1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
7 *
8 * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
9 * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
10 *
11 * References:
12 * o IOC3 ASIC specification 4.51, 1996-04-18
13 * o IEEE 802.3 specification, 2000 edition
14 * o DP38840A Specification, National Semiconductor, March 1997
15 *
16 * To do:
17 *
18 * o Handle allocation failures in ioc3_alloc_skb() more gracefully.
19 * o Handle allocation failures in ioc3_init_rings().
20 * o Use prefetching for large packets. What is a good lower limit for
21 * prefetching?
22 * o We're probably allocating a bit too much memory.
23 * o Use hardware checksums.
24 * o Convert to using a IOC3 meta driver.
25 * o Which PHYs might possibly be attached to the IOC3 in real live,
26 * which workarounds are required for them? Do we ever have Lucent's?
27 * o For the 2.5 branch kill the mii-tool ioctls.
28 */
29
30 #define IOC3_NAME "ioc3-eth"
31 #define IOC3_VERSION "2.6.3-4"
32
33 #include <linux/delay.h>
34 #include <linux/kernel.h>
35 #include <linux/mm.h>
36 #include <linux/errno.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/gfp.h>
47
48 #ifdef CONFIG_SERIAL_8250
49 #include <linux/serial_core.h>
50 #include <linux/serial_8250.h>
51 #include <linux/serial_reg.h>
52 #endif
53
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/ethtool.h>
57 #include <linux/skbuff.h>
58 #include <net/ip.h>
59
60 #include <asm/byteorder.h>
61 #include <asm/io.h>
62 #include <asm/pgtable.h>
63 #include <linux/uaccess.h>
64 #include <asm/sn/types.h>
65 #include <asm/sn/ioc3.h>
66 #include <asm/pci/bridge.h>
67
68 /*
69 * 64 RX buffers. This is tunable in the range of 16 <= x < 512. The
70 * value must be a power of two.
71 */
72 #define RX_BUFFS 64
73
74 #define ETCSR_FD ((17<<ETCSR_IPGR2_SHIFT) | (11<<ETCSR_IPGR1_SHIFT) | 21)
75 #define ETCSR_HD ((21<<ETCSR_IPGR2_SHIFT) | (21<<ETCSR_IPGR1_SHIFT) | 21)
76
77 /* Private per NIC data of the driver. */
78 struct ioc3_private {
79 struct ioc3 *regs;
80 unsigned long *rxr; /* pointer to receiver ring */
81 struct ioc3_etxd *txr;
82 struct sk_buff *rx_skbs[512];
83 struct sk_buff *tx_skbs[128];
84 int rx_ci; /* RX consumer index */
85 int rx_pi; /* RX producer index */
86 int tx_ci; /* TX consumer index */
87 int tx_pi; /* TX producer index */
88 int txqlen;
89 u32 emcr, ehar_h, ehar_l;
90 spinlock_t ioc3_lock;
91 struct mii_if_info mii;
92
93 struct net_device *dev;
94 struct pci_dev *pdev;
95
96 /* Members used by autonegotiation */
97 struct timer_list ioc3_timer;
98 };
99
100 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
101 static void ioc3_set_multicast_list(struct net_device *dev);
102 static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
103 static void ioc3_timeout(struct net_device *dev);
104 static inline unsigned int ioc3_hash(const unsigned char *addr);
105 static inline void ioc3_stop(struct ioc3_private *ip);
106 static void ioc3_init(struct net_device *dev);
107
108 static const char ioc3_str[] = "IOC3 Ethernet";
109 static const struct ethtool_ops ioc3_ethtool_ops;
110
111 /* We use this to acquire receive skb's that we can DMA directly into. */
112
113 #define IOC3_CACHELINE 128UL
114
aligned_rx_skb_addr(unsigned long addr)115 static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
116 {
117 return (~addr + 1) & (IOC3_CACHELINE - 1UL);
118 }
119
ioc3_alloc_skb(unsigned long length,unsigned int gfp_mask)120 static inline struct sk_buff * ioc3_alloc_skb(unsigned long length,
121 unsigned int gfp_mask)
122 {
123 struct sk_buff *skb;
124
125 skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask);
126 if (likely(skb)) {
127 int offset = aligned_rx_skb_addr((unsigned long) skb->data);
128 if (offset)
129 skb_reserve(skb, offset);
130 }
131
132 return skb;
133 }
134
ioc3_map(void * ptr,unsigned long vdev)135 static inline unsigned long ioc3_map(void *ptr, unsigned long vdev)
136 {
137 #ifdef CONFIG_SGI_IP27
138 vdev <<= 57; /* Shift to PCI64_ATTR_VIRTUAL */
139
140 return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF |
141 ((unsigned long)ptr & TO_PHYS_MASK);
142 #else
143 return virt_to_bus(ptr);
144 #endif
145 }
146
147 /* BEWARE: The IOC3 documentation documents the size of rx buffers as
148 1644 while it's actually 1664. This one was nasty to track down ... */
149 #define RX_OFFSET 10
150 #define RX_BUF_ALLOC_SIZE (1664 + RX_OFFSET + IOC3_CACHELINE)
151
152 /* DMA barrier to separate cached and uncached accesses. */
153 #define BARRIER() \
154 __asm__("sync" ::: "memory")
155
156
157 #define IOC3_SIZE 0x100000
158
159 /*
160 * IOC3 is a big endian device
161 *
162 * Unorthodox but makes the users of these macros more readable - the pointer
163 * to the IOC3's memory mapped registers is expected as struct ioc3 * ioc3
164 * in the environment.
