1 // SPDX-License-Identifier: GPL-2.0
2 /* NXP C45 PHY driver
3 * Copyright (C) 2021 NXP
4 * Author: Radu Pirea <radu-nicolae.pirea@oss.nxp.com>
5 */
6
7 #include <linux/delay.h>
8 #include <linux/ethtool.h>
9 #include <linux/ethtool_netlink.h>
10 #include <linux/kernel.h>
11 #include <linux/mii.h>
12 #include <linux/module.h>
13 #include <linux/phy.h>
14 #include <linux/processor.h>
15 #include <linux/property.h>
16 #include <linux/ptp_classify.h>
17 #include <linux/ptp_clock_kernel.h>
18 #include <linux/net_tstamp.h>
19
20 #define PHY_ID_TJA_1103 0x001BB010
21
22 #define PMAPMD_B100T1_PMAPMD_CTL 0x0834
23 #define B100T1_PMAPMD_CONFIG_EN BIT(15)
24 #define B100T1_PMAPMD_MASTER BIT(14)
25 #define MASTER_MODE (B100T1_PMAPMD_CONFIG_EN | \
26 B100T1_PMAPMD_MASTER)
27 #define SLAVE_MODE (B100T1_PMAPMD_CONFIG_EN)
28
29 #define VEND1_DEVICE_CONTROL 0x0040
30 #define DEVICE_CONTROL_RESET BIT(15)
31 #define DEVICE_CONTROL_CONFIG_GLOBAL_EN BIT(14)
32 #define DEVICE_CONTROL_CONFIG_ALL_EN BIT(13)
33
34 #define VEND1_PHY_IRQ_ACK 0x80A0
35 #define VEND1_PHY_IRQ_EN 0x80A1
36 #define VEND1_PHY_IRQ_STATUS 0x80A2
37 #define PHY_IRQ_LINK_EVENT BIT(1)
38
39 #define VEND1_PHY_CONTROL 0x8100
40 #define PHY_CONFIG_EN BIT(14)
41 #define PHY_START_OP BIT(0)
42
43 #define VEND1_PHY_CONFIG 0x8108
44 #define PHY_CONFIG_AUTO BIT(0)
45
46 #define VEND1_SIGNAL_QUALITY 0x8320
47 #define SQI_VALID BIT(14)
48 #define SQI_MASK GENMASK(2, 0)
49 #define MAX_SQI SQI_MASK
50
51 #define VEND1_CABLE_TEST 0x8330
52 #define CABLE_TEST_ENABLE BIT(15)
53 #define CABLE_TEST_START BIT(14)
54 #define CABLE_TEST_VALID BIT(13)
55 #define CABLE_TEST_OK 0x00
56 #define CABLE_TEST_SHORTED 0x01
57 #define CABLE_TEST_OPEN 0x02
58 #define CABLE_TEST_UNKNOWN 0x07
59
60 #define VEND1_PORT_CONTROL 0x8040
61 #define PORT_CONTROL_EN BIT(14)
62
63 #define VEND1_PORT_ABILITIES 0x8046
64 #define PTP_ABILITY BIT(3)
65
66 #define VEND1_PORT_INFRA_CONTROL 0xAC00
67 #define PORT_INFRA_CONTROL_EN BIT(14)
68
69 #define VEND1_RXID 0xAFCC
70 #define VEND1_TXID 0xAFCD
71 #define ID_ENABLE BIT(15)
72
73 #define VEND1_ABILITIES 0xAFC4
74 #define RGMII_ID_ABILITY BIT(15)
75 #define RGMII_ABILITY BIT(14)
76 #define RMII_ABILITY BIT(10)
77 #define REVMII_ABILITY BIT(9)
78 #define MII_ABILITY BIT(8)
79 #define SGMII_ABILITY BIT(0)
80
81 #define VEND1_MII_BASIC_CONFIG 0xAFC6
82 #define MII_BASIC_CONFIG_REV BIT(8)
83 #define MII_BASIC_CONFIG_SGMII 0x9
84 #define MII_BASIC_CONFIG_RGMII 0x7
85 #define MII_BASIC_CONFIG_RMII 0x5
86 #define MII_BASIC_CONFIG_MII 0x4
87
88 #define VEND1_SYMBOL_ERROR_COUNTER 0x8350
89 #define VEND1_LINK_DROP_COUNTER 0x8352
90 #define VEND1_LINK_LOSSES_AND_FAILURES 0x8353
91 #define VEND1_R_GOOD_FRAME_CNT 0xA950
92 #define VEND1_R_BAD_FRAME_CNT 0xA952
93 #define VEND1_R_RXER_FRAME_CNT 0xA954
94 #define VEND1_RX_PREAMBLE_COUNT 0xAFCE
95 #define VEND1_TX_PREAMBLE_COUNT 0xAFCF
96 #define VEND1_RX_IPG_LENGTH 0xAFD0
97 #define VEND1_TX_IPG_LENGTH 0xAFD1
98 #define COUNTER_EN BIT(15)
99
100 #define VEND1_PTP_CONFIG 0x1102
101 #define EXT_TRG_EDGE BIT(1)
102 #define PPS_OUT_POL BIT(2)
103 #define PPS_OUT_EN BIT(3)
104
105 #define VEND1_LTC_LOAD_CTRL 0x1105
106 #define READ_LTC BIT(2)
107 #define LOAD_LTC BIT(0)
108
109 #define VEND1_LTC_WR_NSEC_0 0x1106
110 #define VEND1_LTC_WR_NSEC_1 0x1107
111 #define VEND1_LTC_WR_SEC_0 0x1108
112 #define VEND1_LTC_WR_SEC_1 0x1109
113
114 #define VEND1_LTC_RD_NSEC_0 0x110A
115 #define VEND1_LTC_RD_NSEC_1 0x110B
116 #define VEND1_LTC_RD_SEC_0 0x110C
117 #define VEND1_LTC_RD_SEC_1 0x110D
118
119 #define VEND1_RATE_ADJ_SUBNS_0 0x110F
120 #define VEND1_RATE_ADJ_SUBNS_1 0x1110
121 #define CLK_RATE_ADJ_LD BIT(15)
122 #define CLK_RATE_ADJ_DIR BIT(14)
123
124 #define VEND1_HW_LTC_LOCK_CTRL 0x1115
125 #define HW_LTC_LOCK_EN BIT(0)
126
127 #define VEND1_PTP_IRQ_EN 0x1131
128 #define VEND1_PTP_IRQ_STATUS 0x1132
129 #define PTP_IRQ_EGR_TS BIT(0)
130
131 #define VEND1_RX_TS_INSRT_CTRL 0x114D
132 #define RX_TS_INSRT_MODE2 0x02
133
134 #define VEND1_EGR_RING_DATA_0 0x114E
135 #define VEND1_EGR_RING_DATA_1_SEQ_ID 0x114F
136 #define VEND1_EGR_RING_DATA_2_NSEC_15_0 0x1150
137 #define VEND1_EGR_RING_DATA_3 0x1151
138 #define VEND1_EGR_RING_CTRL 0x1154
139
140 #define VEND1_EXT_TRG_TS_DATA_0 0x1121
141 #define VEND1_EXT_TRG_TS_DATA_1 0x1122
142 #define VEND1_EXT_TRG_TS_DATA_2 0x1123
143 #define VEND1_EXT_TRG_TS_DATA_3 0x1124
144 #define VEND1_EXT_TRG_TS_DATA_4 0x1125
145 #define VEND1_EXT_TRG_TS_CTRL 0x1126
146
147 #define RING_DATA_0_DOMAIN_NUMBER GENMASK(7, 0)
148 #define RING_DATA_0_MSG_TYPE GENMASK(11, 8)
149 #define RING_DATA_0_SEC_4_2 GENMASK(14, 2)
150 #define RING_DATA_0_TS_VALID BIT(15)
151
152 #define RING_DATA_3_NSEC_29_16 GENMASK(13, 0)
153 #define RING_DATA_3_SEC_1_0 GENMASK(15, 14)
154 #define RING_DATA_5_SEC_16_5 GENMASK(15, 4)
155 #define RING_DONE BIT(0)
156
157 #define TS_SEC_MASK GENMASK(1, 0)
158
159 #define VEND1_PORT_FUNC_ENABLES 0x8048
160 #define PTP_ENABLE BIT(3)
161
162 #define VEND1_PORT_PTP_CONTROL 0x9000
163 #define PORT_PTP_CONTROL_BYPASS BIT(11)
164
165 #define VEND1_PTP_CLK_PERIOD 0x1104
166 #define PTP_CLK_PERIOD_100BT1 15ULL
167
168 #define VEND1_EVENT_MSG_FILT 0x1148
169 #define EVENT_MSG_FILT_ALL 0x0F
170 #define EVENT_MSG_FILT_NONE 0x00
171
172 #define VEND1_TX_PIPE_DLY_NS 0x1149
173 #define VEND1_TX_PIPEDLY_SUBNS 0x114A
174 #define VEND1_RX_PIPE_DLY_NS 0x114B
175 #define VEND1_RX_PIPEDLY_SUBNS 0x114C
176
177 #define VEND1_GPIO_FUNC_CONFIG_BASE 0x2C40
178 #define GPIO_FUNC_EN BIT(15)
179 #define GPIO_FUNC_PTP BIT(6)
180 #define GPIO_SIGNAL_PTP_TRIGGER 0x01
181 #define GPIO_SIGNAL_PPS_OUT 0x12
