1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2021 Maxlinear Corporation
3 * Copyright (C) 2020 Intel Corporation
4 *
5 * Drivers for Maxlinear Ethernet GPY
6 *
7 */
8
9 #include <linux/module.h>
10 #include <linux/bitfield.h>
11 #include <linux/hwmon.h>
12 #include <linux/mutex.h>
13 #include <linux/phy.h>
14 #include <linux/polynomial.h>
15 #include <linux/property.h>
16 #include <linux/netdevice.h>
17
18 /* PHY ID */
19 #define PHY_ID_GPYx15B_MASK 0xFFFFFFFC
20 #define PHY_ID_GPY21xB_MASK 0xFFFFFFF9
21 #define PHY_ID_GPY2xx 0x67C9DC00
22 #define PHY_ID_GPY115B 0x67C9DF00
23 #define PHY_ID_GPY115C 0x67C9DF10
24 #define PHY_ID_GPY211B 0x67C9DE08
25 #define PHY_ID_GPY211C 0x67C9DE10
26 #define PHY_ID_GPY212B 0x67C9DE09
27 #define PHY_ID_GPY212C 0x67C9DE20
28 #define PHY_ID_GPY215B 0x67C9DF04
29 #define PHY_ID_GPY215C 0x67C9DF20
30 #define PHY_ID_GPY241B 0x67C9DE40
31 #define PHY_ID_GPY241BM 0x67C9DE80
32 #define PHY_ID_GPY245B 0x67C9DEC0
33
34 #define PHY_CTL1 0x13
35 #define PHY_CTL1_MDICD BIT(3)
36 #define PHY_CTL1_MDIAB BIT(2)
37 #define PHY_CTL1_AMDIX BIT(0)
38 #define PHY_MIISTAT 0x18 /* MII state */
39 #define PHY_IMASK 0x19 /* interrupt mask */
40 #define PHY_ISTAT 0x1A /* interrupt status */
41 #define PHY_FWV 0x1E /* firmware version */
42
43 #define PHY_MIISTAT_SPD_MASK GENMASK(2, 0)
44 #define PHY_MIISTAT_DPX BIT(3)
45 #define PHY_MIISTAT_LS BIT(10)
46
47 #define PHY_MIISTAT_SPD_10 0
48 #define PHY_MIISTAT_SPD_100 1
49 #define PHY_MIISTAT_SPD_1000 2
50 #define PHY_MIISTAT_SPD_2500 4
51
52 #define PHY_IMASK_WOL BIT(15) /* Wake-on-LAN */
53 #define PHY_IMASK_ANC BIT(10) /* Auto-Neg complete */
54 #define PHY_IMASK_ADSC BIT(5) /* Link auto-downspeed detect */
55 #define PHY_IMASK_DXMC BIT(2) /* Duplex mode change */
56 #define PHY_IMASK_LSPC BIT(1) /* Link speed change */
57 #define PHY_IMASK_LSTC BIT(0) /* Link state change */
58 #define PHY_IMASK_MASK (PHY_IMASK_LSTC | \
59 PHY_IMASK_LSPC | \
60 PHY_IMASK_DXMC | \
61 PHY_IMASK_ADSC | \
62 PHY_IMASK_ANC)
63
64 #define PHY_FWV_REL_MASK BIT(15)
65 #define PHY_FWV_MAJOR_MASK GENMASK(11, 8)
66 #define PHY_FWV_MINOR_MASK GENMASK(7, 0)
67
68 #define PHY_PMA_MGBT_POLARITY 0x82
69 #define PHY_MDI_MDI_X_MASK GENMASK(1, 0)
70 #define PHY_MDI_MDI_X_NORMAL 0x3
71 #define PHY_MDI_MDI_X_AB 0x2
72 #define PHY_MDI_MDI_X_CD 0x1
73 #define PHY_MDI_MDI_X_CROSS 0x0
74
75 /* SGMII */
76 #define VSPEC1_SGMII_CTRL 0x08
77 #define VSPEC1_SGMII_CTRL_ANEN BIT(12) /* Aneg enable */
78 #define VSPEC1_SGMII_CTRL_ANRS BIT(9) /* Restart Aneg */
79 #define VSPEC1_SGMII_ANEN_ANRS (VSPEC1_SGMII_CTRL_ANEN | \
80 VSPEC1_SGMII_CTRL_ANRS)
81
82 /* Temperature sensor */
83 #define VSPEC1_TEMP_STA 0x0E
84 #define VSPEC1_TEMP_STA_DATA GENMASK(9, 0)
85
86 /* Mailbox */
87 #define VSPEC1_MBOX_DATA 0x5
88 #define VSPEC1_MBOX_ADDRLO 0x6
89 #define VSPEC1_MBOX_CMD 0x7
90 #define VSPEC1_MBOX_CMD_ADDRHI GENMASK(7, 0)
91 #define VSPEC1_MBOX_CMD_RD (0 << 8)
92 #define VSPEC1_MBOX_CMD_READY BIT(15)
93
94 /* WoL */
95 #define VPSPEC2_WOL_CTL 0x0E06
96 #define VPSPEC2_WOL_AD01 0x0E08
97 #define VPSPEC2_WOL_AD23 0x0E09
98 #define VPSPEC2_WOL_AD45 0x0E0A
99 #define WOL_EN BIT(0)
100
101 /* Internal registers, access via mbox */
102 #define REG_GPIO0_OUT 0xd3ce00
103
104 struct gpy_priv {
105 /* serialize mailbox acesses */
106 struct mutex mbox_lock;
107
108 u8 fw_major;
109 u8 fw_minor;
110
111 /* It takes 3 seconds to fully switch out of loopback mode before
112 * it can safely re-enter loopback mode. Record the time when
113 * loopback is disabled. Check and wait if necessary before loopback
114 * is enabled.
