1 /* GTP according to GSM TS 09.60 / 3GPP TS 29.060
2 *
3 * (C) 2012-2014 by sysmocom - s.f.m.c. GmbH
4 * (C) 2016 by Pablo Neira Ayuso <pablo@netfilter.org>
5 *
6 * Author: Harald Welte <hwelte@sysmocom.de>
7 * Pablo Neira Ayuso <pablo@netfilter.org>
8 * Andreas Schultz <aschultz@travelping.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/skbuff.h>
20 #include <linux/udp.h>
21 #include <linux/rculist.h>
22 #include <linux/jhash.h>
23 #include <linux/if_tunnel.h>
24 #include <linux/net.h>
25 #include <linux/file.h>
26 #include <linux/gtp.h>
27
28 #include <net/net_namespace.h>
29 #include <net/protocol.h>
30 #include <net/ip.h>
31 #include <net/udp.h>
32 #include <net/udp_tunnel.h>
33 #include <net/icmp.h>
34 #include <net/xfrm.h>
35 #include <net/genetlink.h>
36 #include <net/netns/generic.h>
37 #include <net/gtp.h>
38
39 /* An active session for the subscriber. */
40 struct pdp_ctx {
41 struct hlist_node hlist_tid;
42 struct hlist_node hlist_addr;
43
44 union {
45 u64 tid;
46 struct {
47 u64 tid;
48 u16 flow;
49 } v0;
50 struct {
51 u32 i_tei;
52 u32 o_tei;
53 } v1;
54 } u;
55 u8 gtp_version;
56 u16 af;
57
58 struct in_addr ms_addr_ip4;
59 struct in_addr peer_addr_ip4;
60
61 struct sock *sk;
62 struct net_device *dev;
63
64 atomic_t tx_seq;
65 struct rcu_head rcu_head;
66 };
67
68 /* One instance of the GTP device. */
69 struct gtp_dev {
70 struct list_head list;
71
72 struct sock *sk0;
73 struct sock *sk1u;
74
75 struct net_device *dev;
76
77 unsigned int role;
78 unsigned int hash_size;
79 struct hlist_head *tid_hash;
80 struct hlist_head *addr_hash;
81 };
82
83 static unsigned int gtp_net_id __read_mostly;
84
85 struct gtp_net {
86 struct list_head gtp_dev_list;
87 };
88
89 static u32 gtp_h_initval;
90
91 static void pdp_context_delete(struct pdp_ctx *pctx);
92
gtp0_hashfn(u64 tid)93 static inline u32 gtp0_hashfn(u64 tid)
94 {
95 u32 *tid32 = (u32 *) &tid;
96 return jhash_2words(tid32[0], tid32[1], gtp_h_initval);
97 }
98
gtp1u_hashfn(u32 tid)99 static inline u32 gtp1u_hashfn(u32 tid)
100 {
101 return jhash_1word(tid, gtp_h_initval);
102 }
103
ipv4_hashfn(__be32 ip)104 static inline u32 ipv4_hashfn(__be32 ip)
105 {
106 return jhash_1word((__force u32)ip, gtp_h_initval);
107 }
108
109 /* Resolve a PDP context structure based on the 64bit TID. */
gtp0_pdp_find(struct gtp_dev * gtp,u64 tid)110 static struct pdp_ctx *gtp0_pdp_find(struct gtp_dev *gtp, u64 tid)
111 {
112 struct hlist_head *head;
113 struct pdp_ctx *pdp;
114
115 head = >p->tid_hash[gtp0_hashfn(tid) % gtp->hash_size];
116
117 hlist_for_each_entry_rcu(pdp, head, hlist_tid) {
118 if (pdp->gtp_version == GTP_V0 &&
119 pdp->u.v0.tid == tid)
120 return pdp;
121 }
122 return NULL;
123 }
124
125 /* Resolve a PDP context structure based on the 32bit TEI. */
gtp1_pdp_find(struct gtp_dev * gtp,u32 tid)126 static struct pdp_ctx *gtp1_pdp_find(struct gtp_dev *gtp, u32 tid)
127 {
128 struct hlist_head *head;
129 struct pdp_ctx *pdp;
130
131 head = >p->tid_hash[gtp1u_hashfn(tid) % gtp->hash_size];
132
133 hlist_for_each_entry_rcu(pdp, head, hlist_tid) {
134 if (pdp->gtp_version == GTP_V1 &&
135 pdp->u.v1.i_tei == tid)
136 return pdp;
137 }
138 return NULL;
139 }
140
141 /* Resolve a PDP context based on IPv4 address of MS. */
ipv4_pdp_find(struct gtp_dev * gtp,__be32 ms_addr)142 static struct pdp_ctx *ipv4_pdp_find(struct gtp_dev *gtp, __be32 ms_addr)
143 {
144 struct hlist_head *head;
145 struct pdp_ctx *pdp;
146
147 head = >p->addr_hash[ipv4_hashfn(ms_addr) % gtp->hash_size];
148
149 hlist_for_each_entry_rcu(pdp, head, hlist_addr) {
150 if (pdp->af == AF_INET &&
151 pdp->ms_addr_ip4.s_addr == ms_addr)
152 return pdp;
153 }
154
155 return NULL;
156 }
157
gtp_check_ms_ipv4(struct sk_buff * skb,struct pdp_ctx * pctx,unsigned int hdrlen,unsigned int role)158 static bool gtp_check_ms_ipv4(struct sk_buff *skb, struct pdp_ctx *pctx,
159 unsigned int hdrlen, unsigned int role)
160 {
161 struct iphdr *iph;
162
163 if (!pskb_may_pull(skb, hdrlen + sizeof(struct iphdr)))
164 return false;
165
166 iph = (struct iphdr *)(skb->data + hdrlen);
167
168 if (role == GTP_ROLE_SGSN)
169 return iph->daddr == pctx->ms_addr_ip4.s_addr;
170 else
171 return iph->saddr == pctx->ms_addr_ip4.s_addr;
172 }
173
174 /* Check if the inner IP address in this packet is assigned to any
175 * existing mobile subscriber.