165 */
166 #define ioc3_r_mcr() be32_to_cpu(ioc3->mcr)
167 #define ioc3_w_mcr(v) do { ioc3->mcr = cpu_to_be32(v); } while (0)
168 #define ioc3_w_gpcr_s(v) do { ioc3->gpcr_s = cpu_to_be32(v); } while (0)
169 #define ioc3_r_emcr() be32_to_cpu(ioc3->emcr)
170 #define ioc3_w_emcr(v) do { ioc3->emcr = cpu_to_be32(v); } while (0)
171 #define ioc3_r_eisr() be32_to_cpu(ioc3->eisr)
172 #define ioc3_w_eisr(v) do { ioc3->eisr = cpu_to_be32(v); } while (0)
173 #define ioc3_r_eier() be32_to_cpu(ioc3->eier)
174 #define ioc3_w_eier(v) do { ioc3->eier = cpu_to_be32(v); } while (0)
175 #define ioc3_r_ercsr() be32_to_cpu(ioc3->ercsr)
176 #define ioc3_w_ercsr(v) do { ioc3->ercsr = cpu_to_be32(v); } while (0)
177 #define ioc3_r_erbr_h() be32_to_cpu(ioc3->erbr_h)
178 #define ioc3_w_erbr_h(v) do { ioc3->erbr_h = cpu_to_be32(v); } while (0)
179 #define ioc3_r_erbr_l() be32_to_cpu(ioc3->erbr_l)
180 #define ioc3_w_erbr_l(v) do { ioc3->erbr_l = cpu_to_be32(v); } while (0)
181 #define ioc3_r_erbar() be32_to_cpu(ioc3->erbar)
182 #define ioc3_w_erbar(v) do { ioc3->erbar = cpu_to_be32(v); } while (0)
183 #define ioc3_r_ercir() be32_to_cpu(ioc3->ercir)
184 #define ioc3_w_ercir(v) do { ioc3->ercir = cpu_to_be32(v); } while (0)
185 #define ioc3_r_erpir() be32_to_cpu(ioc3->erpir)
186 #define ioc3_w_erpir(v) do { ioc3->erpir = cpu_to_be32(v); } while (0)
187 #define ioc3_r_ertr() be32_to_cpu(ioc3->ertr)
188 #define ioc3_w_ertr(v) do { ioc3->ertr = cpu_to_be32(v); } while (0)
189 #define ioc3_r_etcsr() be32_to_cpu(ioc3->etcsr)
190 #define ioc3_w_etcsr(v) do { ioc3->etcsr = cpu_to_be32(v); } while (0)
191 #define ioc3_r_ersr() be32_to_cpu(ioc3->ersr)
192 #define ioc3_w_ersr(v) do { ioc3->ersr = cpu_to_be32(v); } while (0)
193 #define ioc3_r_etcdc() be32_to_cpu(ioc3->etcdc)
194 #define ioc3_w_etcdc(v) do { ioc3->etcdc = cpu_to_be32(v); } while (0)
195 #define ioc3_r_ebir() be32_to_cpu(ioc3->ebir)
196 #define ioc3_w_ebir(v) do { ioc3->ebir = cpu_to_be32(v); } while (0)
197 #define ioc3_r_etbr_h() be32_to_cpu(ioc3->etbr_h)
198 #define ioc3_w_etbr_h(v) do { ioc3->etbr_h = cpu_to_be32(v); } while (0)
199 #define ioc3_r_etbr_l() be32_to_cpu(ioc3->etbr_l)
200 #define ioc3_w_etbr_l(v) do { ioc3->etbr_l = cpu_to_be32(v); } while (0)
201 #define ioc3_r_etcir() be32_to_cpu(ioc3->etcir)
202 #define ioc3_w_etcir(v) do { ioc3->etcir = cpu_to_be32(v); } while (0)
203 #define ioc3_r_etpir() be32_to_cpu(ioc3->etpir)
204 #define ioc3_w_etpir(v) do { ioc3->etpir = cpu_to_be32(v); } while (0)
205 #define ioc3_r_emar_h() be32_to_cpu(ioc3->emar_h)
206 #define ioc3_w_emar_h(v) do { ioc3->emar_h = cpu_to_be32(v); } while (0)
207 #define ioc3_r_emar_l() be32_to_cpu(ioc3->emar_l)
208 #define ioc3_w_emar_l(v) do { ioc3->emar_l = cpu_to_be32(v); } while (0)
209 #define ioc3_r_ehar_h() be32_to_cpu(ioc3->ehar_h)
210 #define ioc3_w_ehar_h(v) do { ioc3->ehar_h = cpu_to_be32(v); } while (0)
211 #define ioc3_r_ehar_l() be32_to_cpu(ioc3->ehar_l)
212 #define ioc3_w_ehar_l(v) do { ioc3->ehar_l = cpu_to_be32(v); } while (0)
213 #define ioc3_r_micr() be32_to_cpu(ioc3->micr)
214 #define ioc3_w_micr(v) do { ioc3->micr = cpu_to_be32(v); } while (0)
215 #define ioc3_r_midr_r() be32_to_cpu(ioc3->midr_r)
216 #define ioc3_w_midr_r(v) do { ioc3->midr_r = cpu_to_be32(v); } while (0)
217 #define ioc3_r_midr_w() be32_to_cpu(ioc3->midr_w)
218 #define ioc3_w_midr_w(v) do { ioc3->midr_w = cpu_to_be32(v); } while (0)
219
mcr_pack(u32 pulse,u32 sample)220 static inline u32 mcr_pack(u32 pulse, u32 sample)
221 {
222 return (pulse << 10) | (sample << 2);
223 }
224
nic_wait(struct ioc3 * ioc3)225 static int nic_wait(struct ioc3 *ioc3)
226 {
227 u32 mcr;
228
229 do {
230 mcr = ioc3_r_mcr();
231 } while (!(mcr & 2));
232
233 return mcr & 1;
234 }
235
nic_reset(struct ioc3 * ioc3)236 static int nic_reset(struct ioc3 *ioc3)
237 {
238 int presence;
239
240 ioc3_w_mcr(mcr_pack(500, 65));
241 presence = nic_wait(ioc3);
242
243 ioc3_w_mcr(mcr_pack(0, 500));
244 nic_wait(ioc3);
245
246 return presence;
247 }
248
nic_read_bit(struct ioc3 * ioc3)249 static inline int nic_read_bit(struct ioc3 *ioc3)