115 */
116 u64 lb_dis_to;
117 };
118
119 static const struct {
120 int major;
121 int minor;
122 } ver_need_sgmii_reaneg[] = {
123 {7, 0x6D},
124 {8, 0x6D},
125 {9, 0x73},
126 };
127
128 #if IS_ENABLED(CONFIG_HWMON)
129 /* The original translation formulae of the temperature (in degrees of Celsius)
130 * are as follows:
131 *
132 * T = -2.5761e-11*(N^4) + 9.7332e-8*(N^3) + -1.9165e-4*(N^2) +
133 * 3.0762e-1*(N^1) + -5.2156e1
134 *
135 * where [-52.156, 137.961]C and N = [0, 1023].
136 *
137 * They must be accordingly altered to be suitable for the integer arithmetics.
138 * The technique is called 'factor redistribution', which just makes sure the
139 * multiplications and divisions are made so to have a result of the operations
140 * within the integer numbers limit. In addition we need to translate the
141 * formulae to accept millidegrees of Celsius. Here what it looks like after
142 * the alterations:
143 *
144 * T = -25761e-12*(N^4) + 97332e-9*(N^3) + -191650e-6*(N^2) +
145 * 307620e-3*(N^1) + -52156
146 *
147 * where T = [-52156, 137961]mC and N = [0, 1023].
148 */
149 static const struct polynomial poly_N_to_temp = {
150 .terms = {
151 {4, -25761, 1000, 1},
152 {3, 97332, 1000, 1},
153 {2, -191650, 1000, 1},
154 {1, 307620, 1000, 1},
155 {0, -52156, 1, 1}
156 }
157 };
158
gpy_hwmon_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * value)159 static int gpy_hwmon_read(struct device *dev,
160 enum hwmon_sensor_types type,
161 u32 attr, int channel, long *value)
162 {
163 struct phy_device *phydev = dev_get_drvdata(dev);
164 int ret;
165
166 ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_TEMP_STA);
167 if (ret < 0)
168 return ret;
169 if (!ret)
170 return -ENODATA;
171
172 *value = polynomial_calc(&poly_N_to_temp,
173 FIELD_GET(VSPEC1_TEMP_STA_DATA, ret));
174
175 return 0;
176 }
177
gpy_hwmon_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)178 static umode_t gpy_hwmon_is_visible(const void *data,
179 enum hwmon_sensor_types type,
180 u32 attr, int channel)
181 {
182 return 0444;
183 }
184
185 static const struct hwmon_channel_info * const gpy_hwmon_info[] = {
186 HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT),
187 NULL
188 };
189
190 static const struct hwmon_ops gpy_hwmon_hwmon_ops = {
191 .is_visible = gpy_hwmon_is_visible,
192 .read = gpy_hwmon_read,
193 };
194
195 static const struct hwmon_chip_info gpy_hwmon_chip_info = {
196 .ops = &gpy_hwmon_hwmon_ops,
197 .info = gpy_hwmon_info,
198 };
199
gpy_hwmon_register(struct phy_device * phydev)200 static int gpy_hwmon_register(struct phy_device *phydev)
201 {
202 struct device *dev = &phydev->mdio.dev;
203 struct device *hwmon_dev;
204 char *hwmon_name;
205
206 hwmon_name = devm_hwmon_sanitize_name(dev, dev_name(dev));
207 if (IS_ERR(hwmon_name))
208 return PTR_ERR(hwmon_name);
209
210 hwmon_dev = devm_hwmon_device_register_with_info(dev, hwmon_name,
211 phydev,
212 &gpy_hwmon_chip_info,
213 NULL);
214
215 return PTR_ERR_OR_ZERO(hwmon_dev);
216 }
217 #else
gpy_hwmon_register(struct phy_device * phydev)218 static int gpy_hwmon_register(struct phy_device *phydev)
219 {
220 return 0;
221 }
222 #endif
223
gpy_mbox_read(struct phy_device * phydev,u32 addr)224 static int gpy_mbox_read(struct phy_device *phydev, u32 addr)
225 {
226 struct gpy_priv *priv = phydev->priv;
227 int val, ret;
228 u16 cmd;
229
230 mutex_lock(&priv->mbox_lock);
231
232 ret = phy_write_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_MBOX_ADDRLO,
233 addr);
234 if (ret)
235 goto out;
236
237 cmd = VSPEC1_MBOX_CMD_RD;
238 cmd |= FIELD_PREP(VSPEC1_MBOX_CMD_ADDRHI, addr >> 16);
239
240 ret = phy_write_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_MBOX_CMD, cmd);
241 if (ret)
242 goto out;
243
244 /* The mbox read is used in the interrupt workaround. It was observed
245 * that a read might take up to 2.5ms. This is also the time for which
246 * the interrupt line is stuck low. To be on the safe side, poll the
247 * ready bit for 10ms.