176 */
gtp_check_ms(struct sk_buff * skb,struct pdp_ctx * pctx,unsigned int hdrlen,unsigned int role)177 static bool gtp_check_ms(struct sk_buff *skb, struct pdp_ctx *pctx,
178 unsigned int hdrlen, unsigned int role)
179 {
180 switch (ntohs(skb->protocol)) {
181 case ETH_P_IP:
182 return gtp_check_ms_ipv4(skb, pctx, hdrlen, role);
183 }
184 return false;
185 }
186
gtp_rx(struct pdp_ctx * pctx,struct sk_buff * skb,unsigned int hdrlen,unsigned int role)187 static int gtp_rx(struct pdp_ctx *pctx, struct sk_buff *skb,
188 unsigned int hdrlen, unsigned int role)
189 {
190 struct pcpu_sw_netstats *stats;
191
192 if (!gtp_check_ms(skb, pctx, hdrlen, role)) {
193 netdev_dbg(pctx->dev, "No PDP ctx for this MS\n");
194 return 1;
195 }
196
197 /* Get rid of the GTP + UDP headers. */
198 if (iptunnel_pull_header(skb, hdrlen, skb->protocol,
199 !net_eq(sock_net(pctx->sk), dev_net(pctx->dev))))
200 return -1;
201
202 netdev_dbg(pctx->dev, "forwarding packet from GGSN to uplink\n");
203
204 /* Now that the UDP and the GTP header have been removed, set up the
205 * new network header. This is required by the upper layer to
206 * calculate the transport header.
207 */
208 skb_reset_network_header(skb);
209
210 skb->dev = pctx->dev;
211
212 stats = this_cpu_ptr(pctx->dev->tstats);
213 u64_stats_update_begin(&stats->syncp);
214 stats->rx_packets++;
215 stats->rx_bytes += skb->len;
216 u64_stats_update_end(&stats->syncp);
217
218 netif_rx(skb);
219 return 0;
220 }
221
222 /* 1 means pass up to the stack, -1 means drop and 0 means decapsulated. */
gtp0_udp_encap_recv(struct gtp_dev * gtp,struct sk_buff * skb)223 static int gtp0_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb)
224 {
225 unsigned int hdrlen = sizeof(struct udphdr) +
226 sizeof(struct gtp0_header);
227 struct gtp0_header *gtp0;
228 struct pdp_ctx *pctx;
229
230 if (!pskb_may_pull(skb, hdrlen))
231 return -1;
232
233 gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr));
234
235 if ((gtp0->flags >> 5) != GTP_V0)
236 return 1;
237
238 if (gtp0->type != GTP_TPDU)
239 return 1;
240
241 pctx = gtp0_pdp_find(gtp, be64_to_cpu(gtp0->tid));
242 if (!pctx) {
243 netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb);
244 return 1;
245 }
246
247 return gtp_rx(pctx, skb, hdrlen, gtp->role);
248 }
249
gtp1u_udp_encap_recv(struct gtp_dev * gtp,struct sk_buff * skb)250 static int gtp1u_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb)
251 {
252 unsigned int hdrlen = sizeof(struct udphdr) +
253 sizeof(struct gtp1_header);
254 struct gtp1_header *gtp1;
255 struct pdp_ctx *pctx;
256
257 if (!pskb_may_pull(skb, hdrlen))
258 return -1;
259
260 gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr));
261
262 if ((gtp1->flags >> 5) != GTP_V1)
263 return 1;
264
265 if (gtp1->type != GTP_TPDU)
266 return 1;
267
268 /* From 29.060: "This field shall be present if and only if any one or
269 * more of the S, PN and E flags are set.".
270 *
271 * If any of the bit is set, then the remaining ones also have to be
272 * set.
273 */
274 if (gtp1->flags & GTP1_F_MASK)
275 hdrlen += 4;
276
277 /* Make sure the header is larger enough, including extensions. */
278 if (!pskb_may_pull(skb, hdrlen))
279 return -1;
280
281 gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr));
282
283 pctx = gtp1_pdp_find(gtp, ntohl(gtp1->tid));
284 if (!pctx) {
285 netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb);
286 return 1;
287 }
288
289 return gtp_rx(pctx, skb, hdrlen, gtp->role);
290 }
291
gtp_encap_destroy(struct sock * sk)292 static void gtp_encap_destroy(struct sock *sk)
293 {
294 struct gtp_dev *gtp;
295
296 gtp = rcu_dereference_sk_user_data(sk);
297 if (gtp) {
298 udp_sk(sk)->encap_type = 0;
299 rcu_assign_sk_user_data(sk, NULL);
300 sock_put(sk);
301 }
302 }
303
gtp_encap_disable_sock(struct sock * sk)304 static void gtp_encap_disable_sock(struct sock *sk)
305 {
306 if (!sk)
307 return;
308
309 gtp_encap_destroy(sk);
310 }
311
gtp_encap_disable(struct gtp_dev * gtp)312 static void gtp_encap_disable(struct gtp_dev *gtp)
313 {
314 gtp_encap_disable_sock(gtp->sk0);
315 gtp_encap_disable_sock(gtp->sk1u);
316 }
317
318 /* UDP encapsulation receive handler. See net/ipv4/udp.c.
319 * Return codes: 0: success, <0: error, >0: pass up to userspace UDP socket.
320 */
gtp_encap_recv(struct sock * sk,struct sk_buff * skb)321 static int gtp_encap_recv(struct sock *sk, struct sk_buff *skb)
322 {
323 struct gtp_dev *gtp;
324 int ret = 0;
325
326 gtp = rcu_dereference_sk_user_data(sk);
327 if (!gtp)
328 return 1;
329
330 netdev_dbg(gtp->dev, "encap_recv sk=%p\n", sk);
331
332 switch (udp_sk(sk)->encap_type) {
