1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Analog Devices ADF7242 Low-Power IEEE 802.15.4 Transceiver
4 *
5 * Copyright 2009-2017 Analog Devices Inc.
6 *
7 * http://www.analog.com/ADF7242
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/delay.h>
14 #include <linux/mutex.h>
15 #include <linux/workqueue.h>
16 #include <linux/spinlock.h>
17 #include <linux/firmware.h>
18 #include <linux/spi/spi.h>
19 #include <linux/skbuff.h>
20 #include <linux/of.h>
21 #include <linux/irq.h>
22 #include <linux/debugfs.h>
23 #include <linux/bitops.h>
24 #include <linux/ieee802154.h>
25 #include <net/mac802154.h>
26 #include <net/cfg802154.h>
27
28 #define FIRMWARE "adf7242_firmware.bin"
29 #define MAX_POLL_LOOPS 200
30
31 /* All Registers */
32
33 #define REG_EXT_CTRL 0x100 /* RW External LNA/PA and internal PA control */
34 #define REG_TX_FSK_TEST 0x101 /* RW TX FSK test mode configuration */
35 #define REG_CCA1 0x105 /* RW RSSI threshold for CCA */
36 #define REG_CCA2 0x106 /* RW CCA mode configuration */
37 #define REG_BUFFERCFG 0x107 /* RW RX_BUFFER overwrite control */
38 #define REG_PKT_CFG 0x108 /* RW FCS evaluation configuration */
39 #define REG_DELAYCFG0 0x109 /* RW RC_RX command to SFD or sync word delay */
40 #define REG_DELAYCFG1 0x10A /* RW RC_TX command to TX state */
41 #define REG_DELAYCFG2 0x10B /* RW Mac delay extension */
42 #define REG_SYNC_WORD0 0x10C /* RW sync word bits [7:0] of [23:0] */
43 #define REG_SYNC_WORD1 0x10D /* RW sync word bits [15:8] of [23:0] */
44 #define REG_SYNC_WORD2 0x10E /* RW sync word bits [23:16] of [23:0] */
45 #define REG_SYNC_CONFIG 0x10F /* RW sync word configuration */
46 #define REG_RC_CFG 0x13E /* RW RX / TX packet configuration */
47 #define REG_RC_VAR44 0x13F /* RW RESERVED */
48 #define REG_CH_FREQ0 0x300 /* RW Channel Frequency Settings - Low */
49 #define REG_CH_FREQ1 0x301 /* RW Channel Frequency Settings - Middle */
50 #define REG_CH_FREQ2 0x302 /* RW Channel Frequency Settings - High */
51 #define REG_TX_FD 0x304 /* RW TX Frequency Deviation Register */
52 #define REG_DM_CFG0 0x305 /* RW RX Discriminator BW Register */
53 #define REG_TX_M 0x306 /* RW TX Mode Register */
54 #define REG_RX_M 0x307 /* RW RX Mode Register */
55 #define REG_RRB 0x30C /* R RSSI Readback Register */
56 #define REG_LRB 0x30D /* R Link Quality Readback Register */
57 #define REG_DR0 0x30E /* RW bits [15:8] of [15:0] data rate setting */
58 #define REG_DR1 0x30F /* RW bits [7:0] of [15:0] data rate setting */
59 #define REG_PRAMPG 0x313 /* RW RESERVED */
60 #define REG_TXPB 0x314 /* RW TX Packet Storage Base Address */
61 #define REG_RXPB 0x315 /* RW RX Packet Storage Base Address */
62 #define REG_TMR_CFG0 0x316 /* RW Wake up Timer Conf Register - High */
63 #define REG_TMR_CFG1 0x317 /* RW Wake up Timer Conf Register - Low */
64 #define REG_TMR_RLD0 0x318 /* RW Wake up Timer Value Register - High */
65 #define REG_TMR_RLD1 0x319 /* RW Wake up Timer Value Register - Low */
66 #define REG_TMR_CTRL 0x31A /* RW Wake up Timer Timeout flag */
67 #define REG_PD_AUX 0x31E /* RW Battmon enable */
68 #define REG_GP_CFG 0x32C /* RW GPIO Configuration */
69 #define REG_GP_OUT 0x32D /* RW GPIO Configuration */
70 #define REG_GP_IN 0x32E /* R GPIO Configuration */
71 #define REG_SYNT 0x335 /* RW bandwidth calibration timers */
72 #define REG_CAL_CFG 0x33D /* RW Calibration Settings */
73 #define REG_PA_BIAS 0x36E /* RW PA BIAS */
74 #define REG_SYNT_CAL 0x371 /* RW Oscillator and Doubler Configuration */
75 #define REG_IIRF_CFG 0x389 /* RW BB Filter Decimation Rate */
76 #define REG_CDR_CFG 0x38A /* RW CDR kVCO */
77 #define REG_DM_CFG1 0x38B /* RW Postdemodulator Filter */
78 #define REG_AGCSTAT 0x38E /* R RXBB Ref Osc Calibration Engine Readback */
79 #define REG_RXCAL0 0x395 /* RW RX BB filter tuning, LSB */
80 #define REG_RXCAL1 0x396 /* RW RX BB filter tuning, MSB */
81 #define REG_RXFE_CFG 0x39B /* RW RXBB Ref Osc & RXFE Calibration */
82 #define REG_PA_RR 0x3A7 /* RW Set PA ramp rate */
83 #define REG_PA_CFG 0x3A8 /* RW PA enable */
84 #define REG_EXTPA_CFG 0x3A9 /* RW External PA BIAS DAC */
85 #define REG_EXTPA_MSC 0x3AA /* RW PA Bias Mode */
86 #define REG_ADC_RBK 0x3AE /* R Readback temp */
87 #define REG_AGC_CFG1 0x3B2 /* RW GC Parameters */
88 #define REG_AGC_MAX 0x3B4 /* RW Slew rate */
89 #define REG_AGC_CFG2 0x3B6 /* RW RSSI Parameters */
90 #define REG_AGC_CFG3 0x3B7 /* RW RSSI Parameters */
91 #define REG_AGC_CFG4 0x3B8 /* RW RSSI Parameters */
92 #define REG_AGC_CFG5 0x3B9 /* RW RSSI & NDEC Parameters */
93 #define REG_AGC_CFG6 0x3BA /* RW NDEC Parameters */
94 #define REG_OCL_CFG1 0x3C4 /* RW OCL System Parameters */
95 #define REG_IRQ1_EN0 0x3C7 /* RW Interrupt Mask set bits for IRQ1 */
96 #define REG_IRQ1_EN1 0x3C8 /* RW Interrupt Mask set bits for IRQ1 */
97 #define REG_IRQ2_EN0 0x3C9 /* RW Interrupt Mask set bits for IRQ2 */
98 #define REG_IRQ2_EN1 0x3CA /* RW Interrupt Mask set bits for IRQ2 */
99 #define REG_IRQ1_SRC0 0x3CB /* RW Interrupt Source bits for IRQ */
100 #define REG_IRQ1_SRC1 0x3CC /* RW Interrupt Source bits for IRQ */
101 #define REG_OCL_BW0 0x3D2 /* RW OCL System Parameters */
102 #define REG_OCL_BW1 0x3D3 /* RW OCL System Parameters */
103 #define REG_OCL_BW2 0x3D4 /* RW OCL System Parameters */
104 #define REG_OCL_BW3 0x3D5 /* RW OCL System Parameters */
105 #define REG_OCL_BW4 0x3D6 /* RW OCL System Parameters */
106 #define REG_OCL_BWS 0x3D7 /* RW OCL System Parameters */
107 #define REG_OCL_CFG13 0x3E0 /* RW OCL System Parameters */
108 #define REG_GP_DRV 0x3E3 /* RW I/O pads Configuration and bg trim */
109 #define REG_BM_CFG 0x3E6 /* RW Batt. Monitor Threshold Voltage setting */
