1 // SPDX-License-Identifier: GPL-2.0+
2 #include <linux/bitfield.h>
3 #include <linux/bitmap.h>
4 #include <linux/mfd/syscon.h>
5 #include <linux/module.h>
6 #include <linux/nvmem-consumer.h>
7 #include <linux/pinctrl/consumer.h>
8 #include <linux/phy.h>
9 #include <linux/regmap.h>
10
11 #define MTK_GPHY_ID_MT7981 0x03a29461
12 #define MTK_GPHY_ID_MT7988 0x03a29481
13
14 #define MTK_EXT_PAGE_ACCESS 0x1f
15 #define MTK_PHY_PAGE_STANDARD 0x0000
16 #define MTK_PHY_PAGE_EXTENDED_3 0x0003
17
18 #define MTK_PHY_LPI_REG_14 0x14
19 #define MTK_PHY_LPI_WAKE_TIMER_1000_MASK GENMASK(8, 0)
20
21 #define MTK_PHY_LPI_REG_1c 0x1c
22 #define MTK_PHY_SMI_DET_ON_THRESH_MASK GENMASK(13, 8)
23
24 #define MTK_PHY_PAGE_EXTENDED_2A30 0x2a30
25 #define MTK_PHY_PAGE_EXTENDED_52B5 0x52b5
26
27 #define ANALOG_INTERNAL_OPERATION_MAX_US 20
28 #define TXRESERVE_MIN 0
29 #define TXRESERVE_MAX 7
30
31 #define MTK_PHY_ANARG_RG 0x10
32 #define MTK_PHY_TCLKOFFSET_MASK GENMASK(12, 8)
33
34 /* Registers on MDIO_MMD_VEND1 */
35 #define MTK_PHY_TXVLD_DA_RG 0x12
36 #define MTK_PHY_DA_TX_I2MPB_A_GBE_MASK GENMASK(15, 10)
37 #define MTK_PHY_DA_TX_I2MPB_A_TBT_MASK GENMASK(5, 0)
38
39 #define MTK_PHY_TX_I2MPB_TEST_MODE_A2 0x16
40 #define MTK_PHY_DA_TX_I2MPB_A_HBT_MASK GENMASK(15, 10)
41 #define MTK_PHY_DA_TX_I2MPB_A_TST_MASK GENMASK(5, 0)
42
43 #define MTK_PHY_TX_I2MPB_TEST_MODE_B1 0x17
44 #define MTK_PHY_DA_TX_I2MPB_B_GBE_MASK GENMASK(13, 8)
45 #define MTK_PHY_DA_TX_I2MPB_B_TBT_MASK GENMASK(5, 0)
46
47 #define MTK_PHY_TX_I2MPB_TEST_MODE_B2 0x18
48 #define MTK_PHY_DA_TX_I2MPB_B_HBT_MASK GENMASK(13, 8)
49 #define MTK_PHY_DA_TX_I2MPB_B_TST_MASK GENMASK(5, 0)
50
51 #define MTK_PHY_TX_I2MPB_TEST_MODE_C1 0x19
52 #define MTK_PHY_DA_TX_I2MPB_C_GBE_MASK GENMASK(13, 8)
53 #define MTK_PHY_DA_TX_I2MPB_C_TBT_MASK GENMASK(5, 0)
54
55 #define MTK_PHY_TX_I2MPB_TEST_MODE_C2 0x20
56 #define MTK_PHY_DA_TX_I2MPB_C_HBT_MASK GENMASK(13, 8)
57 #define MTK_PHY_DA_TX_I2MPB_C_TST_MASK GENMASK(5, 0)
58
59 #define MTK_PHY_TX_I2MPB_TEST_MODE_D1 0x21
60 #define MTK_PHY_DA_TX_I2MPB_D_GBE_MASK GENMASK(13, 8)
61 #define MTK_PHY_DA_TX_I2MPB_D_TBT_MASK GENMASK(5, 0)
62
63 #define MTK_PHY_TX_I2MPB_TEST_MODE_D2 0x22
64 #define MTK_PHY_DA_TX_I2MPB_D_HBT_MASK GENMASK(13, 8)
65 #define MTK_PHY_DA_TX_I2MPB_D_TST_MASK GENMASK(5, 0)
66
67 #define MTK_PHY_RXADC_CTRL_RG7 0xc6
68 #define MTK_PHY_DA_AD_BUF_BIAS_LP_MASK GENMASK(9, 8)
69
70 #define MTK_PHY_RXADC_CTRL_RG9 0xc8
71 #define MTK_PHY_DA_RX_PSBN_TBT_MASK GENMASK(14, 12)
72 #define MTK_PHY_DA_RX_PSBN_HBT_MASK GENMASK(10, 8)
73 #define MTK_PHY_DA_RX_PSBN_GBE_MASK GENMASK(6, 4)
74 #define MTK_PHY_DA_RX_PSBN_LP_MASK GENMASK(2, 0)
75
76 #define MTK_PHY_LDO_OUTPUT_V 0xd7
77
78 #define MTK_PHY_RG_ANA_CAL_RG0 0xdb
79 #define MTK_PHY_RG_CAL_CKINV BIT(12)
80 #define MTK_PHY_RG_ANA_CALEN BIT(8)
81 #define MTK_PHY_RG_ZCALEN_A BIT(0)
82
83 #define MTK_PHY_RG_ANA_CAL_RG1 0xdc
84 #define MTK_PHY_RG_ZCALEN_B BIT(12)
85 #define MTK_PHY_RG_ZCALEN_C BIT(8)
86 #define MTK_PHY_RG_ZCALEN_D BIT(4)
87 #define MTK_PHY_RG_TXVOS_CALEN BIT(0)
88
89 #define MTK_PHY_RG_ANA_CAL_RG5 0xe0
90 #define MTK_PHY_RG_REXT_TRIM_MASK GENMASK(13, 8)
91
92 #define MTK_PHY_RG_TX_FILTER 0xfe
93
94 #define MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG120 0x120
95 #define MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK GENMASK(12, 8)
96 #define MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK GENMASK(4, 0)
97
98 #define MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122 0x122
99 #define MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK GENMASK(7, 0)
100
101 #define MTK_PHY_RG_TESTMUX_ADC_CTRL 0x144
102 #define MTK_PHY_RG_TXEN_DIG_MASK GENMASK(5, 5)
103
104 #define MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B 0x172
105 #define MTK_PHY_CR_TX_AMP_OFFSET_A_MASK GENMASK(13, 8)
106 #define MTK_PHY_CR_TX_AMP_OFFSET_B_MASK GENMASK(6, 0)
107
108 #define MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D 0x173
109 #define MTK_PHY_CR_TX_AMP_OFFSET_C_MASK GENMASK(13, 8)
110 #define MTK_PHY_CR_TX_AMP_OFFSET_D_MASK GENMASK(6, 0)
111
112 #define MTK_PHY_RG_AD_CAL_COMP 0x17a
113 #define MTK_PHY_AD_CAL_COMP_OUT_SHIFT (8)
114
115 #define MTK_PHY_RG_AD_CAL_CLK 0x17b
116 #define MTK_PHY_DA_CAL_CLK BIT(0)
117
118 #define MTK_PHY_RG_AD_CALIN 0x17c
119 #define MTK_PHY_DA_CALIN_FLAG BIT(0)
120
121 #define MTK_PHY_RG_DASN_DAC_IN0_A 0x17d
122 #define MTK_PHY_DASN_DAC_IN0_A_MASK GENMASK(9, 0)
123
124 #define MTK_PHY_RG_DASN_DAC_IN0_B 0x17e
125 #define MTK_PHY_DASN_DAC_IN0_B_MASK GENMASK(9, 0)
126
127 #define MTK_PHY_RG_DASN_DAC_IN0_C 0x17f
128 #define MTK_PHY_DASN_DAC_IN0_C_MASK GENMASK(9, 0)
129
130 #define MTK_PHY_RG_DASN_DAC_IN0_D 0x180
131 #define MTK_PHY_DASN_DAC_IN0_D_MASK GENMASK(9, 0)
132
133 #define MTK_PHY_RG_DASN_DAC_IN1_A 0x181
134 #define MTK_PHY_DASN_DAC_IN1_A_MASK GENMASK(9, 0)
135
136 #define MTK_PHY_RG_DASN_DAC_IN1_B 0x182
137 #define MTK_PHY_DASN_DAC_IN1_B_MASK GENMASK(9, 0)
138
139 #define MTK_PHY_RG_DASN_DAC_IN1_C 0x183
140 #define MTK_PHY_DASN_DAC_IN1_C_MASK GENMASK(9, 0)
141
142 #define MTK_PHY_RG_DASN_DAC_IN1_D 0x184
143 #define MTK_PHY_DASN_DAC_IN1_D_MASK GENMASK(9, 0)
144
145 #define MTK_PHY_RG_DEV1E_REG19b 0x19b
146 #define MTK_PHY_BYPASS_DSP_LPI_READY BIT(8)
147
148 #define MTK_PHY_RG_LP_IIR2_K1_L 0x22a
149 #define MTK_PHY_RG_LP_IIR2_K1_U 0x22b
150 #define MTK_PHY_RG_LP_IIR2_K2_L 0x22c
151 #define MTK_PHY_RG_LP_IIR2_K2_U 0x22d
152 #define MTK_PHY_RG_LP_IIR2_K3_L 0x22e
153 #define MTK_PHY_RG_LP_IIR2_K3_U 0x22f
154 #define MTK_PHY_RG_LP_IIR2_K4_L 0x230
155 #define MTK_PHY_RG_LP_IIR2_K4_U 0x231
156 #define MTK_PHY_RG_LP_IIR2_K5_L 0x232