333 case UDP_ENCAP_GTP0:
334 netdev_dbg(gtp->dev, "received GTP0 packet\n");
335 ret = gtp0_udp_encap_recv(gtp, skb);
336 break;
337 case UDP_ENCAP_GTP1U:
338 netdev_dbg(gtp->dev, "received GTP1U packet\n");
339 ret = gtp1u_udp_encap_recv(gtp, skb);
340 break;
341 default:
342 ret = -1; /* Shouldn't happen. */
343 }
344
345 switch (ret) {
346 case 1:
347 netdev_dbg(gtp->dev, "pass up to the process\n");
348 break;
349 case 0:
350 break;
351 case -1:
352 netdev_dbg(gtp->dev, "GTP packet has been dropped\n");
353 kfree_skb(skb);
354 ret = 0;
355 break;
356 }
357
358 return ret;
359 }
360
gtp_dev_init(struct net_device * dev)361 static int gtp_dev_init(struct net_device *dev)
362 {
363 struct gtp_dev *gtp = netdev_priv(dev);
364
365 gtp->dev = dev;
366
367 dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
368 if (!dev->tstats)
369 return -ENOMEM;
370
371 return 0;
372 }
373
gtp_dev_uninit(struct net_device * dev)374 static void gtp_dev_uninit(struct net_device *dev)
375 {
376 struct gtp_dev *gtp = netdev_priv(dev);
377
378 gtp_encap_disable(gtp);
379 free_percpu(dev->tstats);
380 }
381
ip4_route_output_gtp(struct flowi4 * fl4,const struct sock * sk,__be32 daddr)382 static struct rtable *ip4_route_output_gtp(struct flowi4 *fl4,
383 const struct sock *sk,
384 __be32 daddr)
385 {
386 memset(fl4, 0, sizeof(*fl4));
387 fl4->flowi4_oif = sk->sk_bound_dev_if;
388 fl4->daddr = daddr;
389 fl4->saddr = inet_sk(sk)->inet_saddr;
390 fl4->flowi4_tos = RT_CONN_FLAGS(sk);
391 fl4->flowi4_proto = sk->sk_protocol;
392
393 return ip_route_output_key(sock_net(sk), fl4);
394 }
395
gtp0_push_header(struct sk_buff * skb,struct pdp_ctx * pctx)396 static inline void gtp0_push_header(struct sk_buff *skb, struct pdp_ctx *pctx)
397 {
398 int payload_len = skb->len;
399 struct gtp0_header *gtp0;
400
401 gtp0 = skb_push(skb, sizeof(*gtp0));
402
403 gtp0->flags = 0x1e; /* v0, GTP-non-prime. */
404 gtp0->type = GTP_TPDU;
405 gtp0->length = htons(payload_len);
406 gtp0->seq = htons((atomic_inc_return(&pctx->tx_seq) - 1) % 0xffff);
407 gtp0->flow = htons(pctx->u.v0.flow);
408 gtp0->number = 0xff;
409 gtp0->spare[0] = gtp0->spare[1] = gtp0->spare[2] = 0xff;
410 gtp0->tid = cpu_to_be64(pctx->u.v0.tid);
411 }
412
gtp1_push_header(struct sk_buff * skb,struct pdp_ctx * pctx)413 static inline void gtp1_push_header(struct sk_buff *skb, struct pdp_ctx *pctx)
414 {
415 int payload_len = skb->len;
416 struct gtp1_header *gtp1;
417
418 gtp1 = skb_push(skb, sizeof(*gtp1));
419
420 /* Bits 8 7 6 5 4 3 2 1
421 * +--+--+--+--+--+--+--+--+
422 * |version |PT| 0| E| S|PN|
423 * +--+--+--+--+--+--+--+--+
424 * 0 0 1 1 1 0 0 0
425 */
426 gtp1->flags = 0x30; /* v1, GTP-non-prime. */
427 gtp1->type = GTP_TPDU;
428 gtp1->length = htons(payload_len);
429 gtp1->tid = htonl(pctx->u.v1.o_tei);
430
431 /* TODO: Suppport for extension header, sequence number and N-PDU.
432 * Update the length field if any of them is available.
433 */
434 }
435
436 struct gtp_pktinfo {
437 struct sock *sk;
438 struct iphdr *iph;
439 struct flowi4 fl4;
440 struct rtable *rt;
441 struct pdp_ctx *pctx;
442 struct net_device *dev;
443 __be16 gtph_port;
444 };
445
gtp_push_header(struct sk_buff * skb,struct gtp_pktinfo * pktinfo)446 static void gtp_push_header(struct sk_buff *skb, struct gtp_pktinfo *pktinfo)
447 {
448 switch (pktinfo->pctx->gtp_version) {
449 case GTP_V0:
450 pktinfo->gtph_port = htons(GTP0_PORT);
451 gtp0_push_header(skb, pktinfo->pctx);
452 break;
453 case GTP_V1:
454 pktinfo->gtph_port = htons(GTP1U_PORT);
455 gtp1_push_header(skb, pktinfo->pctx);
456 break;
457 }
458 }
459
gtp_set_pktinfo_ipv4(struct gtp_pktinfo * pktinfo,struct sock * sk,struct iphdr * iph,struct pdp_ctx * pctx,struct rtable * rt,struct flowi4 * fl4,struct net_device * dev)460 static inline void gtp_set_pktinfo_ipv4(struct gtp_pktinfo *pktinfo,
461 struct sock *sk, struct iphdr *iph,
462 struct pdp_ctx *pctx, struct rtable *rt,
463 struct flowi4 *fl4,
464 struct net_device *dev)
465 {
466 pktinfo->sk = sk;
467 pktinfo->iph = iph;
468 pktinfo->pctx = pctx;
469 pktinfo->rt = rt;
470 pktinfo->fl4 = *fl4;
471 pktinfo->dev = dev;
472 }
473
gtp_build_skb_ip4(struct sk_buff * skb,struct net_device * dev,struct gtp_pktinfo * pktinfo)474 static int gtp_build_skb_ip4(struct sk_buff *skb, struct net_device *dev,
475 struct gtp_pktinfo *pktinfo)
476 {
477 struct gtp_dev *gtp = netdev_priv(dev);
478 struct pdp_ctx *pctx;
479 struct rtable *rt;
480 struct flowi4 fl4;
481 struct iphdr *iph;
482 __be16 df;
483 int mtu;
484
485 /* Read the IP destination address and resolve the PDP context.
486 * Prepend PDP header with TEI/TID from PDP ctx.
