1 // SPDX-License-Identifier: GPL-2.0+
2 #include <linux/bitfield.h>
3 #include <linux/bitmap.h>
4 #include <linux/mfd/syscon.h>
5 #include <linux/module.h>
6 #include <linux/nvmem-consumer.h>
7 #include <linux/pinctrl/consumer.h>
8 #include <linux/phy.h>
9 #include <linux/regmap.h>
10 
11 #define MTK_GPHY_ID_MT7981			0x03a29461
12 #define MTK_GPHY_ID_MT7988			0x03a29481
13 
14 #define MTK_EXT_PAGE_ACCESS			0x1f
15 #define MTK_PHY_PAGE_STANDARD			0x0000
16 #define MTK_PHY_PAGE_EXTENDED_3			0x0003
17 
18 #define MTK_PHY_LPI_REG_14			0x14
19 #define MTK_PHY_LPI_WAKE_TIMER_1000_MASK	GENMASK(8, 0)
20 
21 #define MTK_PHY_LPI_REG_1c			0x1c
22 #define MTK_PHY_SMI_DET_ON_THRESH_MASK		GENMASK(13, 8)
23 
24 #define MTK_PHY_PAGE_EXTENDED_2A30		0x2a30
25 #define MTK_PHY_PAGE_EXTENDED_52B5		0x52b5
26 
27 #define ANALOG_INTERNAL_OPERATION_MAX_US	20
28 #define TXRESERVE_MIN				0
29 #define TXRESERVE_MAX				7
30 
31 #define MTK_PHY_ANARG_RG			0x10
32 #define   MTK_PHY_TCLKOFFSET_MASK		GENMASK(12, 8)
33 
34 /* Registers on MDIO_MMD_VEND1 */
35 #define MTK_PHY_TXVLD_DA_RG			0x12
36 #define   MTK_PHY_DA_TX_I2MPB_A_GBE_MASK	GENMASK(15, 10)
37 #define   MTK_PHY_DA_TX_I2MPB_A_TBT_MASK	GENMASK(5, 0)
38 
39 #define MTK_PHY_TX_I2MPB_TEST_MODE_A2		0x16
40 #define   MTK_PHY_DA_TX_I2MPB_A_HBT_MASK	GENMASK(15, 10)
41 #define   MTK_PHY_DA_TX_I2MPB_A_TST_MASK	GENMASK(5, 0)
42 
43 #define MTK_PHY_TX_I2MPB_TEST_MODE_B1		0x17
44 #define   MTK_PHY_DA_TX_I2MPB_B_GBE_MASK	GENMASK(13, 8)
45 #define   MTK_PHY_DA_TX_I2MPB_B_TBT_MASK	GENMASK(5, 0)
46 
47 #define MTK_PHY_TX_I2MPB_TEST_MODE_B2		0x18
48 #define   MTK_PHY_DA_TX_I2MPB_B_HBT_MASK	GENMASK(13, 8)
49 #define   MTK_PHY_DA_TX_I2MPB_B_TST_MASK	GENMASK(5, 0)
50 
51 #define MTK_PHY_TX_I2MPB_TEST_MODE_C1		0x19
52 #define   MTK_PHY_DA_TX_I2MPB_C_GBE_MASK	GENMASK(13, 8)
53 #define   MTK_PHY_DA_TX_I2MPB_C_TBT_MASK	GENMASK(5, 0)
54 
55 #define MTK_PHY_TX_I2MPB_TEST_MODE_C2		0x20
56 #define   MTK_PHY_DA_TX_I2MPB_C_HBT_MASK	GENMASK(13, 8)
57 #define   MTK_PHY_DA_TX_I2MPB_C_TST_MASK	GENMASK(5, 0)
58 
59 #define MTK_PHY_TX_I2MPB_TEST_MODE_D1		0x21
60 #define   MTK_PHY_DA_TX_I2MPB_D_GBE_MASK	GENMASK(13, 8)
61 #define   MTK_PHY_DA_TX_I2MPB_D_TBT_MASK	GENMASK(5, 0)
62 
63 #define MTK_PHY_TX_I2MPB_TEST_MODE_D2		0x22
64 #define   MTK_PHY_DA_TX_I2MPB_D_HBT_MASK	GENMASK(13, 8)
65 #define   MTK_PHY_DA_TX_I2MPB_D_TST_MASK	GENMASK(5, 0)
66 
67 #define MTK_PHY_RXADC_CTRL_RG7			0xc6
68 #define   MTK_PHY_DA_AD_BUF_BIAS_LP_MASK	GENMASK(9, 8)
69 
70 #define MTK_PHY_RXADC_CTRL_RG9			0xc8
71 #define   MTK_PHY_DA_RX_PSBN_TBT_MASK		GENMASK(14, 12)
72 #define   MTK_PHY_DA_RX_PSBN_HBT_MASK		GENMASK(10, 8)
73 #define   MTK_PHY_DA_RX_PSBN_GBE_MASK		GENMASK(6, 4)
74 #define   MTK_PHY_DA_RX_PSBN_LP_MASK		GENMASK(2, 0)
75 
76 #define MTK_PHY_LDO_OUTPUT_V			0xd7
77 
78 #define MTK_PHY_RG_ANA_CAL_RG0			0xdb
79 #define   MTK_PHY_RG_CAL_CKINV			BIT(12)
80 #define   MTK_PHY_RG_ANA_CALEN			BIT(8)
81 #define   MTK_PHY_RG_ZCALEN_A			BIT(0)
82 
83 #define MTK_PHY_RG_ANA_CAL_RG1			0xdc
84 #define   MTK_PHY_RG_ZCALEN_B			BIT(12)
85 #define   MTK_PHY_RG_ZCALEN_C			BIT(8)
86 #define   MTK_PHY_RG_ZCALEN_D			BIT(4)
87 #define   MTK_PHY_RG_TXVOS_CALEN		BIT(0)
88 
89 #define MTK_PHY_RG_ANA_CAL_RG5			0xe0
90 #define   MTK_PHY_RG_REXT_TRIM_MASK		GENMASK(13, 8)
91 
92 #define MTK_PHY_RG_TX_FILTER			0xfe
93 
94 #define MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG120	0x120
95 #define   MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK	GENMASK(12, 8)
96 #define   MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK	GENMASK(4, 0)
97 
98 #define MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122	0x122
99 #define   MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK	GENMASK(7, 0)
100 
101 #define MTK_PHY_RG_TESTMUX_ADC_CTRL		0x144
102 #define   MTK_PHY_RG_TXEN_DIG_MASK		GENMASK(5, 5)
103 
104 #define MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B		0x172
105 #define   MTK_PHY_CR_TX_AMP_OFFSET_A_MASK	GENMASK(13, 8)
106 #define   MTK_PHY_CR_TX_AMP_OFFSET_B_MASK	GENMASK(6, 0)
107 
108 #define MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D		0x173
109 #define   MTK_PHY_CR_TX_AMP_OFFSET_C_MASK	GENMASK(13, 8)
110 #define   MTK_PHY_CR_TX_AMP_OFFSET_D_MASK	GENMASK(6, 0)
111 
112 #define MTK_PHY_RG_AD_CAL_COMP			0x17a
113 #define   MTK_PHY_AD_CAL_COMP_OUT_SHIFT		(8)
114 
115 #define MTK_PHY_RG_AD_CAL_CLK			0x17b
116 #define   MTK_PHY_DA_CAL_CLK			BIT(0)
117 
118 #define MTK_PHY_RG_AD_CALIN			0x17c
119 #define   MTK_PHY_DA_CALIN_FLAG			BIT(0)
120 
121 #define MTK_PHY_RG_DASN_DAC_IN0_A		0x17d
122 #define   MTK_PHY_DASN_DAC_IN0_A_MASK		GENMASK(9, 0)
123 
124 #define MTK_PHY_RG_DASN_DAC_IN0_B		0x17e
125 #define   MTK_PHY_DASN_DAC_IN0_B_MASK		GENMASK(9, 0)
126 
127 #define MTK_PHY_RG_DASN_DAC_IN0_C		0x17f
128 #define   MTK_PHY_DASN_DAC_IN0_C_MASK		GENMASK(9, 0)
129 
130 #define MTK_PHY_RG_DASN_DAC_IN0_D		0x180
131 #define   MTK_PHY_DASN_DAC_IN0_D_MASK		GENMASK(9, 0)
132 
133 #define MTK_PHY_RG_DASN_DAC_IN1_A		0x181
134 #define   MTK_PHY_DASN_DAC_IN1_A_MASK		GENMASK(9, 0)
135 
136 #define MTK_PHY_RG_DASN_DAC_IN1_B		0x182
137 #define   MTK_PHY_DASN_DAC_IN1_B_MASK		GENMASK(9, 0)
138 
139 #define MTK_PHY_RG_DASN_DAC_IN1_C		0x183
140 #define   MTK_PHY_DASN_DAC_IN1_C_MASK		GENMASK(9, 0)
141 
142 #define MTK_PHY_RG_DASN_DAC_IN1_D		0x184
143 #define   MTK_PHY_DASN_DAC_IN1_D_MASK		GENMASK(9, 0)
144 
145 #define MTK_PHY_RG_DEV1E_REG19b			0x19b
146 #define   MTK_PHY_BYPASS_DSP_LPI_READY		BIT(8)
147 
148 #define MTK_PHY_RG_LP_IIR2_K1_L			0x22a
149 #define MTK_PHY_RG_LP_IIR2_K1_U			0x22b
150 #define MTK_PHY_RG_LP_IIR2_K2_L			0x22c
151 #define MTK_PHY_RG_LP_IIR2_K2_U			0x22d
152 #define MTK_PHY_RG_LP_IIR2_K3_L			0x22e
153 #define MTK_PHY_RG_LP_IIR2_K3_U			0x22f
154 #define MTK_PHY_RG_LP_IIR2_K4_L			0x230
155 #define MTK_PHY_RG_LP_IIR2_K4_U			0x231
156 #define MTK_PHY_RG_LP_IIR2_K5_L			0x232