157 #define MTK_PHY_RG_LP_IIR2_K5_U 0x233
158
159 #define MTK_PHY_RG_DEV1E_REG234 0x234
160 #define MTK_PHY_TR_OPEN_LOOP_EN_MASK GENMASK(0, 0)
161 #define MTK_PHY_LPF_X_AVERAGE_MASK GENMASK(7, 4)
162 #define MTK_PHY_TR_LP_IIR_EEE_EN BIT(12)
163
164 #define MTK_PHY_RG_LPF_CNT_VAL 0x235
165
166 #define MTK_PHY_RG_DEV1E_REG238 0x238
167 #define MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK GENMASK(8, 0)
168 #define MTK_PHY_LPI_SLV_SEND_TX_EN BIT(12)
169
170 #define MTK_PHY_RG_DEV1E_REG239 0x239
171 #define MTK_PHY_LPI_SEND_LOC_TIMER_MASK GENMASK(8, 0)
172 #define MTK_PHY_LPI_TXPCS_LOC_RCV BIT(12)
173
174 #define MTK_PHY_RG_DEV1E_REG27C 0x27c
175 #define MTK_PHY_VGASTATE_FFE_THR_ST1_MASK GENMASK(12, 8)
176 #define MTK_PHY_RG_DEV1E_REG27D 0x27d
177 #define MTK_PHY_VGASTATE_FFE_THR_ST2_MASK GENMASK(4, 0)
178
179 #define MTK_PHY_RG_DEV1E_REG2C7 0x2c7
180 #define MTK_PHY_MAX_GAIN_MASK GENMASK(4, 0)
181 #define MTK_PHY_MIN_GAIN_MASK GENMASK(12, 8)
182
183 #define MTK_PHY_RG_DEV1E_REG2D1 0x2d1
184 #define MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK GENMASK(7, 0)
185 #define MTK_PHY_LPI_SKIP_SD_SLV_TR BIT(8)
186 #define MTK_PHY_LPI_TR_READY BIT(9)
187 #define MTK_PHY_LPI_VCO_EEE_STG0_EN BIT(10)
188
189 #define MTK_PHY_RG_DEV1E_REG323 0x323
190 #define MTK_PHY_EEE_WAKE_MAS_INT_DC BIT(0)
191 #define MTK_PHY_EEE_WAKE_SLV_INT_DC BIT(4)
192
193 #define MTK_PHY_RG_DEV1E_REG324 0x324
194 #define MTK_PHY_SMI_DETCNT_MAX_MASK GENMASK(5, 0)
195 #define MTK_PHY_SMI_DET_MAX_EN BIT(8)
196
197 #define MTK_PHY_RG_DEV1E_REG326 0x326
198 #define MTK_PHY_LPI_MODE_SD_ON BIT(0)
199 #define MTK_PHY_RESET_RANDUPD_CNT BIT(1)
200 #define MTK_PHY_TREC_UPDATE_ENAB_CLR BIT(2)
201 #define MTK_PHY_LPI_QUIT_WAIT_DFE_SIG_DET_OFF BIT(4)
202 #define MTK_PHY_TR_READY_SKIP_AFE_WAKEUP BIT(5)
203
204 #define MTK_PHY_LDO_PUMP_EN_PAIRAB 0x502
205 #define MTK_PHY_LDO_PUMP_EN_PAIRCD 0x503
206
207 #define MTK_PHY_DA_TX_R50_PAIR_A 0x53d
208 #define MTK_PHY_DA_TX_R50_PAIR_B 0x53e
209 #define MTK_PHY_DA_TX_R50_PAIR_C 0x53f
210 #define MTK_PHY_DA_TX_R50_PAIR_D 0x540
211
212 /* Registers on MDIO_MMD_VEND2 */
213 #define MTK_PHY_LED0_ON_CTRL 0x24
214 #define MTK_PHY_LED1_ON_CTRL 0x26
215 #define MTK_PHY_LED_ON_MASK GENMASK(6, 0)
216 #define MTK_PHY_LED_ON_LINK1000 BIT(0)
217 #define MTK_PHY_LED_ON_LINK100 BIT(1)
218 #define MTK_PHY_LED_ON_LINK10 BIT(2)
219 #define MTK_PHY_LED_ON_LINKDOWN BIT(3)
220 #define MTK_PHY_LED_ON_FDX BIT(4) /* Full duplex */
221 #define MTK_PHY_LED_ON_HDX BIT(5) /* Half duplex */
222 #define MTK_PHY_LED_ON_FORCE_ON BIT(6)
223 #define MTK_PHY_LED_ON_POLARITY BIT(14)
224 #define MTK_PHY_LED_ON_ENABLE BIT(15)
225
226 #define MTK_PHY_LED0_BLINK_CTRL 0x25
227 #define MTK_PHY_LED1_BLINK_CTRL 0x27
228 #define MTK_PHY_LED_BLINK_1000TX BIT(0)
229 #define MTK_PHY_LED_BLINK_1000RX BIT(1)
230 #define MTK_PHY_LED_BLINK_100TX BIT(2)
231 #define MTK_PHY_LED_BLINK_100RX BIT(3)
232 #define MTK_PHY_LED_BLINK_10TX BIT(4)
233 #define MTK_PHY_LED_BLINK_10RX BIT(5)
234 #define MTK_PHY_LED_BLINK_COLLISION BIT(6)
235 #define MTK_PHY_LED_BLINK_RX_CRC_ERR BIT(7)
236 #define MTK_PHY_LED_BLINK_RX_IDLE_ERR BIT(8)
237 #define MTK_PHY_LED_BLINK_FORCE_BLINK BIT(9)
238
239 #define MTK_PHY_LED1_DEFAULT_POLARITIES BIT(1)
240
241 #define MTK_PHY_RG_BG_RASEL 0x115
242 #define MTK_PHY_RG_BG_RASEL_MASK GENMASK(2, 0)
243
244 /* 'boottrap' register reflecting the configuration of the 4 PHY LEDs */
245 #define RG_GPIO_MISC_TPBANK0 0x6f0
246 #define RG_GPIO_MISC_TPBANK0_BOOTMODE GENMASK(11, 8)
247
248 /* These macro privides efuse parsing for internal phy. */
249 #define EFS_DA_TX_I2MPB_A(x) (((x) >> 0) & GENMASK(5, 0))
250 #define EFS_DA_TX_I2MPB_B(x) (((x) >> 6) & GENMASK(5, 0))
251 #define EFS_DA_TX_I2MPB_C(x) (((x) >> 12) & GENMASK(5, 0))
252 #define EFS_DA_TX_I2MPB_D(x) (((x) >> 18) & GENMASK(5, 0))
253 #define EFS_DA_TX_AMP_OFFSET_A(x) (((x) >> 24) & GENMASK(5, 0))
254
255 #define EFS_DA_TX_AMP_OFFSET_B(x) (((x) >> 0) & GENMASK(5, 0))
256 #define EFS_DA_TX_AMP_OFFSET_C(x) (((x) >> 6) & GENMASK(5, 0))
257 #define EFS_DA_TX_AMP_OFFSET_D(x) (((x) >> 12) & GENMASK(5, 0))
258 #define EFS_DA_TX_R50_A(x) (((x) >> 18) & GENMASK(5, 0))
259 #define EFS_DA_TX_R50_B(x) (((x) >> 24) & GENMASK(5, 0))
260
261 #define EFS_DA_TX_R50_C(x) (((x) >> 0) & GENMASK(5, 0))
262 #define EFS_DA_TX_R50_D(x) (((x) >> 6) & GENMASK(5, 0))
263
264 #define EFS_RG_BG_RASEL(x) (((x) >> 4) & GENMASK(2, 0))
265 #define EFS_RG_REXT_TRIM(x) (((x) >> 7) & GENMASK(5, 0))
266
267 enum {
268 NO_PAIR,
269 PAIR_A,
270 PAIR_B,
271 PAIR_C,
272 PAIR_D,
273 };
274
275 enum calibration_mode {
276 EFUSE_K,
277 SW_K
278 };
279
280 enum CAL_ITEM {
281 REXT,
282 TX_OFFSET,
283 TX_AMP,
284 TX_R50,
285 TX_VCM
286 };
287
288 enum CAL_MODE {
289 EFUSE_M,
290 SW_M
291 };
292
293 #define MTK_PHY_LED_STATE_FORCE_ON 0
294 #define MTK_PHY_LED_STATE_FORCE_BLINK 1
295 #define MTK_PHY_LED_STATE_NETDEV 2
296
297 struct mtk_socphy_priv {
298 unsigned long led_state;
299 };
300
301 struct mtk_socphy_shared {
302 u32 boottrap;
303 struct mtk_socphy_priv priv[4];
304 };
305
mtk_socphy_read_page(struct phy_device * phydev)306 static int mtk_socphy_read_page(struct phy_device *phydev)
307 {
308 return __phy_read(phydev, MTK_EXT_PAGE_ACCESS);
309 }
310
mtk_socphy_write_page(struct phy_device * phydev,int page)311 static int mtk_socphy_write_page(struct phy_device *phydev, int page)
312 {
313 return __phy_write(phydev, MTK_EXT_PAGE_ACCESS, page);
314 }
315
316 /* One calibration cycle consists of:
317 * 1.Set DA_CALIN_FLAG high to start calibration. Keep it high
318 * until AD_CAL_COMP is ready to output calibration result.