487 */
488 iph = ip_hdr(skb);
489 if (gtp->role == GTP_ROLE_SGSN)
490 pctx = ipv4_pdp_find(gtp, iph->saddr);
491 else
492 pctx = ipv4_pdp_find(gtp, iph->daddr);
493
494 if (!pctx) {
495 netdev_dbg(dev, "no PDP ctx found for %pI4, skip\n",
496 &iph->daddr);
497 return -ENOENT;
498 }
499 netdev_dbg(dev, "found PDP context %p\n", pctx);
500
501 rt = ip4_route_output_gtp(&fl4, pctx->sk, pctx->peer_addr_ip4.s_addr);
502 if (IS_ERR(rt)) {
503 netdev_dbg(dev, "no route to SSGN %pI4\n",
504 &pctx->peer_addr_ip4.s_addr);
505 dev->stats.tx_carrier_errors++;
506 goto err;
507 }
508
509 if (rt->dst.dev == dev) {
510 netdev_dbg(dev, "circular route to SSGN %pI4\n",
511 &pctx->peer_addr_ip4.s_addr);
512 dev->stats.collisions++;
513 goto err_rt;
514 }
515
516 skb_dst_drop(skb);
517
518 /* This is similar to tnl_update_pmtu(). */
519 df = iph->frag_off;
520 if (df) {
521 mtu = dst_mtu(&rt->dst) - dev->hard_header_len -
522 sizeof(struct iphdr) - sizeof(struct udphdr);
523 switch (pctx->gtp_version) {
524 case GTP_V0:
525 mtu -= sizeof(struct gtp0_header);
526 break;
527 case GTP_V1:
528 mtu -= sizeof(struct gtp1_header);
529 break;
530 }
531 } else {
532 mtu = dst_mtu(&rt->dst);
533 }
534
535 rt->dst.ops->update_pmtu(&rt->dst, NULL, skb, mtu);
536
537 if (!skb_is_gso(skb) && (iph->frag_off & htons(IP_DF)) &&
538 mtu < ntohs(iph->tot_len)) {
539 netdev_dbg(dev, "packet too big, fragmentation needed\n");
540 memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
541 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
542 htonl(mtu));
543 goto err_rt;
544 }
545
546 gtp_set_pktinfo_ipv4(pktinfo, pctx->sk, iph, pctx, rt, &fl4, dev);
547 gtp_push_header(skb, pktinfo);
548
549 return 0;
550 err_rt:
551 ip_rt_put(rt);
552 err:
553 return -EBADMSG;
554 }
555
gtp_dev_xmit(struct sk_buff * skb,struct net_device * dev)556 static netdev_tx_t gtp_dev_xmit(struct sk_buff *skb, struct net_device *dev)
557 {
558 unsigned int proto = ntohs(skb->protocol);
559 struct gtp_pktinfo pktinfo;
560 int err;
561
562 /* Ensure there is sufficient headroom. */
563 if (skb_cow_head(skb, dev->needed_headroom))
564 goto tx_err;
565
566 skb_reset_inner_headers(skb);
567
568 /* PDP context lookups in gtp_build_skb_*() need rcu read-side lock. */
569 rcu_read_lock();
570 switch (proto) {
571 case ETH_P_IP:
572 err = gtp_build_skb_ip4(skb, dev, &pktinfo);
573 break;
574 default:
575 err = -EOPNOTSUPP;
576 break;
577 }
578 rcu_read_unlock();
579
580 if (err < 0)
581 goto tx_err;
582
583 switch (proto) {
584 case ETH_P_IP:
585 netdev_dbg(pktinfo.dev, "gtp -> IP src: %pI4 dst: %pI4\n",
586 &pktinfo.iph->saddr, &pktinfo.iph->daddr);
587 udp_tunnel_xmit_skb(pktinfo.rt, pktinfo.sk, skb,
588 pktinfo.fl4.saddr, pktinfo.fl4.daddr,
589 pktinfo.iph->tos,
590 ip4_dst_hoplimit(&pktinfo.rt->dst),
591 0,
592 pktinfo.gtph_port, pktinfo.gtph_port,
593 true, false);
594 break;
595 }
596
597 return NETDEV_TX_OK;
598 tx_err:
599 dev->stats.tx_errors++;
600 dev_kfree_skb(skb);
601 return NETDEV_TX_OK;
602 }
603
604 static const struct net_device_ops gtp_netdev_ops = {
605 .ndo_init = gtp_dev_init,
606 .ndo_uninit = gtp_dev_uninit,
607 .ndo_start_xmit = gtp_dev_xmit,
608 .ndo_get_stats64 = ip_tunnel_get_stats64,
609 };
610
gtp_link_setup(struct net_device * dev)611 static void gtp_link_setup(struct net_device *dev)
612 {
613 dev->netdev_ops = >p_netdev_ops;
614 dev->needs_free_netdev = true;
615
616 dev->hard_header_len = 0;
617 dev->addr_len = 0;
618
619 /* Zero header length. */
620 dev->type = ARPHRD_NONE;
621 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
622
623 dev->priv_flags |= IFF_NO_QUEUE;
624 dev->features |= NETIF_F_LLTX;
625 netif_keep_dst(dev);
626
627 /* Assume largest header, ie. GTPv0. */
628 dev->needed_headroom = LL_MAX_HEADER +
629 sizeof(struct iphdr) +
630 sizeof(struct udphdr) +
631 sizeof(struct gtp0_header);
632 }
633
634 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize);
635 static void gtp_hashtable_free(struct gtp_dev *gtp);
636 static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[]);
637
gtp_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)638 static int gtp_newlink(struct net *src_net, struct net_device *dev,
639 struct nlattr *tb[], struct nlattr *data[],
640 struct netlink_ext_ack *extack)
641 {
642 struct gtp_dev *gtp;
643 struct gtp_net *gn;
644 int hashsize, err;
645
646 if (!data[IFLA_GTP_FD0] && !data[IFLA_GTP_FD1])
647 return -EINVAL;
648
649 gtp = netdev_priv(dev);
650
651 err = gtp_encap_enable(gtp, data);
652 if (err < 0)
653 return err;
654
655 if (!data[IFLA_GTP_PDP_HASHSIZE])
656 hashsize = 1024;
657 else
658 hashsize = nla_get_u32(data[IFLA_GTP_PDP_HASHSIZE]);
659
660 err = gtp_hashtable_new(gtp, hashsize);
661 if (err < 0)
662 goto out_encap;
663
664 err = register_netdevice(dev);
665 if (err < 0) {
666 netdev_dbg(dev, "failed to register new netdev %d\n", err);
667 goto out_hashtable;
668 }
669
670 gn = net_generic(dev_net(dev), gtp_net_id);
671 list_add_rcu(>p->list, &gn->gtp_dev_list);
672
673 netdev_dbg(dev, "registered new GTP interface\n");
674
675 return 0;
676
677 out_hashtable:
678 gtp_hashtable_free(gtp);
679 out_encap:
680 gtp_encap_disable(gtp);
681 return err;
682 }
683
gtp_dellink(struct net_device * dev,struct list_head * head)684 static void gtp_dellink(struct net_device *dev, struct list_head *head)
685 {
686 struct gtp_dev *gtp = netdev_priv(dev);
687
688 gtp_encap_disable(gtp);
689 gtp_hashtable_free(gtp);
690 list_del_rcu(>p->list);
691 unregister_netdevice_queue(dev, head);
692 }
693
694 static const struct nla_policy gtp_policy[IFLA_GTP_MAX + 1] = {
695 [IFLA_GTP_FD0] = { .type = NLA_U32 },
