1 // SPDX-License-Identifier: GPL-2.0
2 /* Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
3 *
4 * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
5 * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
6 *
7 * References:
8 * o IOC3 ASIC specification 4.51, 1996-04-18
9 * o IEEE 802.3 specification, 2000 edition
10 * o DP38840A Specification, National Semiconductor, March 1997
11 *
12 * To do:
13 *
14 * o Use prefetching for large packets. What is a good lower limit for
15 * prefetching?
16 * o Use hardware checksums.
17 * o Convert to using a IOC3 meta driver.
18 * o Which PHYs might possibly be attached to the IOC3 in real live,
19 * which workarounds are required for them? Do we ever have Lucent's?
20 * o For the 2.5 branch kill the mii-tool ioctls.
21 */
22
23 #define IOC3_NAME "ioc3-eth"
24 #define IOC3_VERSION "2.6.3-4"
25
26 #include <linux/delay.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/errno.h>
30 #include <linux/module.h>
31 #include <linux/pci.h>
32 #include <linux/crc32.h>
33 #include <linux/mii.h>
34 #include <linux/in.h>
35 #include <linux/io.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/gfp.h>
40
41 #ifdef CONFIG_SERIAL_8250
42 #include <linux/serial_core.h>
43 #include <linux/serial_8250.h>
44 #include <linux/serial_reg.h>
45 #endif
46
47 #include <linux/netdevice.h>
48 #include <linux/etherdevice.h>
49 #include <linux/ethtool.h>
50 #include <linux/skbuff.h>
51 #include <linux/dma-direct.h>
52
53 #include <net/ip.h>
54
55 #include <asm/byteorder.h>
56 #include <asm/pgtable.h>
57 #include <linux/uaccess.h>
58 #include <asm/sn/types.h>
59 #include <asm/sn/ioc3.h>
60 #include <asm/pci/bridge.h>
61
62 /* Number of RX buffers. This is tunable in the range of 16 <= x < 512.
63 * The value must be a power of two.
64 */
65 #define RX_BUFFS 64
66 #define RX_RING_ENTRIES 512 /* fixed in hardware */
67 #define RX_RING_MASK (RX_RING_ENTRIES - 1)
68 #define RX_RING_SIZE (RX_RING_ENTRIES * sizeof(u64))
69
70 /* 128 TX buffers (not tunable) */
71 #define TX_RING_ENTRIES 128
72 #define TX_RING_MASK (TX_RING_ENTRIES - 1)
73 #define TX_RING_SIZE (TX_RING_ENTRIES * sizeof(struct ioc3_etxd))
74
75 /* IOC3 does dma transfers in 128 byte blocks */
76 #define IOC3_DMA_XFER_LEN 128UL
77
78 /* Every RX buffer starts with 8 byte descriptor data */
79 #define RX_OFFSET (sizeof(struct ioc3_erxbuf) + NET_IP_ALIGN)
80 #define RX_BUF_SIZE (13 * IOC3_DMA_XFER_LEN)
81
82 #define ETCSR_FD ((21 << ETCSR_IPGR2_SHIFT) | (21 << ETCSR_IPGR1_SHIFT) | 21)
83 #define ETCSR_HD ((17 << ETCSR_IPGR2_SHIFT) | (11 << ETCSR_IPGR1_SHIFT) | 21)
84
85 /* Private per NIC data of the driver. */
86 struct ioc3_private {
87 struct ioc3_ethregs *regs;
88 struct ioc3 *all_regs;
89 struct device *dma_dev;
90 u32 *ssram;
91 unsigned long *rxr; /* pointer to receiver ring */
92 struct ioc3_etxd *txr;
93 dma_addr_t rxr_dma;
94 dma_addr_t txr_dma;
95 struct sk_buff *rx_skbs[RX_RING_ENTRIES];
96 struct sk_buff *tx_skbs[TX_RING_ENTRIES];
97 int rx_ci; /* RX consumer index */
98 int rx_pi; /* RX producer index */
99 int tx_ci; /* TX consumer index */
100 int tx_pi; /* TX producer index */
101 int txqlen;
102 u32 emcr, ehar_h, ehar_l;
103 spinlock_t ioc3_lock;
104 struct mii_if_info mii;
105
106 struct net_device *dev;
107 struct pci_dev *pdev;
108
109 /* Members used by autonegotiation */
110 struct timer_list ioc3_timer;
111 };
112
113 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
114 static void ioc3_set_multicast_list(struct net_device *dev);
115 static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void ioc3_timeout(struct net_device *dev);
117 static inline unsigned int ioc3_hash(const unsigned char *addr);
118 static void ioc3_start(struct ioc3_private *ip);
119 static inline void ioc3_stop(struct ioc3_private *ip);
120 static void ioc3_init(struct net_device *dev);
121 static int ioc3_alloc_rx_bufs(struct net_device *dev);
122 static void ioc3_free_rx_bufs(struct ioc3_private *ip);
123 static inline void ioc3_clean_tx_ring(struct ioc3_private *ip);
124
125 static const char ioc3_str[] = "IOC3 Ethernet";
126 static const struct ethtool_ops ioc3_ethtool_ops;
127
128
aligned_rx_skb_addr(unsigned long addr)129 static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
130 {
131 return (~addr + 1) & (IOC3_DMA_XFER_LEN - 1UL);
132 }
133
ioc3_alloc_skb(struct ioc3_private * ip,struct sk_buff ** skb,struct ioc3_erxbuf ** rxb,dma_addr_t * rxb_dma)134 static inline int ioc3_alloc_skb(struct ioc3_private *ip, struct sk_buff **skb,
135 struct ioc3_erxbuf **rxb, dma_addr_t *rxb_dma)
136 {
137 struct sk_buff *new_skb;
138 dma_addr_t d;
139 int offset;
140
141 new_skb = alloc_skb(RX_BUF_SIZE + IOC3_DMA_XFER_LEN - 1, GFP_ATOMIC);
142 if (!new_skb)
143 return -ENOMEM;
144
145 /* ensure buffer is aligned to IOC3_DMA_XFER_LEN */
146 offset = aligned_rx_skb_addr((unsigned long)new_skb->data);
147 if (offset)
148 skb_reserve(new_skb, offset);
149
150 d = dma_map_single(ip->dma_dev, new_skb->data,
151 RX_BUF_SIZE, DMA_FROM_DEVICE);
152
153 if (dma_mapping_error(ip->dma_dev, d)) {
154 dev_kfree_skb_any(new_skb);
155 return -ENOMEM;
156 }
157 *rxb_dma = d;
158 *rxb = (struct ioc3_erxbuf *)new_skb->data;
159 skb_reserve(new_skb, RX_OFFSET);
160 *skb = new_skb;
161
162 return 0;
163 }
164
165 #ifdef CONFIG_PCI_XTALK_BRIDGE
ioc3_map(dma_addr_t addr,unsigned long attr)166 static inline unsigned long ioc3_map(dma_addr_t addr, unsigned long attr)
167 {
168 return (addr & ~PCI64_ATTR_BAR) | attr;
169 }
170
171 #define ERBAR_VAL (ERBAR_BARRIER_BIT << ERBAR_RXBARR_SHIFT)
172 #else
ioc3_map(dma_addr_t addr,unsigned long attr)173 static inline unsigned long ioc3_map(dma_addr_t addr, unsigned long attr)
174 {
175 return addr;
176 }
177
178 #define ERBAR_VAL 0
179 #endif
180
181 #define IOC3_SIZE 0x100000
182