319 * 2.Wait until DA_CAL_CLK is available.
320 * 3.Fetch AD_CAL_COMP_OUT.
321 */
cal_cycle(struct phy_device * phydev,int devad,u32 regnum,u16 mask,u16 cal_val)322 static int cal_cycle(struct phy_device *phydev, int devad,
323 u32 regnum, u16 mask, u16 cal_val)
324 {
325 int reg_val;
326 int ret;
327
328 phy_modify_mmd(phydev, devad, regnum,
329 mask, cal_val);
330 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN,
331 MTK_PHY_DA_CALIN_FLAG);
332
333 ret = phy_read_mmd_poll_timeout(phydev, MDIO_MMD_VEND1,
334 MTK_PHY_RG_AD_CAL_CLK, reg_val,
335 reg_val & MTK_PHY_DA_CAL_CLK, 500,
336 ANALOG_INTERNAL_OPERATION_MAX_US, false);
337 if (ret) {
338 phydev_err(phydev, "Calibration cycle timeout\n");
339 return ret;
340 }
341
342 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN,
343 MTK_PHY_DA_CALIN_FLAG);
344 ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CAL_COMP) >>
345 MTK_PHY_AD_CAL_COMP_OUT_SHIFT;
346 phydev_dbg(phydev, "cal_val: 0x%x, ret: %d\n", cal_val, ret);
347
348 return ret;
349 }
350
rext_fill_result(struct phy_device * phydev,u16 * buf)351 static int rext_fill_result(struct phy_device *phydev, u16 *buf)
352 {
353 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG5,
354 MTK_PHY_RG_REXT_TRIM_MASK, buf[0] << 8);
355 phy_modify_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_RG_BG_RASEL,
356 MTK_PHY_RG_BG_RASEL_MASK, buf[1]);
357
358 return 0;
359 }
360
rext_cal_efuse(struct phy_device * phydev,u32 * buf)361 static int rext_cal_efuse(struct phy_device *phydev, u32 *buf)
362 {
363 u16 rext_cal_val[2];
364
365 rext_cal_val[0] = EFS_RG_REXT_TRIM(buf[3]);
366 rext_cal_val[1] = EFS_RG_BG_RASEL(buf[3]);
367 rext_fill_result(phydev, rext_cal_val);
368
369 return 0;
370 }
371
tx_offset_fill_result(struct phy_device * phydev,u16 * buf)372 static int tx_offset_fill_result(struct phy_device *phydev, u16 *buf)
373 {
374 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B,
375 MTK_PHY_CR_TX_AMP_OFFSET_A_MASK, buf[0] << 8);
376 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B,
377 MTK_PHY_CR_TX_AMP_OFFSET_B_MASK, buf[1]);
378 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D,
379 MTK_PHY_CR_TX_AMP_OFFSET_C_MASK, buf[2] << 8);
380 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D,
381 MTK_PHY_CR_TX_AMP_OFFSET_D_MASK, buf[3]);
382
383 return 0;
384 }
385
tx_offset_cal_efuse(struct phy_device * phydev,u32 * buf)386 static int tx_offset_cal_efuse(struct phy_device *phydev, u32 *buf)
387 {
388 u16 tx_offset_cal_val[4];
389
390 tx_offset_cal_val[0] = EFS_DA_TX_AMP_OFFSET_A(buf[0]);
391 tx_offset_cal_val[1] = EFS_DA_TX_AMP_OFFSET_B(buf[1]);
392 tx_offset_cal_val[2] = EFS_DA_TX_AMP_OFFSET_C(buf[1]);
393 tx_offset_cal_val[3] = EFS_DA_TX_AMP_OFFSET_D(buf[1]);
394
395 tx_offset_fill_result(phydev, tx_offset_cal_val);
396
397 return 0;
398 }
399
tx_amp_fill_result(struct phy_device * phydev,u16 * buf)400 static int tx_amp_fill_result(struct phy_device *phydev, u16 *buf)
401 {
402 int i;
403 int bias[16] = {};
404 const int vals_9461[16] = { 7, 1, 4, 7,
405 7, 1, 4, 7,
406 7, 1, 4, 7,
407 7, 1, 4, 7 };
408 const int vals_9481[16] = { 10, 6, 6, 10,
409 10, 6, 6, 10,
410 10, 6, 6, 10,
411 10, 6, 6, 10 };
412 switch (phydev->drv->phy_id) {
413 case MTK_GPHY_ID_MT7981:
414 /* We add some calibration to efuse values
415 * due to board level influence.
416 * GBE: +7, TBT: +1, HBT: +4, TST: +7
417 */
418 memcpy(bias, (const void *)vals_9461, sizeof(bias));
419 break;
420 case MTK_GPHY_ID_MT7988:
421 memcpy(bias, (const void *)vals_9481, sizeof(bias));
422 break;
423 }
424
425 /* Prevent overflow */
426 for (i = 0; i < 12; i++) {
427 if (buf[i >> 2] + bias[i] > 63) {
428 buf[i >> 2] = 63;
429 bias[i] = 0;
430 }
431 }
432
433 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG,
434 MTK_PHY_DA_TX_I2MPB_A_GBE_MASK, (buf[0] + bias[0]) << 10);
435 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG,
436 MTK_PHY_DA_TX_I2MPB_A_TBT_MASK, buf[0] + bias[1]);
437 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2,
438 MTK_PHY_DA_TX_I2MPB_A_HBT_MASK, (buf[0] + bias[2]) << 10);
439 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2,
440 MTK_PHY_DA_TX_I2MPB_A_TST_MASK, buf[0] + bias[3]);
441
442 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1,
443 MTK_PHY_DA_TX_I2MPB_B_GBE_MASK, (buf[1] + bias[4]) << 8);
444 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1,
445 MTK_PHY_DA_TX_I2MPB_B_TBT_MASK, buf[1] + bias[5]);
446 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2,
447 MTK_PHY_DA_TX_I2MPB_B_HBT_MASK, (buf[1] + bias[6]) << 8);
448 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2,
449 MTK_PHY_DA_TX_I2MPB_B_TST_MASK, buf[1] + bias[7]);
450
451 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1,
452 MTK_PHY_DA_TX_I2MPB_C_GBE_MASK, (buf[2] + bias[8]) << 8);
453 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1,
454 MTK_PHY_DA_TX_I2MPB_C_TBT_MASK, buf[2] + bias[9]);
455 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2,
456 MTK_PHY_DA_TX_I2MPB_C_HBT_MASK, (buf[2] + bias[10]) << 8);
457 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2,
458 MTK_PHY_DA_TX_I2MPB_C_TST_MASK, buf[2] + bias[11]);
459
460 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1,
461 MTK_PHY_DA_TX_I2MPB_D_GBE_MASK, (buf[3] + bias[12]) << 8);
462 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1,
463 MTK_PHY_DA_TX_I2MPB_D_TBT_MASK, buf[3] + bias[13]);
464 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2,
465 MTK_PHY_DA_TX_I2MPB_D_HBT_MASK, (buf[3] + bias[14]) << 8);
466 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2,
467 MTK_PHY_DA_TX_I2MPB_D_TST_MASK, buf[3] + bias[15]);
468
