1 /*
2 * Networking over Thunderbolt cable using Apple ThunderboltIP protocol
3 *
4 * Copyright (C) 2017, Intel Corporation
5 * Authors: Amir Levy <amir.jer.levy@intel.com>
6 * Michael Jamet <michael.jamet@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/atomic.h>
15 #include <linux/highmem.h>
16 #include <linux/if_vlan.h>
17 #include <linux/jhash.h>
18 #include <linux/module.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rtnetlink.h>
21 #include <linux/sizes.h>
22 #include <linux/thunderbolt.h>
23 #include <linux/uuid.h>
24 #include <linux/workqueue.h>
25
26 #include <net/ip6_checksum.h>
27
28 /* Protocol timeouts in ms */
29 #define TBNET_LOGIN_DELAY 4500
30 #define TBNET_LOGIN_TIMEOUT 500
31 #define TBNET_LOGOUT_TIMEOUT 100
32
33 #define TBNET_RING_SIZE 256
34 #define TBNET_LOCAL_PATH 0xf
35 #define TBNET_LOGIN_RETRIES 60
36 #define TBNET_LOGOUT_RETRIES 5
37 #define TBNET_MATCH_FRAGS_ID BIT(1)
38 #define TBNET_MAX_MTU SZ_64K
39 #define TBNET_FRAME_SIZE SZ_4K
40 #define TBNET_MAX_PAYLOAD_SIZE \
41 (TBNET_FRAME_SIZE - sizeof(struct thunderbolt_ip_frame_header))
42 /* Rx packets need to hold space for skb_shared_info */
43 #define TBNET_RX_MAX_SIZE \
44 (TBNET_FRAME_SIZE + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define TBNET_RX_PAGE_ORDER get_order(TBNET_RX_MAX_SIZE)
46 #define TBNET_RX_PAGE_SIZE (PAGE_SIZE << TBNET_RX_PAGE_ORDER)
47
48 #define TBNET_L0_PORT_NUM(route) ((route) & GENMASK(5, 0))
49
50 /**
51 * struct thunderbolt_ip_frame_header - Header for each Thunderbolt frame
52 * @frame_size: size of the data with the frame
53 * @frame_index: running index on the frames
54 * @frame_id: ID of the frame to match frames to specific packet
55 * @frame_count: how many frames assembles a full packet
56 *
57 * Each data frame passed to the high-speed DMA ring has this header. If
58 * the XDomain network directory announces that %TBNET_MATCH_FRAGS_ID is
59 * supported then @frame_id is filled, otherwise it stays %0.
60 */
61 struct thunderbolt_ip_frame_header {
62 u32 frame_size;
63 u16 frame_index;
64 u16 frame_id;
65 u32 frame_count;
66 };
67
68 enum thunderbolt_ip_frame_pdf {
69 TBIP_PDF_FRAME_START = 1,
70 TBIP_PDF_FRAME_END,
71 };
72
73 enum thunderbolt_ip_type {
74 TBIP_LOGIN,
75 TBIP_LOGIN_RESPONSE,
76 TBIP_LOGOUT,
77 TBIP_STATUS,
78 };
79
80 struct thunderbolt_ip_header {
81 u32 route_hi;
82 u32 route_lo;
83 u32 length_sn;
84 uuid_t uuid;
85 uuid_t initiator_uuid;
86 uuid_t target_uuid;
87 u32 type;
88 u32 command_id;
89 };
90
91 #define TBIP_HDR_LENGTH_MASK GENMASK(5, 0)
92 #define TBIP_HDR_SN_MASK GENMASK(28, 27)
93 #define TBIP_HDR_SN_SHIFT 27
94
95 struct thunderbolt_ip_login {
96 struct thunderbolt_ip_header hdr;
97 u32 proto_version;
98 u32 transmit_path;
99 u32 reserved[4];
100 };
101
102 #define TBIP_LOGIN_PROTO_VERSION 1
103
104 struct thunderbolt_ip_login_response {
105 struct thunderbolt_ip_header hdr;
106 u32 status;
107 u32 receiver_mac[2];
108 u32 receiver_mac_len;
109 u32 reserved[4];
110 };
111
112 struct thunderbolt_ip_logout {
113 struct thunderbolt_ip_header hdr;
114 };
115
116 struct thunderbolt_ip_status {
117 struct thunderbolt_ip_header hdr;
118 u32 status;
119 };
120
121 struct tbnet_stats {
122 u64 tx_packets;
123 u64 rx_packets;
124 u64 tx_bytes;
125 u64 rx_bytes;
126 u64 rx_errors;
127 u64 tx_errors;
128 u64 rx_length_errors;
129 u64 rx_over_errors;
130 u64 rx_crc_errors;
131 u64 rx_missed_errors;
132 };
133
134 struct tbnet_frame {
135 struct net_device *dev;
136 struct page *page;
137 struct ring_frame frame;
138 };
139
140 struct tbnet_ring {
141 struct tbnet_frame frames[TBNET_RING_SIZE];
142 unsigned int cons;
143 unsigned int prod;
144 struct tb_ring *ring;
145 };
146
147 /**
148 * struct tbnet - ThunderboltIP network driver private data
149 * @svc: XDomain service the driver is bound to
150 * @xd: XDomain the service blongs to
151 * @handler: ThunderboltIP configuration protocol handler
152 * @dev: Networking device
153 * @napi: NAPI structure for Rx polling
154 * @stats: Network statistics
155 * @skb: Network packet that is currently processed on Rx path
156 * @command_id: ID used for next configuration protocol packet
157 * @login_sent: ThunderboltIP login message successfully sent
158 * @login_received: ThunderboltIP login message received from the remote
159 * host
160 * @transmit_path: HopID the other end needs to use building the
161 * opposite side path.
162 * @connection_lock: Lock serializing access to @login_sent,
163 * @login_received and @transmit_path.
164 * @login_retries: Number of login retries currently done
165 * @login_work: Worker to send ThunderboltIP login packets
166 * @connected_work: Worker that finalizes the ThunderboltIP connection
167 * setup and enables DMA paths for high speed data
168 * transfers
169 * @disconnect_work: Worker that handles tearing down the ThunderboltIP
170 * connection
171 * @rx_hdr: Copy of the currently processed Rx frame. Used when a
172 * network packet consists of multiple Thunderbolt frames.
173 * In host byte order.