248 */
249 ret = phy_read_mmd_poll_timeout(phydev, MDIO_MMD_VEND1,
250 VSPEC1_MBOX_CMD, val,
251 (val & VSPEC1_MBOX_CMD_READY),
252 500, 10000, false);
253 if (ret)
254 goto out;
255
256 ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_MBOX_DATA);
257
258 out:
259 mutex_unlock(&priv->mbox_lock);
260 return ret;
261 }
262
gpy_config_init(struct phy_device * phydev)263 static int gpy_config_init(struct phy_device *phydev)
264 {
265 int ret;
266
267 /* Mask all interrupts */
268 ret = phy_write(phydev, PHY_IMASK, 0);
269 if (ret)
270 return ret;
271
272 /* Clear all pending interrupts */
273 ret = phy_read(phydev, PHY_ISTAT);
274 return ret < 0 ? ret : 0;
275 }
276
gpy_probe(struct phy_device * phydev)277 static int gpy_probe(struct phy_device *phydev)
278 {
279 struct device *dev = &phydev->mdio.dev;
280 struct gpy_priv *priv;
281 int fw_version;
282 int ret;
283
284 if (!phydev->is_c45) {
285 ret = phy_get_c45_ids(phydev);
286 if (ret < 0)
287 return ret;
288 }
289
290 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
291 if (!priv)
292 return -ENOMEM;
293 phydev->priv = priv;
294 mutex_init(&priv->mbox_lock);
295
296 if (!device_property_present(dev, "maxlinear,use-broken-interrupts"))
297 phydev->dev_flags |= PHY_F_NO_IRQ;
298
299 fw_version = phy_read(phydev, PHY_FWV);
300 if (fw_version < 0)
301 return fw_version;
302 priv->fw_major = FIELD_GET(PHY_FWV_MAJOR_MASK, fw_version);
303 priv->fw_minor = FIELD_GET(PHY_FWV_MINOR_MASK, fw_version);
304
305 ret = gpy_hwmon_register(phydev);
306 if (ret)
307 return ret;
308
309 /* Show GPY PHY FW version in dmesg */
310 phydev_info(phydev, "Firmware Version: %d.%d (0x%04X%s)\n",
311 priv->fw_major, priv->fw_minor, fw_version,
312 fw_version & PHY_FWV_REL_MASK ? "" : " test version");
313
314 return 0;
315 }
316
gpy_sgmii_need_reaneg(struct phy_device * phydev)317 static bool gpy_sgmii_need_reaneg(struct phy_device *phydev)
318 {
319 struct gpy_priv *priv = phydev->priv;
320 size_t i;
321
322 for (i = 0; i < ARRAY_SIZE(ver_need_sgmii_reaneg); i++) {
323 if (priv->fw_major != ver_need_sgmii_reaneg[i].major)
324 continue;
325 if (priv->fw_minor < ver_need_sgmii_reaneg[i].minor)
326 return true;
327 break;
328 }
329
330 return false;
331 }
332
gpy_2500basex_chk(struct phy_device * phydev)333 static bool gpy_2500basex_chk(struct phy_device *phydev)
334 {
335 int ret;
336
337 ret = phy_read(phydev, PHY_MIISTAT);
338 if (ret < 0) {
339 phydev_err(phydev, "Error: MDIO register access failed: %d\n",
340 ret);
341 return false;
342 }
343
344 if (!(ret & PHY_MIISTAT_LS) ||
345 FIELD_GET(PHY_MIISTAT_SPD_MASK, ret) != PHY_MIISTAT_SPD_2500)
346 return false;
347
348 phydev->speed = SPEED_2500;
349 phydev->interface = PHY_INTERFACE_MODE_2500BASEX;
350 phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
351 VSPEC1_SGMII_CTRL_ANEN, 0);
352 return true;
353 }
354
gpy_sgmii_aneg_en(struct phy_device * phydev)355 static bool gpy_sgmii_aneg_en(struct phy_device *phydev)
356 {
357 int ret;
358
359 ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL);
360 if (ret < 0) {
361 phydev_err(phydev, "Error: MMD register access failed: %d\n",
362 ret);
363 return true;
364 }
365
366 return (ret & VSPEC1_SGMII_CTRL_ANEN) ? true : false;
367 }
368
gpy_config_mdix(struct phy_device * phydev,u8 ctrl)369 static int gpy_config_mdix(struct phy_device *phydev, u8 ctrl)
370 {
371 int ret;
372 u16 val;
373
374 switch (ctrl) {
375 case ETH_TP_MDI_AUTO:
376 val = PHY_CTL1_AMDIX;
377 break;
378 case ETH_TP_MDI_X:
379 val = (PHY_CTL1_MDIAB | PHY_CTL1_MDICD);
380 break;
381 case ETH_TP_MDI:
382 val = 0;
383 break;
384 default:
385 return 0;
386 }
387
388 ret = phy_modify(phydev, PHY_CTL1, PHY_CTL1_AMDIX | PHY_CTL1_MDIAB |
389 PHY_CTL1_MDICD, val);
390 if (ret < 0)
391 return ret;
392
393 return genphy_c45_restart_aneg(phydev);
394 }
395
gpy_config_aneg(struct phy_device * phydev)396 static int gpy_config_aneg(struct phy_device *phydev)
397 {
398 bool changed = false;
399 u32 adv;
400 int ret;
401
402 if (phydev->autoneg == AUTONEG_DISABLE) {
403 /* Configure half duplex with genphy_setup_forced,
404 * because genphy_c45_pma_setup_forced does not support.