mcr_pack(u32 pulse,u32 sample)183 static inline u32 mcr_pack(u32 pulse, u32 sample)
184 {
185 return (pulse << 10) | (sample << 2);
186 }
187
nic_wait(u32 __iomem * mcr)188 static int nic_wait(u32 __iomem *mcr)
189 {
190 u32 m;
191
192 do {
193 m = readl(mcr);
194 } while (!(m & 2));
195
196 return m & 1;
197 }
198
nic_reset(u32 __iomem * mcr)199 static int nic_reset(u32 __iomem *mcr)
200 {
201 int presence;
202
203 writel(mcr_pack(500, 65), mcr);
204 presence = nic_wait(mcr);
205
206 writel(mcr_pack(0, 500), mcr);
207 nic_wait(mcr);
208
209 return presence;
210 }
211
nic_read_bit(u32 __iomem * mcr)212 static inline int nic_read_bit(u32 __iomem *mcr)
213 {
214 int result;
215
216 writel(mcr_pack(6, 13), mcr);
217 result = nic_wait(mcr);
218 writel(mcr_pack(0, 100), mcr);
219 nic_wait(mcr);
220
221 return result;
222 }
223
nic_write_bit(u32 __iomem * mcr,int bit)224 static inline void nic_write_bit(u32 __iomem *mcr, int bit)
225 {
226 if (bit)
227 writel(mcr_pack(6, 110), mcr);
228 else
229 writel(mcr_pack(80, 30), mcr);
230
231 nic_wait(mcr);
232 }
233
234 /* Read a byte from an iButton device
235 */
nic_read_byte(u32 __iomem * mcr)236 static u32 nic_read_byte(u32 __iomem *mcr)
237 {
238 u32 result = 0;
239 int i;
240
241 for (i = 0; i < 8; i++)
242 result = (result >> 1) | (nic_read_bit(mcr) << 7);
243
244 return result;
245 }
246
247 /* Write a byte to an iButton device
248 */
nic_write_byte(u32 __iomem * mcr,int byte)249 static void nic_write_byte(u32 __iomem *mcr, int byte)
250 {
251 int i, bit;
252
253 for (i = 8; i; i--) {
254 bit = byte & 1;
255 byte >>= 1;
256
257 nic_write_bit(mcr, bit);
258 }
259 }
260
nic_find(u32 __iomem * mcr,int * last)261 static u64 nic_find(u32 __iomem *mcr, int *last)
262 {
263 int a, b, index, disc;
264 u64 address = 0;
265
266 nic_reset(mcr);
267 /* Search ROM. */
268 nic_write_byte(mcr, 0xf0);
269
270 /* Algorithm from ``Book of iButton Standards''. */
271 for (index = 0, disc = 0; index < 64; index++) {
272 a = nic_read_bit(mcr);
273 b = nic_read_bit(mcr);
274
275 if (a && b) {
276 pr_warn("NIC search failed (not fatal).\n");
277 *last = 0;
278 return 0;
279 }
280
281 if (!a && !b) {
282 if (index == *last) {
283 address |= 1UL << index;
284 } else if (index > *last) {
285 address &= ~(1UL << index);
286 disc = index;
287 } else if ((address & (1UL << index)) == 0) {
288 disc = index;
289 }
290 nic_write_bit(mcr, address & (1UL << index));
291 continue;
292 } else {
293 if (a)
294 address |= 1UL << index;
295 else
296 address &= ~(1UL << index);
297 nic_write_bit(mcr, a);
298 continue;
299 }
300 }
301
302 *last = disc;
303
304 return address;
305 }
306
nic_init(u32 __iomem * mcr)307 static int nic_init(u32 __iomem *mcr)
308 {
309 const char *unknown = "unknown";
310 const char *type = unknown;
311 u8 crc;
312 u8 serial[6];
313 int save = 0, i;
314
315 while (1) {
316 u64 reg;
317
318 reg = nic_find(mcr, &save);
319
320 switch (reg & 0xff) {
321 case 0x91:
322 type = "DS1981U";
323 break;
324 default:
325 if (save == 0) {
326 /* Let the caller try again. */
327 return -1;
328 }
329 continue;
330 }
331
332 nic_reset(mcr);
333
334 /* Match ROM. */
335 nic_write_byte(mcr, 0x55);
336 for (i = 0; i < 8; i++)
337 nic_write_byte(mcr, (reg >> (i << 3)) & 0xff);
338
339 reg >>= 8; /* Shift out type. */
340 for (i = 0; i < 6; i++) {
341 serial[i] = reg & 0xff;
342 reg >>= 8;
343 }
344 crc = reg & 0xff;
345 break;
346 }
347
348 pr_info("Found %s NIC", type);
349 if (type != unknown)
350 pr_cont(" registration number %pM, CRC %02x", serial, crc);
351 pr_cont(".\n");
352
353 return 0;
354 }
355
356 /* Read the NIC (Number-In-a-Can) device used to store the MAC address on
357 * SN0 / SN00 nodeboards and PCI cards.
358 */
ioc3_get_eaddr_nic(struct ioc3_private * ip)359 static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
360 {
361 u32 __iomem *mcr = &ip->all_regs->mcr;
362 int tries = 2; /* There may be some problem with the battery? */
363 u8 nic[14];
364 int i;
365
366 writel(1 << 21, &ip->all_regs->gpcr_s);
367
368 while (tries--) {
369 if (!nic_init(mcr))
370 break;
371 udelay(500);
372 }
373
374 if (tries < 0) {
375 pr_err("Failed to read MAC address\n");
376 return;
377 }
378
379 /* Read Memory. */
380 nic_write_byte(mcr, 0xf0);
381 nic_write_byte(mcr, 0x00);
382 nic_write_byte(mcr, 0x00);
383
384 for (i = 13; i >= 0; i--)
385 nic[i] = nic_read_byte(mcr);
386
387 for (i = 2; i < 8; i++)
388 ip->dev->dev_addr[i - 2] = nic[i];
389 }
390
391 /* Ok, this is hosed by design. It's necessary to know what machine the
392 * NIC is in in order to know how to read the NIC address. We also have
393 * to know if it's a PCI card or a NIC in on the node board ...
394 */
ioc3_get_eaddr(struct ioc3_private * ip)395 static void ioc3_get_eaddr(struct ioc3_private *ip)
396 {
397 ioc3_get_eaddr_nic(ip);
398
399 pr_info("Ethernet address is %pM.\n", ip->dev->dev_addr);
400 }
401
__ioc3_set_mac_address(struct net_device * dev)402 static void __ioc3_set_mac_address(struct net_device *dev)
403 {
404 struct ioc3_private *ip = netdev_priv(dev);
405
406 writel((dev->dev_addr[5] << 8) |
407 dev->dev_addr[4],
408 &ip->regs->emar_h);
409 writel((dev->dev_addr[3] << 24) |
410 (dev->dev_addr[2] << 16) |
411 (dev->dev_addr[1] << 8) |
412 dev->dev_addr[0],
413 &ip->regs->emar_l);
414 }
415
ioc3_set_mac_address(struct net_device * dev,void * addr)416 static int ioc3_set_mac_address(struct net_device *dev, void *addr)
417 {
418 struct ioc3_private *ip = netdev_priv(dev);
419 struct sockaddr *sa = addr;
420
421 memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
422
423 spin_lock_irq(&ip->ioc3_lock);
424 __ioc3_set_mac_address(dev);
425 spin_unlock_irq(&ip->ioc3_lock);
426
427 return 0;
428 }
429
430 /* Caller must hold the ioc3_lock ever for MII readers. This is also
431 * used to protect the transmitter side but it's low contention.