182 #define GPIO_DISABLE 0
183 #define GPIO_PPS_OUT_CFG (GPIO_FUNC_EN | GPIO_FUNC_PTP | \
184 GPIO_SIGNAL_PPS_OUT)
185 #define GPIO_EXTTS_OUT_CFG (GPIO_FUNC_EN | GPIO_FUNC_PTP | \
186 GPIO_SIGNAL_PTP_TRIGGER)
187
188 #define RGMII_PERIOD_PS 8000U
189 #define PS_PER_DEGREE div_u64(RGMII_PERIOD_PS, 360)
190 #define MIN_ID_PS 1644U
191 #define MAX_ID_PS 2260U
192 #define DEFAULT_ID_PS 2000U
193
194 #define PPM_TO_SUBNS_INC(ppb) div_u64(GENMASK(31, 0) * (ppb) * \
195 PTP_CLK_PERIOD_100BT1, NSEC_PER_SEC)
196
197 #define NXP_C45_SKB_CB(skb) ((struct nxp_c45_skb_cb *)(skb)->cb)
198
199 struct nxp_c45_skb_cb {
200 struct ptp_header *header;
201 unsigned int type;
202 };
203
204 struct nxp_c45_hwts {
205 u32 nsec;
206 u32 sec;
207 u8 domain_number;
208 u16 sequence_id;
209 u8 msg_type;
210 };
211
212 struct nxp_c45_phy {
213 struct phy_device *phydev;
214 struct mii_timestamper mii_ts;
215 struct ptp_clock *ptp_clock;
216 struct ptp_clock_info caps;
217 struct sk_buff_head tx_queue;
218 struct sk_buff_head rx_queue;
219 /* used to access the PTP registers atomic */
220 struct mutex ptp_lock;
221 int hwts_tx;
222 int hwts_rx;
223 u32 tx_delay;
224 u32 rx_delay;
225 struct timespec64 extts_ts;
226 int extts_index;
227 bool extts;
228 };
229
230 struct nxp_c45_phy_stats {
231 const char *name;
232 u8 mmd;
233 u16 reg;
234 u8 off;
235 u16 mask;
236 };
237
nxp_c45_poll_txts(struct phy_device * phydev)238 static bool nxp_c45_poll_txts(struct phy_device *phydev)
239 {
240 return phydev->irq <= 0;
241 }
242
_nxp_c45_ptp_gettimex64(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)243 static int _nxp_c45_ptp_gettimex64(struct ptp_clock_info *ptp,
244 struct timespec64 *ts,
245 struct ptp_system_timestamp *sts)
246 {
247 struct nxp_c45_phy *priv = container_of(ptp, struct nxp_c45_phy, caps);
248
249 phy_write_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_LTC_LOAD_CTRL,
250 READ_LTC);
251 ts->tv_nsec = phy_read_mmd(priv->phydev, MDIO_MMD_VEND1,
252 VEND1_LTC_RD_NSEC_0);
253 ts->tv_nsec |= phy_read_mmd(priv->phydev, MDIO_MMD_VEND1,
254 VEND1_LTC_RD_NSEC_1) << 16;
255 ts->tv_sec = phy_read_mmd(priv->phydev, MDIO_MMD_VEND1,
256 VEND1_LTC_RD_SEC_0);
257 ts->tv_sec |= phy_read_mmd(priv->phydev, MDIO_MMD_VEND1,
258 VEND1_LTC_RD_SEC_1) << 16;
259
260 return 0;
261 }
262
nxp_c45_ptp_gettimex64(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)263 static int nxp_c45_ptp_gettimex64(struct ptp_clock_info *ptp,
264 struct timespec64 *ts,
265 struct ptp_system_timestamp *sts)
266 {
267 struct nxp_c45_phy *priv = container_of(ptp, struct nxp_c45_phy, caps);
268
269 mutex_lock(&priv->ptp_lock);
270 _nxp_c45_ptp_gettimex64(ptp, ts, sts);
271 mutex_unlock(&priv->ptp_lock);
272
273 return 0;
274 }
275
_nxp_c45_ptp_settime64(struct ptp_clock_info * ptp,const struct timespec64 * ts)276 static int _nxp_c45_ptp_settime64(struct ptp_clock_info *ptp,
277 const struct timespec64 *ts)
278 {
279 struct nxp_c45_phy *priv = container_of(ptp, struct nxp_c45_phy, caps);
280
281 phy_write_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_LTC_WR_NSEC_0,
282 ts->tv_nsec);
283 phy_write_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_LTC_WR_NSEC_1,
284 ts->tv_nsec >> 16);
285 phy_write_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_LTC_WR_SEC_0,
286 ts->tv_sec);
287 phy_write_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_LTC_WR_SEC_1,
288 ts->tv_sec >> 16);
289 phy_write_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_LTC_LOAD_CTRL,
290 LOAD_LTC);
291
292 return 0;
293 }
294
nxp_c45_ptp_settime64(struct ptp_clock_info * ptp,const struct timespec64 * ts)295 static int nxp_c45_ptp_settime64(struct ptp_clock_info *ptp,
296 const struct timespec64 *ts)
297 {
298 struct nxp_c45_phy *priv = container_of(ptp, struct nxp_c45_phy, caps);
299
300 mutex_lock(&priv->ptp_lock);
301 _nxp_c45_ptp_settime64(ptp, ts);
302 mutex_unlock(&priv->ptp_lock);
303
304 return 0;
305 }
306
nxp_c45_ptp_adjfine(struct ptp_clock_info * ptp,long scaled_ppm)307 static int nxp_c45_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
308 {
309 struct nxp_c45_phy *priv = container_of(ptp, struct nxp_c45_phy, caps);
310 s32 ppb = scaled_ppm_to_ppb(scaled_ppm);
311 u64 subns_inc_val;
312 bool inc;
313
314 mutex_lock(&priv->ptp_lock);
315 inc = ppb >= 0;
316 ppb = abs(ppb);
317
318 subns_inc_val = PPM_TO_SUBNS_INC(ppb);
319
320 phy_write_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_RATE_ADJ_SUBNS_0,
321 subns_inc_val);
322 subns_inc_val >>= 16;
323 subns_inc_val |= CLK_RATE_ADJ_LD;
324 if (inc)
325 subns_inc_val |= CLK_RATE_ADJ_DIR;
326
327 phy_write_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_RATE_ADJ_SUBNS_1,
328 subns_inc_val);
329 mutex_unlock(&priv->ptp_lock);
330
331 return 0;
332 }
333
nxp_c45_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)334 static int nxp_c45_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
335 {
336 struct nxp_c45_phy *priv = container_of(ptp, struct nxp_c45_phy, caps);
337 struct timespec64 now, then;
338
339 mutex_lock(&priv->ptp_lock);
340 then = ns_to_timespec64(delta);
341 _nxp_c45_ptp_gettimex64(ptp, &now, NULL);
342 now = timespec64_add(now, then);
343 _nxp_c45_ptp_settime64(ptp, &now);
344 mutex_unlock(&priv->ptp_lock);
345
346 return 0;
347 }
348
nxp_c45_reconstruct_ts(struct timespec64 * ts,struct nxp_c45_hwts * hwts)349 static void nxp_c45_reconstruct_ts(struct timespec64 *ts,
350 struct nxp_c45_hwts *hwts)
351 {
352 ts->tv_nsec = hwts->nsec;
353 if ((ts->tv_sec & TS_SEC_MASK) < (hwts->sec & TS_SEC_MASK))
354 ts->tv_sec -= TS_SEC_MASK + 1;
355 ts->tv_sec &= ~TS_SEC_MASK;