110 #define REG_SFD_15_4 0x3F4 /* RW Option to set non standard SFD */
111 #define REG_AFC_CFG 0x3F7 /* RW AFC mode and polarity */
112 #define REG_AFC_KI_KP 0x3F8 /* RW AFC ki and kp */
113 #define REG_AFC_RANGE 0x3F9 /* RW AFC range */
114 #define REG_AFC_READ 0x3FA /* RW Readback frequency error */
115
116 /* REG_EXTPA_MSC */
117 #define PA_PWR(x) (((x) & 0xF) << 4)
118 #define EXTPA_BIAS_SRC BIT(3)
119 #define EXTPA_BIAS_MODE(x) (((x) & 0x7) << 0)
120
121 /* REG_PA_CFG */
122 #define PA_BRIDGE_DBIAS(x) (((x) & 0x1F) << 0)
123 #define PA_DBIAS_HIGH_POWER 21
124 #define PA_DBIAS_LOW_POWER 13
125
126 /* REG_PA_BIAS */
127 #define PA_BIAS_CTRL(x) (((x) & 0x1F) << 1)
128 #define REG_PA_BIAS_DFL BIT(0)
129 #define PA_BIAS_HIGH_POWER 63
130 #define PA_BIAS_LOW_POWER 55
131
132 #define REG_PAN_ID0 0x112
133 #define REG_PAN_ID1 0x113
134 #define REG_SHORT_ADDR_0 0x114
135 #define REG_SHORT_ADDR_1 0x115
136 #define REG_IEEE_ADDR_0 0x116
137 #define REG_IEEE_ADDR_1 0x117
138 #define REG_IEEE_ADDR_2 0x118
139 #define REG_IEEE_ADDR_3 0x119
140 #define REG_IEEE_ADDR_4 0x11A
141 #define REG_IEEE_ADDR_5 0x11B
142 #define REG_IEEE_ADDR_6 0x11C
143 #define REG_IEEE_ADDR_7 0x11D
144 #define REG_FFILT_CFG 0x11E
145 #define REG_AUTO_CFG 0x11F
146 #define REG_AUTO_TX1 0x120
147 #define REG_AUTO_TX2 0x121
148 #define REG_AUTO_STATUS 0x122
149
150 /* REG_FFILT_CFG */
151 #define ACCEPT_BEACON_FRAMES BIT(0)
152 #define ACCEPT_DATA_FRAMES BIT(1)
153 #define ACCEPT_ACK_FRAMES BIT(2)
154 #define ACCEPT_MACCMD_FRAMES BIT(3)
155 #define ACCEPT_RESERVED_FRAMES BIT(4)
156 #define ACCEPT_ALL_ADDRESS BIT(5)
157
158 /* REG_AUTO_CFG */
159 #define AUTO_ACK_FRAMEPEND BIT(0)
160 #define IS_PANCOORD BIT(1)
161 #define RX_AUTO_ACK_EN BIT(3)
162 #define CSMA_CA_RX_TURNAROUND BIT(4)
163
164 /* REG_AUTO_TX1 */
165 #define MAX_FRAME_RETRIES(x) ((x) & 0xF)
166 #define MAX_CCA_RETRIES(x) (((x) & 0x7) << 4)
167
168 /* REG_AUTO_TX2 */
169 #define CSMA_MAX_BE(x) ((x) & 0xF)
170 #define CSMA_MIN_BE(x) (((x) & 0xF) << 4)
171
172 #define CMD_SPI_NOP 0xFF /* No operation. Use for dummy writes */
173 #define CMD_SPI_PKT_WR 0x10 /* Write telegram to the Packet RAM
174 * starting from the TX packet base address
175 * pointer tx_packet_base
176 */
177 #define CMD_SPI_PKT_RD 0x30 /* Read telegram from the Packet RAM
178 * starting from RX packet base address
179 * pointer rxpb.rx_packet_base
180 */
181 #define CMD_SPI_MEM_WR(x) (0x18 + (x >> 8)) /* Write data to MCR or
182 * Packet RAM sequentially
183 */
184 #define CMD_SPI_MEM_RD(x) (0x38 + (x >> 8)) /* Read data from MCR or
185 * Packet RAM sequentially
186 */
187 #define CMD_SPI_MEMR_WR(x) (0x08 + (x >> 8)) /* Write data to MCR or Packet
188 * RAM as random block
189 */
190 #define CMD_SPI_MEMR_RD(x) (0x28 + (x >> 8)) /* Read data from MCR or
191 * Packet RAM random block
192 */
193 #define CMD_SPI_PRAM_WR 0x1E /* Write data sequentially to current
194 * PRAM page selected
195 */
196 #define CMD_SPI_PRAM_RD 0x3E /* Read data sequentially from current
197 * PRAM page selected
198 */
199 #define CMD_RC_SLEEP 0xB1 /* Invoke transition of radio controller
200 * into SLEEP state
201 */
202 #define CMD_RC_IDLE 0xB2 /* Invoke transition of radio controller
203 * into IDLE state
204 */
205 #define CMD_RC_PHY_RDY 0xB3 /* Invoke transition of radio controller
206 * into PHY_RDY state
207 */
208 #define CMD_RC_RX 0xB4 /* Invoke transition of radio controller
209 * into RX state
210 */
211 #define CMD_RC_TX 0xB5 /* Invoke transition of radio controller
212 * into TX state
213 */
214 #define CMD_RC_MEAS 0xB6 /* Invoke transition of radio controller
215 * into MEAS state
216 */
217 #define CMD_RC_CCA 0xB7 /* Invoke Clear channel assessment */
218 #define CMD_RC_CSMACA 0xC1 /* initiates CSMA-CA channel access
219 * sequence and frame transmission
220 */
221 #define CMD_RC_PC_RESET 0xC7 /* Program counter reset */
222 #define CMD_RC_RESET 0xC8 /* Resets the ADF7242 and puts it in
223 * the sleep state
224 */
225 #define CMD_RC_PC_RESET_NO_WAIT (CMD_RC_PC_RESET | BIT(31))
226
227 /* STATUS */
228
229 #define STAT_SPI_READY BIT(7)
230 #define STAT_IRQ_STATUS BIT(6)
231 #define STAT_RC_READY BIT(5)
232 #define STAT_CCA_RESULT BIT(4)
233 #define RC_STATUS_IDLE 1
234 #define RC_STATUS_MEAS 2
235 #define RC_STATUS_PHY_RDY 3
236 #define RC_STATUS_RX 4
237 #define RC_STATUS_TX 5
238 #define RC_STATUS_MASK 0xF
239
240 /* AUTO_STATUS */
241
242 #define SUCCESS 0
243 #define SUCCESS_DATPEND 1
244 #define FAILURE_CSMACA 2
245 #define FAILURE_NOACK 3
246 #define AUTO_STATUS_MASK 0x3
247
248 #define PRAM_PAGESIZE 256
249
250 /* IRQ1 */
251
252 #define IRQ_CCA_COMPLETE BIT(0)
253 #define IRQ_SFD_RX BIT(1)
254 #define IRQ_SFD_TX BIT(2)
255 #define IRQ_RX_PKT_RCVD BIT(3)
256 #define IRQ_TX_PKT_SENT BIT(4)
257 #define IRQ_FRAME_VALID BIT(5)
258 #define IRQ_ADDRESS_VALID BIT(6)
259 #define IRQ_CSMA_CA BIT(7)
260
261 #define AUTO_TX_TURNAROUND BIT(3)
262 #define ADDON_EN BIT(4)
263
264 #define FLAG_XMIT 0
265 #define FLAG_START 1
266
267 #define ADF7242_REPORT_CSMA_CA_STAT 0 /* framework doesn't handle yet */
268
269 struct adf7242_local {
270 struct spi_device *spi;
271 struct completion tx_complete;
272 struct ieee802154_hw *hw;
273 struct mutex bmux; /* protect SPI messages */
274 struct spi_message stat_msg;
275 struct spi_transfer stat_xfer;
276 struct dentry *debugfs_root;
277 struct delayed_work work;
278 struct workqueue_struct *wqueue;
279 unsigned long flags;
280 int tx_stat;
281 bool promiscuous;
282 s8 rssi;
283 u8 max_frame_retries;
284 u8 max_cca_retries;
285 u8 max_be;
286 u8 min_be;
287
288 /* DMA (thus cache coherency maintenance) requires the
289 * transfer buffers to live in their own cache lines.