432 */
ioc3_mdio_read(struct net_device * dev,int phy,int reg)433 static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
434 {
435 struct ioc3_private *ip = netdev_priv(dev);
436 struct ioc3_ethregs *regs = ip->regs;
437
438 while (readl(®s->micr) & MICR_BUSY)
439 ;
440 writel((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG,
441 ®s->micr);
442 while (readl(®s->micr) & MICR_BUSY)
443 ;
444
445 return readl(®s->midr_r) & MIDR_DATA_MASK;
446 }
447
ioc3_mdio_write(struct net_device * dev,int phy,int reg,int data)448 static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
449 {
450 struct ioc3_private *ip = netdev_priv(dev);
451 struct ioc3_ethregs *regs = ip->regs;
452
453 while (readl(®s->micr) & MICR_BUSY)
454 ;
455 writel(data, ®s->midr_w);
456 writel((phy << MICR_PHYADDR_SHIFT) | reg, ®s->micr);
457 while (readl(®s->micr) & MICR_BUSY)
458 ;
459 }
460
461 static int ioc3_mii_init(struct ioc3_private *ip);
462
ioc3_get_stats(struct net_device * dev)463 static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
464 {
465 struct ioc3_private *ip = netdev_priv(dev);
466 struct ioc3_ethregs *regs = ip->regs;
467
468 dev->stats.collisions += readl(®s->etcdc) & ETCDC_COLLCNT_MASK;
469 return &dev->stats;
470 }
471
ioc3_tcpudp_checksum(struct sk_buff * skb,u32 hwsum,int len)472 static void ioc3_tcpudp_checksum(struct sk_buff *skb, u32 hwsum, int len)
473 {
474 struct ethhdr *eh = eth_hdr(skb);
475 unsigned int proto;
476 unsigned char *cp;
477 struct iphdr *ih;
478 u32 csum, ehsum;
479 u16 *ew;
480
481 /* Did hardware handle the checksum at all? The cases we can handle
482 * are:
483 *
484 * - TCP and UDP checksums of IPv4 only.
485 * - IPv6 would be doable but we keep that for later ...
486 * - Only unfragmented packets. Did somebody already tell you
487 * fragmentation is evil?
488 * - don't care about packet size. Worst case when processing a
489 * malformed packet we'll try to access the packet at ip header +
490 * 64 bytes which is still inside the skb. Even in the unlikely
491 * case where the checksum is right the higher layers will still
492 * drop the packet as appropriate.
493 */
494 if (eh->h_proto != htons(ETH_P_IP))
495 return;
496
497 ih = (struct iphdr *)((char *)eh + ETH_HLEN);
498 if (ip_is_fragment(ih))
499 return;
500
501 proto = ih->protocol;
502 if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
503 return;
504
505 /* Same as tx - compute csum of pseudo header */
506 csum = hwsum +
507 (ih->tot_len - (ih->ihl << 2)) +
508 htons((u16)ih->protocol) +
509 (ih->saddr >> 16) + (ih->saddr & 0xffff) +
510 (ih->daddr >> 16) + (ih->daddr & 0xffff);
511
512 /* Sum up ethernet dest addr, src addr and protocol */
513 ew = (u16 *)eh;
514 ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
515
516 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
517 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
518
519 csum += 0xffff ^ ehsum;
520
521 /* In the next step we also subtract the 1's complement
522 * checksum of the trailing ethernet CRC.
523 */
524 cp = (char *)eh + len; /* points at trailing CRC */
525 if (len & 1) {
526 csum += 0xffff ^ (u16)((cp[1] << 8) | cp[0]);
527 csum += 0xffff ^ (u16)((cp[3] << 8) | cp[2]);
528 } else {
529 csum += 0xffff ^ (u16)((cp[0] << 8) | cp[1]);
530 csum += 0xffff ^ (u16)((cp[2] << 8) | cp[3]);
531 }
532
533 csum = (csum & 0xffff) + (csum >> 16);
534 csum = (csum & 0xffff) + (csum >> 16);
535
536 if (csum == 0xffff)
537 skb->ip_summed = CHECKSUM_UNNECESSARY;
538 }
539
ioc3_rx(struct net_device * dev)540 static inline void ioc3_rx(struct net_device *dev)
541 {
542 struct ioc3_private *ip = netdev_priv(dev);
543 struct sk_buff *skb, *new_skb;
544 int rx_entry, n_entry, len;
545 struct ioc3_erxbuf *rxb;
546 unsigned long *rxr;
547 dma_addr_t d;
548 u32 w0, err;
549
550 rxr = ip->rxr; /* Ring base */
551 rx_entry = ip->rx_ci; /* RX consume index */
552 n_entry = ip->rx_pi;
553
554 skb = ip->rx_skbs[rx_entry];
555 rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET);
556 w0 = be32_to_cpu(rxb->w0);
557
558 while (w0 & ERXBUF_V) {
559 err = be32_to_cpu(rxb->err); /* It's valid ... */
560 if (err & ERXBUF_GOODPKT) {
561 len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
562 skb_put(skb, len);
563 skb->protocol = eth_type_trans(skb, dev);
564
565 if (ioc3_alloc_skb(ip, &new_skb, &rxb, &d)) {
566 /* Ouch, drop packet and just recycle packet
567 * to keep the ring filled.
568 */
569 dev->stats.rx_dropped++;
570 new_skb = skb;
571 d = rxr[rx_entry];
572 goto next;
573 }
574
575 if (likely(dev->features & NETIF_F_RXCSUM))
576 ioc3_tcpudp_checksum(skb,
577 w0 & ERXBUF_IPCKSUM_MASK,
578 len);
579
580 dma_unmap_single(ip->dma_dev, rxr[rx_entry],
581 RX_BUF_SIZE, DMA_FROM_DEVICE);
582
583 netif_rx(skb);
584
585 ip->rx_skbs[rx_entry] = NULL; /* Poison */
586
587 dev->stats.rx_packets++; /* Statistics */
588 dev->stats.rx_bytes += len;
589 } else {
590 /* The frame is invalid and the skb never
591 * reached the network layer so we can just
592 * recycle it.
593 */
594 new_skb = skb;
595 d = rxr[rx_entry];
596 dev->stats.rx_errors++;
597 }
598 if (err & ERXBUF_CRCERR) /* Statistics */
599 dev->stats.rx_crc_errors++;
600 if (err & ERXBUF_FRAMERR)
601 dev->stats.rx_frame_errors++;
602
603 next:
604 ip->rx_skbs[n_entry] = new_skb;
605 rxr[n_entry] = cpu_to_be64(ioc3_map(d, PCI64_ATTR_BAR));
606 rxb->w0 = 0; /* Clear valid flag */
607 n_entry = (n_entry + 1) & RX_RING_MASK; /* Update erpir */
608
609 /* Now go on to the next ring entry. */
610 rx_entry = (rx_entry + 1) & RX_RING_MASK;
611 skb = ip->rx_skbs[rx_entry];
612 rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET);
613 w0 = be32_to_cpu(rxb->w0);
614 }
615 writel((n_entry << 3) | ERPIR_ARM, &ip->regs->erpir);
616 ip->rx_pi = n_entry;
617 ip->rx_ci = rx_entry;
618 }
619
ioc3_tx(struct net_device * dev)620 static inline void ioc3_tx(struct net_device *dev)
621 {
622 struct ioc3_private *ip = netdev_priv(dev);
623 struct ioc3_ethregs *regs = ip->regs;
624 unsigned long packets, bytes;
625 int tx_entry, o_entry;
626 struct sk_buff *skb;
627 u32 etcir;
628
629 spin_lock(&ip->ioc3_lock);
630 etcir = readl(®s->etcir);
631
632 tx_entry = (etcir >> 7) & TX_RING_MASK;
633 o_entry = ip->tx_ci;
634 packets = 0;
635 bytes = 0;
636
637 while (o_entry != tx_entry) {
638 packets++;
639 skb = ip->tx_skbs[o_entry];
640 bytes += skb->len;
641 dev_consume_skb_irq(skb);
642 ip->tx_skbs[o_entry] = NULL;
643
644 o_entry = (o_entry + 1) & TX_RING_MASK; /* Next */
645
646 etcir = readl(®s->etcir); /* More pkts sent? */
647 tx_entry = (etcir >> 7) & TX_RING_MASK;
648 }
649
650 dev->stats.tx_packets += packets;
651 dev->stats.tx_bytes += bytes;
652 ip->txqlen -= packets;
653
654 if (netif_queue_stopped(dev) && ip->txqlen < TX_RING_ENTRIES)
655 netif_wake_queue(dev);
656
657 ip->tx_ci = o_entry;
658 spin_unlock(&ip->ioc3_lock);
659 }
660
661 /* Deal with fatal IOC3 errors. This condition might be caused by a hard or
662 * software problems, so we should try to recover
663 * more gracefully if this ever happens. In theory we might be flooded
664 * with such error interrupts if something really goes wrong, so we might
665 * also consider to take the interface down.