469 return 0;
470 }
471
tx_amp_cal_efuse(struct phy_device * phydev,u32 * buf)472 static int tx_amp_cal_efuse(struct phy_device *phydev, u32 *buf)
473 {
474 u16 tx_amp_cal_val[4];
475
476 tx_amp_cal_val[0] = EFS_DA_TX_I2MPB_A(buf[0]);
477 tx_amp_cal_val[1] = EFS_DA_TX_I2MPB_B(buf[0]);
478 tx_amp_cal_val[2] = EFS_DA_TX_I2MPB_C(buf[0]);
479 tx_amp_cal_val[3] = EFS_DA_TX_I2MPB_D(buf[0]);
480 tx_amp_fill_result(phydev, tx_amp_cal_val);
481
482 return 0;
483 }
484
tx_r50_fill_result(struct phy_device * phydev,u16 tx_r50_cal_val,u8 txg_calen_x)485 static int tx_r50_fill_result(struct phy_device *phydev, u16 tx_r50_cal_val,
486 u8 txg_calen_x)
487 {
488 int bias = 0;
489 u16 reg, val;
490
491 if (phydev->drv->phy_id == MTK_GPHY_ID_MT7988)
492 bias = -2;
493
494 val = clamp_val(bias + tx_r50_cal_val, 0, 63);
495
496 switch (txg_calen_x) {
497 case PAIR_A:
498 reg = MTK_PHY_DA_TX_R50_PAIR_A;
499 break;
500 case PAIR_B:
501 reg = MTK_PHY_DA_TX_R50_PAIR_B;
502 break;
503 case PAIR_C:
504 reg = MTK_PHY_DA_TX_R50_PAIR_C;
505 break;
506 case PAIR_D:
507 reg = MTK_PHY_DA_TX_R50_PAIR_D;
508 break;
509 default:
510 return -EINVAL;
511 }
512
513 phy_write_mmd(phydev, MDIO_MMD_VEND1, reg, val | val << 8);
514
515 return 0;
516 }
517
tx_r50_cal_efuse(struct phy_device * phydev,u32 * buf,u8 txg_calen_x)518 static int tx_r50_cal_efuse(struct phy_device *phydev, u32 *buf,
519 u8 txg_calen_x)
520 {
521 u16 tx_r50_cal_val;
522
523 switch (txg_calen_x) {
524 case PAIR_A:
525 tx_r50_cal_val = EFS_DA_TX_R50_A(buf[1]);
526 break;
527 case PAIR_B:
528 tx_r50_cal_val = EFS_DA_TX_R50_B(buf[1]);
529 break;
530 case PAIR_C:
531 tx_r50_cal_val = EFS_DA_TX_R50_C(buf[2]);
532 break;
533 case PAIR_D:
534 tx_r50_cal_val = EFS_DA_TX_R50_D(buf[2]);
535 break;
536 default:
537 return -EINVAL;
538 }
539 tx_r50_fill_result(phydev, tx_r50_cal_val, txg_calen_x);
540
541 return 0;
542 }
543
tx_vcm_cal_sw(struct phy_device * phydev,u8 rg_txreserve_x)544 static int tx_vcm_cal_sw(struct phy_device *phydev, u8 rg_txreserve_x)
545 {
546 u8 lower_idx, upper_idx, txreserve_val;
547 u8 lower_ret, upper_ret;
548 int ret;
549
550 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
551 MTK_PHY_RG_ANA_CALEN);
552 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
553 MTK_PHY_RG_CAL_CKINV);
554 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
555 MTK_PHY_RG_TXVOS_CALEN);
556
557 switch (rg_txreserve_x) {
558 case PAIR_A:
559 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
560 MTK_PHY_RG_DASN_DAC_IN0_A,
561 MTK_PHY_DASN_DAC_IN0_A_MASK);
562 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
563 MTK_PHY_RG_DASN_DAC_IN1_A,
564 MTK_PHY_DASN_DAC_IN1_A_MASK);
565 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
566 MTK_PHY_RG_ANA_CAL_RG0,
567 MTK_PHY_RG_ZCALEN_A);
568 break;
569 case PAIR_B:
570 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
571 MTK_PHY_RG_DASN_DAC_IN0_B,
572 MTK_PHY_DASN_DAC_IN0_B_MASK);
573 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
574 MTK_PHY_RG_DASN_DAC_IN1_B,
575 MTK_PHY_DASN_DAC_IN1_B_MASK);
576 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
577 MTK_PHY_RG_ANA_CAL_RG1,
578 MTK_PHY_RG_ZCALEN_B);
579 break;
580 case PAIR_C:
581 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
582 MTK_PHY_RG_DASN_DAC_IN0_C,
583 MTK_PHY_DASN_DAC_IN0_C_MASK);
584 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
585 MTK_PHY_RG_DASN_DAC_IN1_C,
586 MTK_PHY_DASN_DAC_IN1_C_MASK);
587 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
588 MTK_PHY_RG_ANA_CAL_RG1,
589 MTK_PHY_RG_ZCALEN_C);
590 break;
591 case PAIR_D:
592 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
593 MTK_PHY_RG_DASN_DAC_IN0_D,
594 MTK_PHY_DASN_DAC_IN0_D_MASK);
595 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
596 MTK_PHY_RG_DASN_DAC_IN1_D,
597 MTK_PHY_DASN_DAC_IN1_D_MASK);
598 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
599 MTK_PHY_RG_ANA_CAL_RG1,
600 MTK_PHY_RG_ZCALEN_D);
601 break;
602 default:
603 ret = -EINVAL;
604 goto restore;
605 }
606
607 lower_idx = TXRESERVE_MIN;
608 upper_idx = TXRESERVE_MAX;
609
610 phydev_dbg(phydev, "Start TX-VCM SW cal.\n");
611 while ((upper_idx - lower_idx) > 1) {
612 txreserve_val = DIV_ROUND_CLOSEST(lower_idx + upper_idx, 2);
613 ret = cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
614 MTK_PHY_DA_RX_PSBN_TBT_MASK |
615 MTK_PHY_DA_RX_PSBN_HBT_MASK |
616 MTK_PHY_DA_RX_PSBN_GBE_MASK |
617 MTK_PHY_DA_RX_PSBN_LP_MASK,
618 txreserve_val << 12 | txreserve_val << 8 |
619 txreserve_val << 4 | txreserve_val);
620 if (ret == 1) {
621 upper_idx = txreserve_val;
622 upper_ret = ret;
623 } else if (ret == 0) {
624 lower_idx = txreserve_val;
625 lower_ret = ret;
626 } else {
627 goto restore;
628 }
629 }
630
631 if (lower_idx == TXRESERVE_MIN) {
632 lower_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
633 MTK_PHY_RXADC_CTRL_RG9,
634 MTK_PHY_DA_RX_PSBN_TBT_MASK |
635 MTK_PHY_DA_RX_PSBN_HBT_MASK |
636 MTK_PHY_DA_RX_PSBN_GBE_MASK |
637 MTK_PHY_DA_RX_PSBN_LP_MASK,
638 lower_idx << 12 | lower_idx << 8 |
639 lower_idx << 4 | lower_idx);
640 ret = lower_ret;
641 } else if (upper_idx == TXRESERVE_MAX) {
642 upper_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
643 MTK_PHY_RXADC_CTRL_RG9,
644 MTK_PHY_DA_RX_PSBN_TBT_MASK |
645 MTK_PHY_DA_RX_PSBN_HBT_MASK |
646 MTK_PHY_DA_RX_PSBN_GBE_MASK |
647 MTK_PHY_DA_RX_PSBN_LP_MASK,
648 upper_idx << 12 | upper_idx << 8 |
649 upper_idx << 4 | upper_idx);
650 ret = upper_ret;
651 }
652 if (ret < 0)
653 goto restore;
654
655 /* We calibrate TX-VCM in different logic. Check upper index and then
656 * lower index. If this calibration is valid, apply lower index's result.