356 ts->tv_sec |= hwts->sec & TS_SEC_MASK;
357 }
358
nxp_c45_match_ts(struct ptp_header * header,struct nxp_c45_hwts * hwts,unsigned int type)359 static bool nxp_c45_match_ts(struct ptp_header *header,
360 struct nxp_c45_hwts *hwts,
361 unsigned int type)
362 {
363 return ntohs(header->sequence_id) == hwts->sequence_id &&
364 ptp_get_msgtype(header, type) == hwts->msg_type &&
365 header->domain_number == hwts->domain_number;
366 }
367
nxp_c45_get_extts(struct nxp_c45_phy * priv,struct timespec64 * extts)368 static void nxp_c45_get_extts(struct nxp_c45_phy *priv,
369 struct timespec64 *extts)
370 {
371 extts->tv_nsec = phy_read_mmd(priv->phydev, MDIO_MMD_VEND1,
372 VEND1_EXT_TRG_TS_DATA_0);
373 extts->tv_nsec |= phy_read_mmd(priv->phydev, MDIO_MMD_VEND1,
374 VEND1_EXT_TRG_TS_DATA_1) << 16;
375 extts->tv_sec = phy_read_mmd(priv->phydev, MDIO_MMD_VEND1,
376 VEND1_EXT_TRG_TS_DATA_2);
377 extts->tv_sec |= phy_read_mmd(priv->phydev, MDIO_MMD_VEND1,
378 VEND1_EXT_TRG_TS_DATA_3) << 16;
379 phy_write_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_EXT_TRG_TS_CTRL,
380 RING_DONE);
381 }
382
nxp_c45_get_hwtxts(struct nxp_c45_phy * priv,struct nxp_c45_hwts * hwts)383 static bool nxp_c45_get_hwtxts(struct nxp_c45_phy *priv,
384 struct nxp_c45_hwts *hwts)
385 {
386 bool valid;
387 u16 reg;
388
389 mutex_lock(&priv->ptp_lock);
390 phy_write_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_EGR_RING_CTRL,
391 RING_DONE);
392 reg = phy_read_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_EGR_RING_DATA_0);
393 valid = !!(reg & RING_DATA_0_TS_VALID);
394 if (!valid)
395 goto nxp_c45_get_hwtxts_out;
396
397 hwts->domain_number = reg;
398 hwts->msg_type = (reg & RING_DATA_0_MSG_TYPE) >> 8;
399 hwts->sec = (reg & RING_DATA_0_SEC_4_2) >> 10;
400 hwts->sequence_id = phy_read_mmd(priv->phydev, MDIO_MMD_VEND1,
401 VEND1_EGR_RING_DATA_1_SEQ_ID);
402 hwts->nsec = phy_read_mmd(priv->phydev, MDIO_MMD_VEND1,
403 VEND1_EGR_RING_DATA_2_NSEC_15_0);
404 reg = phy_read_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_EGR_RING_DATA_3);
405 hwts->nsec |= (reg & RING_DATA_3_NSEC_29_16) << 16;
406 hwts->sec |= (reg & RING_DATA_3_SEC_1_0) >> 14;
407
408 nxp_c45_get_hwtxts_out:
409 mutex_unlock(&priv->ptp_lock);
410 return valid;
411 }
412
nxp_c45_process_txts(struct nxp_c45_phy * priv,struct nxp_c45_hwts * txts)413 static void nxp_c45_process_txts(struct nxp_c45_phy *priv,
414 struct nxp_c45_hwts *txts)
415 {
416 struct sk_buff *skb, *tmp, *skb_match = NULL;
417 struct skb_shared_hwtstamps shhwtstamps;
418 struct timespec64 ts;
419 unsigned long flags;
420 bool ts_match;
421 s64 ts_ns;
422
423 spin_lock_irqsave(&priv->tx_queue.lock, flags);
424 skb_queue_walk_safe(&priv->tx_queue, skb, tmp) {
425 ts_match = nxp_c45_match_ts(NXP_C45_SKB_CB(skb)->header, txts,
426 NXP_C45_SKB_CB(skb)->type);
427 if (!ts_match)
428 continue;
429 skb_match = skb;
430 __skb_unlink(skb, &priv->tx_queue);
431 break;
432 }
433 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
434
435 if (skb_match) {
436 nxp_c45_ptp_gettimex64(&priv->caps, &ts, NULL);
437 nxp_c45_reconstruct_ts(&ts, txts);
438 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
439 ts_ns = timespec64_to_ns(&ts);
440 shhwtstamps.hwtstamp = ns_to_ktime(ts_ns);
441 skb_complete_tx_timestamp(skb_match, &shhwtstamps);
442 } else {
443 phydev_warn(priv->phydev,
444 "the tx timestamp doesn't match with any skb\n");
445 }
446 }
447
nxp_c45_do_aux_work(struct ptp_clock_info * ptp)448 static long nxp_c45_do_aux_work(struct ptp_clock_info *ptp)
449 {
450 struct nxp_c45_phy *priv = container_of(ptp, struct nxp_c45_phy, caps);
451 bool poll_txts = nxp_c45_poll_txts(priv->phydev);
452 struct skb_shared_hwtstamps *shhwtstamps_rx;
453 struct ptp_clock_event event;
454 struct nxp_c45_hwts hwts;
455 bool reschedule = false;
456 struct timespec64 ts;
457 struct sk_buff *skb;
458 bool txts_valid;
459 u32 ts_raw;
460
461 while (!skb_queue_empty_lockless(&priv->tx_queue) && poll_txts) {
462 txts_valid = nxp_c45_get_hwtxts(priv, &hwts);
463 if (unlikely(!txts_valid)) {
464 /* Still more skbs in the queue */
465 reschedule = true;
466 break;
467 }
468
469 nxp_c45_process_txts(priv, &hwts);
470 }
471
472 while ((skb = skb_dequeue(&priv->rx_queue)) != NULL) {
473 nxp_c45_ptp_gettimex64(&priv->caps, &ts, NULL);
474 ts_raw = __be32_to_cpu(NXP_C45_SKB_CB(skb)->header->reserved2);
475 hwts.sec = ts_raw >> 30;
476 hwts.nsec = ts_raw & GENMASK(29, 0);
477 nxp_c45_reconstruct_ts(&ts, &hwts);
478 shhwtstamps_rx = skb_hwtstamps(skb);
479 shhwtstamps_rx->hwtstamp = ns_to_ktime(timespec64_to_ns(&ts));
480 NXP_C45_SKB_CB(skb)->header->reserved2 = 0;
481 netif_rx(skb);
482 }
483
484 if (priv->extts) {
485 nxp_c45_get_extts(priv, &ts);
486 if (timespec64_compare(&ts, &priv->extts_ts) != 0) {
487 priv->extts_ts = ts;
488 event.index = priv->extts_index;
489 event.type = PTP_CLOCK_EXTTS;
490 event.timestamp = ns_to_ktime(timespec64_to_ns(&ts));
491 ptp_clock_event(priv->ptp_clock, &event);
492 }
493 reschedule = true;
494 }
495
496 return reschedule ? 1 : -1;
497 }
498
nxp_c45_gpio_config(struct nxp_c45_phy * priv,int pin,u16 pin_cfg)499 static void nxp_c45_gpio_config(struct nxp_c45_phy *priv,
500 int pin, u16 pin_cfg)
501 {
502 struct phy_device *phydev = priv->phydev;
503
504 phy_write_mmd(phydev, MDIO_MMD_VEND1,
505 VEND1_GPIO_FUNC_CONFIG_BASE + pin, pin_cfg);
506 }
507
nxp_c45_perout_enable(struct nxp_c45_phy * priv,struct ptp_perout_request * perout,int on)508 static int nxp_c45_perout_enable(struct nxp_c45_phy *priv,
509 struct ptp_perout_request *perout, int on)
510 {