696 [IFLA_GTP_FD1] = { .type = NLA_U32 },
697 [IFLA_GTP_PDP_HASHSIZE] = { .type = NLA_U32 },
698 [IFLA_GTP_ROLE] = { .type = NLA_U32 },
699 };
700
gtp_validate(struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)701 static int gtp_validate(struct nlattr *tb[], struct nlattr *data[],
702 struct netlink_ext_ack *extack)
703 {
704 if (!data)
705 return -EINVAL;
706
707 return 0;
708 }
709
gtp_get_size(const struct net_device * dev)710 static size_t gtp_get_size(const struct net_device *dev)
711 {
712 return nla_total_size(sizeof(__u32)); /* IFLA_GTP_PDP_HASHSIZE */
713 }
714
gtp_fill_info(struct sk_buff * skb,const struct net_device * dev)715 static int gtp_fill_info(struct sk_buff *skb, const struct net_device *dev)
716 {
717 struct gtp_dev *gtp = netdev_priv(dev);
718
719 if (nla_put_u32(skb, IFLA_GTP_PDP_HASHSIZE, gtp->hash_size))
720 goto nla_put_failure;
721
722 return 0;
723
724 nla_put_failure:
725 return -EMSGSIZE;
726 }
727
728 static struct rtnl_link_ops gtp_link_ops __read_mostly = {
729 .kind = "gtp",
730 .maxtype = IFLA_GTP_MAX,
731 .policy = gtp_policy,
732 .priv_size = sizeof(struct gtp_dev),
733 .setup = gtp_link_setup,
734 .validate = gtp_validate,
735 .newlink = gtp_newlink,
736 .dellink = gtp_dellink,
737 .get_size = gtp_get_size,
738 .fill_info = gtp_fill_info,
739 };
740
gtp_hashtable_new(struct gtp_dev * gtp,int hsize)741 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize)
742 {
743 int i;
744
745 gtp->addr_hash = kmalloc_array(hsize, sizeof(struct hlist_head),
746 GFP_KERNEL);
747 if (gtp->addr_hash == NULL)
748 return -ENOMEM;
749
750 gtp->tid_hash = kmalloc_array(hsize, sizeof(struct hlist_head),
751 GFP_KERNEL);
752 if (gtp->tid_hash == NULL)
753 goto err1;
754
755 gtp->hash_size = hsize;
756
757 for (i = 0; i < hsize; i++) {
758 INIT_HLIST_HEAD(>p->addr_hash[i]);
759 INIT_HLIST_HEAD(>p->tid_hash[i]);
760 }
761 return 0;
762 err1:
763 kfree(gtp->addr_hash);
764 return -ENOMEM;
765 }
766
gtp_hashtable_free(struct gtp_dev * gtp)767 static void gtp_hashtable_free(struct gtp_dev *gtp)
768 {
769 struct pdp_ctx *pctx;
770 int i;
771
772 for (i = 0; i < gtp->hash_size; i++)
773 hlist_for_each_entry_rcu(pctx, >p->tid_hash[i], hlist_tid)
774 pdp_context_delete(pctx);
775
776 synchronize_rcu();
777 kfree(gtp->addr_hash);
778 kfree(gtp->tid_hash);
779 }
780
gtp_encap_enable_socket(int fd,int type,struct gtp_dev * gtp)781 static struct sock *gtp_encap_enable_socket(int fd, int type,
782 struct gtp_dev *gtp)
783 {
784 struct udp_tunnel_sock_cfg tuncfg = {NULL};
785 struct socket *sock;
786 struct sock *sk;
787 int err;
788
789 pr_debug("enable gtp on %d, %d\n", fd, type);
790
791 sock = sockfd_lookup(fd, &err);
792 if (!sock) {
793 pr_debug("gtp socket fd=%d not found\n", fd);
794 return NULL;
795 }
796
797 if (sock->sk->sk_protocol != IPPROTO_UDP) {
798 pr_debug("socket fd=%d not UDP\n", fd);
799 sk = ERR_PTR(-EINVAL);
800 goto out_sock;
801 }
802
803 if (rcu_dereference_sk_user_data(sock->sk)) {
804 sk = ERR_PTR(-EBUSY);
805 goto out_sock;
806 }
807
808 sk = sock->sk;
809 sock_hold(sk);
810
811 tuncfg.sk_user_data = gtp;
812 tuncfg.encap_type = type;
813 tuncfg.encap_rcv = gtp_encap_recv;
814 tuncfg.encap_destroy = gtp_encap_destroy;
815
816 setup_udp_tunnel_sock(sock_net(sock->sk), sock, &tuncfg);
817
818 out_sock:
819 sockfd_put(sock);
820 return sk;
821 }
822
gtp_encap_enable(struct gtp_dev * gtp,struct nlattr * data[])823 static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[])
824 {
825 struct sock *sk1u = NULL;
826 struct sock *sk0 = NULL;
827 unsigned int role = GTP_ROLE_GGSN;
828
829 if (data[IFLA_GTP_FD0]) {
830 u32 fd0 = nla_get_u32(data[IFLA_GTP_FD0]);
831
832 sk0 = gtp_encap_enable_socket(fd0, UDP_ENCAP_GTP0, gtp);
833 if (IS_ERR(sk0))
834 return PTR_ERR(sk0);
835 }
836
837 if (data[IFLA_GTP_FD1]) {
838 u32 fd1 = nla_get_u32(data[IFLA_GTP_FD1]);
839
840 sk1u = gtp_encap_enable_socket(fd1, UDP_ENCAP_GTP1U, gtp);
841 if (IS_ERR(sk1u)) {
842 if (sk0)
843 gtp_encap_disable_sock(sk0);
844 return PTR_ERR(sk1u);
845 }
846 }
847
848 if (data[IFLA_GTP_ROLE]) {
849 role = nla_get_u32(data[IFLA_GTP_ROLE]);
850 if (role > GTP_ROLE_SGSN)
851 return -EINVAL;
852 }
853
854 gtp->sk0 = sk0;
855 gtp->sk1u = sk1u;
856 gtp->role = role;
857
858 return 0;
859 }
860
gtp_find_dev(struct net * src_net,struct nlattr * nla[])861 static struct gtp_dev *gtp_find_dev(struct net *src_net, struct nlattr *nla[])
862 {
863 struct gtp_dev *gtp = NULL;
864 struct net_device *dev;
865 struct net *net;
866
867 /* Examine the link attributes and figure out which network namespace
868 * we are talking about.
869 */
870 if (nla[GTPA_NET_NS_FD])
871 net = get_net_ns_by_fd(nla_get_u32(nla[GTPA_NET_NS_FD]));
872 else
873 net = get_net(src_net);
874
875 if (IS_ERR(net))
876 return NULL;
877
878 /* Check if there's an existing gtpX device to configure */
879 dev = dev_get_by_index_rcu(net, nla_get_u32(nla[GTPA_LINK]));
880 if (dev && dev->netdev_ops == >p_netdev_ops)
881 gtp = netdev_priv(dev);
882
883 put_net(net);
884 return gtp;
885 }
886
ipv4_pdp_fill(struct pdp_ctx * pctx,struct genl_info * info)887 static void ipv4_pdp_fill(struct pdp_ctx *pctx, struct genl_info *info)
888 {
889 pctx->gtp_version = nla_get_u32(info->attrs[GTPA_VERSION]);
890 pctx->af = AF_INET;
891 pctx->peer_addr_ip4.s_addr =
892 nla_get_be32(info->attrs[GTPA_PEER_ADDRESS]);
893 pctx->ms_addr_ip4.s_addr =
894 nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);
895
896 switch (pctx->gtp_version) {
897 case GTP_V0:
898 /* According to TS 09.60, sections 7.5.1 and 7.5.2, the flow
899 * label needs to be the same for uplink and downlink packets,
900 * so let's annotate this.