174 * @rx_ring: Software ring holding Rx frames
175 * @frame_id: Frame ID use for next Tx packet
176 * (if %TBNET_MATCH_FRAGS_ID is supported in both ends)
177 * @tx_ring: Software ring holding Tx frames
178 */
179 struct tbnet {
180 const struct tb_service *svc;
181 struct tb_xdomain *xd;
182 struct tb_protocol_handler handler;
183 struct net_device *dev;
184 struct napi_struct napi;
185 struct tbnet_stats stats;
186 struct sk_buff *skb;
187 atomic_t command_id;
188 bool login_sent;
189 bool login_received;
190 u32 transmit_path;
191 struct mutex connection_lock;
192 int login_retries;
193 struct delayed_work login_work;
194 struct work_struct connected_work;
195 struct work_struct disconnect_work;
196 struct thunderbolt_ip_frame_header rx_hdr;
197 struct tbnet_ring rx_ring;
198 atomic_t frame_id;
199 struct tbnet_ring tx_ring;
200 };
201
202 /* Network property directory UUID: c66189ca-1cce-4195-bdb8-49592e5f5a4f */
203 static const uuid_t tbnet_dir_uuid =
204 UUID_INIT(0xc66189ca, 0x1cce, 0x4195,
205 0xbd, 0xb8, 0x49, 0x59, 0x2e, 0x5f, 0x5a, 0x4f);
206
207 /* ThunderboltIP protocol UUID: 798f589e-3616-8a47-97c6-5664a920c8dd */
208 static const uuid_t tbnet_svc_uuid =
209 UUID_INIT(0x798f589e, 0x3616, 0x8a47,
210 0x97, 0xc6, 0x56, 0x64, 0xa9, 0x20, 0xc8, 0xdd);
211
212 static struct tb_property_dir *tbnet_dir;
213
tbnet_fill_header(struct thunderbolt_ip_header * hdr,u64 route,u8 sequence,const uuid_t * initiator_uuid,const uuid_t * target_uuid,enum thunderbolt_ip_type type,size_t size,u32 command_id)214 static void tbnet_fill_header(struct thunderbolt_ip_header *hdr, u64 route,
215 u8 sequence, const uuid_t *initiator_uuid, const uuid_t *target_uuid,
216 enum thunderbolt_ip_type type, size_t size, u32 command_id)
217 {
218 u32 length_sn;
219
220 /* Length does not include route_hi/lo and length_sn fields */
221 length_sn = (size - 3 * 4) / 4;
222 length_sn |= (sequence << TBIP_HDR_SN_SHIFT) & TBIP_HDR_SN_MASK;
223
224 hdr->route_hi = upper_32_bits(route);
225 hdr->route_lo = lower_32_bits(route);
226 hdr->length_sn = length_sn;
227 uuid_copy(&hdr->uuid, &tbnet_svc_uuid);
228 uuid_copy(&hdr->initiator_uuid, initiator_uuid);
229 uuid_copy(&hdr->target_uuid, target_uuid);
230 hdr->type = type;
231 hdr->command_id = command_id;
232 }
233
tbnet_login_response(struct tbnet * net,u64 route,u8 sequence,u32 command_id)234 static int tbnet_login_response(struct tbnet *net, u64 route, u8 sequence,
235 u32 command_id)
236 {
237 struct thunderbolt_ip_login_response reply;
238 struct tb_xdomain *xd = net->xd;
239
240 memset(&reply, 0, sizeof(reply));
241 tbnet_fill_header(&reply.hdr, route, sequence, xd->local_uuid,
242 xd->remote_uuid, TBIP_LOGIN_RESPONSE, sizeof(reply),
243 command_id);
244 memcpy(reply.receiver_mac, net->dev->dev_addr, ETH_ALEN);
245 reply.receiver_mac_len = ETH_ALEN;
246
247 return tb_xdomain_response(xd, &reply, sizeof(reply),
248 TB_CFG_PKG_XDOMAIN_RESP);
249 }
250
tbnet_login_request(struct tbnet * net,u8 sequence)251 static int tbnet_login_request(struct tbnet *net, u8 sequence)
252 {
253 struct thunderbolt_ip_login_response reply;
254 struct thunderbolt_ip_login request;
255 struct tb_xdomain *xd = net->xd;
256
257 memset(&request, 0, sizeof(request));
258 tbnet_fill_header(&request.hdr, xd->route, sequence, xd->local_uuid,
259 xd->remote_uuid, TBIP_LOGIN, sizeof(request),
260 atomic_inc_return(&net->command_id));
261
262 request.proto_version = TBIP_LOGIN_PROTO_VERSION;
263 request.transmit_path = TBNET_LOCAL_PATH;
264
265 return tb_xdomain_request(xd, &request, sizeof(request),
266 TB_CFG_PKG_XDOMAIN_RESP, &reply,
267 sizeof(reply), TB_CFG_PKG_XDOMAIN_RESP,
268 TBNET_LOGIN_TIMEOUT);
269 }
270
tbnet_logout_response(struct tbnet * net,u64 route,u8 sequence,u32 command_id)271 static int tbnet_logout_response(struct tbnet *net, u64 route, u8 sequence,
272 u32 command_id)
273 {
274 struct thunderbolt_ip_status reply;
275 struct tb_xdomain *xd = net->xd;
276
277 memset(&reply, 0, sizeof(reply));
278 tbnet_fill_header(&reply.hdr, route, sequence, xd->local_uuid,
279 xd->remote_uuid, TBIP_STATUS, sizeof(reply),
280 atomic_inc_return(&net->command_id));
281 return tb_xdomain_response(xd, &reply, sizeof(reply),
282 TB_CFG_PKG_XDOMAIN_RESP);
283 }
284
tbnet_logout_request(struct tbnet * net)285 static int tbnet_logout_request(struct tbnet *net)
286 {
287 struct thunderbolt_ip_logout request;
288 struct thunderbolt_ip_status reply;
289 struct tb_xdomain *xd = net->xd;
290
291 memset(&request, 0, sizeof(request));
292 tbnet_fill_header(&request.hdr, xd->route, 0, xd->local_uuid,
293 xd->remote_uuid, TBIP_LOGOUT, sizeof(request),
294 atomic_inc_return(&net->command_id));
295
296 return tb_xdomain_request(xd, &request, sizeof(request),
297 TB_CFG_PKG_XDOMAIN_RESP, &reply,
298 sizeof(reply), TB_CFG_PKG_XDOMAIN_RESP,
299 TBNET_LOGOUT_TIMEOUT);
300 }
301
start_login(struct tbnet * net)302 static void start_login(struct tbnet *net)
303 {
304 mutex_lock(&net->connection_lock);
305 net->login_sent = false;