666 */
ioc3_error(struct net_device * dev,u32 eisr)667 static void ioc3_error(struct net_device *dev, u32 eisr)
668 {
669 struct ioc3_private *ip = netdev_priv(dev);
670
671 spin_lock(&ip->ioc3_lock);
672
673 if (eisr & EISR_RXOFLO)
674 net_err_ratelimited("%s: RX overflow.\n", dev->name);
675 if (eisr & EISR_RXBUFOFLO)
676 net_err_ratelimited("%s: RX buffer overflow.\n", dev->name);
677 if (eisr & EISR_RXMEMERR)
678 net_err_ratelimited("%s: RX PCI error.\n", dev->name);
679 if (eisr & EISR_RXPARERR)
680 net_err_ratelimited("%s: RX SSRAM parity error.\n", dev->name);
681 if (eisr & EISR_TXBUFUFLO)
682 net_err_ratelimited("%s: TX buffer underflow.\n", dev->name);
683 if (eisr & EISR_TXMEMERR)
684 net_err_ratelimited("%s: TX PCI error.\n", dev->name);
685
686 ioc3_stop(ip);
687 ioc3_free_rx_bufs(ip);
688 ioc3_clean_tx_ring(ip);
689
690 ioc3_init(dev);
691 if (ioc3_alloc_rx_bufs(dev)) {
692 netdev_err(dev, "%s: rx buffer allocation failed\n", __func__);
693 spin_unlock(&ip->ioc3_lock);
694 return;
695 }
696 ioc3_start(ip);
697 ioc3_mii_init(ip);
698
699 netif_wake_queue(dev);
700
701 spin_unlock(&ip->ioc3_lock);
702 }
703
704 /* The interrupt handler does all of the Rx thread work and cleans up
705 * after the Tx thread.
706 */
ioc3_interrupt(int irq,void * dev_id)707 static irqreturn_t ioc3_interrupt(int irq, void *dev_id)
708 {
709 struct ioc3_private *ip = netdev_priv(dev_id);
710 struct ioc3_ethregs *regs = ip->regs;
711 u32 eisr;
712
713 eisr = readl(®s->eisr);
714 writel(eisr, ®s->eisr);
715 readl(®s->eisr); /* Flush */
716
717 if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
718 EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
719 ioc3_error(dev_id, eisr);
720 if (eisr & EISR_RXTIMERINT)
721 ioc3_rx(dev_id);
722 if (eisr & EISR_TXEXPLICIT)
723 ioc3_tx(dev_id);
724
725 return IRQ_HANDLED;
726 }
727
ioc3_setup_duplex(struct ioc3_private * ip)728 static inline void ioc3_setup_duplex(struct ioc3_private *ip)
729 {
730 struct ioc3_ethregs *regs = ip->regs;
731
732 spin_lock_irq(&ip->ioc3_lock);
733
734 if (ip->mii.full_duplex) {
735 writel(ETCSR_FD, ®s->etcsr);
736 ip->emcr |= EMCR_DUPLEX;
737 } else {
738 writel(ETCSR_HD, ®s->etcsr);
739 ip->emcr &= ~EMCR_DUPLEX;
740 }
741 writel(ip->emcr, ®s->emcr);
742
743 spin_unlock_irq(&ip->ioc3_lock);
744 }
745
ioc3_timer(struct timer_list * t)746 static void ioc3_timer(struct timer_list *t)
747 {
748 struct ioc3_private *ip = from_timer(ip, t, ioc3_timer);
749
750 /* Print the link status if it has changed */
751 mii_check_media(&ip->mii, 1, 0);
752 ioc3_setup_duplex(ip);
753
754 ip->ioc3_timer.expires = jiffies + ((12 * HZ) / 10); /* 1.2s */
755 add_timer(&ip->ioc3_timer);
756 }
757
758 /* Try to find a PHY. There is no apparent relation between the MII addresses
759 * in the SGI documentation and what we find in reality, so we simply probe
760 * for the PHY. It seems IOC3 PHYs usually live on address 31. One of my
761 * onboard IOC3s has the special oddity that probing doesn't seem to find it
762 * yet the interface seems to work fine, so if probing fails we for now will
763 * simply default to PHY 31 instead of bailing out.
764 */
ioc3_mii_init(struct ioc3_private * ip)765 static int ioc3_mii_init(struct ioc3_private *ip)
766 {
767 int ioc3_phy_workaround = 1;
768 int i, found = 0, res = 0;
769 u16 word;
770
771 for (i = 0; i < 32; i++) {
772 word = ioc3_mdio_read(ip->dev, i, MII_PHYSID1);
773
774 if (word != 0xffff && word != 0x0000) {
775 found = 1;
776 break; /* Found a PHY */
777 }
778 }
779
780 if (!found) {
781 if (ioc3_phy_workaround) {
782 i = 31;
783 } else {
784 ip->mii.phy_id = -1;
785 res = -ENODEV;
786 goto out;
787 }
788 }
789
790 ip->mii.phy_id = i;
791
792 out:
793 return res;
794 }
795
ioc3_mii_start(struct ioc3_private * ip)796 static void ioc3_mii_start(struct ioc3_private *ip)
797 {
798 ip->ioc3_timer.expires = jiffies + (12 * HZ) / 10; /* 1.2 sec. */
799 add_timer(&ip->ioc3_timer);
800 }
801
ioc3_tx_unmap(struct ioc3_private * ip,int entry)802 static inline void ioc3_tx_unmap(struct ioc3_private *ip, int entry)
803 {
804 struct ioc3_etxd *desc;
805 u32 cmd, bufcnt, len;
806
807 desc = &ip->txr[entry];
808 cmd = be32_to_cpu(desc->cmd);
809 bufcnt = be32_to_cpu(desc->bufcnt);
810 if (cmd & ETXD_B1V) {
811 len = (bufcnt & ETXD_B1CNT_MASK) >> ETXD_B1CNT_SHIFT;
812 dma_unmap_single(ip->dma_dev, be64_to_cpu(desc->p1),
813 len, DMA_TO_DEVICE);
814 }
815 if (cmd & ETXD_B2V) {
816 len = (bufcnt & ETXD_B2CNT_MASK) >> ETXD_B2CNT_SHIFT;
817 dma_unmap_single(ip->dma_dev, be64_to_cpu(desc->p2),
818 len, DMA_TO_DEVICE);
819 }
820 }
821
ioc3_clean_tx_ring(struct ioc3_private * ip)822 static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
823 {
824 struct sk_buff *skb;
825 int i;
826
827 for (i = 0; i < TX_RING_ENTRIES; i++) {
828 skb = ip->tx_skbs[i];
829 if (skb) {
830 ioc3_tx_unmap(ip, i);
831 ip->tx_skbs[i] = NULL;
832 dev_kfree_skb_any(skb);
833 }
834 ip->txr[i].cmd = 0;
835 }
836 ip->tx_pi = 0;
837 ip->tx_ci = 0;
838 }
839
ioc3_free_rx_bufs(struct ioc3_private * ip)840 static void ioc3_free_rx_bufs(struct ioc3_private *ip)
841 {
842 int rx_entry, n_entry;
843 struct sk_buff *skb;
844
845 n_entry = ip->rx_ci;
846 rx_entry = ip->rx_pi;
847
848 while (n_entry != rx_entry) {
849 skb = ip->rx_skbs[n_entry];
850 if (skb) {
851 dma_unmap_single(ip->dma_dev,
852 be64_to_cpu(ip->rxr[n_entry]),
853 RX_BUF_SIZE, DMA_FROM_DEVICE);
854 dev_kfree_skb_any(skb);
855 }
856 n_entry = (n_entry + 1) & RX_RING_MASK;
857 }
858 }
859
ioc3_alloc_rx_bufs(struct net_device * dev)860 static int ioc3_alloc_rx_bufs(struct net_device *dev)
861 {
862 struct ioc3_private *ip = netdev_priv(dev);
863 struct ioc3_erxbuf *rxb;
864 dma_addr_t d;
865 int i;
866
867 /* Now the rx buffers. The RX ring may be larger but
868 * we only allocate 16 buffers for now. Need to tune
869 * this for performance and memory later.