511 struct phy_device *phydev = priv->phydev;
512 int pin;
513
514 if (perout->flags & ~PTP_PEROUT_PHASE)
515 return -EOPNOTSUPP;
516
517 pin = ptp_find_pin(priv->ptp_clock, PTP_PF_PEROUT, perout->index);
518 if (pin < 0)
519 return pin;
520
521 if (!on) {
522 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_PTP_CONFIG,
523 PPS_OUT_EN);
524 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_PTP_CONFIG,
525 PPS_OUT_POL);
526
527 nxp_c45_gpio_config(priv, pin, GPIO_DISABLE);
528
529 return 0;
530 }
531
532 /* The PPS signal is fixed to 1 second and is always generated when the
533 * seconds counter is incremented. The start time is not configurable.
534 * If the clock is adjusted, the PPS signal is automatically readjusted.
535 */
536 if (perout->period.sec != 1 || perout->period.nsec != 0) {
537 phydev_warn(phydev, "The period can be set only to 1 second.");
538 return -EINVAL;
539 }
540
541 if (!(perout->flags & PTP_PEROUT_PHASE)) {
542 if (perout->start.sec != 0 || perout->start.nsec != 0) {
543 phydev_warn(phydev, "The start time is not configurable. Should be set to 0 seconds and 0 nanoseconds.");
544 return -EINVAL;
545 }
546 } else {
547 if (perout->phase.nsec != 0 &&
548 perout->phase.nsec != (NSEC_PER_SEC >> 1)) {
549 phydev_warn(phydev, "The phase can be set only to 0 or 500000000 nanoseconds.");
550 return -EINVAL;
551 }
552
553 if (perout->phase.nsec == 0)
554 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
555 VEND1_PTP_CONFIG, PPS_OUT_POL);
556 else
557 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
558 VEND1_PTP_CONFIG, PPS_OUT_POL);
559 }
560
561 nxp_c45_gpio_config(priv, pin, GPIO_PPS_OUT_CFG);
562
563 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_PTP_CONFIG, PPS_OUT_EN);
564
565 return 0;
566 }
567
nxp_c45_extts_enable(struct nxp_c45_phy * priv,struct ptp_extts_request * extts,int on)568 static int nxp_c45_extts_enable(struct nxp_c45_phy *priv,
569 struct ptp_extts_request *extts, int on)
570 {
571 int pin;
572
573 if (extts->flags & ~(PTP_ENABLE_FEATURE |
574 PTP_RISING_EDGE |
575 PTP_FALLING_EDGE |
576 PTP_STRICT_FLAGS))
577 return -EOPNOTSUPP;
578
579 /* Sampling on both edges is not supported */
580 if ((extts->flags & PTP_RISING_EDGE) &&
581 (extts->flags & PTP_FALLING_EDGE))
582 return -EOPNOTSUPP;
583
584 pin = ptp_find_pin(priv->ptp_clock, PTP_PF_EXTTS, extts->index);
585 if (pin < 0)
586 return pin;
587
588 if (!on) {
589 nxp_c45_gpio_config(priv, pin, GPIO_DISABLE);
590 priv->extts = false;
591
592 return 0;
593 }
594
595 if (extts->flags & PTP_RISING_EDGE)
596 phy_clear_bits_mmd(priv->phydev, MDIO_MMD_VEND1,
597 VEND1_PTP_CONFIG, EXT_TRG_EDGE);
598
599 if (extts->flags & PTP_FALLING_EDGE)
600 phy_set_bits_mmd(priv->phydev, MDIO_MMD_VEND1,
601 VEND1_PTP_CONFIG, EXT_TRG_EDGE);
602
603 nxp_c45_gpio_config(priv, pin, GPIO_EXTTS_OUT_CFG);
604 priv->extts = true;
605 priv->extts_index = extts->index;
606 ptp_schedule_worker(priv->ptp_clock, 0);
607
608 return 0;
609 }
610
nxp_c45_ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * req,int on)611 static int nxp_c45_ptp_enable(struct ptp_clock_info *ptp,
612 struct ptp_clock_request *req, int on)
613 {
614 struct nxp_c45_phy *priv = container_of(ptp, struct nxp_c45_phy, caps);
615
616 switch (req->type) {
617 case PTP_CLK_REQ_EXTTS:
618 return nxp_c45_extts_enable(priv, &req->extts, on);
619 case PTP_CLK_REQ_PEROUT:
620 return nxp_c45_perout_enable(priv, &req->perout, on);
621 default:
622 return -EOPNOTSUPP;
623 }
624 }
625
626 static struct ptp_pin_desc nxp_c45_ptp_pins[] = {
627 { "nxp_c45_gpio0", 0, PTP_PF_NONE},
628 { "nxp_c45_gpio1", 1, PTP_PF_NONE},
629 { "nxp_c45_gpio2", 2, PTP_PF_NONE},
630 { "nxp_c45_gpio3", 3, PTP_PF_NONE},
631 { "nxp_c45_gpio4", 4, PTP_PF_NONE},
632 { "nxp_c45_gpio5", 5, PTP_PF_NONE},
633 { "nxp_c45_gpio6", 6, PTP_PF_NONE},
634 { "nxp_c45_gpio7", 7, PTP_PF_NONE},
635 { "nxp_c45_gpio8", 8, PTP_PF_NONE},
636 { "nxp_c45_gpio9", 9, PTP_PF_NONE},
637 { "nxp_c45_gpio10", 10, PTP_PF_NONE},
638 { "nxp_c45_gpio11", 11, PTP_PF_NONE},
639 };
640
nxp_c45_ptp_verify_pin(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)641 static int nxp_c45_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
642 enum ptp_pin_function func, unsigned int chan)
643 {
644 if (pin >= ARRAY_SIZE(nxp_c45_ptp_pins))
645 return -EINVAL;
646
647 switch (func) {
648 case PTP_PF_NONE:
649 case PTP_PF_PEROUT:
650 case PTP_PF_EXTTS:
651 break;
652 default:
653 return -EOPNOTSUPP;
654 }
655
656 return 0;
657 }
658
nxp_c45_init_ptp_clock(struct nxp_c45_phy * priv)659 static int nxp_c45_init_ptp_clock(struct nxp_c45_phy *priv)
660 {
661 priv->caps = (struct ptp_clock_info) {
662 .owner = THIS_MODULE,
663 .name = "NXP C45 PHC",
664 .max_adj = 16666666,
665 .adjfine = nxp_c45_ptp_adjfine,
666 .adjtime = nxp_c45_ptp_adjtime,
667 .gettimex64 = nxp_c45_ptp_gettimex64,
668 .settime64 = nxp_c45_ptp_settime64,
669 .enable = nxp_c45_ptp_enable,
670 .verify = nxp_c45_ptp_verify_pin,
671 .do_aux_work = nxp_c45_do_aux_work,
672 .pin_config = nxp_c45_ptp_pins,
673 .n_pins = ARRAY_SIZE(nxp_c45_ptp_pins),
674 .n_ext_ts = 1,
675 .n_per_out = 1,
676 };
677
678 priv->ptp_clock = ptp_clock_register(&priv->caps,
679 &priv->phydev->mdio.dev);
680
681 if (IS_ERR(priv->ptp_clock))
682 return PTR_ERR(priv->ptp_clock);
683
684 if (!priv->ptp_clock)
685 return -ENOMEM;
686
687 return 0;
688 }
689
nxp_c45_txtstamp(struct mii_timestamper * mii_ts,struct sk_buff * skb,int type)690 static void nxp_c45_txtstamp(struct mii_timestamper *mii_ts,
691 struct sk_buff *skb, int type)
692 {
693 struct nxp_c45_phy *priv = container_of(mii_ts, struct nxp_c45_phy,