657 */
658 ret = upper_ret - lower_ret;
659 if (ret == 1) {
660 ret = 0;
661 /* Make sure we use upper_idx in our calibration system */
662 cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
663 MTK_PHY_DA_RX_PSBN_TBT_MASK |
664 MTK_PHY_DA_RX_PSBN_HBT_MASK |
665 MTK_PHY_DA_RX_PSBN_GBE_MASK |
666 MTK_PHY_DA_RX_PSBN_LP_MASK,
667 upper_idx << 12 | upper_idx << 8 |
668 upper_idx << 4 | upper_idx);
669 phydev_dbg(phydev, "TX-VCM SW cal result: 0x%x\n", upper_idx);
670 } else if (lower_idx == TXRESERVE_MIN && upper_ret == 1 &&
671 lower_ret == 1) {
672 ret = 0;
673 cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
674 MTK_PHY_DA_RX_PSBN_TBT_MASK |
675 MTK_PHY_DA_RX_PSBN_HBT_MASK |
676 MTK_PHY_DA_RX_PSBN_GBE_MASK |
677 MTK_PHY_DA_RX_PSBN_LP_MASK,
678 lower_idx << 12 | lower_idx << 8 |
679 lower_idx << 4 | lower_idx);
680 phydev_warn(phydev, "TX-VCM SW cal result at low margin 0x%x\n",
681 lower_idx);
682 } else if (upper_idx == TXRESERVE_MAX && upper_ret == 0 &&
683 lower_ret == 0) {
684 ret = 0;
685 phydev_warn(phydev, "TX-VCM SW cal result at high margin 0x%x\n",
686 upper_idx);
687 } else {
688 ret = -EINVAL;
689 }
690
691 restore:
692 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
693 MTK_PHY_RG_ANA_CALEN);
694 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
695 MTK_PHY_RG_TXVOS_CALEN);
696 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
697 MTK_PHY_RG_ZCALEN_A);
698 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
699 MTK_PHY_RG_ZCALEN_B | MTK_PHY_RG_ZCALEN_C |
700 MTK_PHY_RG_ZCALEN_D);
701
702 return ret;
703 }
704
mt798x_phy_common_finetune(struct phy_device * phydev)705 static void mt798x_phy_common_finetune(struct phy_device *phydev)
706 {
707 phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
708 /* EnabRandUpdTrig = 1 */
709 __phy_write(phydev, 0x11, 0x2f00);
710 __phy_write(phydev, 0x12, 0xe);
711 __phy_write(phydev, 0x10, 0x8fb0);
712
713 /* NormMseLoThresh = 85 */
714 __phy_write(phydev, 0x11, 0x55a0);
715 __phy_write(phydev, 0x12, 0x0);
716 __phy_write(phydev, 0x10, 0x83aa);
717
718 /* TrFreeze = 0 */
719 __phy_write(phydev, 0x11, 0x0);
720 __phy_write(phydev, 0x12, 0x0);
721 __phy_write(phydev, 0x10, 0x9686);
722
723 /* SSTrKp1000Slv = 5 */
724 __phy_write(phydev, 0x11, 0xbaef);
725 __phy_write(phydev, 0x12, 0x2e);
726 __phy_write(phydev, 0x10, 0x968c);
727
728 /* MrvlTrFix100Kp = 3, MrvlTrFix100Kf = 2,
729 * MrvlTrFix1000Kp = 3, MrvlTrFix1000Kf = 2
730 */
731 __phy_write(phydev, 0x11, 0xd10a);
732 __phy_write(phydev, 0x12, 0x34);
733 __phy_write(phydev, 0x10, 0x8f82);
734
735 /* VcoSlicerThreshBitsHigh */
736 __phy_write(phydev, 0x11, 0x5555);
737 __phy_write(phydev, 0x12, 0x55);
738 __phy_write(phydev, 0x10, 0x8ec0);
739 phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
740
741 /* TR_OPEN_LOOP_EN = 1, lpf_x_average = 9*/
742 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG234,
743 MTK_PHY_TR_OPEN_LOOP_EN_MASK | MTK_PHY_LPF_X_AVERAGE_MASK,
744 BIT(0) | FIELD_PREP(MTK_PHY_LPF_X_AVERAGE_MASK, 0x9));
745
746 /* rg_tr_lpf_cnt_val = 512 */
747 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LPF_CNT_VAL, 0x200);
748
749 /* IIR2 related */
750 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_L, 0x82);
751 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_U, 0x0);
752 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_L, 0x103);
753 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_U, 0x0);
754 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_L, 0x82);
755 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_U, 0x0);
756 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_L, 0xd177);
757 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_U, 0x3);
758 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_L, 0x2c82);
759 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_U, 0xe);
760
761 /* FFE peaking */
762 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27C,
763 MTK_PHY_VGASTATE_FFE_THR_ST1_MASK, 0x1b << 8);
764 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27D,
765 MTK_PHY_VGASTATE_FFE_THR_ST2_MASK, 0x1e);
766
767 /* Disable LDO pump */
768 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRAB, 0x0);
769 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRCD, 0x0);
770 /* Adjust LDO output voltage */
771 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_OUTPUT_V, 0x2222);
772 }
773
mt7981_phy_finetune(struct phy_device * phydev)774 static void mt7981_phy_finetune(struct phy_device *phydev)
775 {
776 u16 val[8] = { 0x01ce, 0x01c1,
777 0x020f, 0x0202,
778 0x03d0, 0x03c0,
779 0x0013, 0x0005 };
780 int i, k;
781
782 /* 100M eye finetune:
783 * Keep middle level of TX MLT3 shapper as default.
784 * Only change TX MLT3 overshoot level here.
785 */
786 for (k = 0, i = 1; i < 12; i++) {
787 if (i % 3 == 0)
788 continue;
789 phy_write_mmd(phydev, MDIO_MMD_VEND1, i, val[k++]);
790 }
791
792 phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
793 /* SlvDSPreadyTime = 24, MasDSPreadyTime = 24 */
794 __phy_write(phydev, 0x11, 0xc71);
795 __phy_write(phydev, 0x12, 0xc);
796 __phy_write(phydev, 0x10, 0x8fae);
797
798 /* ResetSyncOffset = 6 */
799 __phy_write(phydev, 0x11, 0x600);
800 __phy_write(phydev, 0x12, 0x0);
801 __phy_write(phydev, 0x10, 0x8fc0);
802
803 /* VgaDecRate = 1 */
804 __phy_write(phydev, 0x11, 0x4c2a);
805 __phy_write(phydev, 0x12, 0x3e);
806 __phy_write(phydev, 0x10, 0x8fa4);
807
808 /* FfeUpdGainForce = 4 */
809 __phy_write(phydev, 0x11, 0x240);
810 __phy_write(phydev, 0x12, 0x0);
811 __phy_write(phydev, 0x10, 0x9680);
812
813 phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
814 }
815
mt7988_phy_finetune(struct phy_device * phydev)816 static void mt7988_phy_finetune(struct phy_device *phydev)
817 {
818 u16 val[12] = { 0x0187, 0x01cd, 0x01c8, 0x0182,
819 0x020d, 0x0206, 0x0384, 0x03d0,
820 0x03c6, 0x030a, 0x0011, 0x0005 };
821 int i;
822
823 /* Set default MLT3 shaper first */
824 for (i = 0; i < 12; i++)
825 phy_write_mmd(phydev, MDIO_MMD_VEND1, i, val[i]);
826
827 /* TCT finetune */
828 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_TX_FILTER, 0x5);
829
830 /* Disable TX power saving */
831 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG7,
832 MTK_PHY_DA_AD_BUF_BIAS_LP_MASK, 0x3 << 8);
833
834 phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
835
836 /* SlvDSPreadyTime = 24, MasDSPreadyTime = 12 */
837 __phy_write(phydev, 0x11, 0x671);
838 __phy_write(phydev, 0x12, 0xc);
839 __phy_write(phydev, 0x10, 0x8fae);
840
841 /* ResetSyncOffset = 5 */
842 __phy_write(phydev, 0x11, 0x500);
843 __phy_write(phydev, 0x12, 0x0);
844 __phy_write(phydev, 0x10, 0x8fc0);
845
846 /* VgaDecRate is 1 at default on mt7988 */
847
848 phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
849
850 phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_2A30);
851 /* TxClkOffset = 2 */
852 __phy_modify(phydev, MTK_PHY_ANARG_RG, MTK_PHY_TCLKOFFSET_MASK,
853 FIELD_PREP(MTK_PHY_TCLKOFFSET_MASK, 0x2));
854 phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
855 }
856
mt798x_phy_eee(struct phy_device * phydev)857 static void mt798x_phy_eee(struct phy_device *phydev)
858 {
859 phy_modify_mmd(phydev, MDIO_MMD_VEND1,
860 MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG120,
861 MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK |
862 MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK,
863 FIELD_PREP(MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK, 0x0) |
864 FIELD_PREP(MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK, 0x14));
865
866 phy_modify_mmd(phydev, MDIO_MMD_VEND1,
867 MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122,
868 MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
869 FIELD_PREP(MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
870 0xff));
871
872 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
873 MTK_PHY_RG_TESTMUX_ADC_CTRL,
874 MTK_PHY_RG_TXEN_DIG_MASK);
875
876 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
877 MTK_PHY_RG_DEV1E_REG19b, MTK_PHY_BYPASS_DSP_LPI_READY);
878
879 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
880 MTK_PHY_RG_DEV1E_REG234, MTK_PHY_TR_LP_IIR_EEE_EN);
881
882 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG238,
883 MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK |
884 MTK_PHY_LPI_SLV_SEND_TX_EN,
885 FIELD_PREP(MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK, 0x120));
886
887 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG239,