870 */
871 for (i = 0; i < RX_BUFFS; i++) {
872 if (ioc3_alloc_skb(ip, &ip->rx_skbs[i], &rxb, &d))
873 return -ENOMEM;
874
875 rxb->w0 = 0; /* Clear valid flag */
876 ip->rxr[i] = cpu_to_be64(ioc3_map(d, PCI64_ATTR_BAR));
877 }
878 ip->rx_ci = 0;
879 ip->rx_pi = RX_BUFFS;
880
881 return 0;
882 }
883
ioc3_ssram_disc(struct ioc3_private * ip)884 static inline void ioc3_ssram_disc(struct ioc3_private *ip)
885 {
886 struct ioc3_ethregs *regs = ip->regs;
887 u32 *ssram0 = &ip->ssram[0x0000];
888 u32 *ssram1 = &ip->ssram[0x4000];
889 u32 pattern = 0x5555;
890
891 /* Assume the larger size SSRAM and enable parity checking */
892 writel(readl(®s->emcr) | (EMCR_BUFSIZ | EMCR_RAMPAR), ®s->emcr);
893 readl(®s->emcr); /* Flush */
894
895 writel(pattern, ssram0);
896 writel(~pattern & IOC3_SSRAM_DM, ssram1);
897
898 if ((readl(ssram0) & IOC3_SSRAM_DM) != pattern ||
899 (readl(ssram1) & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
900 /* set ssram size to 64 KB */
901 ip->emcr |= EMCR_RAMPAR;
902 writel(readl(®s->emcr) & ~EMCR_BUFSIZ, ®s->emcr);
903 } else {
904 ip->emcr |= EMCR_BUFSIZ | EMCR_RAMPAR;
905 }
906 }
907
ioc3_init(struct net_device * dev)908 static void ioc3_init(struct net_device *dev)
909 {
910 struct ioc3_private *ip = netdev_priv(dev);
911 struct ioc3_ethregs *regs = ip->regs;
912
913 del_timer_sync(&ip->ioc3_timer); /* Kill if running */
914
915 writel(EMCR_RST, ®s->emcr); /* Reset */
916 readl(®s->emcr); /* Flush WB */
917 udelay(4); /* Give it time ... */
918 writel(0, ®s->emcr);
919 readl(®s->emcr);
920
921 /* Misc registers */
922 writel(ERBAR_VAL, ®s->erbar);
923 readl(®s->etcdc); /* Clear on read */
924 writel(15, ®s->ercsr); /* RX low watermark */
925 writel(0, ®s->ertr); /* Interrupt immediately */
926 __ioc3_set_mac_address(dev);
927 writel(ip->ehar_h, ®s->ehar_h);
928 writel(ip->ehar_l, ®s->ehar_l);
929 writel(42, ®s->ersr); /* XXX should be random */
930 }
931
ioc3_start(struct ioc3_private * ip)932 static void ioc3_start(struct ioc3_private *ip)
933 {
934 struct ioc3_ethregs *regs = ip->regs;
935 unsigned long ring;
936
937 /* Now the rx ring base, consume & produce registers. */
938 ring = ioc3_map(ip->rxr_dma, PCI64_ATTR_PREC);
939 writel(ring >> 32, ®s->erbr_h);
940 writel(ring & 0xffffffff, ®s->erbr_l);
941 writel(ip->rx_ci << 3, ®s->ercir);
942 writel((ip->rx_pi << 3) | ERPIR_ARM, ®s->erpir);
943
944 ring = ioc3_map(ip->txr_dma, PCI64_ATTR_PREC);
945
946 ip->txqlen = 0; /* nothing queued */
947
948 /* Now the tx ring base, consume & produce registers. */
949 writel(ring >> 32, ®s->etbr_h);
950 writel(ring & 0xffffffff, ®s->etbr_l);
951 writel(ip->tx_pi << 7, ®s->etpir);
952 writel(ip->tx_ci << 7, ®s->etcir);
953 readl(®s->etcir); /* Flush */
954
955 ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
956 EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
957 writel(ip->emcr, ®s->emcr);
958 writel(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
959 EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
960 EISR_TXEXPLICIT | EISR_TXMEMERR, ®s->eier);
961 readl(®s->eier);
962 }
963
ioc3_stop(struct ioc3_private * ip)964 static inline void ioc3_stop(struct ioc3_private *ip)
965 {
966 struct ioc3_ethregs *regs = ip->regs;
967
968 writel(0, ®s->emcr); /* Shutup */
969 writel(0, ®s->eier); /* Disable interrupts */
970 readl(®s->eier); /* Flush */
971 }
972
ioc3_open(struct net_device * dev)973 static int ioc3_open(struct net_device *dev)
974 {
975 struct ioc3_private *ip = netdev_priv(dev);
976
977 if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
978 netdev_err(dev, "Can't get irq %d\n", dev->irq);
979
980 return -EAGAIN;
981 }
982
983 ip->ehar_h = 0;
984 ip->ehar_l = 0;
985
986 ioc3_init(dev);
987 if (ioc3_alloc_rx_bufs(dev)) {
988 netdev_err(dev, "%s: rx buffer allocation failed\n", __func__);
989 return -ENOMEM;
990 }
991 ioc3_start(ip);
992 ioc3_mii_start(ip);
993
994 netif_start_queue(dev);
995 return 0;
996 }
997
ioc3_close(struct net_device * dev)998 static int ioc3_close(struct net_device *dev)
999 {
1000 struct ioc3_private *ip = netdev_priv(dev);
1001
1002 del_timer_sync(&ip->ioc3_timer);
1003
1004 netif_stop_queue(dev);
1005
1006 ioc3_stop(ip);
1007 free_irq(dev->irq, dev);
1008
1009 ioc3_free_rx_bufs(ip);
1010 ioc3_clean_tx_ring(ip);
1011
1012 return 0;
1013 }
1014
1015 /* MENET cards have four IOC3 chips, which are attached to two sets of
1016 * PCI slot resources each: the primary connections are on slots
1017 * 0..3 and the secondaries are on 4..7
1018 *
1019 * All four ethernets are brought out to connectors; six serial ports
1020 * (a pair from each of the first three IOC3s) are brought out to
1021 * MiniDINs; all other subdevices are left swinging in the wind, leave
1022 * them disabled.
1023 */
1024
ioc3_adjacent_is_ioc3(struct pci_dev * pdev,int slot)1025 static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
1026 {
1027 struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
1028 int ret = 0;
1029
1030 if (dev) {
1031 if (dev->vendor == PCI_VENDOR_ID_SGI &&
1032 dev->device == PCI_DEVICE_ID_SGI_IOC3)
1033 ret = 1;
1034 pci_dev_put(dev);
1035 }
1036
1037 return ret;
1038 }
1039
ioc3_is_menet(struct pci_dev * pdev)1040 static int ioc3_is_menet(struct pci_dev *pdev)
1041 {
1042 return !pdev->bus->parent &&
1043 ioc3_adjacent_is_ioc3(pdev, 0) &&
1044 ioc3_adjacent_is_ioc3(pdev, 1) &&
1045 ioc3_adjacent_is_ioc3(pdev, 2);
1046 }
1047
1048 #ifdef CONFIG_SERIAL_8250
1049 /* Note about serial ports and consoles:
1050 * For console output, everyone uses the IOC3 UARTA (offset 0x178)
1051 * connected to the master node (look in ip27_setup_console() and
1052 * ip27prom_console_write()).
1053 *
1054 * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
1055 * addresses on a partitioned machine. Since we currently use the ioc3
1056 * serial ports, we use dynamic serial port discovery that the serial.c
1057 * driver uses for pci/pnp ports (there is an entry for the SGI ioc3
1058 * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
1059 * than UARTB's, although UARTA on o200s has traditionally been known as
1060 * port 0. So, we just use one serial port from each ioc3 (since the
1061 * serial driver adds addresses to get to higher ports).