290 */
291
292 u8 buf[3] ____cacheline_aligned;
293 u8 buf_reg_tx[3];
294 u8 buf_read_tx[4];
295 u8 buf_read_rx[4];
296 u8 buf_stat_rx;
297 u8 buf_stat_tx;
298 u8 buf_cmd;
299 };
300
301 static int adf7242_soft_reset(struct adf7242_local *lp, int line);
302
adf7242_status(struct adf7242_local * lp,u8 * stat)303 static int adf7242_status(struct adf7242_local *lp, u8 *stat)
304 {
305 int status;
306
307 mutex_lock(&lp->bmux);
308 status = spi_sync(lp->spi, &lp->stat_msg);
309 *stat = lp->buf_stat_rx;
310 mutex_unlock(&lp->bmux);
311
312 return status;
313 }
314
adf7242_wait_status(struct adf7242_local * lp,unsigned int status,unsigned int mask,int line)315 static int adf7242_wait_status(struct adf7242_local *lp, unsigned int status,
316 unsigned int mask, int line)
317 {
318 int cnt = 0, ret = 0;
319 u8 stat;
320
321 do {
322 adf7242_status(lp, &stat);
323 cnt++;
324 } while (((stat & mask) != status) && (cnt < MAX_POLL_LOOPS));
325
326 if (cnt >= MAX_POLL_LOOPS) {
327 ret = -ETIMEDOUT;
328
329 if (!(stat & STAT_RC_READY)) {
330 adf7242_soft_reset(lp, line);
331 adf7242_status(lp, &stat);
332
333 if ((stat & mask) == status)
334 ret = 0;
335 }
336
337 if (ret < 0)
338 dev_warn(&lp->spi->dev,
339 "%s:line %d Timeout status 0x%x (%d)\n",
340 __func__, line, stat, cnt);
341 }
342
343 dev_vdbg(&lp->spi->dev, "%s : loops=%d line %d\n", __func__, cnt, line);
344
345 return ret;
346 }
347
adf7242_wait_rc_ready(struct adf7242_local * lp,int line)348 static int adf7242_wait_rc_ready(struct adf7242_local *lp, int line)
349 {
350 return adf7242_wait_status(lp, STAT_RC_READY | STAT_SPI_READY,
351 STAT_RC_READY | STAT_SPI_READY, line);
352 }
353
adf7242_wait_spi_ready(struct adf7242_local * lp,int line)354 static int adf7242_wait_spi_ready(struct adf7242_local *lp, int line)
355 {
356 return adf7242_wait_status(lp, STAT_SPI_READY,
357 STAT_SPI_READY, line);
358 }
359
adf7242_write_fbuf(struct adf7242_local * lp,u8 * data,u8 len)360 static int adf7242_write_fbuf(struct adf7242_local *lp, u8 *data, u8 len)
361 {
362 u8 *buf = lp->buf;
363 int status;
364 struct spi_message msg;
365 struct spi_transfer xfer_head = {
366 .len = 2,
367 .tx_buf = buf,
368
369 };
370 struct spi_transfer xfer_buf = {
371 .len = len,
372 .tx_buf = data,
373 };
374
375 spi_message_init(&msg);
376 spi_message_add_tail(&xfer_head, &msg);
377 spi_message_add_tail(&xfer_buf, &msg);
378
379 adf7242_wait_spi_ready(lp, __LINE__);
380
381 mutex_lock(&lp->bmux);
382 buf[0] = CMD_SPI_PKT_WR;
383 buf[1] = len + 2;
384
385 status = spi_sync(lp->spi, &msg);
386 mutex_unlock(&lp->bmux);
387
388 return status;
389 }
390
adf7242_read_fbuf(struct adf7242_local * lp,u8 * data,size_t len,bool packet_read)391 static int adf7242_read_fbuf(struct adf7242_local *lp,
392 u8 *data, size_t len, bool packet_read)
393 {
394 u8 *buf = lp->buf;
395 int status;
396 struct spi_message msg;
397 struct spi_transfer xfer_head = {
398 .len = 3,
399 .tx_buf = buf,
400 .rx_buf = buf,
401 };
402 struct spi_transfer xfer_buf = {
403 .len = len,
404 .rx_buf = data,
405 };
406
407 spi_message_init(&msg);
408 spi_message_add_tail(&xfer_head, &msg);
409 spi_message_add_tail(&xfer_buf, &msg);
410
411 adf7242_wait_spi_ready(lp, __LINE__);
412
413 mutex_lock(&lp->bmux);
414 if (packet_read) {
415 buf[0] = CMD_SPI_PKT_RD;
416 buf[1] = CMD_SPI_NOP;
417 buf[2] = 0; /* PHR */
418 } else {
419 buf[0] = CMD_SPI_PRAM_RD;
420 buf[1] = 0;
421 buf[2] = CMD_SPI_NOP;
422 }
423
424 status = spi_sync(lp->spi, &msg);
425
426 mutex_unlock(&lp->bmux);
427
428 return status;
429 }
430
adf7242_read_reg(struct adf7242_local * lp,u16 addr,u8 * data)431 static int adf7242_read_reg(struct adf7242_local *lp, u16 addr, u8 *data)
432 {
433 int status;
434 struct spi_message msg;
435
436 struct spi_transfer xfer = {
437 .len = 4,
438 .tx_buf = lp->buf_read_tx,
439 .rx_buf = lp->buf_read_rx,
440 };
441
442 adf7242_wait_spi_ready(lp, __LINE__);
443
444 mutex_lock(&lp->bmux);
445 lp->buf_read_tx[0] = CMD_SPI_MEM_RD(addr);
446 lp->buf_read_tx[1] = addr;
447 lp->buf_read_tx[2] = CMD_SPI_NOP;
448 lp->buf_read_tx[3] = CMD_SPI_NOP;
449
450 spi_message_init(&msg);
451 spi_message_add_tail(&xfer, &msg);
452
453 status = spi_sync(lp->spi, &msg);
454 if (msg.status)
455 status = msg.status;
456
457 if (!status)
458 *data = lp->buf_read_rx[3];
459
460 mutex_unlock(&lp->bmux);
461
462 dev_vdbg(&lp->spi->dev, "%s : REG 0x%X, VAL 0x%X\n", __func__,
463 addr, *data);
464
465 return status;
466 }
467
adf7242_write_reg(struct adf7242_local * lp,u16 addr,u8 data)468 static int adf7242_write_reg(struct adf7242_local *lp, u16 addr, u8 data)
469 {
470 int status;
471
472 adf7242_wait_spi_ready(lp, __LINE__);
473
474 mutex_lock(&lp->bmux);
475 lp->buf_reg_tx[0] = CMD_SPI_MEM_WR(addr);
476 lp->buf_reg_tx[1] = addr;
477 lp->buf_reg_tx[2] = data;
478 status = spi_write(lp->spi, lp->buf_reg_tx, 3);
479 mutex_unlock(&lp->bmux);
480
481 dev_vdbg(&lp->spi->dev, "%s : REG 0x%X, VAL 0x%X\n",
482 __func__, addr, data);
483
484 return status;
485 }
486
adf7242_cmd(struct adf7242_local * lp,unsigned int cmd)487 static int adf7242_cmd(struct adf7242_local *lp, unsigned int cmd)
488 {
489 int status;
490