157 #define MTK_PHY_RG_LP_IIR2_K5_U			0x233
158 
159 #define MTK_PHY_RG_DEV1E_REG234			0x234
160 #define   MTK_PHY_TR_OPEN_LOOP_EN_MASK		GENMASK(0, 0)
161 #define   MTK_PHY_LPF_X_AVERAGE_MASK		GENMASK(7, 4)
162 #define   MTK_PHY_TR_LP_IIR_EEE_EN		BIT(12)
163 
164 #define MTK_PHY_RG_LPF_CNT_VAL			0x235
165 
166 #define MTK_PHY_RG_DEV1E_REG238			0x238
167 #define   MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK	GENMASK(8, 0)
168 #define   MTK_PHY_LPI_SLV_SEND_TX_EN		BIT(12)
169 
170 #define MTK_PHY_RG_DEV1E_REG239			0x239
171 #define   MTK_PHY_LPI_SEND_LOC_TIMER_MASK	GENMASK(8, 0)
172 #define   MTK_PHY_LPI_TXPCS_LOC_RCV		BIT(12)
173 
174 #define MTK_PHY_RG_DEV1E_REG27C			0x27c
175 #define   MTK_PHY_VGASTATE_FFE_THR_ST1_MASK	GENMASK(12, 8)
176 #define MTK_PHY_RG_DEV1E_REG27D			0x27d
177 #define   MTK_PHY_VGASTATE_FFE_THR_ST2_MASK	GENMASK(4, 0)
178 
179 #define MTK_PHY_RG_DEV1E_REG2C7			0x2c7
180 #define   MTK_PHY_MAX_GAIN_MASK			GENMASK(4, 0)
181 #define   MTK_PHY_MIN_GAIN_MASK			GENMASK(12, 8)
182 
183 #define MTK_PHY_RG_DEV1E_REG2D1			0x2d1
184 #define   MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK	GENMASK(7, 0)
185 #define   MTK_PHY_LPI_SKIP_SD_SLV_TR		BIT(8)
186 #define   MTK_PHY_LPI_TR_READY			BIT(9)
187 #define   MTK_PHY_LPI_VCO_EEE_STG0_EN		BIT(10)
188 
189 #define MTK_PHY_RG_DEV1E_REG323			0x323
190 #define   MTK_PHY_EEE_WAKE_MAS_INT_DC		BIT(0)
191 #define   MTK_PHY_EEE_WAKE_SLV_INT_DC		BIT(4)
192 
193 #define MTK_PHY_RG_DEV1E_REG324			0x324
194 #define   MTK_PHY_SMI_DETCNT_MAX_MASK		GENMASK(5, 0)
195 #define   MTK_PHY_SMI_DET_MAX_EN		BIT(8)
196 
197 #define MTK_PHY_RG_DEV1E_REG326			0x326
198 #define   MTK_PHY_LPI_MODE_SD_ON		BIT(0)
199 #define   MTK_PHY_RESET_RANDUPD_CNT		BIT(1)
200 #define   MTK_PHY_TREC_UPDATE_ENAB_CLR		BIT(2)
201 #define   MTK_PHY_LPI_QUIT_WAIT_DFE_SIG_DET_OFF	BIT(4)
202 #define   MTK_PHY_TR_READY_SKIP_AFE_WAKEUP	BIT(5)
203 
204 #define MTK_PHY_LDO_PUMP_EN_PAIRAB		0x502
205 #define MTK_PHY_LDO_PUMP_EN_PAIRCD		0x503
206 
207 #define MTK_PHY_DA_TX_R50_PAIR_A		0x53d
208 #define MTK_PHY_DA_TX_R50_PAIR_B		0x53e
209 #define MTK_PHY_DA_TX_R50_PAIR_C		0x53f
210 #define MTK_PHY_DA_TX_R50_PAIR_D		0x540
211 
212 /* Registers on MDIO_MMD_VEND2 */
213 #define MTK_PHY_LED0_ON_CTRL			0x24
214 #define MTK_PHY_LED1_ON_CTRL			0x26
215 #define   MTK_PHY_LED_ON_MASK			GENMASK(6, 0)
216 #define   MTK_PHY_LED_ON_LINK1000		BIT(0)
217 #define   MTK_PHY_LED_ON_LINK100		BIT(1)
218 #define   MTK_PHY_LED_ON_LINK10			BIT(2)
219 #define   MTK_PHY_LED_ON_LINKDOWN		BIT(3)
220 #define   MTK_PHY_LED_ON_FDX			BIT(4) /* Full duplex */
221 #define   MTK_PHY_LED_ON_HDX			BIT(5) /* Half duplex */
222 #define   MTK_PHY_LED_ON_FORCE_ON		BIT(6)
223 #define   MTK_PHY_LED_ON_POLARITY		BIT(14)
224 #define   MTK_PHY_LED_ON_ENABLE			BIT(15)
225 
226 #define MTK_PHY_LED0_BLINK_CTRL			0x25
227 #define MTK_PHY_LED1_BLINK_CTRL			0x27
228 #define   MTK_PHY_LED_BLINK_1000TX		BIT(0)
229 #define   MTK_PHY_LED_BLINK_1000RX		BIT(1)
230 #define   MTK_PHY_LED_BLINK_100TX		BIT(2)
231 #define   MTK_PHY_LED_BLINK_100RX		BIT(3)
232 #define   MTK_PHY_LED_BLINK_10TX		BIT(4)
233 #define   MTK_PHY_LED_BLINK_10RX		BIT(5)
234 #define   MTK_PHY_LED_BLINK_COLLISION		BIT(6)
235 #define   MTK_PHY_LED_BLINK_RX_CRC_ERR		BIT(7)
236 #define   MTK_PHY_LED_BLINK_RX_IDLE_ERR		BIT(8)
237 #define   MTK_PHY_LED_BLINK_FORCE_BLINK		BIT(9)
238 
239 #define MTK_PHY_LED1_DEFAULT_POLARITIES		BIT(1)
240 
241 #define MTK_PHY_RG_BG_RASEL			0x115
242 #define   MTK_PHY_RG_BG_RASEL_MASK		GENMASK(2, 0)
243 
244 /* 'boottrap' register reflecting the configuration of the 4 PHY LEDs */
245 #define RG_GPIO_MISC_TPBANK0			0x6f0
246 #define   RG_GPIO_MISC_TPBANK0_BOOTMODE		GENMASK(11, 8)
247 
248 /* These macro privides efuse parsing for internal phy. */
249 #define EFS_DA_TX_I2MPB_A(x)			(((x) >> 0) & GENMASK(5, 0))
250 #define EFS_DA_TX_I2MPB_B(x)			(((x) >> 6) & GENMASK(5, 0))
251 #define EFS_DA_TX_I2MPB_C(x)			(((x) >> 12) & GENMASK(5, 0))
252 #define EFS_DA_TX_I2MPB_D(x)			(((x) >> 18) & GENMASK(5, 0))
253 #define EFS_DA_TX_AMP_OFFSET_A(x)		(((x) >> 24) & GENMASK(5, 0))
254 
255 #define EFS_DA_TX_AMP_OFFSET_B(x)		(((x) >> 0) & GENMASK(5, 0))
256 #define EFS_DA_TX_AMP_OFFSET_C(x)		(((x) >> 6) & GENMASK(5, 0))
257 #define EFS_DA_TX_AMP_OFFSET_D(x)		(((x) >> 12) & GENMASK(5, 0))
258 #define EFS_DA_TX_R50_A(x)			(((x) >> 18) & GENMASK(5, 0))
259 #define EFS_DA_TX_R50_B(x)			(((x) >> 24) & GENMASK(5, 0))
260 
261 #define EFS_DA_TX_R50_C(x)			(((x) >> 0) & GENMASK(5, 0))
262 #define EFS_DA_TX_R50_D(x)			(((x) >> 6) & GENMASK(5, 0))
263 
264 #define EFS_RG_BG_RASEL(x)			(((x) >> 4) & GENMASK(2, 0))
265 #define EFS_RG_REXT_TRIM(x)			(((x) >> 7) & GENMASK(5, 0))
266 
267 enum {
268 	NO_PAIR,
269 	PAIR_A,
270 	PAIR_B,
271 	PAIR_C,
272 	PAIR_D,
273 };
274 
275 enum calibration_mode {
276 	EFUSE_K,
277 	SW_K
278 };
279 
280 enum CAL_ITEM {
281 	REXT,
282 	TX_OFFSET,
283 	TX_AMP,
284 	TX_R50,
285 	TX_VCM
286 };
287 
288 enum CAL_MODE {
289 	EFUSE_M,
290 	SW_M
291 };
292 
293 #define MTK_PHY_LED_STATE_FORCE_ON	0
294 #define MTK_PHY_LED_STATE_FORCE_BLINK	1
295 #define MTK_PHY_LED_STATE_NETDEV	2
296 
297 struct mtk_socphy_priv {
298 	unsigned long		led_state;
299 };
300 
301 struct mtk_socphy_shared {
302 	u32			boottrap;
303 	struct mtk_socphy_priv	priv[4];
304 };
305 
mtk_socphy_read_page(struct phy_device * phydev)306 static int mtk_socphy_read_page(struct phy_device *phydev)
307 {
308 	return __phy_read(phydev, MTK_EXT_PAGE_ACCESS);
309 }
310 
mtk_socphy_write_page(struct phy_device * phydev,int page)311 static int mtk_socphy_write_page(struct phy_device *phydev, int page)
312 {
313 	return __phy_write(phydev, MTK_EXT_PAGE_ACCESS, page);
314 }
315 
316 /* One calibration cycle consists of:
317  * 1.Set DA_CALIN_FLAG high to start calibration. Keep it high
318  *   until AD_CAL_COMP is ready to output calibration result.