1062 *
1063 * The first one to do a register_console becomes the preferred console
1064 * (if there is no kernel command line console= directive). /dev/console
1065 * (ie 5, 1) is then "aliased" into the device number returned by the
1066 * "device" routine referred to in this console structure
1067 * (ip27prom_console_dev).
1068 *
1069 * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
1070 * around ioc3 oddities in this respect.
1071 *
1072 * The IOC3 serials use a 22MHz clock rate with an additional divider which
1073 * can be programmed in the SCR register if the DLAB bit is set.
1074 *
1075 * Register to interrupt zero because we share the interrupt with
1076 * the serial driver which we don't properly support yet.
1077 *
1078 * Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
1079 * registered.
1080 */
ioc3_8250_register(struct ioc3_uartregs __iomem * uart)1081 static void ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
1082 {
1083 #define COSMISC_CONSTANT 6
1084
1085 struct uart_8250_port port = {
1086 .port = {
1087 .irq = 0,
1088 .flags = UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
1089 .iotype = UPIO_MEM,
1090 .regshift = 0,
1091 .uartclk = (22000000 << 1) / COSMISC_CONSTANT,
1092
1093 .membase = (unsigned char __iomem *)uart,
1094 .mapbase = (unsigned long)uart,
1095 }
1096 };
1097 unsigned char lcr;
1098
1099 lcr = readb(&uart->iu_lcr);
1100 writeb(lcr | UART_LCR_DLAB, &uart->iu_lcr);
1101 writeb(COSMISC_CONSTANT, &uart->iu_scr);
1102 writeb(lcr, &uart->iu_lcr);
1103 readb(&uart->iu_lcr);
1104 serial8250_register_8250_port(&port);
1105 }
1106
ioc3_serial_probe(struct pci_dev * pdev,struct ioc3 * ioc3)1107 static void ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
1108 {
1109 u32 sio_iec;
1110
1111 /* We need to recognice and treat the fourth MENET serial as it
1112 * does not have an SuperIO chip attached to it, therefore attempting
1113 * to access it will result in bus errors. We call something an
1114 * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
1115 * in it. This is paranoid but we want to avoid blowing up on a
1116 * showhorn PCI box that happens to have 4 IOC3 cards in it so it's
1117 * not paranoid enough ...
1118 */
1119 if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
1120 return;
1121
1122 /* Switch IOC3 to PIO mode. It probably already was but let's be
1123 * paranoid
1124 */
1125 writel(GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL, &ioc3->gpcr_s);
1126 readl(&ioc3->gpcr_s);
1127 writel(0, &ioc3->gppr[6]);
1128 readl(&ioc3->gppr[6]);
1129 writel(0, &ioc3->gppr[7]);
1130 readl(&ioc3->gppr[7]);
1131 writel(readl(&ioc3->port_a.sscr) & ~SSCR_DMA_EN, &ioc3->port_a.sscr);
1132 readl(&ioc3->port_a.sscr);
1133 writel(readl(&ioc3->port_b.sscr) & ~SSCR_DMA_EN, &ioc3->port_b.sscr);
1134 readl(&ioc3->port_b.sscr);
1135 /* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
1136 sio_iec = readl(&ioc3->sio_iec);
1137 sio_iec &= ~(SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
1138 SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER |
1139 SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS |
1140 SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR);
1141 sio_iec |= SIO_IR_SA_INT;
1142 sio_iec &= ~(SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
1143 SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER |
1144 SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS |
1145 SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR);
1146 sio_iec |= SIO_IR_SB_INT;
1147 writel(sio_iec, &ioc3->sio_iec);
1148 writel(0, &ioc3->port_a.sscr);
1149 writel(0, &ioc3->port_b.sscr);
1150
1151 ioc3_8250_register(&ioc3->sregs.uarta);
1152 ioc3_8250_register(&ioc3->sregs.uartb);
1153 }
1154 #endif
1155
1156 static const struct net_device_ops ioc3_netdev_ops = {
1157 .ndo_open = ioc3_open,
1158 .ndo_stop = ioc3_close,
1159 .ndo_start_xmit = ioc3_start_xmit,
1160 .ndo_tx_timeout = ioc3_timeout,
1161 .ndo_get_stats = ioc3_get_stats,
1162 .ndo_set_rx_mode = ioc3_set_multicast_list,
1163 .ndo_do_ioctl = ioc3_ioctl,
1164 .ndo_validate_addr = eth_validate_addr,
1165 .ndo_set_mac_address = ioc3_set_mac_address,
1166 };
1167
ioc3_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1168 static int ioc3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1169 {
1170 unsigned int sw_physid1, sw_physid2;
1171 struct net_device *dev = NULL;
1172 struct ioc3_private *ip;
1173 struct ioc3 *ioc3;
1174 unsigned long ioc3_base, ioc3_size;
1175 u32 vendor, model, rev;
1176 int err, pci_using_dac;
1177
1178 /* Configure DMA attributes. */
1179 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1180 if (!err) {
1181 pci_using_dac = 1;
1182 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1183 if (err < 0) {
1184 pr_err("%s: Unable to obtain 64 bit DMA for consistent allocations\n",
1185 pci_name(pdev));
1186 goto out;
1187 }
1188 } else {
1189 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1190 if (err) {
1191 pr_err("%s: No usable DMA configuration, aborting.\n",
1192 pci_name(pdev));
1193 goto out;
1194 }
1195 pci_using_dac = 0;
1196 }
1197
1198 if (pci_enable_device(pdev))
1199 return -ENODEV;
1200
1201 dev = alloc_etherdev(sizeof(struct ioc3_private));
1202 if (!dev) {
1203 err = -ENOMEM;
1204 goto out_disable;
1205 }
1206
1207 if (pci_using_dac)
1208 dev->features |= NETIF_F_HIGHDMA;
1209
1210 err = pci_request_regions(pdev, "ioc3");
1211 if (err)
1212 goto out_free;
1213
1214 SET_NETDEV_DEV(dev, &pdev->dev);
1215
1216 ip = netdev_priv(dev);
1217 ip->dev = dev;
1218 ip->dma_dev = &pdev->dev;
1219
1220 dev->irq = pdev->irq;
1221
1222 ioc3_base = pci_resource_start(pdev, 0);
1223 ioc3_size = pci_resource_len(pdev, 0);
1224 ioc3 = (struct ioc3 *)ioremap(ioc3_base, ioc3_size);
1225 if (!ioc3) {
1226 pr_err("ioc3eth(%s): ioremap failed, goodbye.\n",
1227 pci_name(pdev));
1228 err = -ENOMEM;
1229 goto out_res;
1230 }
1231 ip->regs = &ioc3->eth;
1232 ip->ssram = ioc3->ssram;
1233 ip->all_regs = ioc3;
1234
1235 #ifdef CONFIG_SERIAL_8250
1236 ioc3_serial_probe(pdev, ioc3);
1237 #endif
1238
1239 spin_lock_init(&ip->ioc3_lock);
1240 timer_setup(&ip->ioc3_timer, ioc3_timer, 0);
1241
1242 ioc3_stop(ip);
1243
1244 /* Allocate rx ring. 4kb = 512 entries, must be 4kb aligned */
1245 ip->rxr = dma_direct_alloc_pages(ip->dma_dev, RX_RING_SIZE,
1246 &ip->rxr_dma, GFP_ATOMIC, 0);
1247 if (!ip->rxr) {