306 net->login_received = false;
307 mutex_unlock(&net->connection_lock);
308
309 queue_delayed_work(system_long_wq, &net->login_work,
310 msecs_to_jiffies(1000));
311 }
312
stop_login(struct tbnet * net)313 static void stop_login(struct tbnet *net)
314 {
315 cancel_delayed_work_sync(&net->login_work);
316 cancel_work_sync(&net->connected_work);
317 }
318
tbnet_frame_size(const struct tbnet_frame * tf)319 static inline unsigned int tbnet_frame_size(const struct tbnet_frame *tf)
320 {
321 return tf->frame.size ? : TBNET_FRAME_SIZE;
322 }
323
tbnet_free_buffers(struct tbnet_ring * ring)324 static void tbnet_free_buffers(struct tbnet_ring *ring)
325 {
326 unsigned int i;
327
328 for (i = 0; i < TBNET_RING_SIZE; i++) {
329 struct device *dma_dev = tb_ring_dma_device(ring->ring);
330 struct tbnet_frame *tf = &ring->frames[i];
331 enum dma_data_direction dir;
332 unsigned int order;
333 size_t size;
334
335 if (!tf->page)
336 continue;
337
338 if (ring->ring->is_tx) {
339 dir = DMA_TO_DEVICE;
340 order = 0;
341 size = TBNET_FRAME_SIZE;
342 } else {
343 dir = DMA_FROM_DEVICE;
344 order = TBNET_RX_PAGE_ORDER;
345 size = TBNET_RX_PAGE_SIZE;
346 }
347
348 if (tf->frame.buffer_phy)
349 dma_unmap_page(dma_dev, tf->frame.buffer_phy, size,
350 dir);
351
352 __free_pages(tf->page, order);
353 tf->page = NULL;
354 }
355
356 ring->cons = 0;
357 ring->prod = 0;
358 }
359
tbnet_tear_down(struct tbnet * net,bool send_logout)360 static void tbnet_tear_down(struct tbnet *net, bool send_logout)
361 {
362 netif_carrier_off(net->dev);
363 netif_stop_queue(net->dev);
364
365 stop_login(net);
366
367 mutex_lock(&net->connection_lock);
368
369 if (net->login_sent && net->login_received) {
370 int retries = TBNET_LOGOUT_RETRIES;
371
372 while (send_logout && retries-- > 0) {
373 int ret = tbnet_logout_request(net);
374 if (ret != -ETIMEDOUT)
375 break;
376 }
377
378 tb_ring_stop(net->rx_ring.ring);
379 tb_ring_stop(net->tx_ring.ring);
380 tbnet_free_buffers(&net->rx_ring);
381 tbnet_free_buffers(&net->tx_ring);
382
383 if (tb_xdomain_disable_paths(net->xd))
384 netdev_warn(net->dev, "failed to disable DMA paths\n");
385 }
386
387 net->login_retries = 0;
388 net->login_sent = false;
389 net->login_received = false;
390
391 mutex_unlock(&net->connection_lock);
392 }
393
tbnet_handle_packet(const void * buf,size_t size,void * data)394 static int tbnet_handle_packet(const void *buf, size_t size, void *data)
395 {
396 const struct thunderbolt_ip_login *pkg = buf;
397 struct tbnet *net = data;
398 u32 command_id;
399 int ret = 0;
400 u32 sequence;
401 u64 route;
402
403 /* Make sure the packet is for us */
404 if (size < sizeof(struct thunderbolt_ip_header))
405 return 0;
406 if (!uuid_equal(&pkg->hdr.initiator_uuid, net->xd->remote_uuid))
407 return 0;
408 if (!uuid_equal(&pkg->hdr.target_uuid, net->xd->local_uuid))
409 return 0;
410
411 route = ((u64)pkg->hdr.route_hi << 32) | pkg->hdr.route_lo;
412 route &= ~BIT_ULL(63);
413 if (route != net->xd->route)
414 return 0;
415
416 sequence = pkg->hdr.length_sn & TBIP_HDR_SN_MASK;
417 sequence >>= TBIP_HDR_SN_SHIFT;
418 command_id = pkg->hdr.command_id;
419
420 switch (pkg->hdr.type) {
421 case TBIP_LOGIN:
422 if (!netif_running(net->dev))
423 break;
424
425 ret = tbnet_login_response(net, route, sequence,
426 pkg->hdr.command_id);
427 if (!ret) {
428 mutex_lock(&net->connection_lock);
429 net->login_received = true;
430 net->transmit_path = pkg->transmit_path;
431
432 /* If we reached the number of max retries or
433 * previous logout, schedule another round of
434 * login retries
435 */
436 if (net->login_retries >= TBNET_LOGIN_RETRIES ||
437 !net->login_sent) {
438 net->login_retries = 0;
439 queue_delayed_work(system_long_wq,
440 &net->login_work, 0);
441 }
442 mutex_unlock(&net->connection_lock);
443
444 queue_work(system_long_wq, &net->connected_work);
445 }
446 break;
447
448 case TBIP_LOGOUT:
449 ret = tbnet_logout_response(net, route, sequence, command_id);
450 if (!ret)
451 queue_work(system_long_wq, &net->disconnect_work);
452 break;
453
454 default:
455 return 0;
456 }
457
458 if (ret)
459 netdev_warn(net->dev, "failed to send ThunderboltIP response\n");
460
461 return 1;
462 }
463
tbnet_available_buffers(const struct tbnet_ring * ring)464 static unsigned int tbnet_available_buffers(const struct tbnet_ring *ring)
465 {
466 return ring->prod - ring->cons;
467 }
468
tbnet_alloc_rx_buffers(struct tbnet * net,unsigned int nbuffers)469 static int tbnet_alloc_rx_buffers(struct tbnet *net, unsigned int nbuffers)
470 {
471 struct tbnet_ring *ring = &net->rx_ring;
472 int ret;
473
474 while (nbuffers--) {
475 struct device *dma_dev = tb_ring_dma_device(ring->ring);
476 unsigned int index = ring->prod & (TBNET_RING_SIZE - 1);
477 struct tbnet_frame *tf = &ring->frames[index];
478 dma_addr_t dma_addr;
479
480 if (tf->page)
481 break;
482
483 /* Allocate page (order > 0) so that it can hold maximum
484 * ThunderboltIP frame (4kB) and the additional room for
485 * SKB shared info required by build_skb().