888 MTK_PHY_LPI_SEND_LOC_TIMER_MASK |
889 MTK_PHY_LPI_TXPCS_LOC_RCV,
890 FIELD_PREP(MTK_PHY_LPI_SEND_LOC_TIMER_MASK, 0x117));
891
892 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG2C7,
893 MTK_PHY_MAX_GAIN_MASK | MTK_PHY_MIN_GAIN_MASK,
894 FIELD_PREP(MTK_PHY_MAX_GAIN_MASK, 0x8) |
895 FIELD_PREP(MTK_PHY_MIN_GAIN_MASK, 0x13));
896
897 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG2D1,
898 MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK,
899 FIELD_PREP(MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK,
900 0x33) |
901 MTK_PHY_LPI_SKIP_SD_SLV_TR | MTK_PHY_LPI_TR_READY |
902 MTK_PHY_LPI_VCO_EEE_STG0_EN);
903
904 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG323,
905 MTK_PHY_EEE_WAKE_MAS_INT_DC |
906 MTK_PHY_EEE_WAKE_SLV_INT_DC);
907
908 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG324,
909 MTK_PHY_SMI_DETCNT_MAX_MASK,
910 FIELD_PREP(MTK_PHY_SMI_DETCNT_MAX_MASK, 0x3f) |
911 MTK_PHY_SMI_DET_MAX_EN);
912
913 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG326,
914 MTK_PHY_LPI_MODE_SD_ON | MTK_PHY_RESET_RANDUPD_CNT |
915 MTK_PHY_TREC_UPDATE_ENAB_CLR |
916 MTK_PHY_LPI_QUIT_WAIT_DFE_SIG_DET_OFF |
917 MTK_PHY_TR_READY_SKIP_AFE_WAKEUP);
918
919 phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
920 /* Regsigdet_sel_1000 = 0 */
921 __phy_write(phydev, 0x11, 0xb);
922 __phy_write(phydev, 0x12, 0x0);
923 __phy_write(phydev, 0x10, 0x9690);
924
925 /* REG_EEE_st2TrKf1000 = 3 */
926 __phy_write(phydev, 0x11, 0x114f);
927 __phy_write(phydev, 0x12, 0x2);
928 __phy_write(phydev, 0x10, 0x969a);
929
930 /* RegEEE_slv_wake_tr_timer_tar = 6, RegEEE_slv_remtx_timer_tar = 20 */
931 __phy_write(phydev, 0x11, 0x3028);
932 __phy_write(phydev, 0x12, 0x0);
933 __phy_write(phydev, 0x10, 0x969e);
934
935 /* RegEEE_slv_wake_int_timer_tar = 8 */
936 __phy_write(phydev, 0x11, 0x5010);
937 __phy_write(phydev, 0x12, 0x0);
938 __phy_write(phydev, 0x10, 0x96a0);
939
940 /* RegEEE_trfreeze_timer2 = 586 */
941 __phy_write(phydev, 0x11, 0x24a);
942 __phy_write(phydev, 0x12, 0x0);
943 __phy_write(phydev, 0x10, 0x96a8);
944
945 /* RegEEE100Stg1_tar = 16 */
946 __phy_write(phydev, 0x11, 0x3210);
947 __phy_write(phydev, 0x12, 0x0);
948 __phy_write(phydev, 0x10, 0x96b8);
949
950 /* REGEEE_wake_slv_tr_wait_dfesigdet_en = 1 */
951 __phy_write(phydev, 0x11, 0x1463);
952 __phy_write(phydev, 0x12, 0x0);
953 __phy_write(phydev, 0x10, 0x96ca);
954
955 /* DfeTailEnableVgaThresh1000 = 27 */
956 __phy_write(phydev, 0x11, 0x36);
957 __phy_write(phydev, 0x12, 0x0);
958 __phy_write(phydev, 0x10, 0x8f80);
959 phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
960
961 phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_3);
962 __phy_modify(phydev, MTK_PHY_LPI_REG_14, MTK_PHY_LPI_WAKE_TIMER_1000_MASK,
963 FIELD_PREP(MTK_PHY_LPI_WAKE_TIMER_1000_MASK, 0x19c));
964
965 __phy_modify(phydev, MTK_PHY_LPI_REG_1c, MTK_PHY_SMI_DET_ON_THRESH_MASK,
966 FIELD_PREP(MTK_PHY_SMI_DET_ON_THRESH_MASK, 0xc));
967 phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
968
969 phy_modify_mmd(phydev, MDIO_MMD_VEND1,
970 MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122,
971 MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
972 FIELD_PREP(MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK, 0xff));
973 }
974
cal_sw(struct phy_device * phydev,enum CAL_ITEM cal_item,u8 start_pair,u8 end_pair)975 static int cal_sw(struct phy_device *phydev, enum CAL_ITEM cal_item,
976 u8 start_pair, u8 end_pair)
977 {
978 u8 pair_n;
979 int ret;
980
981 for (pair_n = start_pair; pair_n <= end_pair; pair_n++) {
982 /* TX_OFFSET & TX_AMP have no SW calibration. */
983 switch (cal_item) {
984 case TX_VCM:
985 ret = tx_vcm_cal_sw(phydev, pair_n);
986 break;
987 default:
988 return -EINVAL;
989 }
990 if (ret)
991 return ret;
992 }
993 return 0;
994 }
995
cal_efuse(struct phy_device * phydev,enum CAL_ITEM cal_item,u8 start_pair,u8 end_pair,u32 * buf)996 static int cal_efuse(struct phy_device *phydev, enum CAL_ITEM cal_item,
997 u8 start_pair, u8 end_pair, u32 *buf)
998 {
999 u8 pair_n;
1000 int ret;
1001
1002 for (pair_n = start_pair; pair_n <= end_pair; pair_n++) {
1003 /* TX_VCM has no efuse calibration. */
1004 switch (cal_item) {
1005 case REXT:
1006 ret = rext_cal_efuse(phydev, buf);
1007 break;
1008 case TX_OFFSET:
1009 ret = tx_offset_cal_efuse(phydev, buf);
1010 break;
1011 case TX_AMP:
1012 ret = tx_amp_cal_efuse(phydev, buf);
1013 break;
1014 case TX_R50:
1015 ret = tx_r50_cal_efuse(phydev, buf, pair_n);
1016 break;
1017 default:
1018 return -EINVAL;
1019 }
1020 if (ret)
1021 return ret;
1022 }
1023
1024 return 0;
1025 }
1026
start_cal(struct phy_device * phydev,enum CAL_ITEM cal_item,enum CAL_MODE cal_mode,u8 start_pair,u8 end_pair,u32 * buf)1027 static int start_cal(struct phy_device *phydev, enum CAL_ITEM cal_item,
1028 enum CAL_MODE cal_mode, u8 start_pair,
1029 u8 end_pair, u32 *buf)
1030 {
1031 int ret;
1032
1033 switch (cal_mode) {
1034 case EFUSE_M:
1035 ret = cal_efuse(phydev, cal_item, start_pair,
1036 end_pair, buf);
1037 break;
1038 case SW_M:
1039 ret = cal_sw(phydev, cal_item, start_pair, end_pair);
1040 break;
1041 default:
1042 return -EINVAL;
1043 }
1044
1045 if (ret) {
1046 phydev_err(phydev, "cal %d failed\n", cal_item);
1047 return -EIO;
1048 }
1049
1050 return 0;
1051 }
1052
mt798x_phy_calibration(struct phy_device * phydev)1053 static int mt798x_phy_calibration(struct phy_device *phydev)
1054 {
1055 int ret = 0;
1056 u32 *buf;
1057 size_t len;
1058 struct nvmem_cell *cell;
1059
1060 cell = nvmem_cell_get(&phydev->mdio.dev, "phy-cal-data");
1061 if (IS_ERR(cell)) {
1062 if (PTR_ERR(cell) == -EPROBE_DEFER)
1063 return PTR_ERR(cell);
1064 return 0;
1065 }
1066
1067 buf = (u32 *)nvmem_cell_read(cell, &len);
1068 if (IS_ERR(buf))
1069 return PTR_ERR(buf);
1070 nvmem_cell_put(cell);
1071
1072 if (!buf[0] || !buf[1] || !buf[2] || !buf[3] || len < 4 * sizeof(u32)) {
1073 phydev_err(phydev, "invalid efuse data\n");
1074 ret = -EINVAL;
1075 goto out;
1076 }
1077
1078 ret = start_cal(phydev, REXT, EFUSE_M, NO_PAIR, NO_PAIR, buf);
1079 if (ret)
1080 goto out;
1081 ret = start_cal(phydev, TX_OFFSET, EFUSE_M, NO_PAIR, NO_PAIR, buf);
1082 if (ret)
1083 goto out;
1084 ret = start_cal(phydev, TX_AMP, EFUSE_M, NO_PAIR, NO_PAIR, buf);
1085 if (ret)
1086 goto out;
1087 ret = start_cal(phydev, TX_R50, EFUSE_M, PAIR_A, PAIR_D, buf);
1088 if (ret)
1089 goto out;
1090 ret = start_cal(phydev, TX_VCM, SW_M, PAIR_A, PAIR_A, buf);
1091 if (ret)
1092 goto out;
1093
1094 out:
1095 kfree(buf);
1096 return ret;
1097 }
1098
mt798x_phy_config_init(struct phy_device * phydev)1099 static int mt798x_phy_config_init(struct phy_device *phydev)
1100 {
1101 switch (phydev->drv->phy_id) {
1102 case MTK_GPHY_ID_MT7981:
1103 mt7981_phy_finetune(phydev);
1104 break;
1105 case MTK_GPHY_ID_MT7988:
1106 mt7988_phy_finetune(phydev);
1107 break;
1108 }
1109
1110 mt798x_phy_common_finetune(phydev);
1111 mt798x_phy_eee(phydev);
1112
1113 return mt798x_phy_calibration(phydev);
1114 }
1115
mt798x_phy_hw_led_on_set(struct phy_device * phydev,u8 index,bool on)1116 static int mt798x_phy_hw_led_on_set(struct phy_device *phydev, u8 index,
1117 bool on)
1118 {
1119 unsigned int bit_on = MTK_PHY_LED_STATE_FORCE_ON + (index ? 16 : 0);
1120 struct mtk_socphy_priv *priv = phydev->priv;
1121 bool changed;
1122
1123 if (on)
1124 changed = !test_and_set_bit(bit_on, &priv->led_state);
1125 else
1126 changed = !!test_and_clear_bit(bit_on, &priv->led_state);
1127
1128 changed |= !!test_and_clear_bit(MTK_PHY_LED_STATE_NETDEV +
1129 (index ? 16 : 0), &priv->led_state);
1130 if (changed)
1131 return phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
1132 MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL,
1133 MTK_PHY_LED_ON_MASK,
1134 on ? MTK_PHY_LED_ON_FORCE_ON : 0);
1135 else
1136 return 0;
1137 }
1138
mt798x_phy_hw_led_blink_set(struct phy_device * phydev,u8 index,bool blinking)1139 static int mt798x_phy_hw_led_blink_set(struct phy_device *phydev, u8 index,
1140 bool blinking)
1141 {
1142 unsigned int bit_blink = MTK_PHY_LED_STATE_FORCE_BLINK + (index ? 16 : 0);
1143 struct mtk_socphy_priv *priv = phydev->priv;
1144 bool changed;
1145
1146 if (blinking)
1147 changed = !test_and_set_bit(bit_blink, &priv->led_state);
1148 else
1149 changed = !!test_and_clear_bit(bit_blink, &priv->led_state);
1150
1151 changed |= !!test_bit(MTK_PHY_LED_STATE_NETDEV +
1152 (index ? 16 : 0), &priv->led_state);
1153 if (changed)
1154 return phy_write_mmd(phydev, MDIO_MMD_VEND2, index ?