694 mii_ts);
695
696 switch (priv->hwts_tx) {
697 case HWTSTAMP_TX_ON:
698 NXP_C45_SKB_CB(skb)->type = type;
699 NXP_C45_SKB_CB(skb)->header = ptp_parse_header(skb, type);
700 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
701 skb_queue_tail(&priv->tx_queue, skb);
702 if (nxp_c45_poll_txts(priv->phydev))
703 ptp_schedule_worker(priv->ptp_clock, 0);
704 break;
705 case HWTSTAMP_TX_OFF:
706 default:
707 kfree_skb(skb);
708 break;
709 }
710 }
711
nxp_c45_rxtstamp(struct mii_timestamper * mii_ts,struct sk_buff * skb,int type)712 static bool nxp_c45_rxtstamp(struct mii_timestamper *mii_ts,
713 struct sk_buff *skb, int type)
714 {
715 struct nxp_c45_phy *priv = container_of(mii_ts, struct nxp_c45_phy,
716 mii_ts);
717 struct ptp_header *header = ptp_parse_header(skb, type);
718
719 if (!header)
720 return false;
721
722 if (!priv->hwts_rx)
723 return false;
724
725 NXP_C45_SKB_CB(skb)->header = header;
726 skb_queue_tail(&priv->rx_queue, skb);
727 ptp_schedule_worker(priv->ptp_clock, 0);
728
729 return true;
730 }
731
nxp_c45_hwtstamp(struct mii_timestamper * mii_ts,struct ifreq * ifreq)732 static int nxp_c45_hwtstamp(struct mii_timestamper *mii_ts,
733 struct ifreq *ifreq)
734 {
735 struct nxp_c45_phy *priv = container_of(mii_ts, struct nxp_c45_phy,
736 mii_ts);
737 struct phy_device *phydev = priv->phydev;
738 struct hwtstamp_config cfg;
739
740 if (copy_from_user(&cfg, ifreq->ifr_data, sizeof(cfg)))
741 return -EFAULT;
742
743 if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ON)
744 return -ERANGE;
745
746 priv->hwts_tx = cfg.tx_type;
747
748 switch (cfg.rx_filter) {
749 case HWTSTAMP_FILTER_NONE:
750 priv->hwts_rx = 0;
751 break;
752 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
753 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
754 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
755 priv->hwts_rx = 1;
756 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
757 break;
758 default:
759 return -ERANGE;
760 }
761
762 if (priv->hwts_rx || priv->hwts_tx) {
763 phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_EVENT_MSG_FILT,
764 EVENT_MSG_FILT_ALL);
765 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
766 VEND1_PORT_PTP_CONTROL,
767 PORT_PTP_CONTROL_BYPASS);
768 } else {
769 phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_EVENT_MSG_FILT,
770 EVENT_MSG_FILT_NONE);
771 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_PORT_PTP_CONTROL,
772 PORT_PTP_CONTROL_BYPASS);
773 }
774
775 if (nxp_c45_poll_txts(priv->phydev))
776 goto nxp_c45_no_ptp_irq;
777
778 if (priv->hwts_tx)
779 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
780 VEND1_PTP_IRQ_EN, PTP_IRQ_EGR_TS);
781 else
782 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
783 VEND1_PTP_IRQ_EN, PTP_IRQ_EGR_TS);
784
785 nxp_c45_no_ptp_irq:
786 return copy_to_user(ifreq->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
787 }
788
nxp_c45_ts_info(struct mii_timestamper * mii_ts,struct ethtool_ts_info * ts_info)789 static int nxp_c45_ts_info(struct mii_timestamper *mii_ts,
790 struct ethtool_ts_info *ts_info)
791 {
792 struct nxp_c45_phy *priv = container_of(mii_ts, struct nxp_c45_phy,
793 mii_ts);
794
795 ts_info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
796 SOF_TIMESTAMPING_RX_HARDWARE |
797 SOF_TIMESTAMPING_RAW_HARDWARE;
798 ts_info->phc_index = ptp_clock_index(priv->ptp_clock);
799 ts_info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
800 ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
801 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
802 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
803 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT);
804
805 return 0;
806 }
807
808 static const struct nxp_c45_phy_stats nxp_c45_hw_stats[] = {
809 { "phy_symbol_error_cnt", MDIO_MMD_VEND1,
810 VEND1_SYMBOL_ERROR_COUNTER, 0, GENMASK(15, 0) },
811 { "phy_link_status_drop_cnt", MDIO_MMD_VEND1,
812 VEND1_LINK_DROP_COUNTER, 8, GENMASK(13, 8) },
813 { "phy_link_availability_drop_cnt", MDIO_MMD_VEND1,
814 VEND1_LINK_DROP_COUNTER, 0, GENMASK(5, 0) },
815 { "phy_link_loss_cnt", MDIO_MMD_VEND1,
816 VEND1_LINK_LOSSES_AND_FAILURES, 10, GENMASK(15, 10) },
817 { "phy_link_failure_cnt", MDIO_MMD_VEND1,
818 VEND1_LINK_LOSSES_AND_FAILURES, 0, GENMASK(9, 0) },
819 { "r_good_frame_cnt", MDIO_MMD_VEND1,
820 VEND1_R_GOOD_FRAME_CNT, 0, GENMASK(15, 0) },
821 { "r_bad_frame_cnt", MDIO_MMD_VEND1,
822 VEND1_R_BAD_FRAME_CNT, 0, GENMASK(15, 0) },
823 { "r_rxer_frame_cnt", MDIO_MMD_VEND1,
824 VEND1_R_RXER_FRAME_CNT, 0, GENMASK(15, 0) },
825 { "rx_preamble_count", MDIO_MMD_VEND1,
826 VEND1_RX_PREAMBLE_COUNT, 0, GENMASK(5, 0) },
827 { "tx_preamble_count", MDIO_MMD_VEND1,
828 VEND1_TX_PREAMBLE_COUNT, 0, GENMASK(5, 0) },
829 { "rx_ipg_length", MDIO_MMD_VEND1,
830 VEND1_RX_IPG_LENGTH, 0, GENMASK(8, 0) },
831 { "tx_ipg_length", MDIO_MMD_VEND1,
832 VEND1_TX_IPG_LENGTH, 0, GENMASK(8, 0) },
833 };
834
nxp_c45_get_sset_count(struct phy_device * phydev)835 static int nxp_c45_get_sset_count(struct phy_device *phydev)
836 {
837 return ARRAY_SIZE(nxp_c45_hw_stats);
838 }
839
nxp_c45_get_strings(struct phy_device * phydev,u8 * data)840 static void nxp_c45_get_strings(struct phy_device *phydev, u8 *data)
841 {
842 size_t i;
843
844 for (i = 0; i < ARRAY_SIZE(nxp_c45_hw_stats); i++) {
845 strncpy(data + i * ETH_GSTRING_LEN,
846 nxp_c45_hw_stats[i].name, ETH_GSTRING_LEN);
847 }
848 }
849
nxp_c45_get_stats(struct phy_device * phydev,struct ethtool_stats * stats,u64 * data)850 static void nxp_c45_get_stats(struct phy_device *phydev,
851 struct ethtool_stats *stats, u64 *data)
852 {