405 */
406 return phydev->duplex != DUPLEX_FULL
407 ? genphy_setup_forced(phydev)
408 : genphy_c45_pma_setup_forced(phydev);
409 }
410
411 ret = gpy_config_mdix(phydev, phydev->mdix_ctrl);
412 if (ret < 0)
413 return ret;
414
415 ret = genphy_c45_an_config_aneg(phydev);
416 if (ret < 0)
417 return ret;
418 if (ret > 0)
419 changed = true;
420
421 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
422 ret = phy_modify_changed(phydev, MII_CTRL1000,
423 ADVERTISE_1000FULL | ADVERTISE_1000HALF,
424 adv);
425 if (ret < 0)
426 return ret;
427 if (ret > 0)
428 changed = true;
429
430 ret = genphy_c45_check_and_restart_aneg(phydev, changed);
431 if (ret < 0)
432 return ret;
433
434 if (phydev->interface == PHY_INTERFACE_MODE_USXGMII ||
435 phydev->interface == PHY_INTERFACE_MODE_INTERNAL)
436 return 0;
437
438 /* No need to trigger re-ANEG if link speed is 2.5G or SGMII ANEG is
439 * disabled.
440 */
441 if (!gpy_sgmii_need_reaneg(phydev) || gpy_2500basex_chk(phydev) ||
442 !gpy_sgmii_aneg_en(phydev))
443 return 0;
444
445 /* There is a design constraint in GPY2xx device where SGMII AN is
446 * only triggered when there is change of speed. If, PHY link
447 * partner`s speed is still same even after PHY TPI is down and up
448 * again, SGMII AN is not triggered and hence no new in-band message
449 * from GPY to MAC side SGMII.
450 * This could cause an issue during power up, when PHY is up prior to
451 * MAC. At this condition, once MAC side SGMII is up, MAC side SGMII
452 * wouldn`t receive new in-band message from GPY with correct link
453 * status, speed and duplex info.
454 *
455 * 1) If PHY is already up and TPI link status is still down (such as
456 * hard reboot), TPI link status is polled for 4 seconds before
457 * retriggerring SGMII AN.
458 * 2) If PHY is already up and TPI link status is also up (such as soft
459 * reboot), polling of TPI link status is not needed and SGMII AN is
460 * immediately retriggered.
461 * 3) Other conditions such as PHY is down, speed change etc, skip
462 * retriggering SGMII AN. Note: in case of speed change, GPY FW will
463 * initiate SGMII AN.
464 */
465
466 if (phydev->state != PHY_UP)
467 return 0;
468
469 ret = phy_read_poll_timeout(phydev, MII_BMSR, ret, ret & BMSR_LSTATUS,
470 20000, 4000000, false);
471 if (ret == -ETIMEDOUT)
472 return 0;
473 else if (ret < 0)
474 return ret;
475
476 /* Trigger SGMII AN. */
477 return phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
478 VSPEC1_SGMII_CTRL_ANRS, VSPEC1_SGMII_CTRL_ANRS);
479 }
480
gpy_update_mdix(struct phy_device * phydev)481 static int gpy_update_mdix(struct phy_device *phydev)
482 {
483 int ret;
484
485 ret = phy_read(phydev, PHY_CTL1);
486 if (ret < 0)
487 return ret;
488
489 if (ret & PHY_CTL1_AMDIX)
490 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
491 else
492 if (ret & PHY_CTL1_MDICD || ret & PHY_CTL1_MDIAB)
493 phydev->mdix_ctrl = ETH_TP_MDI_X;
494 else
495 phydev->mdix_ctrl = ETH_TP_MDI;
496
497 ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, PHY_PMA_MGBT_POLARITY);
498 if (ret < 0)
499 return ret;
500
501 if ((ret & PHY_MDI_MDI_X_MASK) < PHY_MDI_MDI_X_NORMAL)
502 phydev->mdix = ETH_TP_MDI_X;
503 else
504 phydev->mdix = ETH_TP_MDI;
505
506 return 0;
507 }
508
gpy_update_interface(struct phy_device * phydev)509 static int gpy_update_interface(struct phy_device *phydev)
510 {
511 int ret;
512
513 /* Interface mode is fixed for USXGMII and integrated PHY */
514 if (phydev->interface == PHY_INTERFACE_MODE_USXGMII ||
515 phydev->interface == PHY_INTERFACE_MODE_INTERNAL)
516 return -EINVAL;
517
518 /* Automatically switch SERDES interface between SGMII and 2500-BaseX
519 * according to speed. Disable ANEG in 2500-BaseX mode.