319  * 2.Wait until DA_CAL_CLK is available.
320  * 3.Fetch AD_CAL_COMP_OUT.
321  */
cal_cycle(struct phy_device * phydev,int devad,u32 regnum,u16 mask,u16 cal_val)322 static int cal_cycle(struct phy_device *phydev, int devad,
323 		     u32 regnum, u16 mask, u16 cal_val)
324 {
325 	int reg_val;
326 	int ret;
327 
328 	phy_modify_mmd(phydev, devad, regnum,
329 		       mask, cal_val);
330 	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN,
331 			 MTK_PHY_DA_CALIN_FLAG);
332 
333 	ret = phy_read_mmd_poll_timeout(phydev, MDIO_MMD_VEND1,
334 					MTK_PHY_RG_AD_CAL_CLK, reg_val,
335 					reg_val & MTK_PHY_DA_CAL_CLK, 500,
336 					ANALOG_INTERNAL_OPERATION_MAX_US, false);
337 	if (ret) {
338 		phydev_err(phydev, "Calibration cycle timeout\n");
339 		return ret;
340 	}
341 
342 	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN,
343 			   MTK_PHY_DA_CALIN_FLAG);
344 	ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CAL_COMP) >>
345 			   MTK_PHY_AD_CAL_COMP_OUT_SHIFT;
346 	phydev_dbg(phydev, "cal_val: 0x%x, ret: %d\n", cal_val, ret);
347 
348 	return ret;
349 }
350 
rext_fill_result(struct phy_device * phydev,u16 * buf)351 static int rext_fill_result(struct phy_device *phydev, u16 *buf)
352 {
353 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG5,
354 		       MTK_PHY_RG_REXT_TRIM_MASK, buf[0] << 8);
355 	phy_modify_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_RG_BG_RASEL,
356 		       MTK_PHY_RG_BG_RASEL_MASK, buf[1]);
357 
358 	return 0;
359 }
360 
rext_cal_efuse(struct phy_device * phydev,u32 * buf)361 static int rext_cal_efuse(struct phy_device *phydev, u32 *buf)
362 {
363 	u16 rext_cal_val[2];
364 
365 	rext_cal_val[0] = EFS_RG_REXT_TRIM(buf[3]);
366 	rext_cal_val[1] = EFS_RG_BG_RASEL(buf[3]);
367 	rext_fill_result(phydev, rext_cal_val);
368 
369 	return 0;
370 }
371 
tx_offset_fill_result(struct phy_device * phydev,u16 * buf)372 static int tx_offset_fill_result(struct phy_device *phydev, u16 *buf)
373 {
374 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B,
375 		       MTK_PHY_CR_TX_AMP_OFFSET_A_MASK, buf[0] << 8);
376 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B,
377 		       MTK_PHY_CR_TX_AMP_OFFSET_B_MASK, buf[1]);
378 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D,
379 		       MTK_PHY_CR_TX_AMP_OFFSET_C_MASK, buf[2] << 8);
380 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D,
381 		       MTK_PHY_CR_TX_AMP_OFFSET_D_MASK, buf[3]);
382 
383 	return 0;
384 }
385 
tx_offset_cal_efuse(struct phy_device * phydev,u32 * buf)386 static int tx_offset_cal_efuse(struct phy_device *phydev, u32 *buf)
387 {
388 	u16 tx_offset_cal_val[4];
389 
390 	tx_offset_cal_val[0] = EFS_DA_TX_AMP_OFFSET_A(buf[0]);
391 	tx_offset_cal_val[1] = EFS_DA_TX_AMP_OFFSET_B(buf[1]);
392 	tx_offset_cal_val[2] = EFS_DA_TX_AMP_OFFSET_C(buf[1]);
393 	tx_offset_cal_val[3] = EFS_DA_TX_AMP_OFFSET_D(buf[1]);
394 
395 	tx_offset_fill_result(phydev, tx_offset_cal_val);
396 
397 	return 0;
398 }
399 
tx_amp_fill_result(struct phy_device * phydev,u16 * buf)400 static int tx_amp_fill_result(struct phy_device *phydev, u16 *buf)
401 {
402 	int i;
403 	int bias[16] = {};
404 	const int vals_9461[16] = { 7, 1, 4, 7,
405 				    7, 1, 4, 7,
406 				    7, 1, 4, 7,
407 				    7, 1, 4, 7 };
408 	const int vals_9481[16] = { 10, 6, 6, 10,
409 				    10, 6, 6, 10,
410 				    10, 6, 6, 10,
411 				    10, 6, 6, 10 };
412 	switch (phydev->drv->phy_id) {
413 	case MTK_GPHY_ID_MT7981:
414 		/* We add some calibration to efuse values
415 		 * due to board level influence.
416 		 * GBE: +7, TBT: +1, HBT: +4, TST: +7
417 		 */
418 		memcpy(bias, (const void *)vals_9461, sizeof(bias));
419 		break;
420 	case MTK_GPHY_ID_MT7988:
421 		memcpy(bias, (const void *)vals_9481, sizeof(bias));
422 		break;
423 	}
424 
425 	/* Prevent overflow */
426 	for (i = 0; i < 12; i++) {
427 		if (buf[i >> 2] + bias[i] > 63) {
428 			buf[i >> 2] = 63;
429 			bias[i] = 0;
430 		}
431 	}
432 
433 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG,
434 		       MTK_PHY_DA_TX_I2MPB_A_GBE_MASK, (buf[0] + bias[0]) << 10);
435 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG,
436 		       MTK_PHY_DA_TX_I2MPB_A_TBT_MASK, buf[0] + bias[1]);
437 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2,
438 		       MTK_PHY_DA_TX_I2MPB_A_HBT_MASK, (buf[0] + bias[2]) << 10);
439 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2,
440 		       MTK_PHY_DA_TX_I2MPB_A_TST_MASK, buf[0] + bias[3]);
441 
442 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1,
443 		       MTK_PHY_DA_TX_I2MPB_B_GBE_MASK, (buf[1] + bias[4]) << 8);
444 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1,
445 		       MTK_PHY_DA_TX_I2MPB_B_TBT_MASK, buf[1] + bias[5]);
446 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2,
447 		       MTK_PHY_DA_TX_I2MPB_B_HBT_MASK, (buf[1] + bias[6]) << 8);
448 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2,
449 		       MTK_PHY_DA_TX_I2MPB_B_TST_MASK, buf[1] + bias[7]);
450 
451 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1,
452 		       MTK_PHY_DA_TX_I2MPB_C_GBE_MASK, (buf[2] + bias[8]) << 8);
453 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1,
454 		       MTK_PHY_DA_TX_I2MPB_C_TBT_MASK, buf[2] + bias[9]);
455 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2,
456 		       MTK_PHY_DA_TX_I2MPB_C_HBT_MASK, (buf[2] + bias[10]) << 8);
457 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2,
458 		       MTK_PHY_DA_TX_I2MPB_C_TST_MASK, buf[2] + bias[11]);
459 
460 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1,
461 		       MTK_PHY_DA_TX_I2MPB_D_GBE_MASK, (buf[3] + bias[12]) << 8);
462 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1,
463 		       MTK_PHY_DA_TX_I2MPB_D_TBT_MASK, buf[3] + bias[13]);
464 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2,
465 		       MTK_PHY_DA_TX_I2MPB_D_HBT_MASK, (buf[3] + bias[14]) << 8);
466 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2,
467 		       MTK_PHY_DA_TX_I2MPB_D_TST_MASK, buf[3] + bias[15]);
468 
469 	return 0;
470 }
471 