853 size_t i;
854 int ret;
855
856 for (i = 0; i < ARRAY_SIZE(nxp_c45_hw_stats); i++) {
857 ret = phy_read_mmd(phydev, nxp_c45_hw_stats[i].mmd,
858 nxp_c45_hw_stats[i].reg);
859 if (ret < 0) {
860 data[i] = U64_MAX;
861 } else {
862 data[i] = ret & nxp_c45_hw_stats[i].mask;
863 data[i] >>= nxp_c45_hw_stats[i].off;
864 }
865 }
866 }
867
nxp_c45_config_enable(struct phy_device * phydev)868 static int nxp_c45_config_enable(struct phy_device *phydev)
869 {
870 phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_DEVICE_CONTROL,
871 DEVICE_CONTROL_CONFIG_GLOBAL_EN |
872 DEVICE_CONTROL_CONFIG_ALL_EN);
873 usleep_range(400, 450);
874
875 phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_PORT_CONTROL,
876 PORT_CONTROL_EN);
877 phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_PHY_CONTROL,
878 PHY_CONFIG_EN);
879 phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_PORT_INFRA_CONTROL,
880 PORT_INFRA_CONTROL_EN);
881
882 return 0;
883 }
884
nxp_c45_start_op(struct phy_device * phydev)885 static int nxp_c45_start_op(struct phy_device *phydev)
886 {
887 return phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_PHY_CONTROL,
888 PHY_START_OP);
889 }
890
nxp_c45_config_intr(struct phy_device * phydev)891 static int nxp_c45_config_intr(struct phy_device *phydev)
892 {
893 if (phydev->interrupts == PHY_INTERRUPT_ENABLED)
894 return phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
895 VEND1_PHY_IRQ_EN, PHY_IRQ_LINK_EVENT);
896 else
897 return phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
898 VEND1_PHY_IRQ_EN, PHY_IRQ_LINK_EVENT);
899 }
900
nxp_c45_handle_interrupt(struct phy_device * phydev)901 static irqreturn_t nxp_c45_handle_interrupt(struct phy_device *phydev)
902 {
903 struct nxp_c45_phy *priv = phydev->priv;
904 irqreturn_t ret = IRQ_NONE;
905 struct nxp_c45_hwts hwts;
906 int irq;
907
908 irq = phy_read_mmd(phydev, MDIO_MMD_VEND1, VEND1_PHY_IRQ_STATUS);
909 if (irq & PHY_IRQ_LINK_EVENT) {
910 phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_PHY_IRQ_ACK,
911 PHY_IRQ_LINK_EVENT);
912 phy_trigger_machine(phydev);
913 ret = IRQ_HANDLED;
914 }
915
916 /* There is no need for ACK.
917 * The irq signal will be asserted until the EGR TS FIFO will be
918 * emptied.
919 */
920 irq = phy_read_mmd(phydev, MDIO_MMD_VEND1, VEND1_PTP_IRQ_STATUS);
921 if (irq & PTP_IRQ_EGR_TS) {
922 while (nxp_c45_get_hwtxts(priv, &hwts))
923 nxp_c45_process_txts(priv, &hwts);
924
925 ret = IRQ_HANDLED;
926 }
927
928 return ret;
929 }
930
nxp_c45_soft_reset(struct phy_device * phydev)931 static int nxp_c45_soft_reset(struct phy_device *phydev)
932 {
933 int ret;
934
935 ret = phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_DEVICE_CONTROL,
936 DEVICE_CONTROL_RESET);
937 if (ret)
938 return ret;
939
940 return phy_read_mmd_poll_timeout(phydev, MDIO_MMD_VEND1,
941 VEND1_DEVICE_CONTROL, ret,
942 !(ret & DEVICE_CONTROL_RESET), 20000,
943 240000, false);
944 }
945
nxp_c45_cable_test_start(struct phy_device * phydev)946 static int nxp_c45_cable_test_start(struct phy_device *phydev)
947 {
948 return phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_CABLE_TEST,
949 CABLE_TEST_ENABLE | CABLE_TEST_START);
950 }
951
nxp_c45_cable_test_get_status(struct phy_device * phydev,bool * finished)952 static int nxp_c45_cable_test_get_status(struct phy_device *phydev,
953 bool *finished)
954 {
955 int ret;
956 u8 cable_test_result;
957
958 ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VEND1_CABLE_TEST);
959 if (!(ret & CABLE_TEST_VALID)) {
960 *finished = false;
961 return 0;
962 }
963
964 *finished = true;
965 cable_test_result = ret & GENMASK(2, 0);
966
967 switch (cable_test_result) {
968 case CABLE_TEST_OK:
969 ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_A,
970 ETHTOOL_A_CABLE_RESULT_CODE_OK);
971 break;
972 case CABLE_TEST_SHORTED:
973 ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_A,
974 ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT);
975 break;
976 case CABLE_TEST_OPEN:
977 ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_A,
978 ETHTOOL_A_CABLE_RESULT_CODE_OPEN);
979 break;
980 default:
981 ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_A,
982 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
983 }
984
985 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_CABLE_TEST,
986 CABLE_TEST_ENABLE);
987
988 return nxp_c45_start_op(phydev);
989 }
990
nxp_c45_setup_master_slave(struct phy_device * phydev)991 static int nxp_c45_setup_master_slave(struct phy_device *phydev)
992 {
993 switch (phydev->master_slave_set) {
994 case MASTER_SLAVE_CFG_MASTER_FORCE:
995 case MASTER_SLAVE_CFG_MASTER_PREFERRED:
996 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, PMAPMD_B100T1_PMAPMD_CTL,
997 MASTER_MODE);
998 break;
999 case MASTER_SLAVE_CFG_SLAVE_PREFERRED:
1000 case MASTER_SLAVE_CFG_SLAVE_FORCE:
1001 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, PMAPMD_B100T1_PMAPMD_CTL,
1002 SLAVE_MODE);
1003 break;
1004 case MASTER_SLAVE_CFG_UNKNOWN:
1005 case MASTER_SLAVE_CFG_UNSUPPORTED:
1006 return 0;
1007 default:
1008 phydev_warn(phydev, "Unsupported Master/Slave mode\n");
1009 return -EOPNOTSUPP;
1010 }
1011
1012 return 0;
1013 }
1014
nxp_c45_read_master_slave(struct phy_device * phydev)1015 static int nxp_c45_read_master_slave(struct phy_device *phydev)
1016 {
1017 int reg;
1018
1019 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN;
1020 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN;
1021
1022 reg = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, PMAPMD_B100T1_PMAPMD_CTL);
1023 if (reg < 0)
1024 return reg;
1025