520 */
521 switch (phydev->speed) {
522 case SPEED_2500:
523 phydev->interface = PHY_INTERFACE_MODE_2500BASEX;
524 ret = phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
525 VSPEC1_SGMII_CTRL_ANEN, 0);
526 if (ret < 0) {
527 phydev_err(phydev,
528 "Error: Disable of SGMII ANEG failed: %d\n",
529 ret);
530 return ret;
531 }
532 break;
533 case SPEED_1000:
534 case SPEED_100:
535 case SPEED_10:
536 phydev->interface = PHY_INTERFACE_MODE_SGMII;
537 if (gpy_sgmii_aneg_en(phydev))
538 break;
539 /* Enable and restart SGMII ANEG for 10/100/1000Mbps link speed
540 * if ANEG is disabled (in 2500-BaseX mode).
541 */
542 ret = phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
543 VSPEC1_SGMII_ANEN_ANRS,
544 VSPEC1_SGMII_ANEN_ANRS);
545 if (ret < 0) {
546 phydev_err(phydev,
547 "Error: Enable of SGMII ANEG failed: %d\n",
548 ret);
549 return ret;
550 }
551 break;
552 }
553
554 if (phydev->speed == SPEED_2500 || phydev->speed == SPEED_1000) {
555 ret = genphy_read_master_slave(phydev);
556 if (ret < 0)
557 return ret;
558 }
559
560 return gpy_update_mdix(phydev);
561 }
562
gpy_read_status(struct phy_device * phydev)563 static int gpy_read_status(struct phy_device *phydev)
564 {
565 int ret;
566
567 ret = genphy_update_link(phydev);
568 if (ret)
569 return ret;
570
571 phydev->speed = SPEED_UNKNOWN;
572 phydev->duplex = DUPLEX_UNKNOWN;
573 phydev->pause = 0;
574 phydev->asym_pause = 0;
575
576 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
577 ret = genphy_c45_read_lpa(phydev);
578 if (ret < 0)
579 return ret;
580
581 /* Read the link partner's 1G advertisement */
582 ret = phy_read(phydev, MII_STAT1000);
583 if (ret < 0)
584 return ret;
585 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, ret);
586 } else if (phydev->autoneg == AUTONEG_DISABLE) {
587 linkmode_zero(phydev->lp_advertising);
588 }
589
590 ret = phy_read(phydev, PHY_MIISTAT);
591 if (ret < 0)
592 return ret;
593
594 phydev->link = (ret & PHY_MIISTAT_LS) ? 1 : 0;
595 phydev->duplex = (ret & PHY_MIISTAT_DPX) ? DUPLEX_FULL : DUPLEX_HALF;
596 switch (FIELD_GET(PHY_MIISTAT_SPD_MASK, ret)) {
597 case PHY_MIISTAT_SPD_10:
598 phydev->speed = SPEED_10;
599 break;
600 case PHY_MIISTAT_SPD_100:
601 phydev->speed = SPEED_100;
602 break;
603 case PHY_MIISTAT_SPD_1000:
604 phydev->speed = SPEED_1000;
605 break;
606 case PHY_MIISTAT_SPD_2500:
607 phydev->speed = SPEED_2500;
608 break;
609 }
610
611 if (phydev->link) {
612 ret = gpy_update_interface(phydev);
613 if (ret < 0)
614 return ret;
615 }
616
617 return 0;
618 }
619
gpy_config_intr(struct phy_device * phydev)620 static int gpy_config_intr(struct phy_device *phydev)
621 {
622 u16 mask = 0;
623
624 if (phydev->interrupts == PHY_INTERRUPT_ENABLED)
625 mask = PHY_IMASK_MASK;
626
627 return phy_write(phydev, PHY_IMASK, mask);
628 }
629
gpy_handle_interrupt(struct phy_device * phydev)630 static irqreturn_t gpy_handle_interrupt(struct phy_device *phydev)
631 {
632 int reg;
633
634 reg = phy_read(phydev, PHY_ISTAT);
635 if (reg < 0) {
636 phy_error(phydev);
637 return IRQ_NONE;
638 }
639
640 if (!(reg & PHY_IMASK_MASK))
641 return IRQ_NONE;
642
643 /* The PHY might leave the interrupt line asserted even after PHY_ISTAT
644 * is read. To avoid interrupt storms, delay the interrupt handling as
645 * long as the PHY drives the interrupt line. An internal bus read will
646 * stall as long as the interrupt line is asserted, thus just read a
647 * random register here.
648 * Because we cannot access the internal bus at all while the interrupt
649 * is driven by the PHY, there is no way to make the interrupt line
650 * unstuck (e.g. by changing the pinmux to GPIO input) during that time
651 * frame. Therefore, polling is the best we can do and won't do any more
652 * harm.
653 * It was observed that this bug happens on link state and link speed
654 * changes independent of the firmware version.