901 */
902 pctx->u.v0.tid = nla_get_u64(info->attrs[GTPA_TID]);
903 pctx->u.v0.flow = nla_get_u16(info->attrs[GTPA_FLOW]);
904 break;
905 case GTP_V1:
906 pctx->u.v1.i_tei = nla_get_u32(info->attrs[GTPA_I_TEI]);
907 pctx->u.v1.o_tei = nla_get_u32(info->attrs[GTPA_O_TEI]);
908 break;
909 default:
910 break;
911 }
912 }
913
ipv4_pdp_add(struct gtp_dev * gtp,struct sock * sk,struct genl_info * info)914 static int ipv4_pdp_add(struct gtp_dev *gtp, struct sock *sk,
915 struct genl_info *info)
916 {
917 struct net_device *dev = gtp->dev;
918 u32 hash_ms, hash_tid = 0;
919 struct pdp_ctx *pctx;
920 bool found = false;
921 __be32 ms_addr;
922
923 ms_addr = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);
924 hash_ms = ipv4_hashfn(ms_addr) % gtp->hash_size;
925
926 hlist_for_each_entry_rcu(pctx, >p->addr_hash[hash_ms], hlist_addr) {
927 if (pctx->ms_addr_ip4.s_addr == ms_addr) {
928 found = true;
929 break;
930 }
931 }
932
933 if (found) {
934 if (info->nlhdr->nlmsg_flags & NLM_F_EXCL)
935 return -EEXIST;
936 if (info->nlhdr->nlmsg_flags & NLM_F_REPLACE)
937 return -EOPNOTSUPP;
938
939 ipv4_pdp_fill(pctx, info);
940
941 if (pctx->gtp_version == GTP_V0)
942 netdev_dbg(dev, "GTPv0-U: update tunnel id = %llx (pdp %p)\n",
943 pctx->u.v0.tid, pctx);
944 else if (pctx->gtp_version == GTP_V1)
945 netdev_dbg(dev, "GTPv1-U: update tunnel id = %x/%x (pdp %p)\n",
946 pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx);
947
948 return 0;
949
950 }
951
952 pctx = kmalloc(sizeof(struct pdp_ctx), GFP_KERNEL);
953 if (pctx == NULL)
954 return -ENOMEM;
955
956 sock_hold(sk);
957 pctx->sk = sk;
958 pctx->dev = gtp->dev;
959 ipv4_pdp_fill(pctx, info);
960 atomic_set(&pctx->tx_seq, 0);
961
962 switch (pctx->gtp_version) {
963 case GTP_V0:
964 /* TS 09.60: "The flow label identifies unambiguously a GTP
965 * flow.". We use the tid for this instead, I cannot find a
966 * situation in which this doesn't unambiguosly identify the
967 * PDP context.
968 */
969 hash_tid = gtp0_hashfn(pctx->u.v0.tid) % gtp->hash_size;
970 break;
971 case GTP_V1:
972 hash_tid = gtp1u_hashfn(pctx->u.v1.i_tei) % gtp->hash_size;
973 break;
974 }
975
976 hlist_add_head_rcu(&pctx->hlist_addr, >p->addr_hash[hash_ms]);
977 hlist_add_head_rcu(&pctx->hlist_tid, >p->tid_hash[hash_tid]);
978
979 switch (pctx->gtp_version) {
980 case GTP_V0:
981 netdev_dbg(dev, "GTPv0-U: new PDP ctx id=%llx ssgn=%pI4 ms=%pI4 (pdp=%p)\n",
982 pctx->u.v0.tid, &pctx->peer_addr_ip4,
983 &pctx->ms_addr_ip4, pctx);
984 break;
985 case GTP_V1:
986 netdev_dbg(dev, "GTPv1-U: new PDP ctx id=%x/%x ssgn=%pI4 ms=%pI4 (pdp=%p)\n",
987 pctx->u.v1.i_tei, pctx->u.v1.o_tei,
988 &pctx->peer_addr_ip4, &pctx->ms_addr_ip4, pctx);
989 break;
990 }
991
992 return 0;
993 }
994
pdp_context_free(struct rcu_head * head)995 static void pdp_context_free(struct rcu_head *head)
996 {
997 struct pdp_ctx *pctx = container_of(head, struct pdp_ctx, rcu_head);
998
999 sock_put(pctx->sk);
1000 kfree(pctx);
1001 }
1002
pdp_context_delete(struct pdp_ctx * pctx)1003 static void pdp_context_delete(struct pdp_ctx *pctx)
1004 {
1005 hlist_del_rcu(&pctx->hlist_tid);
1006 hlist_del_rcu(&pctx->hlist_addr);
1007 call_rcu(&pctx->rcu_head, pdp_context_free);
1008 }
1009
gtp_genl_new_pdp(struct sk_buff * skb,struct genl_info * info)1010 static int gtp_genl_new_pdp(struct sk_buff *skb, struct genl_info *info)
1011 {
1012 unsigned int version;
1013 struct gtp_dev *gtp;
1014 struct sock *sk;
1015 int err;
1016
1017 if (!info->attrs[GTPA_VERSION] ||
1018 !info->attrs[GTPA_LINK] ||
1019 !info->attrs[GTPA_PEER_ADDRESS] ||
1020 !info->attrs[GTPA_MS_ADDRESS])
1021 return -EINVAL;
1022
1023 version = nla_get_u32(info->attrs[GTPA_VERSION]);
1024
1025 switch (version) {
1026 case GTP_V0:
1027 if (!info->attrs[GTPA_TID] ||
1028 !info->attrs[GTPA_FLOW])
1029 return -EINVAL;
1030 break;
1031 case GTP_V1:
1032 if (!info->attrs[GTPA_I_TEI] ||
1033 !info->attrs[GTPA_O_TEI])
1034 return -EINVAL;
1035 break;
1036
1037 default:
1038 return -EINVAL;
1039 }
1040
1041 rcu_read_lock();
1042
1043 gtp = gtp_find_dev(sock_net(skb->sk), info->attrs);
1044 if (!gtp) {
1045 err = -ENODEV;
1046 goto out_unlock;
1047 }
1048
1049 if (version == GTP_V0)
1050 sk = gtp->sk0;
1051 else if (version == GTP_V1)
1052 sk = gtp->sk1u;
1053 else
1054 sk = NULL;
1055
1056 if (!sk) {
1057 err = -ENODEV;
1058 goto out_unlock;
1059 }
1060
1061 err = ipv4_pdp_add(gtp, sk, info);
1062