tx_amp_cal_efuse(struct phy_device * phydev,u32 * buf)472 static int tx_amp_cal_efuse(struct phy_device *phydev, u32 *buf)
473 {
474 	u16 tx_amp_cal_val[4];
475 
476 	tx_amp_cal_val[0] = EFS_DA_TX_I2MPB_A(buf[0]);
477 	tx_amp_cal_val[1] = EFS_DA_TX_I2MPB_B(buf[0]);
478 	tx_amp_cal_val[2] = EFS_DA_TX_I2MPB_C(buf[0]);
479 	tx_amp_cal_val[3] = EFS_DA_TX_I2MPB_D(buf[0]);
480 	tx_amp_fill_result(phydev, tx_amp_cal_val);
481 
482 	return 0;
483 }
484 
tx_r50_fill_result(struct phy_device * phydev,u16 tx_r50_cal_val,u8 txg_calen_x)485 static int tx_r50_fill_result(struct phy_device *phydev, u16 tx_r50_cal_val,
486 			      u8 txg_calen_x)
487 {
488 	int bias = 0;
489 	u16 reg, val;
490 
491 	if (phydev->drv->phy_id == MTK_GPHY_ID_MT7988)
492 		bias = -2;
493 
494 	val = clamp_val(bias + tx_r50_cal_val, 0, 63);
495 
496 	switch (txg_calen_x) {
497 	case PAIR_A:
498 		reg = MTK_PHY_DA_TX_R50_PAIR_A;
499 		break;
500 	case PAIR_B:
501 		reg = MTK_PHY_DA_TX_R50_PAIR_B;
502 		break;
503 	case PAIR_C:
504 		reg = MTK_PHY_DA_TX_R50_PAIR_C;
505 		break;
506 	case PAIR_D:
507 		reg = MTK_PHY_DA_TX_R50_PAIR_D;
508 		break;
509 	default:
510 		return -EINVAL;
511 	}
512 
513 	phy_write_mmd(phydev, MDIO_MMD_VEND1, reg, val | val << 8);
514 
515 	return 0;
516 }
517 
tx_r50_cal_efuse(struct phy_device * phydev,u32 * buf,u8 txg_calen_x)518 static int tx_r50_cal_efuse(struct phy_device *phydev, u32 *buf,
519 			    u8 txg_calen_x)
520 {
521 	u16 tx_r50_cal_val;
522 
523 	switch (txg_calen_x) {
524 	case PAIR_A:
525 		tx_r50_cal_val = EFS_DA_TX_R50_A(buf[1]);
526 		break;
527 	case PAIR_B:
528 		tx_r50_cal_val = EFS_DA_TX_R50_B(buf[1]);
529 		break;
530 	case PAIR_C:
531 		tx_r50_cal_val = EFS_DA_TX_R50_C(buf[2]);
532 		break;
533 	case PAIR_D:
534 		tx_r50_cal_val = EFS_DA_TX_R50_D(buf[2]);
535 		break;
536 	default:
537 		return -EINVAL;
538 	}
539 	tx_r50_fill_result(phydev, tx_r50_cal_val, txg_calen_x);
540 
541 	return 0;
542 }
543 
tx_vcm_cal_sw(struct phy_device * phydev,u8 rg_txreserve_x)544 static int tx_vcm_cal_sw(struct phy_device *phydev, u8 rg_txreserve_x)
545 {
546 	u8 lower_idx, upper_idx, txreserve_val;
547 	u8 lower_ret, upper_ret;
548 	int ret;
549 
550 	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
551 			 MTK_PHY_RG_ANA_CALEN);
552 	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
553 			   MTK_PHY_RG_CAL_CKINV);
554 	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
555 			 MTK_PHY_RG_TXVOS_CALEN);
556 
557 	switch (rg_txreserve_x) {
558 	case PAIR_A:
559 		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
560 				   MTK_PHY_RG_DASN_DAC_IN0_A,
561 				   MTK_PHY_DASN_DAC_IN0_A_MASK);
562 		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
563 				   MTK_PHY_RG_DASN_DAC_IN1_A,
564 				   MTK_PHY_DASN_DAC_IN1_A_MASK);
565 		phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
566 				 MTK_PHY_RG_ANA_CAL_RG0,
567 				 MTK_PHY_RG_ZCALEN_A);
568 		break;
569 	case PAIR_B:
570 		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
571 				   MTK_PHY_RG_DASN_DAC_IN0_B,
572 				   MTK_PHY_DASN_DAC_IN0_B_MASK);
573 		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
574 				   MTK_PHY_RG_DASN_DAC_IN1_B,
575 				   MTK_PHY_DASN_DAC_IN1_B_MASK);
576 		phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
577 				 MTK_PHY_RG_ANA_CAL_RG1,
578 				 MTK_PHY_RG_ZCALEN_B);
579 		break;
580 	case PAIR_C:
581 		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
582 				   MTK_PHY_RG_DASN_DAC_IN0_C,
583 				   MTK_PHY_DASN_DAC_IN0_C_MASK);
584 		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
585 				   MTK_PHY_RG_DASN_DAC_IN1_C,
586 				   MTK_PHY_DASN_DAC_IN1_C_MASK);
587 		phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
588 				 MTK_PHY_RG_ANA_CAL_RG1,
589 				 MTK_PHY_RG_ZCALEN_C);
590 		break;
591 	case PAIR_D:
592 		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
593 				   MTK_PHY_RG_DASN_DAC_IN0_D,
594 				   MTK_PHY_DASN_DAC_IN0_D_MASK);
595 		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
596 				   MTK_PHY_RG_DASN_DAC_IN1_D,
597 				   MTK_PHY_DASN_DAC_IN1_D_MASK);
598 		phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
599 				 MTK_PHY_RG_ANA_CAL_RG1,
600 				 MTK_PHY_RG_ZCALEN_D);
601 		break;
602 	default:
603 		ret = -EINVAL;
604 		goto restore;
605 	}
606 
607 	lower_idx = TXRESERVE_MIN;
608 	upper_idx = TXRESERVE_MAX;
609 
610 	phydev_dbg(phydev, "Start TX-VCM SW cal.\n");
611 	while ((upper_idx - lower_idx) > 1) {
612 		txreserve_val = DIV_ROUND_CLOSEST(lower_idx + upper_idx, 2);
613 		ret = cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
614 				MTK_PHY_DA_RX_PSBN_TBT_MASK |
615 				MTK_PHY_DA_RX_PSBN_HBT_MASK |
616 				MTK_PHY_DA_RX_PSBN_GBE_MASK |
617 				MTK_PHY_DA_RX_PSBN_LP_MASK,
618 				txreserve_val << 12 | txreserve_val << 8 |
619 				txreserve_val << 4 | txreserve_val);
620 		if (ret == 1) {
621 			upper_idx = txreserve_val;
622 			upper_ret = ret;
623 		} else if (ret == 0) {
624 			lower_idx = txreserve_val;
625 			lower_ret = ret;
626 		} else {
627 			goto restore;
628 		}
629 	}
630 
631 	if (lower_idx == TXRESERVE_MIN) {
632 		lower_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
633 				      MTK_PHY_RXADC_CTRL_RG9,
634 				      MTK_PHY_DA_RX_PSBN_TBT_MASK |
635 				      MTK_PHY_DA_RX_PSBN_HBT_MASK |
636 				      MTK_PHY_DA_RX_PSBN_GBE_MASK |
637 				      MTK_PHY_DA_RX_PSBN_LP_MASK,
638 				      lower_idx << 12 | lower_idx << 8 |
639 				      lower_idx << 4 | lower_idx);
640 		ret = lower_ret;
641 	} else if (upper_idx == TXRESERVE_MAX) {
642 		upper_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
643 				      MTK_PHY_RXADC_CTRL_RG9,
644 				      MTK_PHY_DA_RX_PSBN_TBT_MASK |
645 				      MTK_PHY_DA_RX_PSBN_HBT_MASK |
646 				      MTK_PHY_DA_RX_PSBN_GBE_MASK |
647 				      MTK_PHY_DA_RX_PSBN_LP_MASK,
648 				      upper_idx << 12 | upper_idx << 8 |
649 				      upper_idx << 4 | upper_idx);
650 		ret = upper_ret;
651 	}
652 	if (ret < 0)
653 		goto restore;
654 
655 	/* We calibrate TX-VCM in different logic. Check upper index and then
656 	 * lower index. If this calibration is valid, apply lower index's result.