655 */
656 if (reg & (PHY_IMASK_LSTC | PHY_IMASK_LSPC)) {
657 reg = gpy_mbox_read(phydev, REG_GPIO0_OUT);
658 if (reg < 0) {
659 phy_error(phydev);
660 return IRQ_NONE;
661 }
662 }
663
664 phy_trigger_machine(phydev);
665
666 return IRQ_HANDLED;
667 }
668
gpy_set_wol(struct phy_device * phydev,struct ethtool_wolinfo * wol)669 static int gpy_set_wol(struct phy_device *phydev,
670 struct ethtool_wolinfo *wol)
671 {
672 struct net_device *attach_dev = phydev->attached_dev;
673 int ret;
674
675 if (wol->wolopts & WAKE_MAGIC) {
676 /* MAC address - Byte0:Byte1:Byte2:Byte3:Byte4:Byte5
677 * VPSPEC2_WOL_AD45 = Byte0:Byte1
678 * VPSPEC2_WOL_AD23 = Byte2:Byte3
679 * VPSPEC2_WOL_AD01 = Byte4:Byte5
680 */
681 ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
682 VPSPEC2_WOL_AD45,
683 ((attach_dev->dev_addr[0] << 8) |
684 attach_dev->dev_addr[1]));
685 if (ret < 0)
686 return ret;
687
688 ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
689 VPSPEC2_WOL_AD23,
690 ((attach_dev->dev_addr[2] << 8) |
691 attach_dev->dev_addr[3]));
692 if (ret < 0)
693 return ret;
694
695 ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
696 VPSPEC2_WOL_AD01,
697 ((attach_dev->dev_addr[4] << 8) |
698 attach_dev->dev_addr[5]));
699 if (ret < 0)
700 return ret;
701
702 /* Enable the WOL interrupt */
703 ret = phy_write(phydev, PHY_IMASK, PHY_IMASK_WOL);
704 if (ret < 0)
705 return ret;
706
707 /* Enable magic packet matching */
708 ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
709 VPSPEC2_WOL_CTL,
710 WOL_EN);
711 if (ret < 0)
712 return ret;
713
714 /* Clear the interrupt status register.
715 * Only WoL is enabled so clear all.
716 */
717 ret = phy_read(phydev, PHY_ISTAT);
718 if (ret < 0)
719 return ret;
720 } else {
721 /* Disable magic packet matching */
722 ret = phy_clear_bits_mmd(phydev, MDIO_MMD_VEND2,
723 VPSPEC2_WOL_CTL,
724 WOL_EN);
725 if (ret < 0)
726 return ret;
727 }
728
729 if (wol->wolopts & WAKE_PHY) {
730 /* Enable the link state change interrupt */
731 ret = phy_set_bits(phydev, PHY_IMASK, PHY_IMASK_LSTC);
732 if (ret < 0)
733 return ret;
734
735 /* Clear the interrupt status register */
736 ret = phy_read(phydev, PHY_ISTAT);
737 if (ret < 0)
738 return ret;
739
740 if (ret & (PHY_IMASK_MASK & ~PHY_IMASK_LSTC))
741 phy_trigger_machine(phydev);
742
743 return 0;
744 }
745
746 /* Disable the link state change interrupt */
747 return phy_clear_bits(phydev, PHY_IMASK, PHY_IMASK_LSTC);
748 }
749
gpy_get_wol(struct phy_device * phydev,struct ethtool_wolinfo * wol)750 static void gpy_get_wol(struct phy_device *phydev,
751 struct ethtool_wolinfo *wol)
752 {
753 int ret;
754
755 wol->supported = WAKE_MAGIC | WAKE_PHY;
756 wol->wolopts = 0;
757
758 ret = phy_read_mmd(phydev, MDIO_MMD_VEND2, VPSPEC2_WOL_CTL);
759 if (ret & WOL_EN)
760 wol->wolopts |= WAKE_MAGIC;
761
762 ret = phy_read(phydev, PHY_IMASK);
763 if (ret & PHY_IMASK_LSTC)
764 wol->wolopts |= WAKE_PHY;
765 }
766
gpy_loopback(struct phy_device * phydev,bool enable)767 static int gpy_loopback(struct phy_device *phydev, bool enable)
768 {
769 struct gpy_priv *priv = phydev->priv;
770 u16 set = 0;
771 int ret;
772
773 if (enable) {
774 u64 now = get_jiffies_64();
775
776 /* wait until 3 seconds from last disable */
777 if (time_before64(now, priv->lb_dis_to))
778 msleep(jiffies64_to_msecs(priv->lb_dis_to - now));
779
780 set = BMCR_LOOPBACK;
781 }
782
783 ret = phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, set);
784 if (ret <= 0)
785 return ret;
786
787 if (enable) {
788 /* It takes some time for PHY device to switch into
789 * loopback mode.