250 {
251 int result;
252
253 ioc3_w_mcr(mcr_pack(6, 13));
254 result = nic_wait(ioc3);
255 ioc3_w_mcr(mcr_pack(0, 100));
256 nic_wait(ioc3);
257
258 return result;
259 }
260
nic_write_bit(struct ioc3 * ioc3,int bit)261 static inline void nic_write_bit(struct ioc3 *ioc3, int bit)
262 {
263 if (bit)
264 ioc3_w_mcr(mcr_pack(6, 110));
265 else
266 ioc3_w_mcr(mcr_pack(80, 30));
267
268 nic_wait(ioc3);
269 }
270
271 /*
272 * Read a byte from an iButton device
273 */
nic_read_byte(struct ioc3 * ioc3)274 static u32 nic_read_byte(struct ioc3 *ioc3)
275 {
276 u32 result = 0;
277 int i;
278
279 for (i = 0; i < 8; i++)
280 result = (result >> 1) | (nic_read_bit(ioc3) << 7);
281
282 return result;
283 }
284
285 /*
286 * Write a byte to an iButton device
287 */
nic_write_byte(struct ioc3 * ioc3,int byte)288 static void nic_write_byte(struct ioc3 *ioc3, int byte)
289 {
290 int i, bit;
291
292 for (i = 8; i; i--) {
293 bit = byte & 1;
294 byte >>= 1;
295
296 nic_write_bit(ioc3, bit);
297 }
298 }
299
nic_find(struct ioc3 * ioc3,int * last)300 static u64 nic_find(struct ioc3 *ioc3, int *last)
301 {
302 int a, b, index, disc;
303 u64 address = 0;
304
305 nic_reset(ioc3);
306 /* Search ROM. */
307 nic_write_byte(ioc3, 0xf0);
308
309 /* Algorithm from ``Book of iButton Standards''. */
310 for (index = 0, disc = 0; index < 64; index++) {
311 a = nic_read_bit(ioc3);
312 b = nic_read_bit(ioc3);
313
314 if (a && b) {
315 printk("NIC search failed (not fatal).\n");
316 *last = 0;
317 return 0;
318 }
319
320 if (!a && !b) {
321 if (index == *last) {
322 address |= 1UL << index;
323 } else if (index > *last) {
324 address &= ~(1UL << index);
325 disc = index;
326 } else if ((address & (1UL << index)) == 0)
327 disc = index;
328 nic_write_bit(ioc3, address & (1UL << index));
329 continue;
330 } else {
331 if (a)
332 address |= 1UL << index;
333 else
334 address &= ~(1UL << index);
335 nic_write_bit(ioc3, a);
336 continue;
337 }
338 }
339
340 *last = disc;
341
342 return address;
343 }
344
nic_init(struct ioc3 * ioc3)345 static int nic_init(struct ioc3 *ioc3)
346 {
347 const char *unknown = "unknown";
348 const char *type = unknown;
349 u8 crc;
350 u8 serial[6];
351 int save = 0, i;
352
353 while (1) {
354 u64 reg;
355 reg = nic_find(ioc3, &save);
356
357 switch (reg & 0xff) {
358 case 0x91:
359 type = "DS1981U";
360 break;
361 default:
362 if (save == 0) {
363 /* Let the caller try again. */
364 return -1;
365 }
366 continue;
367 }
368
369 nic_reset(ioc3);
370
371 /* Match ROM. */
372 nic_write_byte(ioc3, 0x55);
373 for (i = 0; i < 8; i++)
374 nic_write_byte(ioc3, (reg >> (i << 3)) & 0xff);
375
376 reg >>= 8; /* Shift out type. */
377 for (i = 0; i < 6; i++) {
378 serial[i] = reg & 0xff;
379 reg >>= 8;
380 }
381 crc = reg & 0xff;
382 break;
383 }
384
385 printk("Found %s NIC", type);
386 if (type != unknown)
387 printk (" registration number %pM, CRC %02x", serial, crc);
388 printk(".\n");
389
390 return 0;
391 }
392
393 /*
394 * Read the NIC (Number-In-a-Can) device used to store the MAC address on
395 * SN0 / SN00 nodeboards and PCI cards.
396 */
ioc3_get_eaddr_nic(struct ioc3_private * ip)397 static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
398 {
399 struct ioc3 *ioc3 = ip->regs;
400 u8 nic[14];
401 int tries = 2; /* There may be some problem with the battery? */
402 int i;
403
404 ioc3_w_gpcr_s(1 << 21);
405
406 while (tries--) {
407 if (!nic_init(ioc3))
408 break;
409 udelay(500);
410 }
411
412 if (tries < 0) {
413 printk("Failed to read MAC address\n");
414 return;
415 }
416
417 /* Read Memory. */
418 nic_write_byte(ioc3, 0xf0);
419 nic_write_byte(ioc3, 0x00);
420 nic_write_byte(ioc3, 0x00);
421
422 for (i = 13; i >= 0; i--)
423 nic[i] = nic_read_byte(ioc3);
424
425 for (i = 2; i < 8; i++)
426 ip->dev->dev_addr[i - 2] = nic[i];
427 }
428
429 /*
430 * Ok, this is hosed by design. It's necessary to know what machine the
431 * NIC is in in order to know how to read the NIC address. We also have
432 * to know if it's a PCI card or a NIC in on the node board ...