657 	 */
658 	ret = upper_ret - lower_ret;
659 	if (ret == 1) {
660 		ret = 0;
661 		/* Make sure we use upper_idx in our calibration system */
662 		cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
663 			  MTK_PHY_DA_RX_PSBN_TBT_MASK |
664 			  MTK_PHY_DA_RX_PSBN_HBT_MASK |
665 			  MTK_PHY_DA_RX_PSBN_GBE_MASK |
666 			  MTK_PHY_DA_RX_PSBN_LP_MASK,
667 			  upper_idx << 12 | upper_idx << 8 |
668 			  upper_idx << 4 | upper_idx);
669 		phydev_dbg(phydev, "TX-VCM SW cal result: 0x%x\n", upper_idx);
670 	} else if (lower_idx == TXRESERVE_MIN && upper_ret == 1 &&
671 		   lower_ret == 1) {
672 		ret = 0;
673 		cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
674 			  MTK_PHY_DA_RX_PSBN_TBT_MASK |
675 			  MTK_PHY_DA_RX_PSBN_HBT_MASK |
676 			  MTK_PHY_DA_RX_PSBN_GBE_MASK |
677 			  MTK_PHY_DA_RX_PSBN_LP_MASK,
678 			  lower_idx << 12 | lower_idx << 8 |
679 			  lower_idx << 4 | lower_idx);
680 		phydev_warn(phydev, "TX-VCM SW cal result at low margin 0x%x\n",
681 			    lower_idx);
682 	} else if (upper_idx == TXRESERVE_MAX && upper_ret == 0 &&
683 		   lower_ret == 0) {
684 		ret = 0;
685 		phydev_warn(phydev, "TX-VCM SW cal result at high margin 0x%x\n",
686 			    upper_idx);
687 	} else {
688 		ret = -EINVAL;
689 	}
690 
691 restore:
692 	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
693 			   MTK_PHY_RG_ANA_CALEN);
694 	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
695 			   MTK_PHY_RG_TXVOS_CALEN);
696 	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
697 			   MTK_PHY_RG_ZCALEN_A);
698 	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
699 			   MTK_PHY_RG_ZCALEN_B | MTK_PHY_RG_ZCALEN_C |
700 			   MTK_PHY_RG_ZCALEN_D);
701 
702 	return ret;
703 }
704 
mt798x_phy_common_finetune(struct phy_device * phydev)705 static void mt798x_phy_common_finetune(struct phy_device *phydev)
706 {
707 	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
708 	/* EnabRandUpdTrig = 1 */
709 	__phy_write(phydev, 0x11, 0x2f00);
710 	__phy_write(phydev, 0x12, 0xe);
711 	__phy_write(phydev, 0x10, 0x8fb0);
712 
713 	/* NormMseLoThresh = 85 */
714 	__phy_write(phydev, 0x11, 0x55a0);
715 	__phy_write(phydev, 0x12, 0x0);
716 	__phy_write(phydev, 0x10, 0x83aa);
717 
718 	/* TrFreeze = 0 */
719 	__phy_write(phydev, 0x11, 0x0);
720 	__phy_write(phydev, 0x12, 0x0);
721 	__phy_write(phydev, 0x10, 0x9686);
722 
723 	/* SSTrKp1000Slv = 5 */
724 	__phy_write(phydev, 0x11, 0xbaef);
725 	__phy_write(phydev, 0x12, 0x2e);
726 	__phy_write(phydev, 0x10, 0x968c);
727 
728 	/* MrvlTrFix100Kp = 3, MrvlTrFix100Kf = 2,
729 	 * MrvlTrFix1000Kp = 3, MrvlTrFix1000Kf = 2
730 	 */
731 	__phy_write(phydev, 0x11, 0xd10a);
732 	__phy_write(phydev, 0x12, 0x34);
733 	__phy_write(phydev, 0x10, 0x8f82);
734 
735 	/* VcoSlicerThreshBitsHigh */
736 	__phy_write(phydev, 0x11, 0x5555);
737 	__phy_write(phydev, 0x12, 0x55);
738 	__phy_write(phydev, 0x10, 0x8ec0);
739 	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
740 
741 	/* TR_OPEN_LOOP_EN = 1, lpf_x_average = 9*/
742 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG234,
743 		       MTK_PHY_TR_OPEN_LOOP_EN_MASK | MTK_PHY_LPF_X_AVERAGE_MASK,
744 		       BIT(0) | FIELD_PREP(MTK_PHY_LPF_X_AVERAGE_MASK, 0x9));
745 
746 	/* rg_tr_lpf_cnt_val = 512 */
747 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LPF_CNT_VAL, 0x200);
748 
749 	/* IIR2 related */
750 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_L, 0x82);
751 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_U, 0x0);
752 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_L, 0x103);
753 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_U, 0x0);
754 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_L, 0x82);
755 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_U, 0x0);
756 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_L, 0xd177);
757 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_U, 0x3);
758 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_L, 0x2c82);
759 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_U, 0xe);
760 
761 	/* FFE peaking */
762 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27C,
763 		       MTK_PHY_VGASTATE_FFE_THR_ST1_MASK, 0x1b << 8);
764 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27D,
765 		       MTK_PHY_VGASTATE_FFE_THR_ST2_MASK, 0x1e);
766 
767 	/* Disable LDO pump */
768 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRAB, 0x0);
769 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRCD, 0x0);
770 	/* Adjust LDO output voltage */
771 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_OUTPUT_V, 0x2222);
772 }
773 
mt7981_phy_finetune(struct phy_device * phydev)774 static void mt7981_phy_finetune(struct phy_device *phydev)
775 {
776 	u16 val[8] = { 0x01ce, 0x01c1,
777 		       0x020f, 0x0202,
778 		       0x03d0, 0x03c0,
779 		       0x0013, 0x0005 };
780 	int i, k;
781 
782 	/* 100M eye finetune:
783 	 * Keep middle level of TX MLT3 shapper as default.
784 	 * Only change TX MLT3 overshoot level here.
785 	 */
786 	for (k = 0, i = 1; i < 12; i++) {
787 		if (i % 3 == 0)
788 			continue;
789 		phy_write_mmd(phydev, MDIO_MMD_VEND1, i, val[k++]);
790 	}
791 
792 	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
793 	/* SlvDSPreadyTime = 24, MasDSPreadyTime = 24 */
794 	__phy_write(phydev, 0x11, 0xc71);
795 	__phy_write(phydev, 0x12, 0xc);
796 	__phy_write(phydev, 0x10, 0x8fae);
797 
798 	/* ResetSyncOffset = 6 */
799 	__phy_write(phydev, 0x11, 0x600);
800 	__phy_write(phydev, 0x12, 0x0);
801 	__phy_write(phydev, 0x10, 0x8fc0);
802 
803 	/* VgaDecRate = 1 */
804 	__phy_write(phydev, 0x11, 0x4c2a);
805 	__phy_write(phydev, 0x12, 0x3e);
806 	__phy_write(phydev, 0x10, 0x8fa4);
807 
808 	/* FfeUpdGainForce = 4 */
809 	__phy_write(phydev, 0x11, 0x240);
810 	__phy_write(phydev, 0x12, 0x0);
811 	__phy_write(phydev, 0x10, 0x9680);
812 
813 	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
814 }
815 
mt7988_phy_finetune(struct phy_device * phydev)816 static void mt7988_phy_finetune(struct phy_device *phydev)
817 {
818 	u16 val[12] = { 0x0187, 0x01cd, 0x01c8, 0x0182,
819 			0x020d, 0x0206, 0x0384, 0x03d0,
820 			0x03c6, 0x030a, 0x0011, 0x0005 };
821 	int i;
822 
823 	/* Set default MLT3 shaper first */
824 	for (i = 0; i < 12; i++)
825 		phy_write_mmd(phydev, MDIO_MMD_VEND1, i, val[i]);
826 
827 	/* TCT finetune */
828 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_TX_FILTER, 0x5);
829 
830 	/* Disable TX power saving */
831 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG7,
832 		       MTK_PHY_DA_AD_BUF_BIAS_LP_MASK, 0x3 << 8);
833 
834 	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
835 
836 	/* SlvDSPreadyTime = 24, MasDSPreadyTime = 12 */
837 	__phy_write(phydev, 0x11, 0x671);
838 	__phy_write(phydev, 0x12, 0xc);
839 	__phy_write(phydev, 0x10, 0x8fae);
840 
841 	/* ResetSyncOffset = 5 */
842 	__phy_write(phydev, 0x11, 0x500);
843 	__phy_write(phydev, 0x12, 0x0);
844 	__phy_write(phydev, 0x10, 0x8fc0);
845 
846 	/* VgaDecRate is 1 at default on mt7988 */
847 
848 	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
849 
850 	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_2A30);
851 	/* TxClkOffset = 2 */
852 	__phy_modify(phydev, MTK_PHY_ANARG_RG, MTK_PHY_TCLKOFFSET_MASK,
853 		     FIELD_PREP(MTK_PHY_TCLKOFFSET_MASK, 0x2));
854 	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
855 }
856 
mt798x_phy_eee(struct phy_device * phydev)857 static void mt798x_phy_eee(struct phy_device *phydev)
858 {
859 	phy_modify_mmd(phydev, MDIO_MMD_VEND1,
860 		       MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG120,
861 		       MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK |
862 		       MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK,
863 		       FIELD_PREP(MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK, 0x0) |
864 		       FIELD_PREP(MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK, 0x14));
865 
866 	phy_modify_mmd(phydev, MDIO_MMD_VEND1,
867 		       MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122,
868 		       MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
869 		       FIELD_PREP(MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
870 				  0xff));
871 
872 	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
873 			   MTK_PHY_RG_TESTMUX_ADC_CTRL,
874 			   MTK_PHY_RG_TXEN_DIG_MASK);
875 
876 	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
877 			 MTK_PHY_RG_DEV1E_REG19b, MTK_PHY_BYPASS_DSP_LPI_READY);
878 
879 	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
880 			   MTK_PHY_RG_DEV1E_REG234, MTK_PHY_TR_LP_IIR_EEE_EN);
881 
882 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG238,
883 		       MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK |
884 		       MTK_PHY_LPI_SLV_SEND_TX_EN,
885 		       FIELD_PREP(MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK, 0x120));
886 
887 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG239,
888 		       MTK_PHY_LPI_SEND_LOC_TIMER_MASK |