790 */
791 msleep(100);
792 } else {
793 priv->lb_dis_to = get_jiffies_64() + HZ * 3;
794 }
795
796 return 0;
797 }
798
gpy115_loopback(struct phy_device * phydev,bool enable)799 static int gpy115_loopback(struct phy_device *phydev, bool enable)
800 {
801 struct gpy_priv *priv = phydev->priv;
802
803 if (enable)
804 return gpy_loopback(phydev, enable);
805
806 if (priv->fw_minor > 0x76)
807 return gpy_loopback(phydev, 0);
808
809 return genphy_soft_reset(phydev);
810 }
811
812 static struct phy_driver gpy_drivers[] = {
813 {
814 PHY_ID_MATCH_MODEL(PHY_ID_GPY2xx),
815 .name = "Maxlinear Ethernet GPY2xx",
816 .get_features = genphy_c45_pma_read_abilities,
817 .config_init = gpy_config_init,
818 .probe = gpy_probe,
819 .suspend = genphy_suspend,
820 .resume = genphy_resume,
821 .config_aneg = gpy_config_aneg,
822 .aneg_done = genphy_c45_aneg_done,
823 .read_status = gpy_read_status,
824 .config_intr = gpy_config_intr,
825 .handle_interrupt = gpy_handle_interrupt,
826 .set_wol = gpy_set_wol,
827 .get_wol = gpy_get_wol,
828 .set_loopback = gpy_loopback,
829 },
830 {
831 .phy_id = PHY_ID_GPY115B,
832 .phy_id_mask = PHY_ID_GPYx15B_MASK,
833 .name = "Maxlinear Ethernet GPY115B",
834 .get_features = genphy_c45_pma_read_abilities,
835 .config_init = gpy_config_init,
836 .probe = gpy_probe,
837 .suspend = genphy_suspend,
838 .resume = genphy_resume,
839 .config_aneg = gpy_config_aneg,
840 .aneg_done = genphy_c45_aneg_done,
841 .read_status = gpy_read_status,
842 .config_intr = gpy_config_intr,
843 .handle_interrupt = gpy_handle_interrupt,
844 .set_wol = gpy_set_wol,
845 .get_wol = gpy_get_wol,
846 .set_loopback = gpy115_loopback,
847 },
848 {
849 PHY_ID_MATCH_MODEL(PHY_ID_GPY115C),
850 .name = "Maxlinear Ethernet GPY115C",
851 .get_features = genphy_c45_pma_read_abilities,
852 .config_init = gpy_config_init,
853 .probe = gpy_probe,
854 .suspend = genphy_suspend,
855 .resume = genphy_resume,
856 .config_aneg = gpy_config_aneg,
857 .aneg_done = genphy_c45_aneg_done,
858 .read_status = gpy_read_status,
859 .config_intr = gpy_config_intr,
860 .handle_interrupt = gpy_handle_interrupt,
861 .set_wol = gpy_set_wol,
862 .get_wol = gpy_get_wol,
863 .set_loopback = gpy115_loopback,
864 },
865 {
866 .phy_id = PHY_ID_GPY211B,
867 .phy_id_mask = PHY_ID_GPY21xB_MASK,
868 .name = "Maxlinear Ethernet GPY211B",
869 .get_features = genphy_c45_pma_read_abilities,
870 .config_init = gpy_config_init,
871 .probe = gpy_probe,
872 .suspend = genphy_suspend,
873 .resume = genphy_resume,
874 .config_aneg = gpy_config_aneg,
875 .aneg_done = genphy_c45_aneg_done,
876 .read_status = gpy_read_status,
877 .config_intr = gpy_config_intr,
878 .handle_interrupt = gpy_handle_interrupt,
879 .set_wol = gpy_set_wol,
880 .get_wol = gpy_get_wol,
881 .set_loopback = gpy_loopback,
882 },
883 {
884 PHY_ID_MATCH_MODEL(PHY_ID_GPY211C),
885 .name = "Maxlinear Ethernet GPY211C",
886 .get_features = genphy_c45_pma_read_abilities,
887 .config_init = gpy_config_init,
888 .probe = gpy_probe,
889 .suspend = genphy_suspend,
890 .resume = genphy_resume,
891 .config_aneg = gpy_config_aneg,
892 .aneg_done = genphy_c45_aneg_done,
893 .read_status = gpy_read_status,
894 .config_intr = gpy_config_intr,
895 .handle_interrupt = gpy_handle_interrupt,
896 .set_wol = gpy_set_wol,
897 .get_wol = gpy_get_wol,
898 .set_loopback = gpy_loopback,
899 },
900 {
901 .phy_id = PHY_ID_GPY212B,
902 .phy_id_mask = PHY_ID_GPY21xB_MASK,
903 .name = "Maxlinear Ethernet GPY212B",
904 .get_features = genphy_c45_pma_read_abilities,
905 .config_init = gpy_config_init,
906 .probe = gpy_probe,
907 .suspend = genphy_suspend,
908 .resume = genphy_resume,
909 .config_aneg = gpy_config_aneg,
910 .aneg_done = genphy_c45_aneg_done,
911 .read_status = gpy_read_status,
912 .config_intr = gpy_config_intr,
913 .handle_interrupt = gpy_handle_interrupt,
914 .set_wol = gpy_set_wol,
915 .get_wol = gpy_get_wol,
916 .set_loopback = gpy_loopback,
917 },
918 {
919 PHY_ID_MATCH_MODEL(PHY_ID_GPY212C),
920 .name = "Maxlinear Ethernet GPY212C",
921 .get_features = genphy_c45_pma_read_abilities,