433 */
ioc3_get_eaddr(struct ioc3_private * ip)434 static void ioc3_get_eaddr(struct ioc3_private *ip)
435 {
436 ioc3_get_eaddr_nic(ip);
437
438 printk("Ethernet address is %pM.\n", ip->dev->dev_addr);
439 }
440
__ioc3_set_mac_address(struct net_device * dev)441 static void __ioc3_set_mac_address(struct net_device *dev)
442 {
443 struct ioc3_private *ip = netdev_priv(dev);
444 struct ioc3 *ioc3 = ip->regs;
445
446 ioc3_w_emar_h((dev->dev_addr[5] << 8) | dev->dev_addr[4]);
447 ioc3_w_emar_l((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) |
448 (dev->dev_addr[1] << 8) | dev->dev_addr[0]);
449 }
450
ioc3_set_mac_address(struct net_device * dev,void * addr)451 static int ioc3_set_mac_address(struct net_device *dev, void *addr)
452 {
453 struct ioc3_private *ip = netdev_priv(dev);
454 struct sockaddr *sa = addr;
455
456 memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
457
458 spin_lock_irq(&ip->ioc3_lock);
459 __ioc3_set_mac_address(dev);
460 spin_unlock_irq(&ip->ioc3_lock);
461
462 return 0;
463 }
464
465 /*
466 * Caller must hold the ioc3_lock ever for MII readers. This is also
467 * used to protect the transmitter side but it's low contention.
468 */
ioc3_mdio_read(struct net_device * dev,int phy,int reg)469 static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
470 {
471 struct ioc3_private *ip = netdev_priv(dev);
472 struct ioc3 *ioc3 = ip->regs;
473
474 while (ioc3_r_micr() & MICR_BUSY);
475 ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG);
476 while (ioc3_r_micr() & MICR_BUSY);
477
478 return ioc3_r_midr_r() & MIDR_DATA_MASK;
479 }
480
ioc3_mdio_write(struct net_device * dev,int phy,int reg,int data)481 static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
482 {
483 struct ioc3_private *ip = netdev_priv(dev);
484 struct ioc3 *ioc3 = ip->regs;
485
486 while (ioc3_r_micr() & MICR_BUSY);
487 ioc3_w_midr_w(data);
488 ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg);
489 while (ioc3_r_micr() & MICR_BUSY);
490 }
491
492 static int ioc3_mii_init(struct ioc3_private *ip);
493
ioc3_get_stats(struct net_device * dev)494 static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
495 {
496 struct ioc3_private *ip = netdev_priv(dev);
497 struct ioc3 *ioc3 = ip->regs;
498
499 dev->stats.collisions += (ioc3_r_etcdc() & ETCDC_COLLCNT_MASK);
500 return &dev->stats;
501 }
502
ioc3_tcpudp_checksum(struct sk_buff * skb,uint32_t hwsum,int len)503 static void ioc3_tcpudp_checksum(struct sk_buff *skb, uint32_t hwsum, int len)
504 {
505 struct ethhdr *eh = eth_hdr(skb);
506 uint32_t csum, ehsum;
507 unsigned int proto;
508 struct iphdr *ih;
509 uint16_t *ew;
510 unsigned char *cp;
511
512 /*
513 * Did hardware handle the checksum at all? The cases we can handle
514 * are:
515 *
516 * - TCP and UDP checksums of IPv4 only.
517 * - IPv6 would be doable but we keep that for later ...
518 * - Only unfragmented packets. Did somebody already tell you
519 * fragmentation is evil?
520 * - don't care about packet size. Worst case when processing a
521 * malformed packet we'll try to access the packet at ip header +
522 * 64 bytes which is still inside the skb. Even in the unlikely
523 * case where the checksum is right the higher layers will still
524 * drop the packet as appropriate.
525 */
526 if (eh->h_proto != htons(ETH_P_IP))
527 return;
528
529 ih = (struct iphdr *) ((char *)eh + ETH_HLEN);
530 if (ip_is_fragment(ih))
531 return;
532
533 proto = ih->protocol;
534 if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
535 return;
536
537 /* Same as tx - compute csum of pseudo header */
538 csum = hwsum +
539 (ih->tot_len - (ih->ihl << 2)) +
540 htons((uint16_t)ih->protocol) +
541 (ih->saddr >> 16) + (ih->saddr & 0xffff) +
542 (ih->daddr >> 16) + (ih->daddr & 0xffff);
543
544 /* Sum up ethernet dest addr, src addr and protocol */
545 ew = (uint16_t *) eh;
546 ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
547
548 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
549 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
550
551 csum += 0xffff ^ ehsum;
552
553 /* In the next step we also subtract the 1's complement
554 checksum of the trailing ethernet CRC. */
555 cp = (char *)eh + len; /* points at trailing CRC */
556 if (len & 1) {
557 csum += 0xffff ^ (uint16_t) ((cp[1] << 8) | cp[0]);
558 csum += 0xffff ^ (uint16_t) ((cp[3] << 8) | cp[2]);
559 } else {
560 csum += 0xffff ^ (uint16_t) ((cp[0] << 8) | cp[1]);
561 csum += 0xffff ^ (uint16_t) ((cp[2] << 8) | cp[3]);
562 }
563
564 csum = (csum & 0xffff) + (csum >> 16);
565 csum = (csum & 0xffff) + (csum >> 16);
566
567 if (csum == 0xffff)
568 skb->ip_summed = CHECKSUM_UNNECESSARY;
569 }
570
ioc3_rx(struct net_device * dev)571 static inline void ioc3_rx(struct net_device *dev)
572 {
573 struct ioc3_private *ip = netdev_priv(dev);
574 struct sk_buff *skb, *new_skb;
575 struct ioc3 *ioc3 = ip->regs;
576 int rx_entry, n_entry, len;
577 struct ioc3_erxbuf *rxb;
578 unsigned long *rxr;
579 u32 w0, err;
580
581 rxr = ip->rxr; /* Ring base */
582 rx_entry = ip->rx_ci; /* RX consume index */
583 n_entry = ip->rx_pi;
584
585 skb = ip->rx_skbs[rx_entry];
586 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
587 w0 = be32_to_cpu(rxb->w0);
588
589 while (w0 & ERXBUF_V) {
590 err = be32_to_cpu(rxb->err); /* It's valid ... */
591 if (err & ERXBUF_GOODPKT) {
592 len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
593 skb_trim(skb, len);
594 skb->protocol = eth_type_trans(skb, dev);
595
596 new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
597 if (!new_skb) {
598 /* Ouch, drop packet and just recycle packet
599 to keep the ring filled. */
600 dev->stats.rx_dropped++;