491 dev_vdbg(&lp->spi->dev, "%s : CMD=0x%X\n", __func__, cmd);
492
493 if (cmd != CMD_RC_PC_RESET_NO_WAIT)
494 adf7242_wait_rc_ready(lp, __LINE__);
495
496 mutex_lock(&lp->bmux);
497 lp->buf_cmd = cmd;
498 status = spi_write(lp->spi, &lp->buf_cmd, 1);
499 mutex_unlock(&lp->bmux);
500
501 return status;
502 }
503
adf7242_upload_firmware(struct adf7242_local * lp,u8 * data,u16 len)504 static int adf7242_upload_firmware(struct adf7242_local *lp, u8 *data, u16 len)
505 {
506 struct spi_message msg;
507 struct spi_transfer xfer_buf = { };
508 int status, i, page = 0;
509 u8 *buf = lp->buf;
510
511 struct spi_transfer xfer_head = {
512 .len = 2,
513 .tx_buf = buf,
514 };
515
516 buf[0] = CMD_SPI_PRAM_WR;
517 buf[1] = 0;
518
519 spi_message_init(&msg);
520 spi_message_add_tail(&xfer_head, &msg);
521 spi_message_add_tail(&xfer_buf, &msg);
522
523 for (i = len; i >= 0; i -= PRAM_PAGESIZE) {
524 adf7242_write_reg(lp, REG_PRAMPG, page);
525
526 xfer_buf.len = (i >= PRAM_PAGESIZE) ? PRAM_PAGESIZE : i;
527 xfer_buf.tx_buf = &data[page * PRAM_PAGESIZE];
528
529 mutex_lock(&lp->bmux);
530 status = spi_sync(lp->spi, &msg);
531 mutex_unlock(&lp->bmux);
532 page++;
533 }
534
535 return status;
536 }
537
adf7242_verify_firmware(struct adf7242_local * lp,const u8 * data,size_t len)538 static int adf7242_verify_firmware(struct adf7242_local *lp,
539 const u8 *data, size_t len)
540 {
541 #ifdef DEBUG
542 int i, j;
543 unsigned int page;
544 u8 *buf = kmalloc(PRAM_PAGESIZE, GFP_KERNEL);
545
546 if (!buf)
547 return -ENOMEM;
548
549 for (page = 0, i = len; i >= 0; i -= PRAM_PAGESIZE, page++) {
550 size_t nb = (i >= PRAM_PAGESIZE) ? PRAM_PAGESIZE : i;
551
552 adf7242_write_reg(lp, REG_PRAMPG, page);
553 adf7242_read_fbuf(lp, buf, nb, false);
554
555 for (j = 0; j < nb; j++) {
556 if (buf[j] != data[page * PRAM_PAGESIZE + j]) {
557 kfree(buf);
558 return -EIO;
559 }
560 }
561 }
562 kfree(buf);
563 #endif
564 return 0;
565 }
566
adf7242_clear_irqstat(struct adf7242_local * lp)567 static void adf7242_clear_irqstat(struct adf7242_local *lp)
568 {
569 adf7242_write_reg(lp, REG_IRQ1_SRC1, IRQ_CCA_COMPLETE | IRQ_SFD_RX |
570 IRQ_SFD_TX | IRQ_RX_PKT_RCVD | IRQ_TX_PKT_SENT |
571 IRQ_FRAME_VALID | IRQ_ADDRESS_VALID | IRQ_CSMA_CA);
572 }
573
adf7242_cmd_rx(struct adf7242_local * lp)574 static int adf7242_cmd_rx(struct adf7242_local *lp)
575 {
576 /* Wait until the ACK is sent */
577 adf7242_wait_status(lp, RC_STATUS_PHY_RDY, RC_STATUS_MASK, __LINE__);
578 adf7242_clear_irqstat(lp);
579 mod_delayed_work(lp->wqueue, &lp->work, msecs_to_jiffies(400));
580
581 return adf7242_cmd(lp, CMD_RC_RX);
582 }
583
adf7242_rx_cal_work(struct work_struct * work)584 static void adf7242_rx_cal_work(struct work_struct *work)
585 {
586 struct adf7242_local *lp =
587 container_of(work, struct adf7242_local, work.work);
588
589 /* Reissuing RC_RX every 400ms - to adjust for offset
590 * drift in receiver (datasheet page 61, OCL section)
591 */
592
593 if (!test_bit(FLAG_XMIT, &lp->flags)) {
594 adf7242_cmd(lp, CMD_RC_PHY_RDY);
595 adf7242_cmd_rx(lp);
596 }
597 }
598
adf7242_set_txpower(struct ieee802154_hw * hw,int mbm)599 static int adf7242_set_txpower(struct ieee802154_hw *hw, int mbm)
600 {
601 struct adf7242_local *lp = hw->priv;
602 u8 pwr, bias_ctrl, dbias, tmp;
603 int db = mbm / 100;
604
605 dev_vdbg(&lp->spi->dev, "%s : Power %d dB\n", __func__, db);
606
607 if (db > 5 || db < -26)
608 return -EINVAL;
609
610 db = DIV_ROUND_CLOSEST(db + 29, 2);
611
612 if (db > 15) {
613 dbias = PA_DBIAS_HIGH_POWER;
614 bias_ctrl = PA_BIAS_HIGH_POWER;
615 } else {
616 dbias = PA_DBIAS_LOW_POWER;
617 bias_ctrl = PA_BIAS_LOW_POWER;
618 }
619
620 pwr = clamp_t(u8, db, 3, 15);
621
622 adf7242_read_reg(lp, REG_PA_CFG, &tmp);
623 tmp &= ~PA_BRIDGE_DBIAS(~0);
624 tmp |= PA_BRIDGE_DBIAS(dbias);
625 adf7242_write_reg(lp, REG_PA_CFG, tmp);
626
627 adf7242_read_reg(lp, REG_PA_BIAS, &tmp);
628 tmp &= ~PA_BIAS_CTRL(~0);
629 tmp |= PA_BIAS_CTRL(bias_ctrl);
630 adf7242_write_reg(lp, REG_PA_BIAS, tmp);
631
632 adf7242_read_reg(lp, REG_EXTPA_MSC, &tmp);
633 tmp &= ~PA_PWR(~0);
634 tmp |= PA_PWR(pwr);
635
636 return adf7242_write_reg(lp, REG_EXTPA_MSC, tmp);
637 }
638
adf7242_set_csma_params(struct ieee802154_hw * hw,u8 min_be,u8 max_be,u8 retries)639 static int adf7242_set_csma_params(struct ieee802154_hw *hw, u8 min_be,
640 u8 max_be, u8 retries)
641 {
642 struct adf7242_local *lp = hw->priv;
643 int ret;
644
645 dev_vdbg(&lp->spi->dev, "%s : min_be=%d max_be=%d retries=%d\n",
646 __func__, min_be, max_be, retries);
647
648 if (min_be > max_be || max_be > 8 || retries > 5)
649 return -EINVAL;
650
651 ret = adf7242_write_reg(lp, REG_AUTO_TX1,
652 MAX_FRAME_RETRIES(lp->max_frame_retries) |
653 MAX_CCA_RETRIES(retries));
654 if (ret)
655 return ret;
656
657 lp->max_cca_retries = retries;
658 lp->max_be = max_be;
659 lp->min_be = min_be;
660
661 return adf7242_write_reg(lp, REG_AUTO_TX2, CSMA_MAX_BE(max_be) |
662 CSMA_MIN_BE(min_be));
663 }
664
adf7242_set_frame_retries(struct ieee802154_hw * hw,s8 retries)665 static int adf7242_set_frame_retries(struct ieee802154_hw *hw, s8 retries)
666 {
667 struct adf7242_local *lp = hw->priv;
668 int ret = 0;
669