1248 pr_err("ioc3-eth: rx ring allocation failed\n");
1249 err = -ENOMEM;
1250 goto out_stop;
1251 }
1252
1253 /* Allocate tx rings. 16kb = 128 bufs, must be 16kb aligned */
1254 ip->txr = dma_direct_alloc_pages(ip->dma_dev, TX_RING_SIZE,
1255 &ip->txr_dma,
1256 GFP_KERNEL | __GFP_ZERO, 0);
1257 if (!ip->txr) {
1258 pr_err("ioc3-eth: tx ring allocation failed\n");
1259 err = -ENOMEM;
1260 goto out_stop;
1261 }
1262
1263 ioc3_init(dev);
1264
1265 ip->pdev = pdev;
1266
1267 ip->mii.phy_id_mask = 0x1f;
1268 ip->mii.reg_num_mask = 0x1f;
1269 ip->mii.dev = dev;
1270 ip->mii.mdio_read = ioc3_mdio_read;
1271 ip->mii.mdio_write = ioc3_mdio_write;
1272
1273 ioc3_mii_init(ip);
1274
1275 if (ip->mii.phy_id == -1) {
1276 pr_err("ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
1277 pci_name(pdev));
1278 err = -ENODEV;
1279 goto out_stop;
1280 }
1281
1282 ioc3_mii_start(ip);
1283 ioc3_ssram_disc(ip);
1284 ioc3_get_eaddr(ip);
1285
1286 /* The IOC3-specific entries in the device structure. */
1287 dev->watchdog_timeo = 5 * HZ;
1288 dev->netdev_ops = &ioc3_netdev_ops;
1289 dev->ethtool_ops = &ioc3_ethtool_ops;
1290 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
1291 dev->features = NETIF_F_IP_CSUM;
1292
1293 sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
1294 sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
1295
1296 err = register_netdev(dev);
1297 if (err)
1298 goto out_stop;
1299
1300 mii_check_media(&ip->mii, 1, 1);
1301 ioc3_setup_duplex(ip);
1302
1303 vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
1304 model = (sw_physid2 >> 4) & 0x3f;
1305 rev = sw_physid2 & 0xf;
1306 netdev_info(dev, "Using PHY %d, vendor 0x%x, model %d, rev %d.\n",
1307 ip->mii.phy_id, vendor, model, rev);
1308 netdev_info(dev, "IOC3 SSRAM has %d kbyte.\n",
1309 ip->emcr & EMCR_BUFSIZ ? 128 : 64);
1310
1311 return 0;
1312
1313 out_stop:
1314 del_timer_sync(&ip->ioc3_timer);
1315 if (ip->rxr)
1316 dma_direct_free_pages(ip->dma_dev, RX_RING_SIZE, ip->rxr,
1317 ip->rxr_dma, 0);
1318 if (ip->txr)
1319 dma_direct_free_pages(ip->dma_dev, TX_RING_SIZE, ip->txr,
1320 ip->txr_dma, 0);
1321 out_res:
1322 pci_release_regions(pdev);
1323 out_free:
1324 free_netdev(dev);
1325 out_disable:
1326 /* We should call pci_disable_device(pdev); here if the IOC3 wasn't
1327 * such a weird device ...
1328 */
1329 out:
1330 return err;
1331 }
1332
ioc3_remove_one(struct pci_dev * pdev)1333 static void ioc3_remove_one(struct pci_dev *pdev)
1334 {
1335 struct net_device *dev = pci_get_drvdata(pdev);
1336 struct ioc3_private *ip = netdev_priv(dev);
1337
1338 dma_direct_free_pages(ip->dma_dev, RX_RING_SIZE, ip->rxr,
1339 ip->rxr_dma, 0);
1340 dma_direct_free_pages(ip->dma_dev, TX_RING_SIZE, ip->txr,
1341 ip->txr_dma, 0);
1342
1343 unregister_netdev(dev);
1344 del_timer_sync(&ip->ioc3_timer);
1345
1346 iounmap(ip->all_regs);
1347 pci_release_regions(pdev);
1348 free_netdev(dev);
1349 /* We should call pci_disable_device(pdev); here if the IOC3 wasn't
1350 * such a weird device ...
1351 */
1352 }
1353
1354 static const struct pci_device_id ioc3_pci_tbl[] = {
1355 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
1356 { 0 }
1357 };
1358 MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
1359
1360 static struct pci_driver ioc3_driver = {
1361 .name = "ioc3-eth",
1362 .id_table = ioc3_pci_tbl,
1363 .probe = ioc3_probe,
1364 .remove = ioc3_remove_one,
1365 };
1366
ioc3_start_xmit(struct sk_buff * skb,struct net_device * dev)1367 static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
1368 {
1369 struct ioc3_private *ip = netdev_priv(dev);
1370 struct ioc3_etxd *desc;
1371 unsigned long data;
1372 unsigned int len;
1373 int produce;
1374 u32 w0 = 0;
1375
1376 /* IOC3 has a fairly simple minded checksumming hardware which simply
1377 * adds up the 1's complement checksum for the entire packet and
1378 * inserts it at an offset which can be specified in the descriptor
1379 * into the transmit packet. This means we have to compensate for the
1380 * MAC header which should not be summed and the TCP/UDP pseudo headers
1381 * manually.
1382 */
1383 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1384 const struct iphdr *ih = ip_hdr(skb);
1385 const int proto = ntohs(ih->protocol);
1386 unsigned int csoff;
1387 u32 csum, ehsum;
1388 u16 *eh;
1389
1390 /* The MAC header. skb->mac seem the logic approach
1391 * to find the MAC header - except it's a NULL pointer ...
1392 */
1393 eh = (u16 *)skb->data;
1394
1395 /* Sum up dest addr, src addr and protocol */
1396 ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1397
1398 /* Skip IP header; it's sum is always zero and was
1399 * already filled in by ip_output.c
1400 */
1401 csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1402 ih->tot_len - (ih->ihl << 2),
1403 proto, csum_fold(ehsum));
1404
1405 csum = (csum & 0xffff) + (csum >> 16); /* Fold again */
1406 csum = (csum & 0xffff) + (csum >> 16);
1407
1408 csoff = ETH_HLEN + (ih->ihl << 2);
1409 if (proto == IPPROTO_UDP) {
1410 csoff += offsetof(struct udphdr, check);
1411 udp_hdr(skb)->check = csum;
1412 }
1413 if (proto == IPPROTO_TCP) {
1414 csoff += offsetof(struct tcphdr, check);
1415 tcp_hdr(skb)->check = csum;
1416 }
1417
1418 w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1419 }
1420
1421 spin_lock_irq(&ip->ioc3_lock);
1422
1423 data = (unsigned long)skb->data;
1424 len = skb->len;
1425
1426 produce = ip->tx_pi;
1427 desc = &ip->txr[produce];
1428
1429 if (len <= 104) {
1430 /* Short packet, let's copy it directly into the ring. */
1431 skb_copy_from_linear_data(skb, desc->data, skb->len);
1432 if (len < ETH_ZLEN) {
1433 /* Very short packet, pad with zeros at the end. */
1434 memset(desc->data + len, 0, ETH_ZLEN - len);
1435 len = ETH_ZLEN;
1436 }
1437 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1438 desc->bufcnt = cpu_to_be32(len);
1439 } else if ((data ^ (data + len - 1)) & 0x4000) {
1440 unsigned long b2 = (data | 0x3fffUL) + 1UL;
1441 unsigned long s1 = b2 - data;
1442 unsigned long s2 = data + len - b2;
1443 dma_addr_t d1, d2;
1444
1445 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE |
1446 ETXD_B1V | ETXD_B2V | w0);
1447 desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1448 (s2 << ETXD_B2CNT_SHIFT));
1449 d1 = dma_map_single(ip->dma_dev, skb->data, s1, DMA_TO_DEVICE);
1450 if (dma_mapping_error(ip->dma_dev, d1))
1451 goto drop_packet;
1452 d2 = dma_map_single(ip->dma_dev, (void *)b2, s1, DMA_TO_DEVICE);