889 		       MTK_PHY_LPI_TXPCS_LOC_RCV,
890 		       FIELD_PREP(MTK_PHY_LPI_SEND_LOC_TIMER_MASK, 0x117));
891 
892 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG2C7,
893 		       MTK_PHY_MAX_GAIN_MASK | MTK_PHY_MIN_GAIN_MASK,
894 		       FIELD_PREP(MTK_PHY_MAX_GAIN_MASK, 0x8) |
895 		       FIELD_PREP(MTK_PHY_MIN_GAIN_MASK, 0x13));
896 
897 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG2D1,
898 		       MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK,
899 		       FIELD_PREP(MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK,
900 				  0x33) |
901 		       MTK_PHY_LPI_SKIP_SD_SLV_TR | MTK_PHY_LPI_TR_READY |
902 		       MTK_PHY_LPI_VCO_EEE_STG0_EN);
903 
904 	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG323,
905 			 MTK_PHY_EEE_WAKE_MAS_INT_DC |
906 			 MTK_PHY_EEE_WAKE_SLV_INT_DC);
907 
908 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG324,
909 		       MTK_PHY_SMI_DETCNT_MAX_MASK,
910 		       FIELD_PREP(MTK_PHY_SMI_DETCNT_MAX_MASK, 0x3f) |
911 		       MTK_PHY_SMI_DET_MAX_EN);
912 
913 	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG326,
914 			 MTK_PHY_LPI_MODE_SD_ON | MTK_PHY_RESET_RANDUPD_CNT |
915 			 MTK_PHY_TREC_UPDATE_ENAB_CLR |
916 			 MTK_PHY_LPI_QUIT_WAIT_DFE_SIG_DET_OFF |
917 			 MTK_PHY_TR_READY_SKIP_AFE_WAKEUP);
918 
919 	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
920 	/* Regsigdet_sel_1000 = 0 */
921 	__phy_write(phydev, 0x11, 0xb);
922 	__phy_write(phydev, 0x12, 0x0);
923 	__phy_write(phydev, 0x10, 0x9690);
924 
925 	/* REG_EEE_st2TrKf1000 = 3 */
926 	__phy_write(phydev, 0x11, 0x114f);
927 	__phy_write(phydev, 0x12, 0x2);
928 	__phy_write(phydev, 0x10, 0x969a);
929 
930 	/* RegEEE_slv_wake_tr_timer_tar = 6, RegEEE_slv_remtx_timer_tar = 20 */
931 	__phy_write(phydev, 0x11, 0x3028);
932 	__phy_write(phydev, 0x12, 0x0);
933 	__phy_write(phydev, 0x10, 0x969e);
934 
935 	/* RegEEE_slv_wake_int_timer_tar = 8 */
936 	__phy_write(phydev, 0x11, 0x5010);
937 	__phy_write(phydev, 0x12, 0x0);
938 	__phy_write(phydev, 0x10, 0x96a0);
939 
940 	/* RegEEE_trfreeze_timer2 = 586 */
941 	__phy_write(phydev, 0x11, 0x24a);
942 	__phy_write(phydev, 0x12, 0x0);
943 	__phy_write(phydev, 0x10, 0x96a8);
944 
945 	/* RegEEE100Stg1_tar = 16 */
946 	__phy_write(phydev, 0x11, 0x3210);
947 	__phy_write(phydev, 0x12, 0x0);
948 	__phy_write(phydev, 0x10, 0x96b8);
949 
950 	/* REGEEE_wake_slv_tr_wait_dfesigdet_en = 1 */
951 	__phy_write(phydev, 0x11, 0x1463);
952 	__phy_write(phydev, 0x12, 0x0);
953 	__phy_write(phydev, 0x10, 0x96ca);
954 
955 	/* DfeTailEnableVgaThresh1000 = 27 */
956 	__phy_write(phydev, 0x11, 0x36);
957 	__phy_write(phydev, 0x12, 0x0);
958 	__phy_write(phydev, 0x10, 0x8f80);
959 	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
960 
961 	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_3);
962 	__phy_modify(phydev, MTK_PHY_LPI_REG_14, MTK_PHY_LPI_WAKE_TIMER_1000_MASK,
963 		     FIELD_PREP(MTK_PHY_LPI_WAKE_TIMER_1000_MASK, 0x19c));
964 
965 	__phy_modify(phydev, MTK_PHY_LPI_REG_1c, MTK_PHY_SMI_DET_ON_THRESH_MASK,
966 		     FIELD_PREP(MTK_PHY_SMI_DET_ON_THRESH_MASK, 0xc));
967 	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
968 
969 	phy_modify_mmd(phydev, MDIO_MMD_VEND1,
970 		       MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122,
971 		       MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
972 		       FIELD_PREP(MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK, 0xff));
973 }
974 
cal_sw(struct phy_device * phydev,enum CAL_ITEM cal_item,u8 start_pair,u8 end_pair)975 static int cal_sw(struct phy_device *phydev, enum CAL_ITEM cal_item,
976 		  u8 start_pair, u8 end_pair)
977 {
978 	u8 pair_n;
979 	int ret;
980 
981 	for (pair_n = start_pair; pair_n <= end_pair; pair_n++) {
982 		/* TX_OFFSET & TX_AMP have no SW calibration. */
983 		switch (cal_item) {
984 		case TX_VCM:
985 			ret = tx_vcm_cal_sw(phydev, pair_n);
986 			break;
987 		default:
988 			return -EINVAL;
989 		}
990 		if (ret)
991 			return ret;
992 	}
993 	return 0;
994 }
995 
cal_efuse(struct phy_device * phydev,enum CAL_ITEM cal_item,u8 start_pair,u8 end_pair,u32 * buf)996 static int cal_efuse(struct phy_device *phydev, enum CAL_ITEM cal_item,
997 		     u8 start_pair, u8 end_pair, u32 *buf)
998 {
999 	u8 pair_n;
1000 	int ret;
1001 
1002 	for (pair_n = start_pair; pair_n <= end_pair; pair_n++) {
1003 		/* TX_VCM has no efuse calibration. */
1004 		switch (cal_item) {
1005 		case REXT:
1006 			ret = rext_cal_efuse(phydev, buf);
1007 			break;
1008 		case TX_OFFSET:
1009 			ret = tx_offset_cal_efuse(phydev, buf);
1010 			break;
1011 		case TX_AMP:
1012 			ret = tx_amp_cal_efuse(phydev, buf);
1013 			break;
1014 		case TX_R50:
1015 			ret = tx_r50_cal_efuse(phydev, buf, pair_n);
1016 			break;
1017 		default:
1018 			return -EINVAL;
1019 		}
1020 		if (ret)
1021 			return ret;
1022 	}
1023 
1024 	return 0;
1025 }
1026 
start_cal(struct phy_device * phydev,enum CAL_ITEM cal_item,enum CAL_MODE cal_mode,u8 start_pair,u8 end_pair,u32 * buf)1027 static int start_cal(struct phy_device *phydev, enum CAL_ITEM cal_item,
1028 		     enum CAL_MODE cal_mode, u8 start_pair,
1029 		     u8 end_pair, u32 *buf)
1030 {
1031 	int ret;
1032 
1033 	switch (cal_mode) {
1034 	case EFUSE_M:
1035 		ret = cal_efuse(phydev, cal_item, start_pair,
1036 				end_pair, buf);
1037 		break;
1038 	case SW_M:
1039 		ret = cal_sw(phydev, cal_item, start_pair, end_pair);
1040 		break;
1041 	default:
1042 		return -EINVAL;
1043 	}
1044 
1045 	if (ret) {
1046 		phydev_err(phydev, "cal %d failed\n", cal_item);
1047 		return -EIO;
1048 	}
1049 
1050 	return 0;
1051 }
1052 
mt798x_phy_calibration(struct phy_device * phydev)1053 static int mt798x_phy_calibration(struct phy_device *phydev)
1054 {
1055 	int ret = 0;
1056 	u32 *buf;
1057 	size_t len;
1058 	struct nvmem_cell *cell;
1059 
1060 	cell = nvmem_cell_get(&phydev->mdio.dev, "phy-cal-data");
1061 	if (IS_ERR(cell)) {
1062 		if (PTR_ERR(cell) == -EPROBE_DEFER)
1063 			return PTR_ERR(cell);
1064 		return 0;
1065 	}
1066 
1067 	buf = (u32 *)nvmem_cell_read(cell, &len);
1068 	if (IS_ERR(buf))
1069 		return PTR_ERR(buf);
1070 	nvmem_cell_put(cell);
1071 
1072 	if (!buf[0] || !buf[1] || !buf[2] || !buf[3] || len < 4 * sizeof(u32)) {
1073 		phydev_err(phydev, "invalid efuse data\n");
1074 		ret = -EINVAL;
1075 		goto out;
1076 	}
1077 
1078 	ret = start_cal(phydev, REXT, EFUSE_M, NO_PAIR, NO_PAIR, buf);
1079 	if (ret)
1080 		goto out;
1081 	ret = start_cal(phydev, TX_OFFSET, EFUSE_M, NO_PAIR, NO_PAIR, buf);
1082 	if (ret)
1083 		goto out;
1084 	ret = start_cal(phydev, TX_AMP, EFUSE_M, NO_PAIR, NO_PAIR, buf);
1085 	if (ret)
1086 		goto out;
1087 	ret = start_cal(phydev, TX_R50, EFUSE_M, PAIR_A, PAIR_D, buf);
1088 	if (ret)
1089 		goto out;
1090 	ret = start_cal(phydev, TX_VCM, SW_M, PAIR_A, PAIR_A, buf);
1091 	if (ret)
1092 		goto out;
1093 
1094 out:
1095 	kfree(buf);
1096 	return ret;
1097 }
1098 
mt798x_phy_config_init(struct phy_device * phydev)1099 static int mt798x_phy_config_init(struct phy_device *phydev)
1100 {
1101 	switch (phydev->drv->phy_id) {
1102 	case MTK_GPHY_ID_MT7981:
1103 		mt7981_phy_finetune(phydev);
1104 		break;
1105 	case MTK_GPHY_ID_MT7988:
1106 		mt7988_phy_finetune(phydev);
1107 		break;
1108 	}
1109 
1110 	mt798x_phy_common_finetune(phydev);
1111 	mt798x_phy_eee(phydev);
1112 
1113 	return mt798x_phy_calibration(phydev);
1114 }
1115 
mt798x_phy_hw_led_on_set(struct phy_device * phydev,u8 index,bool on)1116 static int mt798x_phy_hw_led_on_set(struct phy_device *phydev, u8 index,
1117 				    bool on)
1118 {
1119 	unsigned int bit_on = MTK_PHY_LED_STATE_FORCE_ON + (index ? 16 : 0);
1120 	struct mtk_socphy_priv *priv = phydev->priv;
1121 	bool changed;
1122 
1123 	if (on)
1124 		changed = !test_and_set_bit(bit_on, &priv->led_state);
1125 	else
1126 		changed = !!test_and_clear_bit(bit_on, &priv->led_state);
1127 
1128 	changed |= !!test_and_clear_bit(MTK_PHY_LED_STATE_NETDEV +
1129 					(index ? 16 : 0), &priv->led_state);
1130 	if (changed)
1131 		return phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
1132 				      MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL,
1133 				      MTK_PHY_LED_ON_MASK,
1134 				      on ? MTK_PHY_LED_ON_FORCE_ON : 0);
1135 	else
1136 		return 0;
1137 }
1138 
mt798x_phy_hw_led_blink_set(struct phy_device * phydev,u8 index,bool blinking)1139 static int mt798x_phy_hw_led_blink_set(struct phy_device *phydev, u8 index,
1140 				       bool blinking)
1141 {
1142 	unsigned int bit_blink = MTK_PHY_LED_STATE_FORCE_BLINK + (index ? 16 : 0);
1143 	struct mtk_socphy_priv *priv = phydev->priv;
1144 	bool changed;
1145 
1146 	if (blinking)
1147 		changed = !test_and_set_bit(bit_blink, &priv->led_state);
1148 	else
1149 		changed = !!test_and_clear_bit(bit_blink, &priv->led_state);
1150 
1151 	changed |= !!test_bit(MTK_PHY_LED_STATE_NETDEV +
1152 			      (index ? 16 : 0), &priv->led_state);
1153 	if (changed)
1154 		return phy_write_mmd(phydev, MDIO_MMD_VEND2, index ?