1155 MTK_PHY_LED1_BLINK_CTRL : MTK_PHY_LED0_BLINK_CTRL,
1156 blinking ? MTK_PHY_LED_BLINK_FORCE_BLINK : 0);
1157 else
1158 return 0;
1159 }
1160
mt798x_phy_led_blink_set(struct phy_device * phydev,u8 index,unsigned long * delay_on,unsigned long * delay_off)1161 static int mt798x_phy_led_blink_set(struct phy_device *phydev, u8 index,
1162 unsigned long *delay_on,
1163 unsigned long *delay_off)
1164 {
1165 bool blinking = false;
1166 int err = 0;
1167
1168 if (index > 1)
1169 return -EINVAL;
1170
1171 if (delay_on && delay_off && (*delay_on > 0) && (*delay_off > 0)) {
1172 blinking = true;
1173 *delay_on = 50;
1174 *delay_off = 50;
1175 }
1176
1177 err = mt798x_phy_hw_led_blink_set(phydev, index, blinking);
1178 if (err)
1179 return err;
1180
1181 return mt798x_phy_hw_led_on_set(phydev, index, false);
1182 }
1183
mt798x_phy_led_brightness_set(struct phy_device * phydev,u8 index,enum led_brightness value)1184 static int mt798x_phy_led_brightness_set(struct phy_device *phydev,
1185 u8 index, enum led_brightness value)
1186 {
1187 int err;
1188
1189 err = mt798x_phy_hw_led_blink_set(phydev, index, false);
1190 if (err)
1191 return err;
1192
1193 return mt798x_phy_hw_led_on_set(phydev, index, (value != LED_OFF));
1194 }
1195
1196 static const unsigned long supported_triggers = (BIT(TRIGGER_NETDEV_FULL_DUPLEX) |
1197 BIT(TRIGGER_NETDEV_HALF_DUPLEX) |
1198 BIT(TRIGGER_NETDEV_LINK) |
1199 BIT(TRIGGER_NETDEV_LINK_10) |
1200 BIT(TRIGGER_NETDEV_LINK_100) |
1201 BIT(TRIGGER_NETDEV_LINK_1000) |
1202 BIT(TRIGGER_NETDEV_RX) |
1203 BIT(TRIGGER_NETDEV_TX));
1204
mt798x_phy_led_hw_is_supported(struct phy_device * phydev,u8 index,unsigned long rules)1205 static int mt798x_phy_led_hw_is_supported(struct phy_device *phydev, u8 index,
1206 unsigned long rules)
1207 {
1208 if (index > 1)
1209 return -EINVAL;
1210
1211 /* All combinations of the supported triggers are allowed */
1212 if (rules & ~supported_triggers)
1213 return -EOPNOTSUPP;
1214
1215 return 0;
1216 };
1217
mt798x_phy_led_hw_control_get(struct phy_device * phydev,u8 index,unsigned long * rules)1218 static int mt798x_phy_led_hw_control_get(struct phy_device *phydev, u8 index,
1219 unsigned long *rules)
1220 {
1221 unsigned int bit_blink = MTK_PHY_LED_STATE_FORCE_BLINK + (index ? 16 : 0);
1222 unsigned int bit_netdev = MTK_PHY_LED_STATE_NETDEV + (index ? 16 : 0);
1223 unsigned int bit_on = MTK_PHY_LED_STATE_FORCE_ON + (index ? 16 : 0);
1224 struct mtk_socphy_priv *priv = phydev->priv;
1225 int on, blink;
1226
1227 if (index > 1)
1228 return -EINVAL;
1229
1230 on = phy_read_mmd(phydev, MDIO_MMD_VEND2,
1231 index ? MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL);
1232
1233 if (on < 0)
1234 return -EIO;
1235
1236 blink = phy_read_mmd(phydev, MDIO_MMD_VEND2,
1237 index ? MTK_PHY_LED1_BLINK_CTRL :
1238 MTK_PHY_LED0_BLINK_CTRL);
1239 if (blink < 0)
1240 return -EIO;
1241
1242 if ((on & (MTK_PHY_LED_ON_LINK1000 | MTK_PHY_LED_ON_LINK100 |
1243 MTK_PHY_LED_ON_LINK10)) ||
1244 (blink & (MTK_PHY_LED_BLINK_1000RX | MTK_PHY_LED_BLINK_100RX |
1245 MTK_PHY_LED_BLINK_10RX | MTK_PHY_LED_BLINK_1000TX |
1246 MTK_PHY_LED_BLINK_100TX | MTK_PHY_LED_BLINK_10TX)))
1247 set_bit(bit_netdev, &priv->led_state);
1248 else
1249 clear_bit(bit_netdev, &priv->led_state);
1250
1251 if (on & MTK_PHY_LED_ON_FORCE_ON)
1252 set_bit(bit_on, &priv->led_state);
1253 else
1254 clear_bit(bit_on, &priv->led_state);
1255
1256 if (blink & MTK_PHY_LED_BLINK_FORCE_BLINK)
1257 set_bit(bit_blink, &priv->led_state);
1258 else
1259 clear_bit(bit_blink, &priv->led_state);
1260
1261 if (!rules)
1262 return 0;
1263
1264 if (on & (MTK_PHY_LED_ON_LINK1000 | MTK_PHY_LED_ON_LINK100 | MTK_PHY_LED_ON_LINK10))
1265 *rules |= BIT(TRIGGER_NETDEV_LINK);
1266
1267 if (on & MTK_PHY_LED_ON_LINK10)
1268 *rules |= BIT(TRIGGER_NETDEV_LINK_10);
1269
1270 if (on & MTK_PHY_LED_ON_LINK100)
1271 *rules |= BIT(TRIGGER_NETDEV_LINK_100);
1272
1273 if (on & MTK_PHY_LED_ON_LINK1000)
1274 *rules |= BIT(TRIGGER_NETDEV_LINK_1000);
1275
1276 if (on & MTK_PHY_LED_ON_FDX)
1277 *rules |= BIT(TRIGGER_NETDEV_FULL_DUPLEX);
1278
1279 if (on & MTK_PHY_LED_ON_HDX)
1280 *rules |= BIT(TRIGGER_NETDEV_HALF_DUPLEX);
1281
1282 if (blink & (MTK_PHY_LED_BLINK_1000RX | MTK_PHY_LED_BLINK_100RX | MTK_PHY_LED_BLINK_10RX))
1283 *rules |= BIT(TRIGGER_NETDEV_RX);
1284
1285 if (blink & (MTK_PHY_LED_BLINK_1000TX | MTK_PHY_LED_BLINK_100TX | MTK_PHY_LED_BLINK_10TX))
1286 *rules |= BIT(TRIGGER_NETDEV_TX);
1287
1288 return 0;
1289 };
1290
mt798x_phy_led_hw_control_set(struct phy_device * phydev,u8 index,unsigned long rules)1291 static int mt798x_phy_led_hw_control_set(struct phy_device *phydev, u8 index,
1292 unsigned long rules)
1293 {
1294 unsigned int bit_netdev = MTK_PHY_LED_STATE_NETDEV + (index ? 16 : 0);
1295 struct mtk_socphy_priv *priv = phydev->priv;
1296 u16 on = 0, blink = 0;
1297 int ret;
1298
1299 if (index > 1)
1300 return -EINVAL;
1301
1302 if (rules & BIT(TRIGGER_NETDEV_FULL_DUPLEX))
1303 on |= MTK_PHY_LED_ON_FDX;
1304
1305 if (rules & BIT(TRIGGER_NETDEV_HALF_DUPLEX))
1306 on |= MTK_PHY_LED_ON_HDX;
1307
1308 if (rules & (BIT(TRIGGER_NETDEV_LINK_10) | BIT(TRIGGER_NETDEV_LINK)))
1309 on |= MTK_PHY_LED_ON_LINK10;
1310
1311 if (rules & (BIT(TRIGGER_NETDEV_LINK_100) | BIT(TRIGGER_NETDEV_LINK)))
1312 on |= MTK_PHY_LED_ON_LINK100;
1313
1314 if (rules & (BIT(TRIGGER_NETDEV_LINK_1000) | BIT(TRIGGER_NETDEV_LINK)))
1315 on |= MTK_PHY_LED_ON_LINK1000;
1316
1317 if (rules & BIT(TRIGGER_NETDEV_RX)) {
1318 blink |= MTK_PHY_LED_BLINK_10RX |
1319 MTK_PHY_LED_BLINK_100RX |
1320 MTK_PHY_LED_BLINK_1000RX;
1321 }
1322
1323 if (rules & BIT(TRIGGER_NETDEV_TX)) {
1324 blink |= MTK_PHY_LED_BLINK_10TX |
1325 MTK_PHY_LED_BLINK_100TX |
1326 MTK_PHY_LED_BLINK_1000TX;
1327 }
1328
1329 if (blink || on)
1330 set_bit(bit_netdev, &priv->led_state);
1331 else
1332 clear_bit(bit_netdev, &priv->led_state);
1333
1334 ret = phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
1335 MTK_PHY_LED1_ON_CTRL :
1336 MTK_PHY_LED0_ON_CTRL,
1337 MTK_PHY_LED_ON_FDX |
1338 MTK_PHY_LED_ON_HDX |
1339 MTK_PHY_LED_ON_LINK10 |
1340 MTK_PHY_LED_ON_LINK100 |
1341 MTK_PHY_LED_ON_LINK1000,
1342 on);
1343
1344 if (ret)
1345 return ret;
1346
1347 return phy_write_mmd(phydev, MDIO_MMD_VEND2, index ?