670 dev_vdbg(&lp->spi->dev, "%s : Retries = %d\n", __func__, retries);
671
672 if (retries < -1 || retries > 15)
673 return -EINVAL;
674
675 if (retries >= 0)
676 ret = adf7242_write_reg(lp, REG_AUTO_TX1,
677 MAX_FRAME_RETRIES(retries) |
678 MAX_CCA_RETRIES(lp->max_cca_retries));
679
680 lp->max_frame_retries = retries;
681
682 return ret;
683 }
684
adf7242_ed(struct ieee802154_hw * hw,u8 * level)685 static int adf7242_ed(struct ieee802154_hw *hw, u8 *level)
686 {
687 struct adf7242_local *lp = hw->priv;
688
689 *level = lp->rssi;
690
691 dev_vdbg(&lp->spi->dev, "%s :Exit level=%d\n",
692 __func__, *level);
693
694 return 0;
695 }
696
adf7242_start(struct ieee802154_hw * hw)697 static int adf7242_start(struct ieee802154_hw *hw)
698 {
699 struct adf7242_local *lp = hw->priv;
700
701 adf7242_cmd(lp, CMD_RC_PHY_RDY);
702 adf7242_clear_irqstat(lp);
703 enable_irq(lp->spi->irq);
704 set_bit(FLAG_START, &lp->flags);
705
706 return adf7242_cmd_rx(lp);
707 }
708
adf7242_stop(struct ieee802154_hw * hw)709 static void adf7242_stop(struct ieee802154_hw *hw)
710 {
711 struct adf7242_local *lp = hw->priv;
712
713 disable_irq(lp->spi->irq);
714 cancel_delayed_work_sync(&lp->work);
715 adf7242_cmd(lp, CMD_RC_IDLE);
716 clear_bit(FLAG_START, &lp->flags);
717 adf7242_clear_irqstat(lp);
718 }
719
adf7242_channel(struct ieee802154_hw * hw,u8 page,u8 channel)720 static int adf7242_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
721 {
722 struct adf7242_local *lp = hw->priv;
723 unsigned long freq;
724
725 dev_dbg(&lp->spi->dev, "%s :Channel=%d\n", __func__, channel);
726
727 might_sleep();
728
729 WARN_ON(page != 0);
730 WARN_ON(channel < 11);
731 WARN_ON(channel > 26);
732
733 freq = (2405 + 5 * (channel - 11)) * 100;
734 adf7242_cmd(lp, CMD_RC_PHY_RDY);
735
736 adf7242_write_reg(lp, REG_CH_FREQ0, freq);
737 adf7242_write_reg(lp, REG_CH_FREQ1, freq >> 8);
738 adf7242_write_reg(lp, REG_CH_FREQ2, freq >> 16);
739
740 if (test_bit(FLAG_START, &lp->flags))
741 return adf7242_cmd_rx(lp);
742 else
743 return adf7242_cmd(lp, CMD_RC_PHY_RDY);
744 }
745
adf7242_set_hw_addr_filt(struct ieee802154_hw * hw,struct ieee802154_hw_addr_filt * filt,unsigned long changed)746 static int adf7242_set_hw_addr_filt(struct ieee802154_hw *hw,
747 struct ieee802154_hw_addr_filt *filt,
748 unsigned long changed)
749 {
750 struct adf7242_local *lp = hw->priv;
751 u8 reg;
752
753 dev_dbg(&lp->spi->dev, "%s :Changed=0x%lX\n", __func__, changed);
754
755 might_sleep();
756
757 if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
758 u8 addr[8], i;
759
760 memcpy(addr, &filt->ieee_addr, 8);
761
762 for (i = 0; i < 8; i++)
763 adf7242_write_reg(lp, REG_IEEE_ADDR_0 + i, addr[i]);
764 }
765
766 if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
767 u16 saddr = le16_to_cpu(filt->short_addr);
768
769 adf7242_write_reg(lp, REG_SHORT_ADDR_0, saddr);
770 adf7242_write_reg(lp, REG_SHORT_ADDR_1, saddr >> 8);
771 }
772
773 if (changed & IEEE802154_AFILT_PANID_CHANGED) {
774 u16 pan_id = le16_to_cpu(filt->pan_id);
775
776 adf7242_write_reg(lp, REG_PAN_ID0, pan_id);
777 adf7242_write_reg(lp, REG_PAN_ID1, pan_id >> 8);
778 }
779
780 if (changed & IEEE802154_AFILT_PANC_CHANGED) {
781 adf7242_read_reg(lp, REG_AUTO_CFG, ®);
782 if (filt->pan_coord)
783 reg |= IS_PANCOORD;
784 else
785 reg &= ~IS_PANCOORD;
786 adf7242_write_reg(lp, REG_AUTO_CFG, reg);
787 }
788
789 return 0;
790 }
791
adf7242_set_promiscuous_mode(struct ieee802154_hw * hw,bool on)792 static int adf7242_set_promiscuous_mode(struct ieee802154_hw *hw, bool on)
793 {
794 struct adf7242_local *lp = hw->priv;
795
796 dev_dbg(&lp->spi->dev, "%s : mode %d\n", __func__, on);
797
798 lp->promiscuous = on;
799
800 if (on) {
801 adf7242_write_reg(lp, REG_AUTO_CFG, 0);
802 return adf7242_write_reg(lp, REG_FFILT_CFG,
803 ACCEPT_BEACON_FRAMES |
804 ACCEPT_DATA_FRAMES |
805 ACCEPT_MACCMD_FRAMES |
806 ACCEPT_ALL_ADDRESS |
807 ACCEPT_ACK_FRAMES |
808 ACCEPT_RESERVED_FRAMES);
809 } else {
810 adf7242_write_reg(lp, REG_FFILT_CFG,
811 ACCEPT_BEACON_FRAMES |
812 ACCEPT_DATA_FRAMES |
813 ACCEPT_MACCMD_FRAMES |
814 ACCEPT_RESERVED_FRAMES);
815
816 return adf7242_write_reg(lp, REG_AUTO_CFG, RX_AUTO_ACK_EN);
817 }
818 }
819
adf7242_set_cca_ed_level(struct ieee802154_hw * hw,s32 mbm)820 static int adf7242_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
821 {
822 struct adf7242_local *lp = hw->priv;
823 s8 level = clamp_t(s8, mbm / 100, S8_MIN, S8_MAX);
824
825 dev_dbg(&lp->spi->dev, "%s : level %d\n", __func__, level);
826
827 return adf7242_write_reg(lp, REG_CCA1, level);
828 }
829
adf7242_xmit(struct ieee802154_hw * hw,struct sk_buff * skb)830 static int adf7242_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
831 {
832 struct adf7242_local *lp = hw->priv;
833 int ret;
834
835 /* ensure existing instances of the IRQ handler have completed */
836 disable_irq(lp->spi->irq);
837 set_bit(FLAG_XMIT, &lp->flags);
838 cancel_delayed_work_sync(&lp->work);
839 reinit_completion(&lp->tx_complete);
840 adf7242_cmd(lp, CMD_RC_PHY_RDY);
841 adf7242_clear_irqstat(lp);
842
843 ret = adf7242_write_fbuf(lp, skb->data, skb->len);
844 if (ret)
845 goto err;
846
847 ret = adf7242_cmd(lp, CMD_RC_CSMACA);
848 if (ret)