1155 				     MTK_PHY_LED1_BLINK_CTRL : MTK_PHY_LED0_BLINK_CTRL,
1156 				     blinking ? MTK_PHY_LED_BLINK_FORCE_BLINK : 0);
1157 	else
1158 		return 0;
1159 }
1160 
mt798x_phy_led_blink_set(struct phy_device * phydev,u8 index,unsigned long * delay_on,unsigned long * delay_off)1161 static int mt798x_phy_led_blink_set(struct phy_device *phydev, u8 index,
1162 				    unsigned long *delay_on,
1163 				    unsigned long *delay_off)
1164 {
1165 	bool blinking = false;
1166 	int err = 0;
1167 
1168 	if (index > 1)
1169 		return -EINVAL;
1170 
1171 	if (delay_on && delay_off && (*delay_on > 0) && (*delay_off > 0)) {
1172 		blinking = true;
1173 		*delay_on = 50;
1174 		*delay_off = 50;
1175 	}
1176 
1177 	err = mt798x_phy_hw_led_blink_set(phydev, index, blinking);
1178 	if (err)
1179 		return err;
1180 
1181 	return mt798x_phy_hw_led_on_set(phydev, index, false);
1182 }
1183 
mt798x_phy_led_brightness_set(struct phy_device * phydev,u8 index,enum led_brightness value)1184 static int mt798x_phy_led_brightness_set(struct phy_device *phydev,
1185 					 u8 index, enum led_brightness value)
1186 {
1187 	int err;
1188 
1189 	err = mt798x_phy_hw_led_blink_set(phydev, index, false);
1190 	if (err)
1191 		return err;
1192 
1193 	return mt798x_phy_hw_led_on_set(phydev, index, (value != LED_OFF));
1194 }
1195 
1196 static const unsigned long supported_triggers = (BIT(TRIGGER_NETDEV_FULL_DUPLEX) |
1197 						 BIT(TRIGGER_NETDEV_HALF_DUPLEX) |
1198 						 BIT(TRIGGER_NETDEV_LINK)        |
1199 						 BIT(TRIGGER_NETDEV_LINK_10)     |
1200 						 BIT(TRIGGER_NETDEV_LINK_100)    |
1201 						 BIT(TRIGGER_NETDEV_LINK_1000)   |
1202 						 BIT(TRIGGER_NETDEV_RX)          |
1203 						 BIT(TRIGGER_NETDEV_TX));
1204 
mt798x_phy_led_hw_is_supported(struct phy_device * phydev,u8 index,unsigned long rules)1205 static int mt798x_phy_led_hw_is_supported(struct phy_device *phydev, u8 index,
1206 					  unsigned long rules)
1207 {
1208 	if (index > 1)
1209 		return -EINVAL;
1210 
1211 	/* All combinations of the supported triggers are allowed */
1212 	if (rules & ~supported_triggers)
1213 		return -EOPNOTSUPP;
1214 
1215 	return 0;
1216 };
1217 
mt798x_phy_led_hw_control_get(struct phy_device * phydev,u8 index,unsigned long * rules)1218 static int mt798x_phy_led_hw_control_get(struct phy_device *phydev, u8 index,
1219 					 unsigned long *rules)
1220 {
1221 	unsigned int bit_blink = MTK_PHY_LED_STATE_FORCE_BLINK + (index ? 16 : 0);
1222 	unsigned int bit_netdev = MTK_PHY_LED_STATE_NETDEV + (index ? 16 : 0);
1223 	unsigned int bit_on = MTK_PHY_LED_STATE_FORCE_ON + (index ? 16 : 0);
1224 	struct mtk_socphy_priv *priv = phydev->priv;
1225 	int on, blink;
1226 
1227 	if (index > 1)
1228 		return -EINVAL;
1229 
1230 	on = phy_read_mmd(phydev, MDIO_MMD_VEND2,
1231 			  index ? MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL);
1232 
1233 	if (on < 0)
1234 		return -EIO;
1235 
1236 	blink = phy_read_mmd(phydev, MDIO_MMD_VEND2,
1237 			     index ? MTK_PHY_LED1_BLINK_CTRL :
1238 				     MTK_PHY_LED0_BLINK_CTRL);
1239 	if (blink < 0)
1240 		return -EIO;
1241 
1242 	if ((on & (MTK_PHY_LED_ON_LINK1000 | MTK_PHY_LED_ON_LINK100 |
1243 		   MTK_PHY_LED_ON_LINK10)) ||
1244 	    (blink & (MTK_PHY_LED_BLINK_1000RX | MTK_PHY_LED_BLINK_100RX |
1245 		      MTK_PHY_LED_BLINK_10RX | MTK_PHY_LED_BLINK_1000TX |
1246 		      MTK_PHY_LED_BLINK_100TX | MTK_PHY_LED_BLINK_10TX)))
1247 		set_bit(bit_netdev, &priv->led_state);
1248 	else
1249 		clear_bit(bit_netdev, &priv->led_state);
1250 
1251 	if (on & MTK_PHY_LED_ON_FORCE_ON)
1252 		set_bit(bit_on, &priv->led_state);
1253 	else
1254 		clear_bit(bit_on, &priv->led_state);
1255 
1256 	if (blink & MTK_PHY_LED_BLINK_FORCE_BLINK)
1257 		set_bit(bit_blink, &priv->led_state);
1258 	else
1259 		clear_bit(bit_blink, &priv->led_state);
1260 
1261 	if (!rules)
1262 		return 0;
1263 
1264 	if (on & (MTK_PHY_LED_ON_LINK1000 | MTK_PHY_LED_ON_LINK100 | MTK_PHY_LED_ON_LINK10))
1265 		*rules |= BIT(TRIGGER_NETDEV_LINK);
1266 
1267 	if (on & MTK_PHY_LED_ON_LINK10)
1268 		*rules |= BIT(TRIGGER_NETDEV_LINK_10);
1269 
1270 	if (on & MTK_PHY_LED_ON_LINK100)
1271 		*rules |= BIT(TRIGGER_NETDEV_LINK_100);
1272 
1273 	if (on & MTK_PHY_LED_ON_LINK1000)
1274 		*rules |= BIT(TRIGGER_NETDEV_LINK_1000);
1275 
1276 	if (on & MTK_PHY_LED_ON_FDX)
1277 		*rules |= BIT(TRIGGER_NETDEV_FULL_DUPLEX);
1278 
1279 	if (on & MTK_PHY_LED_ON_HDX)
1280 		*rules |= BIT(TRIGGER_NETDEV_HALF_DUPLEX);
1281 
1282 	if (blink & (MTK_PHY_LED_BLINK_1000RX | MTK_PHY_LED_BLINK_100RX | MTK_PHY_LED_BLINK_10RX))
1283 		*rules |= BIT(TRIGGER_NETDEV_RX);
1284 
1285 	if (blink & (MTK_PHY_LED_BLINK_1000TX | MTK_PHY_LED_BLINK_100TX | MTK_PHY_LED_BLINK_10TX))
1286 		*rules |= BIT(TRIGGER_NETDEV_TX);
1287 
1288 	return 0;
1289 };
1290 
mt798x_phy_led_hw_control_set(struct phy_device * phydev,u8 index,unsigned long rules)1291 static int mt798x_phy_led_hw_control_set(struct phy_device *phydev, u8 index,
1292 					 unsigned long rules)
1293 {
1294 	unsigned int bit_netdev = MTK_PHY_LED_STATE_NETDEV + (index ? 16 : 0);
1295 	struct mtk_socphy_priv *priv = phydev->priv;
1296 	u16 on = 0, blink = 0;
1297 	int ret;
1298 
1299 	if (index > 1)
1300 		return -EINVAL;
1301 
1302 	if (rules & BIT(TRIGGER_NETDEV_FULL_DUPLEX))
1303 		on |= MTK_PHY_LED_ON_FDX;
1304 
1305 	if (rules & BIT(TRIGGER_NETDEV_HALF_DUPLEX))
1306 		on |= MTK_PHY_LED_ON_HDX;
1307 
1308 	if (rules & (BIT(TRIGGER_NETDEV_LINK_10) | BIT(TRIGGER_NETDEV_LINK)))
1309 		on |= MTK_PHY_LED_ON_LINK10;
1310 
1311 	if (rules & (BIT(TRIGGER_NETDEV_LINK_100) | BIT(TRIGGER_NETDEV_LINK)))
1312 		on |= MTK_PHY_LED_ON_LINK100;
1313 
1314 	if (rules & (BIT(TRIGGER_NETDEV_LINK_1000) | BIT(TRIGGER_NETDEV_LINK)))
1315 		on |= MTK_PHY_LED_ON_LINK1000;
1316 
1317 	if (rules & BIT(TRIGGER_NETDEV_RX)) {
1318 		blink |= MTK_PHY_LED_BLINK_10RX  |
1319 			 MTK_PHY_LED_BLINK_100RX |
1320 			 MTK_PHY_LED_BLINK_1000RX;
1321 	}
1322 
1323 	if (rules & BIT(TRIGGER_NETDEV_TX)) {
1324 		blink |= MTK_PHY_LED_BLINK_10TX  |
1325 			 MTK_PHY_LED_BLINK_100TX |
1326 			 MTK_PHY_LED_BLINK_1000TX;
1327 	}
1328 
1329 	if (blink || on)
1330 		set_bit(bit_netdev, &priv->led_state);
1331 	else
1332 		clear_bit(bit_netdev, &priv->led_state);
1333 
1334 	ret = phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
1335 				MTK_PHY_LED1_ON_CTRL :
1336 				MTK_PHY_LED0_ON_CTRL,
1337 			     MTK_PHY_LED_ON_FDX     |
1338 			     MTK_PHY_LED_ON_HDX     |
1339 			     MTK_PHY_LED_ON_LINK10  |
1340 			     MTK_PHY_LED_ON_LINK100 |
1341 			     MTK_PHY_LED_ON_LINK1000,
1342 			     on);
1343 
1344 	if (ret)
1345 		return ret;
1346 
1347 	return phy_write_mmd(phydev, MDIO_MMD_VEND2, index ?