1063 out_unlock:
1064 rcu_read_unlock();
1065 return err;
1066 }
1067
gtp_find_pdp_by_link(struct net * net,struct nlattr * nla[])1068 static struct pdp_ctx *gtp_find_pdp_by_link(struct net *net,
1069 struct nlattr *nla[])
1070 {
1071 struct gtp_dev *gtp;
1072
1073 gtp = gtp_find_dev(net, nla);
1074 if (!gtp)
1075 return ERR_PTR(-ENODEV);
1076
1077 if (nla[GTPA_MS_ADDRESS]) {
1078 __be32 ip = nla_get_be32(nla[GTPA_MS_ADDRESS]);
1079
1080 return ipv4_pdp_find(gtp, ip);
1081 } else if (nla[GTPA_VERSION]) {
1082 u32 gtp_version = nla_get_u32(nla[GTPA_VERSION]);
1083
1084 if (gtp_version == GTP_V0 && nla[GTPA_TID])
1085 return gtp0_pdp_find(gtp, nla_get_u64(nla[GTPA_TID]));
1086 else if (gtp_version == GTP_V1 && nla[GTPA_I_TEI])
1087 return gtp1_pdp_find(gtp, nla_get_u32(nla[GTPA_I_TEI]));
1088 }
1089
1090 return ERR_PTR(-EINVAL);
1091 }
1092
gtp_find_pdp(struct net * net,struct nlattr * nla[])1093 static struct pdp_ctx *gtp_find_pdp(struct net *net, struct nlattr *nla[])
1094 {
1095 struct pdp_ctx *pctx;
1096
1097 if (nla[GTPA_LINK])
1098 pctx = gtp_find_pdp_by_link(net, nla);
1099 else
1100 pctx = ERR_PTR(-EINVAL);
1101
1102 if (!pctx)
1103 pctx = ERR_PTR(-ENOENT);
1104
1105 return pctx;
1106 }
1107
gtp_genl_del_pdp(struct sk_buff * skb,struct genl_info * info)1108 static int gtp_genl_del_pdp(struct sk_buff *skb, struct genl_info *info)
1109 {
1110 struct pdp_ctx *pctx;
1111 int err = 0;
1112
1113 if (!info->attrs[GTPA_VERSION])
1114 return -EINVAL;
1115
1116 rcu_read_lock();
1117
1118 pctx = gtp_find_pdp(sock_net(skb->sk), info->attrs);
1119 if (IS_ERR(pctx)) {
1120 err = PTR_ERR(pctx);
1121 goto out_unlock;
1122 }
1123
1124 if (pctx->gtp_version == GTP_V0)
1125 netdev_dbg(pctx->dev, "GTPv0-U: deleting tunnel id = %llx (pdp %p)\n",
1126 pctx->u.v0.tid, pctx);
1127 else if (pctx->gtp_version == GTP_V1)
1128 netdev_dbg(pctx->dev, "GTPv1-U: deleting tunnel id = %x/%x (pdp %p)\n",
1129 pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx);
1130
1131 pdp_context_delete(pctx);
1132
1133 out_unlock:
1134 rcu_read_unlock();
1135 return err;
1136 }
1137
1138 static struct genl_family gtp_genl_family;
1139
gtp_genl_fill_info(struct sk_buff * skb,u32 snd_portid,u32 snd_seq,u32 type,struct pdp_ctx * pctx)1140 static int gtp_genl_fill_info(struct sk_buff *skb, u32 snd_portid, u32 snd_seq,
1141 u32 type, struct pdp_ctx *pctx)
1142 {
1143 void *genlh;
1144
1145 genlh = genlmsg_put(skb, snd_portid, snd_seq, >p_genl_family, 0,
1146 type);
1147 if (genlh == NULL)
1148 goto nlmsg_failure;
1149
1150 if (nla_put_u32(skb, GTPA_VERSION, pctx->gtp_version) ||
1151 nla_put_be32(skb, GTPA_PEER_ADDRESS, pctx->peer_addr_ip4.s_addr) ||
1152 nla_put_be32(skb, GTPA_MS_ADDRESS, pctx->ms_addr_ip4.s_addr))
1153 goto nla_put_failure;
1154
1155 switch (pctx->gtp_version) {
1156 case GTP_V0:
1157 if (nla_put_u64_64bit(skb, GTPA_TID, pctx->u.v0.tid, GTPA_PAD) ||
1158 nla_put_u16(skb, GTPA_FLOW, pctx->u.v0.flow))
1159 goto nla_put_failure;
1160 break;
1161 case GTP_V1:
1162 if (nla_put_u32(skb, GTPA_I_TEI, pctx->u.v1.i_tei) ||
1163 nla_put_u32(skb, GTPA_O_TEI, pctx->u.v1.o_tei))
1164 goto nla_put_failure;
1165 break;
1166 }
1167 genlmsg_end(skb, genlh);
1168 return 0;
1169
1170 nlmsg_failure:
1171 nla_put_failure:
1172 genlmsg_cancel(skb, genlh);
1173 return -EMSGSIZE;
1174 }
1175
gtp_genl_get_pdp(struct sk_buff * skb,struct genl_info * info)1176 static int gtp_genl_get_pdp(struct sk_buff *skb, struct genl_info *info)
1177 {
1178 struct pdp_ctx *pctx = NULL;
1179 struct sk_buff *skb2;
1180 int err;
1181
1182 if (!info->attrs[GTPA_VERSION])
1183 return -EINVAL;
1184
1185 rcu_read_lock();
1186
1187 pctx = gtp_find_pdp(sock_net(skb->sk), info->attrs);
1188 if (IS_ERR(pctx)) {
1189 err = PTR_ERR(pctx);
1190 goto err_unlock;
1191 }
1192
1193 skb2 = genlmsg_new(NLMSG_GOODSIZE, GFP_ATOMIC);
1194 if (skb2 == NULL) {
1195 err = -ENOMEM;
1196 goto err_unlock;
1197 }
1198
1199 err = gtp_genl_fill_info(skb2, NETLINK_CB(skb).portid,
1200 info->snd_seq, info->nlhdr->nlmsg_type, pctx);
1201 if (err < 0)
1202 goto err_unlock_free;
1203
1204 rcu_read_unlock();
1205 return genlmsg_unicast(genl_info_net(info), skb2, info->snd_portid);
1206
1207 err_unlock_free:
1208 kfree_skb(skb2);
1209 err_unlock:
1210 rcu_read_unlock();
1211 return err;
1212 }
1213
gtp_genl_dump_pdp(struct sk_buff * skb,struct netlink_callback * cb)1214 static int gtp_genl_dump_pdp(struct sk_buff *skb,