849 goto err;
850 enable_irq(lp->spi->irq);
851
852 ret = wait_for_completion_interruptible_timeout(&lp->tx_complete,
853 HZ / 10);
854 if (ret < 0)
855 goto err;
856 if (ret == 0) {
857 dev_dbg(&lp->spi->dev, "Timeout waiting for TX interrupt\n");
858 ret = -ETIMEDOUT;
859 goto err;
860 }
861
862 if (lp->tx_stat != SUCCESS) {
863 dev_dbg(&lp->spi->dev,
864 "Error xmit: Retry count exceeded Status=0x%x\n",
865 lp->tx_stat);
866 ret = -ECOMM;
867 } else {
868 ret = 0;
869 }
870
871 err:
872 clear_bit(FLAG_XMIT, &lp->flags);
873 adf7242_cmd_rx(lp);
874
875 return ret;
876 }
877
adf7242_rx(struct adf7242_local * lp)878 static int adf7242_rx(struct adf7242_local *lp)
879 {
880 struct sk_buff *skb;
881 size_t len;
882 int ret;
883 u8 lqi, len_u8, *data;
884
885 adf7242_read_reg(lp, 0, &len_u8);
886
887 len = len_u8;
888
889 if (!ieee802154_is_valid_psdu_len(len)) {
890 dev_dbg(&lp->spi->dev,
891 "corrupted frame received len %d\n", (int)len);
892 len = IEEE802154_MTU;
893 }
894
895 skb = dev_alloc_skb(len);
896 if (!skb) {
897 adf7242_cmd_rx(lp);
898 return -ENOMEM;
899 }
900
901 data = skb_put(skb, len);
902 ret = adf7242_read_fbuf(lp, data, len, true);
903 if (ret < 0) {
904 kfree_skb(skb);
905 adf7242_cmd_rx(lp);
906 return ret;
907 }
908
909 lqi = data[len - 2];
910 lp->rssi = data[len - 1];
911
912 ret = adf7242_cmd_rx(lp);
913
914 skb_trim(skb, len - 2); /* Don't put RSSI/LQI or CRC into the frame */
915
916 ieee802154_rx_irqsafe(lp->hw, skb, lqi);
917
918 dev_dbg(&lp->spi->dev, "%s: ret=%d len=%d lqi=%d rssi=%d\n",
919 __func__, ret, (int)len, (int)lqi, lp->rssi);
920
921 return ret;
922 }
923
924 static const struct ieee802154_ops adf7242_ops = {
925 .owner = THIS_MODULE,
926 .xmit_sync = adf7242_xmit,
927 .ed = adf7242_ed,
928 .set_channel = adf7242_channel,
929 .set_hw_addr_filt = adf7242_set_hw_addr_filt,
930 .start = adf7242_start,
931 .stop = adf7242_stop,
932 .set_csma_params = adf7242_set_csma_params,
933 .set_frame_retries = adf7242_set_frame_retries,
934 .set_txpower = adf7242_set_txpower,
935 .set_promiscuous_mode = adf7242_set_promiscuous_mode,
936 .set_cca_ed_level = adf7242_set_cca_ed_level,
937 };
938
adf7242_debug(struct adf7242_local * lp,u8 irq1)939 static void adf7242_debug(struct adf7242_local *lp, u8 irq1)
940 {
941 #ifdef DEBUG
942 u8 stat;
943
944 adf7242_status(lp, &stat);
945
946 dev_dbg(&lp->spi->dev, "%s IRQ1 = %X:\n%s%s%s%s%s%s%s%s\n",
947 __func__, irq1,
948 irq1 & IRQ_CCA_COMPLETE ? "IRQ_CCA_COMPLETE\n" : "",
949 irq1 & IRQ_SFD_RX ? "IRQ_SFD_RX\n" : "",
950 irq1 & IRQ_SFD_TX ? "IRQ_SFD_TX\n" : "",
951 irq1 & IRQ_RX_PKT_RCVD ? "IRQ_RX_PKT_RCVD\n" : "",
952 irq1 & IRQ_TX_PKT_SENT ? "IRQ_TX_PKT_SENT\n" : "",
953 irq1 & IRQ_CSMA_CA ? "IRQ_CSMA_CA\n" : "",
954 irq1 & IRQ_FRAME_VALID ? "IRQ_FRAME_VALID\n" : "",
955 irq1 & IRQ_ADDRESS_VALID ? "IRQ_ADDRESS_VALID\n" : "");
956
957 dev_dbg(&lp->spi->dev, "%s STATUS = %X:\n%s\n%s\n%s\n%s\n%s%s%s%s%s\n",
958 __func__, stat,
959 stat & STAT_SPI_READY ? "SPI_READY" : "SPI_BUSY",
960 stat & STAT_IRQ_STATUS ? "IRQ_PENDING" : "IRQ_CLEAR",
961 stat & STAT_RC_READY ? "RC_READY" : "RC_BUSY",
962 stat & STAT_CCA_RESULT ? "CHAN_IDLE" : "CHAN_BUSY",
963 (stat & 0xf) == RC_STATUS_IDLE ? "RC_STATUS_IDLE" : "",
964 (stat & 0xf) == RC_STATUS_MEAS ? "RC_STATUS_MEAS" : "",
965 (stat & 0xf) == RC_STATUS_PHY_RDY ? "RC_STATUS_PHY_RDY" : "",
966 (stat & 0xf) == RC_STATUS_RX ? "RC_STATUS_RX" : "",
967 (stat & 0xf) == RC_STATUS_TX ? "RC_STATUS_TX" : "");
968 #endif
969 }
970
adf7242_isr(int irq,void * data)971 static irqreturn_t adf7242_isr(int irq, void *data)
972 {
973 struct adf7242_local *lp = data;
974 unsigned int xmit;
975 u8 irq1;
976
977 mod_delayed_work(lp->wqueue, &lp->work, msecs_to_jiffies(400));
978 adf7242_read_reg(lp, REG_IRQ1_SRC1, &irq1);
979
980 if (!(irq1 & (IRQ_RX_PKT_RCVD | IRQ_CSMA_CA)))
981 dev_err(&lp->spi->dev, "%s :ERROR IRQ1 = 0x%X\n",
982 __func__, irq1);
983
984 adf7242_debug(lp, irq1);
985
986 xmit = test_bit(FLAG_XMIT, &lp->flags);
987
988 if (xmit && (irq1 & IRQ_CSMA_CA)) {
989 adf7242_wait_status(lp, RC_STATUS_PHY_RDY,
990 RC_STATUS_MASK, __LINE__);
991
992 if (ADF7242_REPORT_CSMA_CA_STAT) {
993 u8 astat;
994
995 adf7242_read_reg(lp, REG_AUTO_STATUS, &astat);
996 astat &= AUTO_STATUS_MASK;
997
998 dev_dbg(&lp->spi->dev, "AUTO_STATUS = %X:\n%s%s%s%s\n",
999 astat,
1000 astat == SUCCESS ? "SUCCESS" : "",
1001 astat ==
1002 SUCCESS_DATPEND ? "SUCCESS_DATPEND" : "",
1003 astat == FAILURE_CSMACA ? "FAILURE_CSMACA" : "",
1004 astat == FAILURE_NOACK ? "FAILURE_NOACK" : "");
1005
1006 /* save CSMA-CA completion status */
1007 lp->tx_stat = astat;
1008 } else {
1009 lp->tx_stat = SUCCESS;
1010 }
1011 complete(&lp->tx_complete);
1012 adf7242_clear_irqstat(lp);
1013 } else if (!xmit && (irq1 & IRQ_RX_PKT_RCVD) &&
1014 (irq1 & IRQ_FRAME_VALID)) {
1015 adf7242_rx(lp);
1016 } else if (!xmit && test_bit(FLAG_START, &lp->flags)) {
1017 /* Invalid packet received - drop it and restart */
1018 dev_dbg(&lp->spi->dev, "%s:%d : ERROR IRQ1 = 0x%X\n",
1019 __func__, __LINE__, irq1);
1020 adf7242_cmd(lp, CMD_RC_PHY_RDY);
1021 adf7242_cmd_rx(lp);
1022 } else {
1023 /* This can only be xmit without IRQ, likely a RX packet.
