pdev, ioaddr);
1982
1983 free_irq(pdev->irq, root);
1984 dma_free_coherent(&pdev->dev, IRQ_RING_SIZE*sizeof(u32), ppriv->iqcfg,
1985 ppriv->iqcfg_dma);
1986 for (i = 0; i < dev_per_card; i++) {
1987 struct dscc4_dev_priv *dpriv = root + i;
1988
1989 dscc4_release_ring(dpriv);
1990 dma_free_coherent(&pdev->dev, IRQ_RING_SIZE*sizeof(u32),
1991 dpriv->iqrx, dpriv->iqrx_dma);
1992 dma_free_coherent(&pdev->dev, IRQ_RING_SIZE*sizeof(u32),
1993 dpriv->iqtx, dpriv->iqtx_dma);
1994 }
1995
1996 dscc4_free1(pdev);
1997
1998 iounmap(ioaddr);
1999
2000 pci_release_region(pdev, 1);
2001 pci_release_region(pdev, 0);
2002
2003 pci_disable_device(pdev);
2004 }
2005
dscc4_hdlc_attach(struct net_device * dev,unsigned short encoding,unsigned short parity)2006 static int dscc4_hdlc_attach(struct net_device *dev, unsigned short encoding,
2007 unsigned short parity)
2008 {
2009 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
2010
2011 if (encoding != ENCODING_NRZ &&
2012 encoding != ENCODING_NRZI &&
2013 encoding != ENCODING_FM_MARK &&
2014 encoding != ENCODING_FM_SPACE &&
2015 encoding != ENCODING_MANCHESTER)
2016 return -EINVAL;
2017
2018 if (parity != PARITY_NONE &&
2019 parity != PARITY_CRC16_PR0_CCITT &&
2020 parity != PARITY_CRC16_PR1_CCITT &&
2021 parity != PARITY_CRC32_PR0_CCITT &&
2022 parity != PARITY_CRC32_PR1_CCITT)
2023 return -EINVAL;
2024
2025 dpriv->encoding = encoding;
2026 dpriv->parity = parity;
2027 return 0;
2028 }
2029
2030 #ifndef MODULE
dscc4_setup(char * str)2031 static int __init dscc4_setup(char *str)
2032 {
2033 int *args[] = { &debug, &quartz, NULL }, **p = args;
2034
2035 while (*p && (get_option(&str, *p) == 2))
2036 p++;
2037 return 1;
2038 }
2039
2040 __setup("dscc4.setup=", dscc4_setup);
2041 #endif
2042
2043 static const struct pci_device_id dscc4_pci_tbl[] = {
2044 { PCI_VENDOR_ID_SIEMENS, PCI_DEVICE_ID_SIEMENS_DSCC4,
2045 PCI_ANY_ID, PCI_ANY_ID, },
2046 { 0,}
2047 };
2048 MODULE_DEVICE_TABLE(pci, dscc4_pci_tbl);
2049
2050 static struct pci_driver dscc4_driver = {
2051 .name = DRV_NAME,
2052 .id_table = dscc4_pci_tbl,
2053 .probe = dscc4_init_one,
2054 .remove = dscc4_remove_one,
2055 };
2056
2057 module_pci_driver(dscc4_driver);
2058