1453 if (dma_mapping_error(ip->dma_dev, d2)) {
1454 dma_unmap_single(ip->dma_dev, d1, len, DMA_TO_DEVICE);
1455 goto drop_packet;
1456 }
1457 desc->p1 = cpu_to_be64(ioc3_map(d1, PCI64_ATTR_PREF));
1458 desc->p2 = cpu_to_be64(ioc3_map(d2, PCI64_ATTR_PREF));
1459 } else {
1460 dma_addr_t d;
1461
1462 /* Normal sized packet that doesn't cross a page boundary. */
1463 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1464 desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1465 d = dma_map_single(ip->dma_dev, skb->data, len, DMA_TO_DEVICE);
1466 if (dma_mapping_error(ip->dma_dev, d))
1467 goto drop_packet;
1468 desc->p1 = cpu_to_be64(ioc3_map(d, PCI64_ATTR_PREF));
1469 }
1470
1471 mb(); /* make sure all descriptor changes are visible */
1472
1473 ip->tx_skbs[produce] = skb; /* Remember skb */
1474 produce = (produce + 1) & TX_RING_MASK;
1475 ip->tx_pi = produce;
1476 writel(produce << 7, &ip->regs->etpir); /* Fire ... */
1477
1478 ip->txqlen++;
1479
1480 if (ip->txqlen >= (TX_RING_ENTRIES - 1))
1481 netif_stop_queue(dev);
1482
1483 spin_unlock_irq(&ip->ioc3_lock);
1484
1485 return NETDEV_TX_OK;
1486
1487 drop_packet:
1488 dev_kfree_skb_any(skb);
1489 dev->stats.tx_dropped++;
1490
1491 spin_unlock_irq(&ip->ioc3_lock);
1492
1493 return NETDEV_TX_OK;
1494 }
1495
ioc3_timeout(struct net_device * dev)1496 static void ioc3_timeout(struct net_device *dev)
1497 {
1498 struct ioc3_private *ip = netdev_priv(dev);
1499
1500 netdev_err(dev, "transmit timed out, resetting\n");
1501
1502 spin_lock_irq(&ip->ioc3_lock);
1503
1504 ioc3_stop(ip);
1505 ioc3_free_rx_bufs(ip);
1506 ioc3_clean_tx_ring(ip);
1507
1508 ioc3_init(dev);
1509 if (ioc3_alloc_rx_bufs(dev)) {
1510 netdev_err(dev, "%s: rx buffer allocation failed\n", __func__);
1511 spin_unlock_irq(&ip->ioc3_lock);
1512 return;
1513 }
1514 ioc3_start(ip);
1515 ioc3_mii_init(ip);
1516 ioc3_mii_start(ip);
1517
1518 spin_unlock_irq(&ip->ioc3_lock);
1519
1520 netif_wake_queue(dev);
1521 }
1522
1523 /* Given a multicast ethernet address, this routine calculates the
1524 * address's bit index in the logical address filter mask
1525 */
ioc3_hash(const unsigned char * addr)1526 static inline unsigned int ioc3_hash(const unsigned char *addr)
1527 {
1528 unsigned int temp = 0;
1529 int bits;
1530 u32 crc;
1531
1532 crc = ether_crc_le(ETH_ALEN, addr);
1533
1534 crc &= 0x3f; /* bit reverse lowest 6 bits for hash index */
1535 for (bits = 6; --bits >= 0; ) {
1536 temp <<= 1;
1537 temp |= (crc & 0x1);
1538 crc >>= 1;
1539 }
1540
1541 return temp;
1542 }
1543
ioc3_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1544 static void ioc3_get_drvinfo(struct net_device *dev,
1545 struct ethtool_drvinfo *info)
1546 {
1547 struct ioc3_private *ip = netdev_priv(dev);
1548
1549 strlcpy(info->driver, IOC3_NAME, sizeof(info->driver));
1550 strlcpy(info->version, IOC3_VERSION, sizeof(info->version));
1551 strlcpy(info->bus_info, pci_name(ip->pdev), sizeof(info->bus_info));
1552 }
1553
ioc3_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1554 static int ioc3_get_link_ksettings(struct net_device *dev,
1555 struct ethtool_link_ksettings *cmd)
1556 {
1557 struct ioc3_private *ip = netdev_priv(dev);
1558
1559 spin_lock_irq(&ip->ioc3_lock);
1560 mii_ethtool_get_link_ksettings(&ip->mii, cmd);
1561 spin_unlock_irq(&ip->ioc3_lock);
1562
1563 return 0;
1564 }
1565
ioc3_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1566 static int ioc3_set_link_ksettings(struct net_device *dev,
1567 const struct ethtool_link_ksettings *cmd)
1568 {
1569 struct ioc3_private *ip = netdev_priv(dev);
1570 int rc;
1571
1572 spin_lock_irq(&ip->ioc3_lock);
1573 rc = mii_ethtool_set_link_ksettings(&ip->mii, cmd);
1574 spin_unlock_irq(&ip->ioc3_lock);
1575
1576 return rc;
1577 }
1578
ioc3_nway_reset(struct net_device * dev)1579 static int ioc3_nway_reset(struct net_device *dev)
1580 {
1581 struct ioc3_private *ip = netdev_priv(dev);
1582 int rc;
1583
1584 spin_lock_irq(&ip->ioc3_lock);
1585 rc = mii_nway_restart(&ip->mii);
1586 spin_unlock_irq(&ip->ioc3_lock);
1587
1588 return rc;
1589 }
1590
ioc3_get_link(struct net_device * dev)1591 static u32 ioc3_get_link(struct net_device *dev)
1592 {
1593 struct ioc3_private *ip = netdev_priv(dev);
1594 int rc;
1595
1596 spin_lock_irq(&ip->ioc3_lock);
1597 rc = mii_link_ok(&ip->mii);
1598 spin_unlock_irq(&ip->ioc3_lock);
1599
1600 return rc;
1601 }
1602
1603 static const struct ethtool_ops ioc3_ethtool_ops = {
1604 .get_drvinfo = ioc3_get_drvinfo,
1605 .nway_reset = ioc3_nway_reset,
1606 .get_link = ioc3_get_link,
1607 .get_link_ksettings = ioc3_get_link_ksettings,
1608 .set_link_ksettings = ioc3_set_link_ksettings,
1609 };
1610
ioc3_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1611 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1612 {
1613 struct ioc3_private *ip = netdev_priv(dev);
1614 int rc;
1615
1616 spin_lock_irq(&ip->ioc3_lock);
1617 rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1618 spin_unlock_irq(&ip->ioc3_lock);
1619
1620 return rc;
1621 }
1622
ioc3_set_multicast_list(struct net_device * dev)1623 static void ioc3_set_multicast_list(struct net_device *dev)
1624 {
1625 struct ioc3_private *ip = netdev_priv(dev);
1626 struct ioc3_ethregs *regs = ip->regs;
1627 struct netdev_hw_addr *ha;
1628 u64 ehar = 0;
1629
1630 spin_lock_irq(&ip->ioc3_lock);
1631
1632 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1633 ip->emcr |= EMCR_PROMISC;
1634 writel(ip->emcr, ®s->emcr);
1635 readl(®s->emcr);
1636 } else {
1637 ip->emcr &= ~EMCR_PROMISC;
1638 writel(ip->emcr, ®s->emcr); /* Clear promiscuous. */
1639 readl(®s->emcr);
1640
1641 if ((dev->flags & IFF_ALLMULTI) ||
1642 (netdev_mc_count(dev) > 64)) {
1643 /* Too many for hashing to make sense or we want all
1644 * multicast packets anyway, so skip computing all the
1645 * hashes and just accept all packets.
1646 */
1647 ip->ehar_h = 0xffffffff;
1648 ip->ehar_l = 0xffffffff;
1649 } else {
1650 netdev_for_each_mc_addr(ha, dev) {
1651 ehar |= (1UL << ioc3_hash(ha->addr));
1652 }
1653 ip->ehar_h = ehar >> 32;
1654 ip->ehar_l = ehar & 0xffffffff;
1655 }
1656 writel(ip->ehar_h, ®s->ehar_h);
1657 writel(ip->ehar_l, ®s->ehar_l);
1658 }
1659
1660 spin_unlock_irq(&ip->ioc3_lock);
1661 }
1662
1663 module_pci_driver(ioc3_driver);
1664 MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1665 MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1666 MODULE_LICENSE("GPL");
1667