1026 if (reg & B100T1_PMAPMD_MASTER) {
1027 phydev->master_slave_get = MASTER_SLAVE_CFG_MASTER_FORCE;
1028 phydev->master_slave_state = MASTER_SLAVE_STATE_MASTER;
1029 } else {
1030 phydev->master_slave_get = MASTER_SLAVE_CFG_SLAVE_FORCE;
1031 phydev->master_slave_state = MASTER_SLAVE_STATE_SLAVE;
1032 }
1033
1034 return 0;
1035 }
1036
nxp_c45_config_aneg(struct phy_device * phydev)1037 static int nxp_c45_config_aneg(struct phy_device *phydev)
1038 {
1039 return nxp_c45_setup_master_slave(phydev);
1040 }
1041
nxp_c45_read_status(struct phy_device * phydev)1042 static int nxp_c45_read_status(struct phy_device *phydev)
1043 {
1044 int ret;
1045
1046 ret = genphy_c45_read_status(phydev);
1047 if (ret)
1048 return ret;
1049
1050 ret = nxp_c45_read_master_slave(phydev);
1051 if (ret)
1052 return ret;
1053
1054 return 0;
1055 }
1056
nxp_c45_get_sqi(struct phy_device * phydev)1057 static int nxp_c45_get_sqi(struct phy_device *phydev)
1058 {
1059 int reg;
1060
1061 reg = phy_read_mmd(phydev, MDIO_MMD_VEND1, VEND1_SIGNAL_QUALITY);
1062 if (!(reg & SQI_VALID))
1063 return -EINVAL;
1064
1065 reg &= SQI_MASK;
1066
1067 return reg;
1068 }
1069
nxp_c45_get_sqi_max(struct phy_device * phydev)1070 static int nxp_c45_get_sqi_max(struct phy_device *phydev)
1071 {
1072 return MAX_SQI;
1073 }
1074
nxp_c45_check_delay(struct phy_device * phydev,u32 delay)1075 static int nxp_c45_check_delay(struct phy_device *phydev, u32 delay)
1076 {
1077 if (delay < MIN_ID_PS) {
1078 phydev_err(phydev, "delay value smaller than %u\n", MIN_ID_PS);
1079 return -EINVAL;
1080 }
1081
1082 if (delay > MAX_ID_PS) {
1083 phydev_err(phydev, "delay value higher than %u\n", MAX_ID_PS);
1084 return -EINVAL;
1085 }
1086
1087 return 0;
1088 }
1089
nxp_c45_get_phase_shift(u64 phase_offset_raw)1090 static u64 nxp_c45_get_phase_shift(u64 phase_offset_raw)
1091 {
1092 /* The delay in degree phase is 73.8 + phase_offset_raw * 0.9.
1093 * To avoid floating point operations we'll multiply by 10
1094 * and get 1 decimal point precision.
1095 */
1096 phase_offset_raw *= 10;
1097 phase_offset_raw -= 738;
1098 return div_u64(phase_offset_raw, 9);
1099 }
1100
nxp_c45_disable_delays(struct phy_device * phydev)1101 static void nxp_c45_disable_delays(struct phy_device *phydev)
1102 {
1103 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_TXID, ID_ENABLE);
1104 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_RXID, ID_ENABLE);
1105 }
1106
nxp_c45_set_delays(struct phy_device * phydev)1107 static void nxp_c45_set_delays(struct phy_device *phydev)
1108 {
1109 struct nxp_c45_phy *priv = phydev->priv;
1110 u64 tx_delay = priv->tx_delay;
1111 u64 rx_delay = priv->rx_delay;
1112 u64 degree;
1113
1114 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1115 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) {
1116 degree = div_u64(tx_delay, PS_PER_DEGREE);
1117 phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_TXID,
1118 ID_ENABLE | nxp_c45_get_phase_shift(degree));
1119 } else {
1120 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_TXID,
1121 ID_ENABLE);
1122 }
1123
1124 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1125 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) {
1126 degree = div_u64(rx_delay, PS_PER_DEGREE);
1127 phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_RXID,
1128 ID_ENABLE | nxp_c45_get_phase_shift(degree));
1129 } else {
1130 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_RXID,
1131 ID_ENABLE);
1132 }
1133 }
1134
nxp_c45_get_delays(struct phy_device * phydev)1135 static int nxp_c45_get_delays(struct phy_device *phydev)
1136 {
1137 struct nxp_c45_phy *priv = phydev->priv;
1138 int ret;
1139
1140 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1141 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) {
1142 ret = device_property_read_u32(&phydev->mdio.dev,
1143 "tx-internal-delay-ps",
1144 &priv->tx_delay);
1145 if (ret)
1146 priv->tx_delay = DEFAULT_ID_PS;
1147
1148 ret = nxp_c45_check_delay(phydev, priv->tx_delay);
1149 if (ret) {
1150 phydev_err(phydev,
1151 "tx-internal-delay-ps invalid value\n");
1152 return ret;
1153 }
1154 }
1155
1156 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1157 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) {
1158 ret = device_property_read_u32(&phydev->mdio.dev,
1159 "rx-internal-delay-ps",
1160 &priv->rx_delay);
1161 if (ret)
1162 priv->rx_delay = DEFAULT_ID_PS;
1163
1164 ret = nxp_c45_check_delay(phydev, priv->rx_delay);
1165 if (ret) {
1166 phydev_err(phydev,
1167 "rx-internal-delay-ps invalid value\n");
1168 return ret;
1169 }
1170 }
1171
1172 return 0;
1173 }
1174
nxp_c45_set_phy_mode(struct phy_device * phydev)1175 static int nxp_c45_set_phy_mode(struct phy_device *phydev)
1176 {
1177 int ret;
1178
1179 ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VEND1_ABILITIES);
1180 phydev_dbg(phydev, "Clause 45 managed PHY abilities 0x%x\n", ret);
1181
1182 switch (phydev->interface) {
1183 case PHY_INTERFACE_MODE_RGMII:
1184 if (!(ret & RGMII_ABILITY)) {
1185 phydev_err(phydev, "rgmii mode not supported\n");
1186 return -EINVAL;
1187 }
1188 phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_MII_BASIC_CONFIG,
1189 MII_BASIC_CONFIG_RGMII);
1190 nxp_c45_disable_delays(phydev);
1191 break;
1192 case PHY_INTERFACE_MODE_RGMII_ID:
1193 case PHY_INTERFACE_MODE_RGMII_TXID:
1194 case PHY_INTERFACE_MODE_RGMII_RXID:
1195 if (!(ret & RGMII_ID_ABILITY)) {
1196 phydev_err(phydev, "rgmii-id, rgmii-txid, rgmii-rxid modes are not supported\n");
1197 return -EINVAL;
1198 }
1199 phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_MII_BASIC_CONFIG,