601 new_skb = skb;
602 goto next;
603 }
604
605 if (likely(dev->features & NETIF_F_RXCSUM))
606 ioc3_tcpudp_checksum(skb,
607 w0 & ERXBUF_IPCKSUM_MASK, len);
608
609 netif_rx(skb);
610
611 ip->rx_skbs[rx_entry] = NULL; /* Poison */
612
613 /* Because we reserve afterwards. */
614 skb_put(new_skb, (1664 + RX_OFFSET));
615 rxb = (struct ioc3_erxbuf *) new_skb->data;
616 skb_reserve(new_skb, RX_OFFSET);
617
618 dev->stats.rx_packets++; /* Statistics */
619 dev->stats.rx_bytes += len;
620 } else {
621 /* The frame is invalid and the skb never
622 reached the network layer so we can just
623 recycle it. */
624 new_skb = skb;
625 dev->stats.rx_errors++;
626 }
627 if (err & ERXBUF_CRCERR) /* Statistics */
628 dev->stats.rx_crc_errors++;
629 if (err & ERXBUF_FRAMERR)
630 dev->stats.rx_frame_errors++;
631 next:
632 ip->rx_skbs[n_entry] = new_skb;
633 rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1));
634 rxb->w0 = 0; /* Clear valid flag */
635 n_entry = (n_entry + 1) & 511; /* Update erpir */
636
637 /* Now go on to the next ring entry. */
638 rx_entry = (rx_entry + 1) & 511;
639 skb = ip->rx_skbs[rx_entry];
640 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
641 w0 = be32_to_cpu(rxb->w0);
642 }
643 ioc3_w_erpir((n_entry << 3) | ERPIR_ARM);
644 ip->rx_pi = n_entry;
645 ip->rx_ci = rx_entry;
646 }
647
ioc3_tx(struct net_device * dev)648 static inline void ioc3_tx(struct net_device *dev)
649 {
650 struct ioc3_private *ip = netdev_priv(dev);
651 unsigned long packets, bytes;
652 struct ioc3 *ioc3 = ip->regs;
653 int tx_entry, o_entry;
654 struct sk_buff *skb;
655 u32 etcir;
656
657 spin_lock(&ip->ioc3_lock);
658 etcir = ioc3_r_etcir();
659
660 tx_entry = (etcir >> 7) & 127;
661 o_entry = ip->tx_ci;
662 packets = 0;
663 bytes = 0;
664
665 while (o_entry != tx_entry) {
666 packets++;
667 skb = ip->tx_skbs[o_entry];
668 bytes += skb->len;
669 dev_kfree_skb_irq(skb);
670 ip->tx_skbs[o_entry] = NULL;
671
672 o_entry = (o_entry + 1) & 127; /* Next */
673
674 etcir = ioc3_r_etcir(); /* More pkts sent? */
675 tx_entry = (etcir >> 7) & 127;
676 }
677
678 dev->stats.tx_packets += packets;
679 dev->stats.tx_bytes += bytes;
680 ip->txqlen -= packets;
681
682 if (ip->txqlen < 128)
683 netif_wake_queue(dev);
684
685 ip->tx_ci = o_entry;
686 spin_unlock(&ip->ioc3_lock);
687 }
688
689 /*
690 * Deal with fatal IOC3 errors. This condition might be caused by a hard or
691 * software problems, so we should try to recover
692 * more gracefully if this ever happens. In theory we might be flooded
693 * with such error interrupts if something really goes wrong, so we might
694 * also consider to take the interface down.
695 */
ioc3_error(struct net_device * dev,u32 eisr)696 static void ioc3_error(struct net_device *dev, u32 eisr)
697 {
698 struct ioc3_private *ip = netdev_priv(dev);
699 unsigned char *iface = dev->name;
700
701 spin_lock(&ip->ioc3_lock);
702
703 if (eisr & EISR_RXOFLO)
704 printk(KERN_ERR "%s: RX overflow.\n", iface);
705 if (eisr & EISR_RXBUFOFLO)
706 printk(KERN_ERR "%s: RX buffer overflow.\n", iface);
707 if (eisr & EISR_RXMEMERR)
708 printk(KERN_ERR "%s: RX PCI error.\n", iface);
709 if (eisr & EISR_RXPARERR)
710 printk(KERN_ERR "%s: RX SSRAM parity error.\n", iface);
711 if (eisr & EISR_TXBUFUFLO)
712 printk(KERN_ERR "%s: TX buffer underflow.\n", iface);
713 if (eisr & EISR_TXMEMERR)
714 printk(KERN_ERR "%s: TX PCI error.\n", iface);
715
716 ioc3_stop(ip);
717 ioc3_init(dev);
718 ioc3_mii_init(ip);
719
720 netif_wake_queue(dev);
721
722 spin_unlock(&ip->ioc3_lock);
723 }
724
725 /* The interrupt handler does all of the Rx thread work and cleans up
726 after the Tx thread. */
ioc3_interrupt(int irq,void * _dev)727 static irqreturn_t ioc3_interrupt(int irq, void *_dev)
728 {
729 struct net_device *dev = (struct net_device *)_dev;
730 struct ioc3_private *ip = netdev_priv(dev);
731 struct ioc3 *ioc3 = ip->regs;
732 const u32 enabled = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
733 EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
734 EISR_TXEXPLICIT | EISR_TXMEMERR;
735 u32 eisr;
736
737 eisr = ioc3_r_eisr() & enabled;
738
739 ioc3_w_eisr(eisr);
740 (void) ioc3_r_eisr(); /* Flush */
741
742 if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
743 EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
744 ioc3_error(dev, eisr);
745 if (eisr & EISR_RXTIMERINT)
746 ioc3_rx(dev);
747 if (eisr & EISR_TXEXPLICIT)
748 ioc3_tx(dev);
749
750 return IRQ_HANDLED;
751 }
752
ioc3_setup_duplex(struct ioc3_private * ip)753 static inline void ioc3_setup_duplex(struct ioc3_private *ip)
754 {
755 struct ioc3 *ioc3 = ip->regs;
756
757 if (ip->mii.full_duplex) {
758 ioc3_w_etcsr(ETCSR_FD);
759 ip->emcr |= EMCR_DUPLEX;
760 } else {
761 ioc3_w_etcsr(ETCSR_HD);
762 ip->emcr &= ~EMCR_DUPLEX;
763 }
764 ioc3_w_emcr(ip->emcr);
765 }
766
ioc3_timer(struct timer_list * t)767 static void ioc3_timer(struct timer_list *t)
768 {
769 struct ioc3_private *ip = from_timer(ip, t, ioc3_timer);
770
771 /* Print the link status if it has changed */
772 mii_check_media(&ip->mii, 1, 0);
773 ioc3_setup_duplex(ip);
774
775 ip->ioc3_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2s */
776 add_timer(&ip->ioc3_timer);
777 }
778
779 /*
780 * Try to find a PHY. There is no apparent relation between the MII addresses
781 * in the SGI documentation and what we find in reality, so we simply probe
782 * for the PHY. It seems IOC3 PHYs usually live on address 31. One of my
783 * onboard IOC3s has the special oddity that probing doesn't seem to find it
784 * yet the interface seems to work fine, so if probing fails we for now will
785 * simply default to PHY 31 instead of bailing out.