1024 * we get an TX IRQ shortly - do nothing or let the xmit
1025 * timeout handle this
1026 */
1027
1028 dev_dbg(&lp->spi->dev, "%s:%d : ERROR IRQ1 = 0x%X, xmit %d\n",
1029 __func__, __LINE__, irq1, xmit);
1030 adf7242_wait_status(lp, RC_STATUS_PHY_RDY,
1031 RC_STATUS_MASK, __LINE__);
1032 complete(&lp->tx_complete);
1033 adf7242_clear_irqstat(lp);
1034 }
1035
1036 return IRQ_HANDLED;
1037 }
1038
adf7242_soft_reset(struct adf7242_local * lp,int line)1039 static int adf7242_soft_reset(struct adf7242_local *lp, int line)
1040 {
1041 dev_warn(&lp->spi->dev, "%s (line %d)\n", __func__, line);
1042
1043 if (test_bit(FLAG_START, &lp->flags))
1044 disable_irq_nosync(lp->spi->irq);
1045
1046 adf7242_cmd(lp, CMD_RC_PC_RESET_NO_WAIT);
1047 usleep_range(200, 250);
1048 adf7242_write_reg(lp, REG_PKT_CFG, ADDON_EN | BIT(2));
1049 adf7242_cmd(lp, CMD_RC_PHY_RDY);
1050 adf7242_set_promiscuous_mode(lp->hw, lp->promiscuous);
1051 adf7242_set_csma_params(lp->hw, lp->min_be, lp->max_be,
1052 lp->max_cca_retries);
1053 adf7242_clear_irqstat(lp);
1054
1055 if (test_bit(FLAG_START, &lp->flags)) {
1056 enable_irq(lp->spi->irq);
1057 return adf7242_cmd(lp, CMD_RC_RX);
1058 }
1059
1060 return 0;
1061 }
1062
adf7242_hw_init(struct adf7242_local * lp)1063 static int adf7242_hw_init(struct adf7242_local *lp)
1064 {
1065 int ret;
1066 const struct firmware *fw;
1067
1068 adf7242_cmd(lp, CMD_RC_RESET);
1069 adf7242_cmd(lp, CMD_RC_IDLE);
1070
1071 /* get ADF7242 addon firmware
1072 * build this driver as module
1073 * and place under /lib/firmware/adf7242_firmware.bin
1074 * or compile firmware into the kernel.
1075 */
1076 ret = request_firmware(&fw, FIRMWARE, &lp->spi->dev);
1077 if (ret) {
1078 dev_err(&lp->spi->dev,
1079 "request_firmware() failed with %d\n", ret);
1080 return ret;
1081 }
1082
1083 ret = adf7242_upload_firmware(lp, (u8 *)fw->data, fw->size);
1084 if (ret) {
1085 dev_err(&lp->spi->dev,
1086 "upload firmware failed with %d\n", ret);
1087 release_firmware(fw);
1088 return ret;
1089 }
1090
1091 ret = adf7242_verify_firmware(lp, (u8 *)fw->data, fw->size);
1092 if (ret) {
1093 dev_err(&lp->spi->dev,
1094 "verify firmware failed with %d\n", ret);
1095 release_firmware(fw);
1096 return ret;
1097 }
1098
1099 adf7242_cmd(lp, CMD_RC_PC_RESET);
1100
1101 release_firmware(fw);
1102
1103 adf7242_write_reg(lp, REG_FFILT_CFG,
1104 ACCEPT_BEACON_FRAMES |
1105 ACCEPT_DATA_FRAMES |
1106 ACCEPT_MACCMD_FRAMES |
1107 ACCEPT_RESERVED_FRAMES);
1108
1109 adf7242_write_reg(lp, REG_AUTO_CFG, RX_AUTO_ACK_EN);
1110
1111 adf7242_write_reg(lp, REG_PKT_CFG, ADDON_EN | BIT(2));
1112
1113 adf7242_write_reg(lp, REG_EXTPA_MSC, 0xF1);
1114 adf7242_write_reg(lp, REG_RXFE_CFG, 0x1D);
1115
1116 adf7242_write_reg(lp, REG_IRQ1_EN0, 0);
1117 adf7242_write_reg(lp, REG_IRQ1_EN1, IRQ_RX_PKT_RCVD | IRQ_CSMA_CA);
1118
1119 adf7242_clear_irqstat(lp);
1120 adf7242_write_reg(lp, REG_IRQ1_SRC0, 0xFF);
1121
1122 adf7242_cmd(lp, CMD_RC_IDLE);
1123
1124 return 0;
1125 }
1126
adf7242_stats_show(struct seq_file * file,void * offset)1127 static int adf7242_stats_show(struct seq_file *file, void *offset)
1128 {
1129 struct adf7242_local *lp = spi_get_drvdata(file->private);
1130 u8 stat, irq1;
1131
1132 adf7242_status(lp, &stat);
1133 adf7242_read_reg(lp, REG_IRQ1_SRC1, &irq1);
1134
1135 seq_printf(file, "IRQ1 = %X:\n%s%s%s%s%s%s%s%s\n", irq1,
1136 irq1 & IRQ_CCA_COMPLETE ? "IRQ_CCA_COMPLETE\n" : "",
1137 irq1 & IRQ_SFD_RX ? "IRQ_SFD_RX\n" : "",
1138 irq1 & IRQ_SFD_TX ? "IRQ_SFD_TX\n" : "",
1139 irq1 & IRQ_RX_PKT_RCVD ? "IRQ_RX_PKT_RCVD\n" : "",
1140 irq1 & IRQ_TX_PKT_SENT ? "IRQ_TX_PKT_SENT\n" : "",
1141 irq1 & IRQ_CSMA_CA ? "IRQ_CSMA_CA\n" : "",
1142 irq1 & IRQ_FRAME_VALID ? "IRQ_FRAME_VALID\n" : "",
1143 irq1 & IRQ_ADDRESS_VALID ? "IRQ_ADDRESS_VALID\n" : "");
1144
1145 seq_printf(file, "STATUS = %X:\n%s\n%s\n%s\n%s\n%s%s%s%s%s\n", stat,
1146 stat & STAT_SPI_READY ? "SPI_READY" : "SPI_BUSY",
1147 stat & STAT_IRQ_STATUS ? "IRQ_PENDING" : "IRQ_CLEAR",
1148 stat & STAT_RC_READY ? "RC_READY" : "RC_BUSY",
1149 stat & STAT_CCA_RESULT ? "CHAN_IDLE" : "CHAN_BUSY",
1150 (stat & 0xf) == RC_STATUS_IDLE ? "RC_STATUS_IDLE" : "",
1151 (stat & 0xf) == RC_STATUS_MEAS ? "RC_STATUS_MEAS" : "",
1152 (stat & 0xf) == RC_STATUS_PHY_RDY ? "RC_STATUS_PHY_RDY" : "",
1153 (stat & 0xf) == RC_STATUS_RX ? "RC_STATUS_RX" : "",
1154 (stat & 0xf) == RC_STATUS_TX ? "RC_STATUS_TX" : "");
1155
1156 seq_printf(file, "RSSI = %d\n", lp->rssi);
1157
1158 return 0;
1159 }
1160
adf7242_debugfs_init(struct adf7242_local * lp)1161 static void adf7242_debugfs_init(struct adf7242_local *lp)
1162 {
1163 char debugfs_dir_name[DNAME_INLINE_LEN + 1] = "adf7242-";
1164
1165 strncat(debugfs_dir_name, dev_name(&lp->spi->dev), DNAME_INLINE_LEN);
1166
1167 lp->debugfs_root = debugfs_create_dir(debugfs_dir_name, NULL);
1168
1169 debugfs_create_devm_seqfile(&lp->spi->dev, "status", lp->debugfs_root,
1170 adf7242_stats_show);
1171 }
1172
1173 static const s32 adf7242_powers[] = {
1174 500, 400, 300, 200, 100, 0, -100, -200, -300, -400, -500, -600, -700,
1175 -800, -900, -1000, -1100, -1200, -1300, -1400, -1500, -1600, -1700,