1200 MII_BASIC_CONFIG_RGMII);
1201 ret = nxp_c45_get_delays(phydev);
1202 if (ret)
1203 return ret;
1204
1205 nxp_c45_set_delays(phydev);
1206 break;
1207 case PHY_INTERFACE_MODE_MII:
1208 if (!(ret & MII_ABILITY)) {
1209 phydev_err(phydev, "mii mode not supported\n");
1210 return -EINVAL;
1211 }
1212 phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_MII_BASIC_CONFIG,
1213 MII_BASIC_CONFIG_MII);
1214 break;
1215 case PHY_INTERFACE_MODE_REVMII:
1216 if (!(ret & REVMII_ABILITY)) {
1217 phydev_err(phydev, "rev-mii mode not supported\n");
1218 return -EINVAL;
1219 }
1220 phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_MII_BASIC_CONFIG,
1221 MII_BASIC_CONFIG_MII | MII_BASIC_CONFIG_REV);
1222 break;
1223 case PHY_INTERFACE_MODE_RMII:
1224 if (!(ret & RMII_ABILITY)) {
1225 phydev_err(phydev, "rmii mode not supported\n");
1226 return -EINVAL;
1227 }
1228 phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_MII_BASIC_CONFIG,
1229 MII_BASIC_CONFIG_RMII);
1230 break;
1231 case PHY_INTERFACE_MODE_SGMII:
1232 if (!(ret & SGMII_ABILITY)) {
1233 phydev_err(phydev, "sgmii mode not supported\n");
1234 return -EINVAL;
1235 }
1236 phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_MII_BASIC_CONFIG,
1237 MII_BASIC_CONFIG_SGMII);
1238 break;
1239 case PHY_INTERFACE_MODE_INTERNAL:
1240 break;
1241 default:
1242 return -EINVAL;
1243 }
1244
1245 return 0;
1246 }
1247
nxp_c45_config_init(struct phy_device * phydev)1248 static int nxp_c45_config_init(struct phy_device *phydev)
1249 {
1250 int ret;
1251
1252 ret = nxp_c45_config_enable(phydev);
1253 if (ret) {
1254 phydev_err(phydev, "Failed to enable config\n");
1255 return ret;
1256 }
1257
1258 /* Bug workaround for SJA1110 rev B: enable write access
1259 * to MDIO_MMD_PMAPMD
1260 */
1261 phy_write_mmd(phydev, MDIO_MMD_VEND1, 0x01F8, 1);
1262 phy_write_mmd(phydev, MDIO_MMD_VEND1, 0x01F9, 2);
1263
1264 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_PHY_CONFIG,
1265 PHY_CONFIG_AUTO);
1266
1267 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_LINK_DROP_COUNTER,
1268 COUNTER_EN);
1269 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_RX_PREAMBLE_COUNT,
1270 COUNTER_EN);
1271 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_TX_PREAMBLE_COUNT,
1272 COUNTER_EN);
1273 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_RX_IPG_LENGTH,
1274 COUNTER_EN);
1275 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_TX_IPG_LENGTH,
1276 COUNTER_EN);
1277
1278 ret = nxp_c45_set_phy_mode(phydev);
1279 if (ret)
1280 return ret;
1281
1282 phydev->autoneg = AUTONEG_DISABLE;
1283
1284 phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_PTP_CLK_PERIOD,
1285 PTP_CLK_PERIOD_100BT1);
1286 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_HW_LTC_LOCK_CTRL,
1287 HW_LTC_LOCK_EN);
1288 phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_RX_TS_INSRT_CTRL,
1289 RX_TS_INSRT_MODE2);
1290 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_PORT_FUNC_ENABLES,
1291 PTP_ENABLE);
1292
1293 return nxp_c45_start_op(phydev);
1294 }
1295
nxp_c45_probe(struct phy_device * phydev)1296 static int nxp_c45_probe(struct phy_device *phydev)
1297 {
1298 struct nxp_c45_phy *priv;
1299 int ptp_ability;
1300 int ret = 0;
1301
1302 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
1303 if (!priv)
1304 return -ENOMEM;
1305
1306 skb_queue_head_init(&priv->tx_queue);
1307 skb_queue_head_init(&priv->rx_queue);
1308
1309 priv->phydev = phydev;
1310
1311 phydev->priv = priv;
1312
1313 mutex_init(&priv->ptp_lock);
1314
1315 ptp_ability = phy_read_mmd(phydev, MDIO_MMD_VEND1,
1316 VEND1_PORT_ABILITIES);
1317 ptp_ability = !!(ptp_ability & PTP_ABILITY);
1318 if (!ptp_ability) {
1319 phydev_dbg(phydev, "the phy does not support PTP");
1320 goto no_ptp_support;
1321 }
1322
1323 if (IS_ENABLED(CONFIG_PTP_1588_CLOCK) &&
1324 IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) {
1325 priv->mii_ts.rxtstamp = nxp_c45_rxtstamp;
1326 priv->mii_ts.txtstamp = nxp_c45_txtstamp;
1327 priv->mii_ts.hwtstamp = nxp_c45_hwtstamp;
1328 priv->mii_ts.ts_info = nxp_c45_ts_info;
1329 phydev->mii_ts = &priv->mii_ts;
1330 ret = nxp_c45_init_ptp_clock(priv);
1331 } else {
1332 phydev_dbg(phydev, "PTP support not enabled even if the phy supports it");
1333 }
1334
1335 no_ptp_support:
1336
1337 return ret;
1338 }
1339
1340 static struct phy_driver nxp_c45_driver[] = {
1341 {
1342 PHY_ID_MATCH_MODEL(PHY_ID_TJA_1103),
1343 .name = "NXP C45 TJA1103",
1344 .features = PHY_BASIC_T1_FEATURES,
1345 .probe = nxp_c45_probe,
1346 .soft_reset = nxp_c45_soft_reset,
1347 .config_aneg = nxp_c45_config_aneg,
1348 .config_init = nxp_c45_config_init,
1349 .config_intr = nxp_c45_config_intr,
1350 .handle_interrupt = nxp_c45_handle_interrupt,
1351 .read_status = nxp_c45_read_status,
1352 .suspend = genphy_c45_pma_suspend,
1353 .resume = genphy_c45_pma_resume,
1354 .get_sset_count = nxp_c45_get_sset_count,
1355 .get_strings = nxp_c45_get_strings,
1356 .get_stats = nxp_c45_get_stats,
1357 .cable_test_start = nxp_c45_cable_test_start,
1358 .cable_test_get_status = nxp_c45_cable_test_get_status,
1359 .set_loopback = genphy_c45_loopback,
1360 .get_sqi = nxp_c45_get_sqi,
1361 .get_sqi_max = nxp_c45_get_sqi_max,
1362 },
1363 };
1364
1365 module_phy_driver(nxp_c45_driver);
1366
1367 static struct mdio_device_id __maybe_unused nxp_c45_tbl[] = {
1368 { PHY_ID_MATCH_MODEL(PHY_ID_TJA_1103) },
1369 { /*sentinel*/ },
1370 };
1371
1372 MODULE_DEVICE_TABLE(mdio, nxp_c45_tbl);
1373
1374 MODULE_AUTHOR("Radu Pirea <radu-nicolae.pirea@oss.nxp.com>");
1375 MODULE_DESCRIPTION("NXP C45 PHY driver");
1376 MODULE_LICENSE("GPL v2");
1377