486 */
487 tf->page = dev_alloc_pages(TBNET_RX_PAGE_ORDER);
488 if (!tf->page) {
489 ret = -ENOMEM;
490 goto err_free;
491 }
492
493 dma_addr = dma_map_page(dma_dev, tf->page, 0,
494 TBNET_RX_PAGE_SIZE, DMA_FROM_DEVICE);
495 if (dma_mapping_error(dma_dev, dma_addr)) {
496 ret = -ENOMEM;
497 goto err_free;
498 }
499
500 tf->frame.buffer_phy = dma_addr;
501 tf->dev = net->dev;
502
503 tb_ring_rx(ring->ring, &tf->frame);
504
505 ring->prod++;
506 }
507
508 return 0;
509
510 err_free:
511 tbnet_free_buffers(ring);
512 return ret;
513 }
514
tbnet_get_tx_buffer(struct tbnet * net)515 static struct tbnet_frame *tbnet_get_tx_buffer(struct tbnet *net)
516 {
517 struct tbnet_ring *ring = &net->tx_ring;
518 struct device *dma_dev = tb_ring_dma_device(ring->ring);
519 struct tbnet_frame *tf;
520 unsigned int index;
521
522 if (!tbnet_available_buffers(ring))
523 return NULL;
524
525 index = ring->cons++ & (TBNET_RING_SIZE - 1);
526
527 tf = &ring->frames[index];
528 tf->frame.size = 0;
529
530 dma_sync_single_for_cpu(dma_dev, tf->frame.buffer_phy,
531 tbnet_frame_size(tf), DMA_TO_DEVICE);
532
533 return tf;
534 }
535
tbnet_tx_callback(struct tb_ring * ring,struct ring_frame * frame,bool canceled)536 static void tbnet_tx_callback(struct tb_ring *ring, struct ring_frame *frame,
537 bool canceled)
538 {
539 struct tbnet_frame *tf = container_of(frame, typeof(*tf), frame);
540 struct tbnet *net = netdev_priv(tf->dev);
541
542 /* Return buffer to the ring */
543 net->tx_ring.prod++;
544
545 if (tbnet_available_buffers(&net->tx_ring) >= TBNET_RING_SIZE / 2)
546 netif_wake_queue(net->dev);
547 }
548
tbnet_alloc_tx_buffers(struct tbnet * net)549 static int tbnet_alloc_tx_buffers(struct tbnet *net)
550 {
551 struct tbnet_ring *ring = &net->tx_ring;
552 struct device *dma_dev = tb_ring_dma_device(ring->ring);
553 unsigned int i;
554
555 for (i = 0; i < TBNET_RING_SIZE; i++) {
556 struct tbnet_frame *tf = &ring->frames[i];
557 dma_addr_t dma_addr;
558
559 tf->page = alloc_page(GFP_KERNEL);
560 if (!tf->page) {
561 tbnet_free_buffers(ring);
562 return -ENOMEM;
563 }
564
565 dma_addr = dma_map_page(dma_dev, tf->page, 0, TBNET_FRAME_SIZE,
566 DMA_TO_DEVICE);
567 if (dma_mapping_error(dma_dev, dma_addr)) {
568 __free_page(tf->page);
569 tf->page = NULL;
570 tbnet_free_buffers(ring);
571 return -ENOMEM;
572 }
573
574 tf->dev = net->dev;
575 tf->frame.buffer_phy = dma_addr;
576 tf->frame.callback = tbnet_tx_callback;
577 tf->frame.sof = TBIP_PDF_FRAME_START;
578 tf->frame.eof = TBIP_PDF_FRAME_END;
579 }
580
581 ring->cons = 0;
582 ring->prod = TBNET_RING_SIZE - 1;
583
584 return 0;
585 }
586
tbnet_connected_work(struct work_struct * work)587 static void tbnet_connected_work(struct work_struct *work)
588 {
589 struct tbnet *net = container_of(work, typeof(*net), connected_work);
590 bool connected;
591 int ret;
592
593 if (netif_carrier_ok(net->dev))
594 return;
595
596 mutex_lock(&net->connection_lock);
597 connected = net->login_sent && net->login_received;
598 mutex_unlock(&net->connection_lock);
599
600 if (!connected)
601 return;
602
603 /* Both logins successful so enable the high-speed DMA paths and
604 * start the network device queue.
605 */
606 ret = tb_xdomain_enable_paths(net->xd, TBNET_LOCAL_PATH,
607 net->rx_ring.ring->hop,
608 net->transmit_path,
609 net->tx_ring.ring->hop);
610 if (ret) {
611 netdev_err(net->dev, "failed to enable DMA paths\n");
612 return;
613 }
614
615 tb_ring_start(net->tx_ring.ring);
616 tb_ring_start(net->rx_ring.ring);
617
618 ret = tbnet_alloc_rx_buffers(net, TBNET_RING_SIZE);
619 if (ret)
620 goto err_stop_rings;
621
622 ret = tbnet_alloc_tx_buffers(net);
623 if (ret)
624 goto err_free_rx_buffers;
625
626 netif_carrier_on(net->dev);
627 netif_start_queue(net->dev);
628 return;
629
630 err_free_rx_buffers:
631 tbnet_free_buffers(&net->rx_ring);
632 err_stop_rings:
633 tb_ring_stop(net->rx_ring.ring);
634 tb_ring_stop(net->tx_ring.ring);
635 }
636
tbnet_login_work(struct work_struct * work)637 static void tbnet_login_work(struct work_struct *work)
638 {
639 struct tbnet *net = container_of(work, typeof(*net), login_work.work);
640 unsigned long delay = msecs_to_jiffies(TBNET_LOGIN_DELAY);
641 int ret;
642
643 if (netif_carrier_ok(net->dev))
644 return;
645
646 ret = tbnet_login_request(net, net->login_retries % 4);
647 if (ret) {
648 if (net->login_retries++ < TBNET_LOGIN_RETRIES) {
649 queue_delayed_work(system_long_wq, &net->login_work,
650 delay);
651 } else {
652 netdev_info(net->dev, "ThunderboltIP login timed out\n");
653 }
654 } else {
655 net->login_retries = 0;
656
657 mutex_lock(&net->connection_lock);
658 net->login_sent = true;
659 mutex_unlock(&net->connection_lock);
660
661 queue_work(system_long_wq, &net->connected_work);
662 }
663 }
664
tbnet_disconnect_work(struct work_struct * work)665 static void tbnet_disconnect_work(struct work_struct *work)
666 {
667 struct tbnet *net = container_of(work, typeof(*net), disconnect_work);
668
669 tbnet_tear_down(net, false);
670 }
671
tbnet_check_frame(struct tbnet * net,const struct tbnet_frame * tf,const struct thunderbolt_ip_frame_header * hdr)672 static bool tbnet_check_frame(struct tbnet *net, const struct tbnet_frame *tf,
673 const struct thunderbolt_ip_frame_header *hdr)
674 {
675 u32 frame_id, frame_count, frame_size, frame_index;
676 unsigned int size;
677
678 if (tf->frame.flags & RING_DESC_CRC_ERROR) {
679 net->stats.rx_crc_errors++;
680 return false;
681 } else if (tf->frame.flags & RING_DESC_BUFFER_OVERRUN) {
682 net->stats.rx_over_errors++;
683 return false;
684 }
685
686 /* Should be greater than just header i.e. contains data */
687 size = tbnet_frame_size(tf);
688 if (size <= sizeof(*hdr)) {
689 net->stats.rx_length_errors++;
690 return false;
691 }
692
693 frame_count = le32_to_cpu(hdr->frame_count);
694 frame_size = le32_to_cpu(hdr->frame_size);
695 frame_index = le16_to_cpu(hdr->frame_index);
696 frame_id = le16_to_cpu(hdr->frame_id);
697
698 if ((frame_size > size - sizeof(*hdr)) || !frame_size) {
699 net->stats.rx_length_errors++;
700 return false;
701 }
702
703 /* In case we're in the middle of packet, validate the frame
704 * header based on first fragment of the packet.