1176 -1800, -1900, -2000, -2100, -2200, -2300, -2400, -2500, -2600,
1177 };
1178
1179 static const s32 adf7242_ed_levels[] = {
1180 -9000, -8900, -8800, -8700, -8600, -8500, -8400, -8300, -8200, -8100,
1181 -8000, -7900, -7800, -7700, -7600, -7500, -7400, -7300, -7200, -7100,
1182 -7000, -6900, -6800, -6700, -6600, -6500, -6400, -6300, -6200, -6100,
1183 -6000, -5900, -5800, -5700, -5600, -5500, -5400, -5300, -5200, -5100,
1184 -5000, -4900, -4800, -4700, -4600, -4500, -4400, -4300, -4200, -4100,
1185 -4000, -3900, -3800, -3700, -3600, -3500, -3400, -3200, -3100, -3000
1186 };
1187
adf7242_probe(struct spi_device * spi)1188 static int adf7242_probe(struct spi_device *spi)
1189 {
1190 struct ieee802154_hw *hw;
1191 struct adf7242_local *lp;
1192 int ret, irq_type;
1193
1194 if (!spi->irq) {
1195 dev_err(&spi->dev, "no IRQ specified\n");
1196 return -EINVAL;
1197 }
1198
1199 hw = ieee802154_alloc_hw(sizeof(*lp), &adf7242_ops);
1200 if (!hw)
1201 return -ENOMEM;
1202
1203 lp = hw->priv;
1204 lp->hw = hw;
1205 lp->spi = spi;
1206
1207 hw->priv = lp;
1208 hw->parent = &spi->dev;
1209 hw->extra_tx_headroom = 0;
1210
1211 /* We support only 2.4 Ghz */
1212 hw->phy->supported.channels[0] = 0x7FFF800;
1213
1214 hw->flags = IEEE802154_HW_OMIT_CKSUM |
1215 IEEE802154_HW_CSMA_PARAMS |
1216 IEEE802154_HW_FRAME_RETRIES | IEEE802154_HW_AFILT |
1217 IEEE802154_HW_PROMISCUOUS;
1218
1219 hw->phy->flags = WPAN_PHY_FLAG_TXPOWER |
1220 WPAN_PHY_FLAG_CCA_ED_LEVEL |
1221 WPAN_PHY_FLAG_CCA_MODE;
1222
1223 hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY);
1224
1225 hw->phy->supported.cca_ed_levels = adf7242_ed_levels;
1226 hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(adf7242_ed_levels);
1227
1228 hw->phy->cca.mode = NL802154_CCA_ENERGY;
1229
1230 hw->phy->supported.tx_powers = adf7242_powers;
1231 hw->phy->supported.tx_powers_size = ARRAY_SIZE(adf7242_powers);
1232
1233 hw->phy->supported.min_minbe = 0;
1234 hw->phy->supported.max_minbe = 8;
1235
1236 hw->phy->supported.min_maxbe = 3;
1237 hw->phy->supported.max_maxbe = 8;
1238
1239 hw->phy->supported.min_frame_retries = 0;
1240 hw->phy->supported.max_frame_retries = 15;
1241
1242 hw->phy->supported.min_csma_backoffs = 0;
1243 hw->phy->supported.max_csma_backoffs = 5;
1244
1245 ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
1246
1247 mutex_init(&lp->bmux);
1248 init_completion(&lp->tx_complete);
1249
1250 /* Setup Status Message */
1251 lp->stat_xfer.len = 1;
1252 lp->stat_xfer.tx_buf = &lp->buf_stat_tx;
1253 lp->stat_xfer.rx_buf = &lp->buf_stat_rx;
1254 lp->buf_stat_tx = CMD_SPI_NOP;
1255
1256 spi_message_init(&lp->stat_msg);
1257 spi_message_add_tail(&lp->stat_xfer, &lp->stat_msg);
1258
1259 spi_set_drvdata(spi, lp);
1260 INIT_DELAYED_WORK(&lp->work, adf7242_rx_cal_work);
1261 lp->wqueue = alloc_ordered_workqueue(dev_name(&spi->dev),
1262 WQ_MEM_RECLAIM);
1263 if (unlikely(!lp->wqueue)) {
1264 ret = -ENOMEM;
1265 goto err_hw_init;
1266 }
1267
1268 ret = adf7242_hw_init(lp);
1269 if (ret)
1270 goto err_hw_init;
1271
1272 irq_type = irq_get_trigger_type(spi->irq);
1273 if (!irq_type)
1274 irq_type = IRQF_TRIGGER_HIGH;
1275
1276 ret = devm_request_threaded_irq(&spi->dev, spi->irq, NULL, adf7242_isr,
1277 irq_type | IRQF_ONESHOT,
1278 dev_name(&spi->dev), lp);
1279 if (ret)
1280 goto err_hw_init;
1281
1282 disable_irq(spi->irq);
1283
1284 ret = ieee802154_register_hw(lp->hw);
1285 if (ret)
1286 goto err_hw_init;
1287
1288 dev_set_drvdata(&spi->dev, lp);
1289
1290 adf7242_debugfs_init(lp);
1291
1292 dev_info(&spi->dev, "mac802154 IRQ-%d registered\n", spi->irq);
1293
1294 return ret;
1295
1296 err_hw_init:
1297 mutex_destroy(&lp->bmux);
1298 ieee802154_free_hw(lp->hw);
1299
1300 return ret;
1301 }
1302
adf7242_remove(struct spi_device * spi)1303 static int adf7242_remove(struct spi_device *spi)
1304 {
1305 struct adf7242_local *lp = spi_get_drvdata(spi);
1306
1307 debugfs_remove_recursive(lp->debugfs_root);
1308
1309 cancel_delayed_work_sync(&lp->work);
1310 destroy_workqueue(lp->wqueue);
1311
1312 ieee802154_unregister_hw(lp->hw);
1313 mutex_destroy(&lp->bmux);
1314 ieee802154_free_hw(lp->hw);
1315
1316 return 0;
1317 }
1318
1319 static const struct of_device_id adf7242_of_match[] = {
1320 { .compatible = "adi,adf7242", },
1321 { .compatible = "adi,adf7241", },
1322 { },
1323 };
1324 MODULE_DEVICE_TABLE(of, adf7242_of_match);
1325
1326 static const struct spi_device_id adf7242_device_id[] = {
1327 { .name = "adf7242", },
1328 { .name = "adf7241", },
1329 { },
1330 };
1331 MODULE_DEVICE_TABLE(spi, adf7242_device_id);
1332
1333 static struct spi_driver adf7242_driver = {
1334 .id_table = adf7242_device_id,
1335 .driver = {
1336 .of_match_table = of_match_ptr(adf7242_of_match),
1337 .name = "adf7242",
1338 .owner = THIS_MODULE,
1339 },
1340 .probe = adf7242_probe,
1341 .remove = adf7242_remove,
1342 };
1343
1344 module_spi_driver(adf7242_driver);
1345
1346 MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>");
1347 MODULE_DESCRIPTION("ADF7242 IEEE802.15.4 Transceiver Driver");
1348 MODULE_LICENSE("GPL");
1349