786 */
ioc3_mii_init(struct ioc3_private * ip)787 static int ioc3_mii_init(struct ioc3_private *ip)
788 {
789 int i, found = 0, res = 0;
790 int ioc3_phy_workaround = 1;
791 u16 word;
792
793 for (i = 0; i < 32; i++) {
794 word = ioc3_mdio_read(ip->dev, i, MII_PHYSID1);
795
796 if (word != 0xffff && word != 0x0000) {
797 found = 1;
798 break; /* Found a PHY */
799 }
800 }
801
802 if (!found) {
803 if (ioc3_phy_workaround)
804 i = 31;
805 else {
806 ip->mii.phy_id = -1;
807 res = -ENODEV;
808 goto out;
809 }
810 }
811
812 ip->mii.phy_id = i;
813
814 out:
815 return res;
816 }
817
ioc3_mii_start(struct ioc3_private * ip)818 static void ioc3_mii_start(struct ioc3_private *ip)
819 {
820 ip->ioc3_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
821 add_timer(&ip->ioc3_timer);
822 }
823
ioc3_clean_rx_ring(struct ioc3_private * ip)824 static inline void ioc3_clean_rx_ring(struct ioc3_private *ip)
825 {
826 struct sk_buff *skb;
827 int i;
828
829 for (i = ip->rx_ci; i & 15; i++) {
830 ip->rx_skbs[ip->rx_pi] = ip->rx_skbs[ip->rx_ci];
831 ip->rxr[ip->rx_pi++] = ip->rxr[ip->rx_ci++];
832 }
833 ip->rx_pi &= 511;
834 ip->rx_ci &= 511;
835
836 for (i = ip->rx_ci; i != ip->rx_pi; i = (i+1) & 511) {
837 struct ioc3_erxbuf *rxb;
838 skb = ip->rx_skbs[i];
839 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
840 rxb->w0 = 0;
841 }
842 }
843
ioc3_clean_tx_ring(struct ioc3_private * ip)844 static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
845 {
846 struct sk_buff *skb;
847 int i;
848
849 for (i=0; i < 128; i++) {
850 skb = ip->tx_skbs[i];
851 if (skb) {
852 ip->tx_skbs[i] = NULL;
853 dev_kfree_skb_any(skb);
854 }
855 ip->txr[i].cmd = 0;
856 }
857 ip->tx_pi = 0;
858 ip->tx_ci = 0;
859 }
860
ioc3_free_rings(struct ioc3_private * ip)861 static void ioc3_free_rings(struct ioc3_private *ip)
862 {
863 struct sk_buff *skb;
864 int rx_entry, n_entry;
865
866 if (ip->txr) {
867 ioc3_clean_tx_ring(ip);
868 free_pages((unsigned long)ip->txr, 2);
869 ip->txr = NULL;
870 }
871
872 if (ip->rxr) {
873 n_entry = ip->rx_ci;
874 rx_entry = ip->rx_pi;
875
876 while (n_entry != rx_entry) {
877 skb = ip->rx_skbs[n_entry];
878 if (skb)
879 dev_kfree_skb_any(skb);
880
881 n_entry = (n_entry + 1) & 511;
882 }
883 free_page((unsigned long)ip->rxr);
884 ip->rxr = NULL;
885 }
886 }
887
ioc3_alloc_rings(struct net_device * dev)888 static void ioc3_alloc_rings(struct net_device *dev)
889 {
890 struct ioc3_private *ip = netdev_priv(dev);
891 struct ioc3_erxbuf *rxb;
892 unsigned long *rxr;
893 int i;
894
895 if (ip->rxr == NULL) {
896 /* Allocate and initialize rx ring. 4kb = 512 entries */
897 ip->rxr = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
898 rxr = ip->rxr;
899 if (!rxr)
900 printk("ioc3_alloc_rings(): get_zeroed_page() failed!\n");
901
902 /* Now the rx buffers. The RX ring may be larger but
903 we only allocate 16 buffers for now. Need to tune
904 this for performance and memory later. */
905 for (i = 0; i < RX_BUFFS; i++) {
906 struct sk_buff *skb;
907
908 skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
909 if (!skb) {
910 show_free_areas(0, NULL);
911 continue;
912 }
913
914 ip->rx_skbs[i] = skb;
915
916 /* Because we reserve afterwards. */
917 skb_put(skb, (1664 + RX_OFFSET));
918 rxb = (struct ioc3_erxbuf *) skb->data;
919 rxr[i] = cpu_to_be64(ioc3_map(rxb, 1));
920 skb_reserve(skb, RX_OFFSET);
921 }
922 ip->rx_ci = 0;
923 ip->rx_pi = RX_BUFFS;
924 }
925
926 if (ip->txr == NULL) {
927 /* Allocate and initialize tx rings. 16kb = 128 bufs. */
928 ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2);
929 if (!ip->txr)
930 printk("ioc3_alloc_rings(): __get_free_pages() failed!\n");
931 ip->tx_pi = 0;
932 ip->tx_ci = 0;
933 }
934 }
935
ioc3_init_rings(struct net_device * dev)936 static void ioc3_init_rings(struct net_device *dev)
937 {
938 struct ioc3_private *ip = netdev_priv(dev);
939 struct ioc3 *ioc3 = ip->regs;
940 unsigned long ring;
941
942 ioc3_free_rings(ip);
943 ioc3_alloc_rings(dev);
944
945 ioc3_clean_rx_ring(ip);
946 ioc3_clean_tx_ring(ip);
947
948 /* Now the rx ring base, consume & produce registers. */