705 */
706 if (net->skb && net->rx_hdr.frame_count) {
707 /* Check the frame count fits the count field */
708 if (frame_count != net->rx_hdr.frame_count) {
709 net->stats.rx_length_errors++;
710 return false;
711 }
712
713 /* Check the frame identifiers are incremented correctly,
714 * and id is matching.
715 */
716 if (frame_index != net->rx_hdr.frame_index + 1 ||
717 frame_id != net->rx_hdr.frame_id) {
718 net->stats.rx_missed_errors++;
719 return false;
720 }
721
722 if (net->skb->len + frame_size > TBNET_MAX_MTU) {
723 net->stats.rx_length_errors++;
724 return false;
725 }
726
727 return true;
728 }
729
730 /* Start of packet, validate the frame header */
731 if (frame_count == 0 || frame_count > TBNET_RING_SIZE / 4) {
732 net->stats.rx_length_errors++;
733 return false;
734 }
735 if (frame_index != 0) {
736 net->stats.rx_missed_errors++;
737 return false;
738 }
739
740 return true;
741 }
742
tbnet_poll(struct napi_struct * napi,int budget)743 static int tbnet_poll(struct napi_struct *napi, int budget)
744 {
745 struct tbnet *net = container_of(napi, struct tbnet, napi);
746 unsigned int cleaned_count = tbnet_available_buffers(&net->rx_ring);
747 struct device *dma_dev = tb_ring_dma_device(net->rx_ring.ring);
748 unsigned int rx_packets = 0;
749
750 while (rx_packets < budget) {
751 const struct thunderbolt_ip_frame_header *hdr;
752 unsigned int hdr_size = sizeof(*hdr);
753 struct sk_buff *skb = NULL;
754 struct ring_frame *frame;
755 struct tbnet_frame *tf;
756 struct page *page;
757 bool last = true;
758 u32 frame_size;
759
760 /* Return some buffers to hardware, one at a time is too
761 * slow so allocate MAX_SKB_FRAGS buffers at the same
762 * time.
763 */
764 if (cleaned_count >= MAX_SKB_FRAGS) {
765 tbnet_alloc_rx_buffers(net, cleaned_count);
766 cleaned_count = 0;
767 }
768
769 frame = tb_ring_poll(net->rx_ring.ring);
770 if (!frame)
771 break;
772
773 dma_unmap_page(dma_dev, frame->buffer_phy,
774 TBNET_RX_PAGE_SIZE, DMA_FROM_DEVICE);
775
776 tf = container_of(frame, typeof(*tf), frame);
777
778 page = tf->page;
779 tf->page = NULL;
780 net->rx_ring.cons++;
781 cleaned_count++;
782
783 hdr = page_address(page);
784 if (!tbnet_check_frame(net, tf, hdr)) {
785 __free_pages(page, TBNET_RX_PAGE_ORDER);
786 dev_kfree_skb_any(net->skb);
787 net->skb = NULL;
788 continue;
789 }
790
791 frame_size = le32_to_cpu(hdr->frame_size);
792
793 skb = net->skb;
794 if (!skb) {
795 skb = build_skb(page_address(page),
796 TBNET_RX_PAGE_SIZE);
797 if (!skb) {
798 __free_pages(page, TBNET_RX_PAGE_ORDER);
799 net->stats.rx_errors++;
800 break;
801 }
802
803 skb_reserve(skb, hdr_size);
804 skb_put(skb, frame_size);
805
806 net->skb = skb;
807 } else {
808 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
809 page, hdr_size, frame_size,
810 TBNET_RX_PAGE_SIZE - hdr_size);
811 }
812
813 net->rx_hdr.frame_size = frame_size;
814 net->rx_hdr.frame_count = le32_to_cpu(hdr->frame_count);
815 net->rx_hdr.frame_index = le16_to_cpu(hdr->frame_index);
816 net->rx_hdr.frame_id = le16_to_cpu(hdr->frame_id);
817 last = net->rx_hdr.frame_index == net->rx_hdr.frame_count - 1;
818
819 rx_packets++;
820 net->stats.rx_bytes += frame_size;
821
822 if (last) {
823 skb->protocol = eth_type_trans(skb, net->dev);
824 napi_gro_receive(&net->napi, skb);
825 net->skb = NULL;
826 }
827 }
828
829 net->stats.rx_packets += rx_packets;
830
831 if (cleaned_count)
832 tbnet_alloc_rx_buffers(net, cleaned_count);
833
834 if (rx_packets >= budget)
835 return budget;
836
837 napi_complete_done(napi, rx_packets);
838 /* Re-enable the ring interrupt */
839 tb_ring_poll_complete(net->rx_ring.ring);
840
841 return rx_packets;
842 }
843
tbnet_start_poll(void * data)844 static void tbnet_start_poll(void *data)
845 {
846 struct tbnet *net = data;
847
848 napi_schedule(&net->napi);
849 }
850
tbnet_open(struct net_device * dev)851 static int tbnet_open(struct net_device *dev)
852 {
853 struct tbnet *net = netdev_priv(dev);
854 struct tb_xdomain *xd = net->xd;
855 u16 sof_mask, eof_mask;
856 struct tb_ring *ring;
857
858 netif_carrier_off(dev);
859
860 ring = tb_ring_alloc_tx(xd->tb->nhi, -1, TBNET_RING_SIZE,
861 RING_FLAG_FRAME);
862 if (!ring) {