1348 				MTK_PHY_LED1_BLINK_CTRL :
1349 				MTK_PHY_LED0_BLINK_CTRL, blink);
1350 };
1351 
mt7988_phy_led_get_polarity(struct phy_device * phydev,int led_num)1352 static bool mt7988_phy_led_get_polarity(struct phy_device *phydev, int led_num)
1353 {
1354 	struct mtk_socphy_shared *priv = phydev->shared->priv;
1355 	u32 polarities;
1356 
1357 	if (led_num == 0)
1358 		polarities = ~(priv->boottrap);
1359 	else
1360 		polarities = MTK_PHY_LED1_DEFAULT_POLARITIES;
1361 
1362 	if (polarities & BIT(phydev->mdio.addr))
1363 		return true;
1364 
1365 	return false;
1366 }
1367 
mt7988_phy_fix_leds_polarities(struct phy_device * phydev)1368 static int mt7988_phy_fix_leds_polarities(struct phy_device *phydev)
1369 {
1370 	struct pinctrl *pinctrl;
1371 	int index;
1372 
1373 	/* Setup LED polarity according to bootstrap use of LED pins */
1374 	for (index = 0; index < 2; ++index)
1375 		phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
1376 				MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL,
1377 			       MTK_PHY_LED_ON_POLARITY,
1378 			       mt7988_phy_led_get_polarity(phydev, index) ?
1379 				MTK_PHY_LED_ON_POLARITY : 0);
1380 
1381 	/* Only now setup pinctrl to avoid bogus blinking */
1382 	pinctrl = devm_pinctrl_get_select(&phydev->mdio.dev, "gbe-led");
1383 	if (IS_ERR(pinctrl))
1384 		dev_err(&phydev->mdio.bus->dev, "Failed to setup PHY LED pinctrl\n");
1385 
1386 	return 0;
1387 }
1388 
mt7988_phy_probe_shared(struct phy_device * phydev)1389 static int mt7988_phy_probe_shared(struct phy_device *phydev)
1390 {
1391 	struct device_node *np = dev_of_node(&phydev->mdio.bus->dev);
1392 	struct mtk_socphy_shared *shared = phydev->shared->priv;
1393 	struct regmap *regmap;
1394 	u32 reg;
1395 	int ret;
1396 
1397 	/* The LED0 of the 4 PHYs in MT7988 are wired to SoC pins LED_A, LED_B,
1398 	 * LED_C and LED_D respectively. At the same time those pins are used to
1399 	 * bootstrap configuration of the reference clock source (LED_A),
1400 	 * DRAM DDRx16b x2/x1 (LED_B) and boot device (LED_C, LED_D).
1401 	 * In practise this is done using a LED and a resistor pulling the pin
1402 	 * either to GND or to VIO.
1403 	 * The detected value at boot time is accessible at run-time using the
1404 	 * TPBANK0 register located in the gpio base of the pinctrl, in order
1405 	 * to read it here it needs to be referenced by a phandle called
1406 	 * 'mediatek,pio' in the MDIO bus hosting the PHY.
1407 	 * The 4 bits in TPBANK0 are kept as package shared data and are used to
1408 	 * set LED polarity for each of the LED0.
1409 	 */
1410 	regmap = syscon_regmap_lookup_by_phandle(np, "mediatek,pio");
1411 	if (IS_ERR(regmap))
1412 		return PTR_ERR(regmap);
1413 
1414 	ret = regmap_read(regmap, RG_GPIO_MISC_TPBANK0, &reg);
1415 	if (ret)
1416 		return ret;
1417 
1418 	shared->boottrap = FIELD_GET(RG_GPIO_MISC_TPBANK0_BOOTMODE, reg);
1419 
1420 	return 0;
1421 }
1422 
mt798x_phy_leds_state_init(struct phy_device * phydev)1423 static void mt798x_phy_leds_state_init(struct phy_device *phydev)
1424 {
1425 	int i;
1426 
1427 	for (i = 0; i < 2; ++i)
1428 		mt798x_phy_led_hw_control_get(phydev, i, NULL);
1429 }
1430 
mt7988_phy_probe(struct phy_device * phydev)1431 static int mt7988_phy_probe(struct phy_device *phydev)
1432 {
1433 	struct mtk_socphy_shared *shared;
1434 	struct mtk_socphy_priv *priv;
1435 	int err;
1436 
1437 	if (phydev->mdio.addr > 3)
1438 		return -EINVAL;
1439 
1440 	err = devm_phy_package_join(&phydev->mdio.dev, phydev, 0,
1441 				    sizeof(struct mtk_socphy_shared));
1442 	if (err)
1443 		return err;
1444 
1445 	if (phy_package_probe_once(phydev)) {
1446 		err = mt7988_phy_probe_shared(phydev);
1447 		if (err)
1448 			return err;
1449 	}
1450 
1451 	shared = phydev->shared->priv;
1452 	priv = &shared->priv[phydev->mdio.addr];
1453 
1454 	phydev->priv = priv;
1455 
1456 	mt798x_phy_leds_state_init(phydev);
1457 
1458 	err = mt7988_phy_fix_leds_polarities(phydev);
1459 	if (err)
1460 		return err;
1461 
1462 	return mt798x_phy_calibration(phydev);
1463 }
1464 
mt7981_phy_probe(struct phy_device * phydev)1465 static int mt7981_phy_probe(struct phy_device *phydev)
1466 {
1467 	struct mtk_socphy_priv *priv;
1468 
1469 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(struct mtk_socphy_priv),
1470 			    GFP_KERNEL);
1471 	if (!priv)
1472 		return -ENOMEM;
1473 
1474 	phydev->priv = priv;
1475 
1476 	mt798x_phy_leds_state_init(phydev);
1477 
1478 	return mt798x_phy_calibration(phydev);
1479 }
1480 
1481 static struct phy_driver mtk_socphy_driver[] = {
1482 	{
1483 		PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7981),
1484 		.name		= "MediaTek MT7981 PHY",
1485 		.config_init	= mt798x_phy_config_init,
1486 		.config_intr	= genphy_no_config_intr,
1487 		.handle_interrupt = genphy_handle_interrupt_no_ack,
1488 		.probe		= mt7981_phy_probe,
1489 		.suspend	= genphy_suspend,
1490 		.resume		= genphy_resume,
1491 		.read_page	= mtk_socphy_read_page,
1492 		.write_page	= mtk_socphy_write_page,
1493 		.led_blink_set	= mt798x_phy_led_blink_set,
1494 		.led_brightness_set = mt798x_phy_led_brightness_set,
1495 		.led_hw_is_supported = mt798x_phy_led_hw_is_supported,
1496 		.led_hw_control_set = mt798x_phy_led_hw_control_set,
1497 		.led_hw_control_get = mt798x_phy_led_hw_control_get,
1498 	},
1499 	{
1500 		PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7988),
1501 		.name		= "MediaTek MT7988 PHY",
1502 		.config_init	= mt798x_phy_config_init,
1503 		.config_intr	= genphy_no_config_intr,
1504 		.handle_interrupt = genphy_handle_interrupt_no_ack,
1505 		.probe		= mt7988_phy_probe,
1506 		.suspend	= genphy_suspend,
1507 		.resume		= genphy_resume,
1508 		.read_page	= mtk_socphy_read_page,
1509 		.write_page	= mtk_socphy_write_page,
1510 		.led_blink_set	= mt798x_phy_led_blink_set,
1511 		.led_brightness_set = mt798x_phy_led_brightness_set,
1512 		.led_hw_is_supported = mt798x_phy_led_hw_is_supported,
1513 		.led_hw_control_set = mt798x_phy_led_hw_control_set,
1514 		.led_hw_control_get = mt798x_phy_led_hw_control_get,
1515 	},
1516 };
1517 
1518 module_phy_driver(mtk_socphy_driver);
1519 
1520 static struct mdio_device_id __maybe_unused mtk_socphy_tbl[] = {
1521 	{ PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7981) },
1522 	{ PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7988) },
1523 	{ }
1524 };
1525 
1526 MODULE_DESCRIPTION("MediaTek SoC Gigabit Ethernet PHY driver");
1527 MODULE_AUTHOR("Daniel Golle <daniel@makrotopia.org>");
1528 MODULE_AUTHOR("SkyLake Huang <SkyLake.Huang@mediatek.com>");
1529 MODULE_LICENSE("GPL");
1530 
1531 MODULE_DEVICE_TABLE(mdio, mtk_socphy_tbl);
1532