949 ring = ioc3_map(ip->rxr, 0);
950 ioc3_w_erbr_h(ring >> 32);
951 ioc3_w_erbr_l(ring & 0xffffffff);
952 ioc3_w_ercir(ip->rx_ci << 3);
953 ioc3_w_erpir((ip->rx_pi << 3) | ERPIR_ARM);
954
955 ring = ioc3_map(ip->txr, 0);
956
957 ip->txqlen = 0; /* nothing queued */
958
959 /* Now the tx ring base, consume & produce registers. */
960 ioc3_w_etbr_h(ring >> 32);
961 ioc3_w_etbr_l(ring & 0xffffffff);
962 ioc3_w_etpir(ip->tx_pi << 7);
963 ioc3_w_etcir(ip->tx_ci << 7);
964 (void) ioc3_r_etcir(); /* Flush */
965 }
966
ioc3_ssram_disc(struct ioc3_private * ip)967 static inline void ioc3_ssram_disc(struct ioc3_private *ip)
968 {
969 struct ioc3 *ioc3 = ip->regs;
970 volatile u32 *ssram0 = &ioc3->ssram[0x0000];
971 volatile u32 *ssram1 = &ioc3->ssram[0x4000];
972 unsigned int pattern = 0x5555;
973
974 /* Assume the larger size SSRAM and enable parity checking */
975 ioc3_w_emcr(ioc3_r_emcr() | (EMCR_BUFSIZ | EMCR_RAMPAR));
976
977 *ssram0 = pattern;
978 *ssram1 = ~pattern & IOC3_SSRAM_DM;
979
980 if ((*ssram0 & IOC3_SSRAM_DM) != pattern ||
981 (*ssram1 & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
982 /* set ssram size to 64 KB */
983 ip->emcr = EMCR_RAMPAR;
984 ioc3_w_emcr(ioc3_r_emcr() & ~EMCR_BUFSIZ);
985 } else
986 ip->emcr = EMCR_BUFSIZ | EMCR_RAMPAR;
987 }
988
ioc3_init(struct net_device * dev)989 static void ioc3_init(struct net_device *dev)
990 {
991 struct ioc3_private *ip = netdev_priv(dev);
992 struct ioc3 *ioc3 = ip->regs;
993
994 del_timer_sync(&ip->ioc3_timer); /* Kill if running */
995
996 ioc3_w_emcr(EMCR_RST); /* Reset */
997 (void) ioc3_r_emcr(); /* Flush WB */
998 udelay(4); /* Give it time ... */
999 ioc3_w_emcr(0);
1000 (void) ioc3_r_emcr();
1001
1002 /* Misc registers */
1003 #ifdef CONFIG_SGI_IP27
1004 ioc3_w_erbar(PCI64_ATTR_BAR >> 32); /* Barrier on last store */
1005 #else
1006 ioc3_w_erbar(0); /* Let PCI API get it right */
1007 #endif
1008 (void) ioc3_r_etcdc(); /* Clear on read */
1009 ioc3_w_ercsr(15); /* RX low watermark */
1010 ioc3_w_ertr(0); /* Interrupt immediately */
1011 __ioc3_set_mac_address(dev);
1012 ioc3_w_ehar_h(ip->ehar_h);
1013 ioc3_w_ehar_l(ip->ehar_l);
1014 ioc3_w_ersr(42); /* XXX should be random */
1015
1016 ioc3_init_rings(dev);
1017
1018 ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
1019 EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
1020 ioc3_w_emcr(ip->emcr);
1021 ioc3_w_eier(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
1022 EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
1023 EISR_TXEXPLICIT | EISR_TXMEMERR);
1024 (void) ioc3_r_eier();
1025 }
1026
ioc3_stop(struct ioc3_private * ip)1027 static inline void ioc3_stop(struct ioc3_private *ip)
1028 {
1029 struct ioc3 *ioc3 = ip->regs;
1030
1031 ioc3_w_emcr(0); /* Shutup */
1032 ioc3_w_eier(0); /* Disable interrupts */
1033 (void) ioc3_r_eier(); /* Flush */
1034 }
1035
ioc3_open(struct net_device * dev)1036 static int ioc3_open(struct net_device *dev)
1037 {
1038 struct ioc3_private *ip = netdev_priv(dev);
1039
1040 if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
1041 printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq);
1042
1043 return -EAGAIN;
1044 }
1045
1046 ip->ehar_h = 0;
1047 ip->ehar_l = 0;
1048 ioc3_init(dev);
1049 ioc3_mii_start(ip);
1050
1051 netif_start_queue(dev);
1052 return 0;
1053 }
1054
ioc3_close(struct net_device * dev)1055 static int ioc3_close(struct net_device *dev)
1056 {
1057 struct ioc3_private *ip = netdev_priv(dev);
1058
1059 del_timer_sync(&ip->ioc3_timer);
1060
1061 netif_stop_queue(dev);
1062
1063 ioc3_stop(ip);
1064 free_irq(dev->irq, dev);
1065
1066 ioc3_free_rings(ip);
1067 return 0;
1068 }
1069
1070 /*
1071 * MENET cards have four IOC3 chips, which are attached to two sets of
1072 * PCI slot resources each: the primary connections are on slots
1073 * 0..3 and the secondaries are on 4..7
1074 *
1075 * All four ethernets are brought out to connectors; six serial ports
1076 * (a pair from each of the first three IOC3s) are brought out to
1077 * MiniDINs; all other subdevices are left swinging in the wind, leave
1078 * them disabled.