922 .config_init = gpy_config_init,
923 .probe = gpy_probe,
924 .suspend = genphy_suspend,
925 .resume = genphy_resume,
926 .config_aneg = gpy_config_aneg,
927 .aneg_done = genphy_c45_aneg_done,
928 .read_status = gpy_read_status,
929 .config_intr = gpy_config_intr,
930 .handle_interrupt = gpy_handle_interrupt,
931 .set_wol = gpy_set_wol,
932 .get_wol = gpy_get_wol,
933 .set_loopback = gpy_loopback,
934 },
935 {
936 .phy_id = PHY_ID_GPY215B,
937 .phy_id_mask = PHY_ID_GPYx15B_MASK,
938 .name = "Maxlinear Ethernet GPY215B",
939 .get_features = genphy_c45_pma_read_abilities,
940 .config_init = gpy_config_init,
941 .probe = gpy_probe,
942 .suspend = genphy_suspend,
943 .resume = genphy_resume,
944 .config_aneg = gpy_config_aneg,
945 .aneg_done = genphy_c45_aneg_done,
946 .read_status = gpy_read_status,
947 .config_intr = gpy_config_intr,
948 .handle_interrupt = gpy_handle_interrupt,
949 .set_wol = gpy_set_wol,
950 .get_wol = gpy_get_wol,
951 .set_loopback = gpy_loopback,
952 },
953 {
954 PHY_ID_MATCH_MODEL(PHY_ID_GPY215C),
955 .name = "Maxlinear Ethernet GPY215C",
956 .get_features = genphy_c45_pma_read_abilities,
957 .config_init = gpy_config_init,
958 .probe = gpy_probe,
959 .suspend = genphy_suspend,
960 .resume = genphy_resume,
961 .config_aneg = gpy_config_aneg,
962 .aneg_done = genphy_c45_aneg_done,
963 .read_status = gpy_read_status,
964 .config_intr = gpy_config_intr,
965 .handle_interrupt = gpy_handle_interrupt,
966 .set_wol = gpy_set_wol,
967 .get_wol = gpy_get_wol,
968 .set_loopback = gpy_loopback,
969 },
970 {
971 PHY_ID_MATCH_MODEL(PHY_ID_GPY241B),
972 .name = "Maxlinear Ethernet GPY241B",
973 .get_features = genphy_c45_pma_read_abilities,
974 .config_init = gpy_config_init,
975 .probe = gpy_probe,
976 .suspend = genphy_suspend,
977 .resume = genphy_resume,
978 .config_aneg = gpy_config_aneg,
979 .aneg_done = genphy_c45_aneg_done,
980 .read_status = gpy_read_status,
981 .config_intr = gpy_config_intr,
982 .handle_interrupt = gpy_handle_interrupt,
983 .set_wol = gpy_set_wol,
984 .get_wol = gpy_get_wol,
985 .set_loopback = gpy_loopback,
986 },
987 {
988 PHY_ID_MATCH_MODEL(PHY_ID_GPY241BM),
989 .name = "Maxlinear Ethernet GPY241BM",
990 .get_features = genphy_c45_pma_read_abilities,
991 .config_init = gpy_config_init,
992 .probe = gpy_probe,
993 .suspend = genphy_suspend,
994 .resume = genphy_resume,
995 .config_aneg = gpy_config_aneg,
996 .aneg_done = genphy_c45_aneg_done,
997 .read_status = gpy_read_status,
998 .config_intr = gpy_config_intr,
999 .handle_interrupt = gpy_handle_interrupt,
1000 .set_wol = gpy_set_wol,
1001 .get_wol = gpy_get_wol,
1002 .set_loopback = gpy_loopback,
1003 },
1004 {
1005 PHY_ID_MATCH_MODEL(PHY_ID_GPY245B),
1006 .name = "Maxlinear Ethernet GPY245B",
1007 .get_features = genphy_c45_pma_read_abilities,
1008 .config_init = gpy_config_init,
1009 .probe = gpy_probe,
1010 .suspend = genphy_suspend,
1011 .resume = genphy_resume,
1012 .config_aneg = gpy_config_aneg,
1013 .aneg_done = genphy_c45_aneg_done,
1014 .read_status = gpy_read_status,
1015 .config_intr = gpy_config_intr,
1016 .handle_interrupt = gpy_handle_interrupt,
1017 .set_wol = gpy_set_wol,
1018 .get_wol = gpy_get_wol,
1019 .set_loopback = gpy_loopback,
1020 },
1021 };
1022 module_phy_driver(gpy_drivers);
1023
1024 static struct mdio_device_id __maybe_unused gpy_tbl[] = {
1025 {PHY_ID_MATCH_MODEL(PHY_ID_GPY2xx)},
1026 {PHY_ID_GPY115B, PHY_ID_GPYx15B_MASK},
1027 {PHY_ID_MATCH_MODEL(PHY_ID_GPY115C)},
1028 {PHY_ID_GPY211B, PHY_ID_GPY21xB_MASK},
1029 {PHY_ID_MATCH_MODEL(PHY_ID_GPY211C)},
1030 {PHY_ID_GPY212B, PHY_ID_GPY21xB_MASK},
1031 {PHY_ID_MATCH_MODEL(PHY_ID_GPY212C)},
1032 {PHY_ID_GPY215B, PHY_ID_GPYx15B_MASK},
1033 {PHY_ID_MATCH_MODEL(PHY_ID_GPY215C)},
1034 {PHY_ID_MATCH_MODEL(PHY_ID_GPY241B)},
1035 {PHY_ID_MATCH_MODEL(PHY_ID_GPY241BM)},
1036 {PHY_ID_MATCH_MODEL(PHY_ID_GPY245B)},
1037 { }
1038 };
1039 MODULE_DEVICE_TABLE(mdio, gpy_tbl);
1040
1041 MODULE_DESCRIPTION("Maxlinear Ethernet GPY Driver");
1042 MODULE_AUTHOR("Xu Liang");
1043 MODULE_LICENSE("GPL");
1044