1348 MTK_PHY_LED1_BLINK_CTRL :
1349 MTK_PHY_LED0_BLINK_CTRL, blink);
1350 };
1351
mt7988_phy_led_get_polarity(struct phy_device * phydev,int led_num)1352 static bool mt7988_phy_led_get_polarity(struct phy_device *phydev, int led_num)
1353 {
1354 struct mtk_socphy_shared *priv = phydev->shared->priv;
1355 u32 polarities;
1356
1357 if (led_num == 0)
1358 polarities = ~(priv->boottrap);
1359 else
1360 polarities = MTK_PHY_LED1_DEFAULT_POLARITIES;
1361
1362 if (polarities & BIT(phydev->mdio.addr))
1363 return true;
1364
1365 return false;
1366 }
1367
mt7988_phy_fix_leds_polarities(struct phy_device * phydev)1368 static int mt7988_phy_fix_leds_polarities(struct phy_device *phydev)
1369 {
1370 struct pinctrl *pinctrl;
1371 int index;
1372
1373 /* Setup LED polarity according to bootstrap use of LED pins */
1374 for (index = 0; index < 2; ++index)
1375 phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
1376 MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL,
1377 MTK_PHY_LED_ON_POLARITY,
1378 mt7988_phy_led_get_polarity(phydev, index) ?
1379 MTK_PHY_LED_ON_POLARITY : 0);
1380
1381 /* Only now setup pinctrl to avoid bogus blinking */
1382 pinctrl = devm_pinctrl_get_select(&phydev->mdio.dev, "gbe-led");
1383 if (IS_ERR(pinctrl))
1384 dev_err(&phydev->mdio.bus->dev, "Failed to setup PHY LED pinctrl\n");
1385
1386 return 0;
1387 }
1388
mt7988_phy_probe_shared(struct phy_device * phydev)1389 static int mt7988_phy_probe_shared(struct phy_device *phydev)
1390 {
1391 struct device_node *np = dev_of_node(&phydev->mdio.bus->dev);
1392 struct mtk_socphy_shared *shared = phydev->shared->priv;
1393 struct regmap *regmap;
1394 u32 reg;
1395 int ret;
1396
1397 /* The LED0 of the 4 PHYs in MT7988 are wired to SoC pins LED_A, LED_B,
1398 * LED_C and LED_D respectively. At the same time those pins are used to
1399 * bootstrap configuration of the reference clock source (LED_A),
1400 * DRAM DDRx16b x2/x1 (LED_B) and boot device (LED_C, LED_D).
1401 * In practise this is done using a LED and a resistor pulling the pin
1402 * either to GND or to VIO.
1403 * The detected value at boot time is accessible at run-time using the
1404 * TPBANK0 register located in the gpio base of the pinctrl, in order
1405 * to read it here it needs to be referenced by a phandle called
1406 * 'mediatek,pio' in the MDIO bus hosting the PHY.
1407 * The 4 bits in TPBANK0 are kept as package shared data and are used to
1408 * set LED polarity for each of the LED0.
1409 */
1410 regmap = syscon_regmap_lookup_by_phandle(np, "mediatek,pio");
1411 if (IS_ERR(regmap))
1412 return PTR_ERR(regmap);
1413
1414 ret = regmap_read(regmap, RG_GPIO_MISC_TPBANK0, ®);
1415 if (ret)
1416 return ret;
1417
1418 shared->boottrap = FIELD_GET(RG_GPIO_MISC_TPBANK0_BOOTMODE, reg);
1419
1420 return 0;
1421 }
1422
mt798x_phy_leds_state_init(struct phy_device * phydev)1423 static void mt798x_phy_leds_state_init(struct phy_device *phydev)
1424 {
1425 int i;
1426
1427 for (i = 0; i < 2; ++i)
1428 mt798x_phy_led_hw_control_get(phydev, i, NULL);
1429 }
1430
mt7988_phy_probe(struct phy_device * phydev)1431 static int mt7988_phy_probe(struct phy_device *phydev)
1432 {
1433 struct mtk_socphy_shared *shared;
1434 struct mtk_socphy_priv *priv;
1435 int err;
1436
1437 if (phydev->mdio.addr > 3)
1438 return -EINVAL;
1439
1440 err = devm_phy_package_join(&phydev->mdio.dev, phydev, 0,
1441 sizeof(struct mtk_socphy_shared));
1442 if (err)
1443 return err;
1444
1445 if (phy_package_probe_once(phydev)) {
1446 err = mt7988_phy_probe_shared(phydev);
1447 if (err)
1448 return err;
1449 }
1450
1451 shared = phydev->shared->priv;
1452 priv = &shared->priv[phydev->mdio.addr];
1453
1454 phydev->priv = priv;
1455
1456 mt798x_phy_leds_state_init(phydev);
1457
1458 err = mt7988_phy_fix_leds_polarities(phydev);
1459 if (err)
1460 return err;
1461
1462 return mt798x_phy_calibration(phydev);
1463 }
1464
mt7981_phy_probe(struct phy_device * phydev)1465 static int mt7981_phy_probe(struct phy_device *phydev)
1466 {
1467 struct mtk_socphy_priv *priv;
1468
1469 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(struct mtk_socphy_priv),
1470 GFP_KERNEL);
1471 if (!priv)
1472 return -ENOMEM;
1473
1474 phydev->priv = priv;
1475
1476 mt798x_phy_leds_state_init(phydev);
1477
1478 return mt798x_phy_calibration(phydev);
1479 }
1480
1481 static struct phy_driver mtk_socphy_driver[] = {
1482 {
1483 PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7981),
1484 .name = "MediaTek MT7981 PHY",
1485 .config_init = mt798x_phy_config_init,
1486 .config_intr = genphy_no_config_intr,
1487 .handle_interrupt = genphy_handle_interrupt_no_ack,
1488 .probe = mt7981_phy_probe,
1489 .suspend = genphy_suspend,
1490 .resume = genphy_resume,
1491 .read_page = mtk_socphy_read_page,
1492 .write_page = mtk_socphy_write_page,
1493 .led_blink_set = mt798x_phy_led_blink_set,
1494 .led_brightness_set = mt798x_phy_led_brightness_set,
1495 .led_hw_is_supported = mt798x_phy_led_hw_is_supported,
1496 .led_hw_control_set = mt798x_phy_led_hw_control_set,
1497 .led_hw_control_get = mt798x_phy_led_hw_control_get,
1498 },
1499 {
1500 PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7988),
1501 .name = "MediaTek MT7988 PHY",
1502 .config_init = mt798x_phy_config_init,
1503 .config_intr = genphy_no_config_intr,
1504 .handle_interrupt = genphy_handle_interrupt_no_ack,
1505 .probe = mt7988_phy_probe,
1506 .suspend = genphy_suspend,
1507 .resume = genphy_resume,
1508 .read_page = mtk_socphy_read_page,
1509 .write_page = mtk_socphy_write_page,
1510 .led_blink_set = mt798x_phy_led_blink_set,
1511 .led_brightness_set = mt798x_phy_led_brightness_set,
1512 .led_hw_is_supported = mt798x_phy_led_hw_is_supported,
1513 .led_hw_control_set = mt798x_phy_led_hw_control_set,
1514 .led_hw_control_get = mt798x_phy_led_hw_control_get,
1515 },
1516 };
1517
1518 module_phy_driver(mtk_socphy_driver);
1519
1520 static struct mdio_device_id __maybe_unused mtk_socphy_tbl[] = {
1521 { PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7981) },
1522 { PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7988) },
1523 { }
1524 };
1525
1526 MODULE_DESCRIPTION("MediaTek SoC Gigabit Ethernet PHY driver");
1527 MODULE_AUTHOR("Daniel Golle <daniel@makrotopia.org>");
1528 MODULE_AUTHOR("SkyLake Huang <SkyLake.Huang@mediatek.com>");
1529 MODULE_LICENSE("GPL");
1530
1531 MODULE_DEVICE_TABLE(mdio, mtk_socphy_tbl);
1532