863 netdev_err(dev, "failed to allocate Tx ring\n");
864 return -ENOMEM;
865 }
866 net->tx_ring.ring = ring;
867
868 sof_mask = BIT(TBIP_PDF_FRAME_START);
869 eof_mask = BIT(TBIP_PDF_FRAME_END);
870
871 ring = tb_ring_alloc_rx(xd->tb->nhi, -1, TBNET_RING_SIZE,
872 RING_FLAG_FRAME | RING_FLAG_E2E, sof_mask,
873 eof_mask, tbnet_start_poll, net);
874 if (!ring) {
875 netdev_err(dev, "failed to allocate Rx ring\n");
876 tb_ring_free(net->tx_ring.ring);
877 net->tx_ring.ring = NULL;
878 return -ENOMEM;
879 }
880 net->rx_ring.ring = ring;
881
882 napi_enable(&net->napi);
883 start_login(net);
884
885 return 0;
886 }
887
tbnet_stop(struct net_device * dev)888 static int tbnet_stop(struct net_device *dev)
889 {
890 struct tbnet *net = netdev_priv(dev);
891
892 napi_disable(&net->napi);
893
894 cancel_work_sync(&net->disconnect_work);
895 tbnet_tear_down(net, true);
896
897 tb_ring_free(net->rx_ring.ring);
898 net->rx_ring.ring = NULL;
899 tb_ring_free(net->tx_ring.ring);
900 net->tx_ring.ring = NULL;
901
902 return 0;
903 }
904
tbnet_xmit_csum_and_map(struct tbnet * net,struct sk_buff * skb,struct tbnet_frame ** frames,u32 frame_count)905 static bool tbnet_xmit_csum_and_map(struct tbnet *net, struct sk_buff *skb,
906 struct tbnet_frame **frames, u32 frame_count)
907 {
908 struct thunderbolt_ip_frame_header *hdr = page_address(frames[0]->page);
909 struct device *dma_dev = tb_ring_dma_device(net->tx_ring.ring);
910 __wsum wsum = htonl(skb->len - skb_transport_offset(skb));
911 unsigned int i, len, offset = skb_transport_offset(skb);
912 __be16 protocol = skb->protocol;
913 void *data = skb->data;
914 void *dest = hdr + 1;
915 __sum16 *tucso;
916
917 if (skb->ip_summed != CHECKSUM_PARTIAL) {
918 /* No need to calculate checksum so we just update the
919 * total frame count and sync the frames for DMA.
920 */
921 for (i = 0; i < frame_count; i++) {
922 hdr = page_address(frames[i]->page);
923 hdr->frame_count = cpu_to_le32(frame_count);
924 dma_sync_single_for_device(dma_dev,
925 frames[i]->frame.buffer_phy,
926 tbnet_frame_size(frames[i]), DMA_TO_DEVICE);
927 }
928
929 return true;
930 }
931
932 if (protocol == htons(ETH_P_8021Q)) {
933 struct vlan_hdr *vhdr, vh;
934
935 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(vh), &vh);
936 if (!vhdr)
937 return false;
938
939 protocol = vhdr->h_vlan_encapsulated_proto;
940 }
941
942 /* Data points on the beginning of packet.
943 * Check is the checksum absolute place in the packet.
944 * ipcso will update IP checksum.
945 * tucso will update TCP/UPD checksum.
946 */
947 if (protocol == htons(ETH_P_IP)) {
948 __sum16 *ipcso = dest + ((void *)&(ip_hdr(skb)->check) - data);
949
950 *ipcso = 0;
951 *ipcso = ip_fast_csum(dest + skb_network_offset(skb),
952 ip_hdr(skb)->ihl);
953
954 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
955 tucso = dest + ((void *)&(tcp_hdr(skb)->check) - data);
956 else if (ip_hdr(skb)->protocol == IPPROTO_UDP)
957 tucso = dest + ((void *)&(udp_hdr(skb)->check) - data);
958 else
959 return false;
960
961 *tucso = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
962 ip_hdr(skb)->daddr, 0,
963 ip_hdr(skb)->protocol, 0);
964 } else if (skb_is_gso_v6(skb)) {
965 tucso = dest + ((void *)&(tcp_hdr(skb)->check) - data);
966 *tucso = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
967 &ipv6_hdr(skb)->daddr, 0,
968 IPPROTO_TCP, 0);
969 return false;
970 } else if (protocol == htons(ETH_P_IPV6)) {
971 tucso = dest + skb_checksum_start_offset(skb) + skb->csum_offset;
972 *tucso = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
973 &ipv6_hdr(skb)->daddr, 0,
974 ipv6_hdr(skb)->nexthdr, 0);
975 } else {
976 return false;
977 }
978
979 /* First frame was headers, rest of the frames contain data.
980 * Calculate checksum over each frame.
981 */
982 for (i = 0; i < frame_count; i++) {
983 hdr = page_address(frames[i]->page);
984 dest = (void *)(hdr + 1) + offset;
985 len = le32_to_cpu(hdr->frame_size) - offset;
986 wsum = csum_partial(dest, len, wsum);
987 hdr->frame_count = cpu_to_le32(frame_count);
988
989 offset = 0;
990 }
991
992 *tucso = csum_fold(wsum);
993
994 /* Checksum is finally calculated and we don't touch the memory
995 * anymore, so DMA sync the frames now.