1215 struct netlink_callback *cb)
1216 {
1217 struct gtp_dev *last_gtp = (struct gtp_dev *)cb->args[2], *gtp;
1218 struct net *net = sock_net(skb->sk);
1219 struct gtp_net *gn = net_generic(net, gtp_net_id);
1220 unsigned long tid = cb->args[1];
1221 int i, k = cb->args[0], ret;
1222 struct pdp_ctx *pctx;
1223
1224 if (cb->args[4])
1225 return 0;
1226
1227 list_for_each_entry_rcu(gtp, &gn->gtp_dev_list, list) {
1228 if (last_gtp && last_gtp != gtp)
1229 continue;
1230 else
1231 last_gtp = NULL;
1232
1233 for (i = k; i < gtp->hash_size; i++) {
1234 hlist_for_each_entry_rcu(pctx, >p->tid_hash[i], hlist_tid) {
1235 if (tid && tid != pctx->u.tid)
1236 continue;
1237 else
1238 tid = 0;
1239
1240 ret = gtp_genl_fill_info(skb,
1241 NETLINK_CB(cb->skb).portid,
1242 cb->nlh->nlmsg_seq,
1243 cb->nlh->nlmsg_type, pctx);
1244 if (ret < 0) {
1245 cb->args[0] = i;
1246 cb->args[1] = pctx->u.tid;
1247 cb->args[2] = (unsigned long)gtp;
1248 goto out;
1249 }
1250 }
1251 }
1252 }
1253 cb->args[4] = 1;
1254 out:
1255 return skb->len;
1256 }
1257
1258 static const struct nla_policy gtp_genl_policy[GTPA_MAX + 1] = {
1259 [GTPA_LINK] = { .type = NLA_U32, },
1260 [GTPA_VERSION] = { .type = NLA_U32, },
1261 [GTPA_TID] = { .type = NLA_U64, },
1262 [GTPA_PEER_ADDRESS] = { .type = NLA_U32, },
1263 [GTPA_MS_ADDRESS] = { .type = NLA_U32, },
1264 [GTPA_FLOW] = { .type = NLA_U16, },
1265 [GTPA_NET_NS_FD] = { .type = NLA_U32, },
1266 [GTPA_I_TEI] = { .type = NLA_U32, },
1267 [GTPA_O_TEI] = { .type = NLA_U32, },
1268 };
1269
1270 static const struct genl_ops gtp_genl_ops[] = {
1271 {
1272 .cmd = GTP_CMD_NEWPDP,
1273 .doit = gtp_genl_new_pdp,
1274 .policy = gtp_genl_policy,
1275 .flags = GENL_ADMIN_PERM,
1276 },
1277 {
1278 .cmd = GTP_CMD_DELPDP,
1279 .doit = gtp_genl_del_pdp,
1280 .policy = gtp_genl_policy,
1281 .flags = GENL_ADMIN_PERM,
1282 },
1283 {
1284 .cmd = GTP_CMD_GETPDP,
1285 .doit = gtp_genl_get_pdp,
1286 .dumpit = gtp_genl_dump_pdp,
1287 .policy = gtp_genl_policy,
1288 .flags = GENL_ADMIN_PERM,
1289 },
1290 };
1291
1292 static struct genl_family gtp_genl_family __ro_after_init = {
1293 .name = "gtp",
1294 .version = 0,
1295 .hdrsize = 0,
1296 .maxattr = GTPA_MAX,
1297 .netnsok = true,
1298 .module = THIS_MODULE,
1299 .ops = gtp_genl_ops,
1300 .n_ops = ARRAY_SIZE(gtp_genl_ops),
1301 };
1302
gtp_net_init(struct net * net)1303 static int __net_init gtp_net_init(struct net *net)
1304 {
1305 struct gtp_net *gn = net_generic(net, gtp_net_id);
1306
1307 INIT_LIST_HEAD(&gn->gtp_dev_list);
1308 return 0;
1309 }
1310
gtp_net_exit(struct net * net)1311 static void __net_exit gtp_net_exit(struct net *net)
1312 {
1313 struct gtp_net *gn = net_generic(net, gtp_net_id);
1314 struct gtp_dev *gtp;
1315 LIST_HEAD(list);
1316
1317 rtnl_lock();
1318 list_for_each_entry(gtp, &gn->gtp_dev_list, list)
1319 gtp_dellink(gtp->dev, &list);
1320
1321 unregister_netdevice_many(&list);
1322 rtnl_unlock();
1323 }
1324
1325 static struct pernet_operations gtp_net_ops = {
1326 .init = gtp_net_init,
1327 .exit = gtp_net_exit,
1328 .id = >p_net_id,
1329 .size = sizeof(struct gtp_net),
1330 };
1331
gtp_init(void)1332 static int __init gtp_init(void)
1333 {
1334 int err;
1335
1336 get_random_bytes(>p_h_initval, sizeof(gtp_h_initval));
1337
1338 err = rtnl_link_register(>p_link_ops);
1339 if (err < 0)
1340 goto error_out;
1341
1342 err = genl_register_family(>p_genl_family);
1343 if (err < 0)
1344 goto unreg_rtnl_link;
1345
1346 err = register_pernet_subsys(>p_net_ops);
1347 if (err < 0)
1348 goto unreg_genl_family;
1349
1350 pr_info("GTP module loaded (pdp ctx size %zd bytes)\n",
1351 sizeof(struct pdp_ctx));
1352 return 0;
1353
1354 unreg_genl_family:
1355 genl_unregister_family(>p_genl_family);
1356 unreg_rtnl_link:
1357 rtnl_link_unregister(>p_link_ops);
1358 error_out:
1359 pr_err("error loading GTP module loaded\n");
1360 return err;
1361 }
1362 late_initcall(gtp_init);
1363
gtp_fini(void)1364 static void __exit gtp_fini(void)
1365 {
1366 unregister_pernet_subsys(>p_net_ops);
1367 genl_unregister_family(>p_genl_family);
1368 rtnl_link_unregister(>p_link_ops);
1369
1370 pr_info("GTP module unloaded\n");
1371 }
1372 module_exit(gtp_fini);
1373
1374 MODULE_LICENSE("GPL");
1375 MODULE_AUTHOR("Harald Welte <hwelte@sysmocom.de>");
1376 MODULE_DESCRIPTION("Interface driver for GTP encapsulated traffic");
1377 MODULE_ALIAS_RTNL_LINK("gtp");
1378 MODULE_ALIAS_GENL_FAMILY("gtp");
1379