996 */
997 for (i = 0; i < frame_count; i++) {
998 dma_sync_single_for_device(dma_dev, frames[i]->frame.buffer_phy,
999 tbnet_frame_size(frames[i]), DMA_TO_DEVICE);
1000 }
1001
1002 return true;
1003 }
1004
tbnet_kmap_frag(struct sk_buff * skb,unsigned int frag_num,unsigned int * len)1005 static void *tbnet_kmap_frag(struct sk_buff *skb, unsigned int frag_num,
1006 unsigned int *len)
1007 {
1008 const skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_num];
1009
1010 *len = skb_frag_size(frag);
1011 return kmap_atomic(skb_frag_page(frag)) + frag->page_offset;
1012 }
1013
tbnet_start_xmit(struct sk_buff * skb,struct net_device * dev)1014 static netdev_tx_t tbnet_start_xmit(struct sk_buff *skb,
1015 struct net_device *dev)
1016 {
1017 struct tbnet *net = netdev_priv(dev);
1018 struct tbnet_frame *frames[MAX_SKB_FRAGS];
1019 u16 frame_id = atomic_read(&net->frame_id);
1020 struct thunderbolt_ip_frame_header *hdr;
1021 unsigned int len = skb_headlen(skb);
1022 unsigned int data_len = skb->len;
1023 unsigned int nframes, i;
1024 unsigned int frag = 0;
1025 void *src = skb->data;
1026 u32 frame_index = 0;
1027 bool unmap = false;
1028 void *dest;
1029
1030 nframes = DIV_ROUND_UP(data_len, TBNET_MAX_PAYLOAD_SIZE);
1031 if (tbnet_available_buffers(&net->tx_ring) < nframes) {
1032 netif_stop_queue(net->dev);
1033 return NETDEV_TX_BUSY;
1034 }
1035
1036 frames[frame_index] = tbnet_get_tx_buffer(net);
1037 if (!frames[frame_index])
1038 goto err_drop;
1039
1040 hdr = page_address(frames[frame_index]->page);
1041 dest = hdr + 1;
1042
1043 /* If overall packet is bigger than the frame data size */
1044 while (data_len > TBNET_MAX_PAYLOAD_SIZE) {
1045 unsigned int size_left = TBNET_MAX_PAYLOAD_SIZE;
1046
1047 hdr->frame_size = cpu_to_le32(TBNET_MAX_PAYLOAD_SIZE);
1048 hdr->frame_index = cpu_to_le16(frame_index);
1049 hdr->frame_id = cpu_to_le16(frame_id);
1050
1051 do {
1052 if (len > size_left) {
1053 /* Copy data onto Tx buffer data with
1054 * full frame size then break and go to
1055 * next frame
1056 */
1057 memcpy(dest, src, size_left);
1058 len -= size_left;
1059 dest += size_left;
1060 src += size_left;
1061 break;
1062 }
1063
1064 memcpy(dest, src, len);
1065 size_left -= len;
1066 dest += len;
1067
1068 if (unmap) {
1069 kunmap_atomic(src);
1070 unmap = false;
1071 }
1072
1073 /* Ensure all fragments have been processed */
1074 if (frag < skb_shinfo(skb)->nr_frags) {
1075 /* Map and then unmap quickly */
1076 src = tbnet_kmap_frag(skb, frag++, &len);
1077 unmap = true;
1078 } else if (unlikely(size_left > 0)) {
1079 goto err_drop;
1080 }
1081 } while (size_left > 0);
1082
1083 data_len -= TBNET_MAX_PAYLOAD_SIZE;
1084 frame_index++;
1085
1086 frames[frame_index] = tbnet_get_tx_buffer(net);
1087 if (!frames[frame_index])
1088 goto err_drop;
1089
1090 hdr = page_address(frames[frame_index]->page);
1091 dest = hdr + 1;
1092 }
1093
1094 hdr->frame_size = cpu_to_le32(data_len);
1095 hdr->frame_index = cpu_to_le16(frame_index);
1096 hdr->frame_id = cpu_to_le16(frame_id);
1097
1098 frames[frame_index]->frame.size = data_len + sizeof(*hdr);
1099
1100 /* In case the remaining data_len is smaller than a frame */
1101 while (len < data_len) {
1102 memcpy(dest, src, len);
1103 data_len -= len;
1104 dest += len;
1105
1106 if (unmap) {
1107 kunmap_atomic(src);
1108 unmap = false;
1109 }
1110
1111 if (frag < skb_shinfo(skb)->nr_frags) {
1112 src = tbnet_kmap_frag(skb, frag++, &len);
1113 unmap = true;
1114 } else if (unlikely(data_len > 0)) {
1115 goto err_drop;
1116 }
1117 }
1118
1119 memcpy(dest, src, data_len);
1120
1121 if (unmap)
1122 kunmap_atomic(src);
1123
1124 if (!tbnet_xmit_csum_and_map(net, skb, frames, frame_index + 1))
1125 goto err_drop;
1126
1127 for (i = 0; i < frame_index + 1; i++)
1128 tb_ring_tx(net->tx_ring.ring, &frames[i]->frame);
1129
1130 if (net->svc->prtcstns & TBNET_MATCH_FRAGS_ID)
1131 atomic_inc(&net->frame_id);
1132
1133 net->stats.tx_packets++;
1134 net->stats.tx_bytes += skb->len;
1135
1136 dev_consume_skb_any(skb);
1137
1138 return NETDEV_TX_OK;
1139
1140 err_drop:
1141 /* We can re-use the buffers */
1142 net->tx_ring.cons -= frame_index;
1143
1144 dev_kfree_skb_any(skb);
1145 net->stats.tx_errors++;
1146
1147 return NETDEV_TX_OK;
1148 }
1149
tbnet_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)1150 static void tbnet_get_stats64(struct net_device *dev,
1151 struct rtnl_link_stats64 *stats)
1152 {
1153 struct tbnet *net = netdev_priv(dev);
1154
1155 stats->tx_packets = net->stats.tx_packets;
1156 stats->rx_packets = net->stats.rx_packets;
1157 stats->tx_bytes = net->stats.tx_bytes;
1158 stats->rx_bytes = net->stats.rx_bytes;
1159 stats->rx_errors = net->stats.rx_errors + net->stats.rx_length_errors +
1160 net->stats.rx_over_errors + net->stats.rx_crc_errors +
1161 net->stats.rx_missed_errors;
1162 stats->tx_errors = net->stats.tx_errors;
1163 stats->rx_length_errors = net->stats.rx_length_errors;
1164 stats->rx_over_errors = net->stats.rx_over_errors;
1165 stats->rx_crc_errors = net->stats.rx_crc_errors;
1166 stats->rx_missed_errors = net->stats.rx_missed_errors;
1167 }
1168
1169 static const struct net_device_ops tbnet_netdev_ops = {
1170 .ndo_open = tbnet_open,
1171 .ndo_stop = tbnet_stop,
1172 .ndo_start_xmit = tbnet_start_xmit,
1173 .ndo_get_stats64 = tbnet_get_stats64,
1174 };
1175
tbnet_generate_mac(struct net_device * dev)1176 static void tbnet_generate_mac(struct net_device *dev)
1177 {
1178 const struct tbnet *net = netdev_priv(dev);
1179 const struct tb_xdomain *xd = net->xd;
1180 u8 phy_port;
1181 u32 hash;
1182
1183 phy_port = tb_phy_port_from_link(TBNET_L0_PORT_NUM(xd->route));
1184
1185 /* Unicast and locally administered MAC */
1186 dev->dev_addr[0] = phy_port << 4 | 0x02;
1187 hash = jhash2((u32 *)xd->local_uuid, 4, 0);
1188 memcpy(dev->dev_addr + 1, &hash, sizeof(hash));
1189 hash = jhash2((u32 *)xd->local_uuid, 4, hash);
1190 dev->dev_addr[5] = hash & 0xff;
1191 }
1192
tbnet_probe(struct tb_service * svc,const struct tb_service_id * id)1193 static int tbnet_probe(struct tb_service *svc, const struct tb_service_id *id)
1194 {
1195 struct tb_xdomain *xd = tb_service_parent(svc);
1196 struct net_device *dev;
1197 struct tbnet *net;
1198 int ret;
1199
1200 dev = alloc_etherdev(sizeof(*net));
1201 if (!dev)
1202 return -ENOMEM;
1203
1204 SET_NETDEV_DEV(dev, &svc->dev);
1205
1206 net = netdev_priv(dev);
1207 INIT_DELAYED_WORK(&net->login_work, tbnet_login_work);
1208 INIT_WORK(&net->connected_work, tbnet_connected_work);
1209 INIT_WORK(&net->disconnect_work, tbnet_disconnect_work);
1210 mutex_init(&net->connection_lock);
1211 atomic_set(&net->command_id, 0);
1212 atomic_set(&net->frame_id, 0);
1213 net->svc = svc;
1214 net->dev = dev;
1215 net->xd = xd;
1216
1217 tbnet_generate_mac(dev);
1218
1219 strcpy(dev->name, "thunderbolt%d");
1220 dev->netdev_ops = &tbnet_netdev_ops;
1221
1222 /* ThunderboltIP takes advantage of TSO packets but instead of
1223 * segmenting them we just split the packet into Thunderbolt
1224 * frames (maximum payload size of each frame is 4084 bytes) and
1225 * calculate checksum over the whole packet here.
1226 *
1227 * The receiving side does the opposite if the host OS supports
1228 * LRO, otherwise it needs to split the large packet into MTU
1229 * sized smaller packets.
1230 *
1231 * In order to receive large packets from the networking stack,
1232 * we need to announce support for most of the offloading
1233 * features here.
1234 */
1235 dev->hw_features = NETIF_F_SG | NETIF_F_ALL_TSO | NETIF_F_GRO |
1236 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1237 dev->features = dev->hw_features | NETIF_F_HIGHDMA;
1238 dev->hard_header_len += sizeof(struct thunderbolt_ip_frame_header);
1239
1240 netif_napi_add(dev, &net->napi, tbnet_poll, NAPI_POLL_WEIGHT);
1241
1242 /* MTU range: 68 - 65522 */
1243 dev->min_mtu = ETH_MIN_MTU;
1244 dev->max_mtu = TBNET_MAX_MTU - ETH_HLEN;
1245
1246 net->handler.uuid = &tbnet_svc_uuid;
1247 net->handler.callback = tbnet_handle_packet,
1248 net->handler.data = net;
1249 tb_register_protocol_handler(&net->handler);
1250
1251 tb_service_set_drvdata(svc, net);
1252
1253 ret = register_netdev(dev);
1254 if (ret) {
1255 tb_unregister_protocol_handler(&net->handler);
1256 free_netdev(dev);
1257 return ret;
1258 }
1259
1260 return 0;
1261 }
1262
tbnet_remove(struct tb_service * svc)1263 static void tbnet_remove(struct tb_service *svc)
1264 {
1265 struct tbnet *net = tb_service_get_drvdata(svc);
1266
1267 unregister_netdev(net->dev);
1268 tb_unregister_protocol_handler(&net->handler);
1269 free_netdev(net->dev);
1270 }
1271
tbnet_shutdown(struct tb_service * svc)1272 static void tbnet_shutdown(struct tb_service *svc)
1273 {
1274 tbnet_tear_down(tb_service_get_drvdata(svc), true);
1275 }
1276
tbnet_suspend(struct device * dev)1277 static int __maybe_unused tbnet_suspend(struct device *dev)
1278 {
1279 struct tb_service *svc = tb_to_service(dev);
1280 struct tbnet *net = tb_service_get_drvdata(svc);
1281
1282 stop_login(net);
1283 if (netif_running(net->dev)) {
1284 netif_device_detach(net->dev);
1285 tbnet_tear_down(net, true);
1286 }
1287
1288 return 0;
1289 }
1290
tbnet_resume(struct device * dev)1291 static int __maybe_unused tbnet_resume(struct device *dev)
1292 {
1293 struct tb_service *svc = tb_to_service(dev);
1294 struct tbnet *net = tb_service_get_drvdata(svc);
1295
1296 netif_carrier_off(net->dev);
1297 if (netif_running(net->dev)) {
1298 netif_device_attach(net->dev);
1299 start_login(net);
1300 }
1301
1302 return 0;
1303 }
1304
1305 static const struct dev_pm_ops tbnet_pm_ops = {
1306 SET_SYSTEM_SLEEP_PM_OPS(tbnet_suspend, tbnet_resume)
1307 };
1308
1309 static const struct tb_service_id tbnet_ids[] = {
1310 { TB_SERVICE("network", 1) },
1311 { },
1312 };
1313 MODULE_DEVICE_TABLE(tbsvc, tbnet_ids);
1314
1315 static struct tb_service_driver tbnet_driver = {
1316 .driver = {
1317 .owner = THIS_MODULE,
1318 .name = "thunderbolt-net",
1319 .pm = &tbnet_pm_ops,
1320 },
1321 .probe = tbnet_probe,
1322 .remove = tbnet_remove,
1323 .shutdown = tbnet_shutdown,
1324 .id_table = tbnet_ids,
1325 };
1326
tbnet_init(void)1327 static int __init tbnet_init(void)
1328 {
1329 int ret;
1330
1331 tbnet_dir = tb_property_create_dir(&tbnet_dir_uuid);
1332 if (!tbnet_dir)
1333 return -ENOMEM;
1334
1335 tb_property_add_immediate(tbnet_dir, "prtcid", 1);
1336 tb_property_add_immediate(tbnet_dir, "prtcvers", 1);
1337 tb_property_add_immediate(tbnet_dir, "prtcrevs", 1);
1338 tb_property_add_immediate(tbnet_dir, "prtcstns",
1339 TBNET_MATCH_FRAGS_ID);
1340
1341 ret = tb_register_property_dir("network", tbnet_dir);
1342 if (ret) {
1343 tb_property_free_dir(tbnet_dir);
1344 return ret;
1345 }
1346
1347 return tb_register_service_driver(&tbnet_driver);
1348 }
1349 module_init(tbnet_init);
1350
tbnet_exit(void)1351 static void __exit tbnet_exit(void)
1352 {
1353 tb_unregister_service_driver(&tbnet_driver);
1354 tb_unregister_property_dir("network", tbnet_dir);
1355 tb_property_free_dir(tbnet_dir);
1356 }
1357 module_exit(tbnet_exit);
1358
1359 MODULE_AUTHOR("Amir Levy <amir.jer.levy@intel.com>");
1360 MODULE_AUTHOR("Michael Jamet <michael.jamet@intel.com>");
1361 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
1362 MODULE_DESCRIPTION("Thunderbolt network driver");
1363 MODULE_LICENSE("GPL v2");
1364