1079 */
1080
ioc3_adjacent_is_ioc3(struct pci_dev * pdev,int slot)1081 static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
1082 {
1083 struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
1084 int ret = 0;
1085
1086 if (dev) {
1087 if (dev->vendor == PCI_VENDOR_ID_SGI &&
1088 dev->device == PCI_DEVICE_ID_SGI_IOC3)
1089 ret = 1;
1090 pci_dev_put(dev);
1091 }
1092
1093 return ret;
1094 }
1095
ioc3_is_menet(struct pci_dev * pdev)1096 static int ioc3_is_menet(struct pci_dev *pdev)
1097 {
1098 return pdev->bus->parent == NULL &&
1099 ioc3_adjacent_is_ioc3(pdev, 0) &&
1100 ioc3_adjacent_is_ioc3(pdev, 1) &&
1101 ioc3_adjacent_is_ioc3(pdev, 2);
1102 }
1103
1104 #ifdef CONFIG_SERIAL_8250
1105 /*
1106 * Note about serial ports and consoles:
1107 * For console output, everyone uses the IOC3 UARTA (offset 0x178)
1108 * connected to the master node (look in ip27_setup_console() and
1109 * ip27prom_console_write()).
1110 *
1111 * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
1112 * addresses on a partitioned machine. Since we currently use the ioc3
1113 * serial ports, we use dynamic serial port discovery that the serial.c
1114 * driver uses for pci/pnp ports (there is an entry for the SGI ioc3
1115 * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
1116 * than UARTB's, although UARTA on o200s has traditionally been known as
1117 * port 0. So, we just use one serial port from each ioc3 (since the
1118 * serial driver adds addresses to get to higher ports).
1119 *
1120 * The first one to do a register_console becomes the preferred console
1121 * (if there is no kernel command line console= directive). /dev/console
1122 * (ie 5, 1) is then "aliased" into the device number returned by the
1123 * "device" routine referred to in this console structure
1124 * (ip27prom_console_dev).
1125 *
1126 * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
1127 * around ioc3 oddities in this respect.
1128 *
1129 * The IOC3 serials use a 22MHz clock rate with an additional divider which
1130 * can be programmed in the SCR register if the DLAB bit is set.
1131 *
1132 * Register to interrupt zero because we share the interrupt with
1133 * the serial driver which we don't properly support yet.
1134 *
1135 * Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
1136 * registered.
1137 */
ioc3_8250_register(struct ioc3_uartregs __iomem * uart)1138 static void ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
1139 {
1140 #define COSMISC_CONSTANT 6
1141
1142 struct uart_8250_port port = {
1143 .port = {
1144 .irq = 0,
1145 .flags = UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
1146 .iotype = UPIO_MEM,
1147 .regshift = 0,
1148 .uartclk = (22000000 << 1) / COSMISC_CONSTANT,
1149
1150 .membase = (unsigned char __iomem *) uart,
1151 .mapbase = (unsigned long) uart,
1152 }
1153 };
1154 unsigned char lcr;
1155
1156 lcr = uart->iu_lcr;
1157 uart->iu_lcr = lcr | UART_LCR_DLAB;
1158 uart->iu_scr = COSMISC_CONSTANT,
1159 uart->iu_lcr = lcr;
1160 uart->iu_lcr;
1161 serial8250_register_8250_port(&port);
1162 }
1163
ioc3_serial_probe(struct pci_dev * pdev,struct ioc3 * ioc3)1164 static void ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
1165 {
1166 /*
1167 * We need to recognice and treat the fourth MENET serial as it
1168 * does not have an SuperIO chip attached to it, therefore attempting
1169 * to access it will result in bus errors. We call something an
1170 * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
1171 * in it. This is paranoid but we want to avoid blowing up on a
1172 * showhorn PCI box that happens to have 4 IOC3 cards in it so it's
1173 * not paranoid enough ...
1174 */
1175 if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
1176 return;
1177
1178 /*
1179 * Switch IOC3 to PIO mode. It probably already was but let's be
1180 * paranoid
1181 */
1182 ioc3->gpcr_s = GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL;
1183 ioc3->gpcr_s;
1184 ioc3->gppr_6 = 0;
1185 ioc3->gppr_6;
1186 ioc3->gppr_7 = 0;
1187 ioc3->gppr_7;
1188 ioc3->sscr_a = ioc3->sscr_a & ~SSCR_DMA_EN;
1189 ioc3->sscr_a;
1190 ioc3->sscr_b = ioc3->sscr_b & ~SSCR_DMA_EN;
1191 ioc3->sscr_b;
1192 /* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
1193 ioc3->sio_iec &= ~ (SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
1194 SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER |
1195 SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS |
1196 SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR);
1197 ioc3->sio_iec |= SIO_IR_SA_INT;
1198 ioc3->sscr_a = 0;
1199 ioc3->sio_iec &= ~ (SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
1200 SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER |
1201 SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS |
1202 SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR);
1203 ioc3->sio_iec |= SIO_IR_SB_INT;
1204 ioc3->sscr_b = 0;
1205
1206 ioc3_8250_register(&ioc3->sregs.uarta);
1207 ioc3_8250_register(&ioc3->sregs.uartb);
1208 }
1209 #endif
1210
1211 static const struct net_device_ops ioc3_netdev_ops = {
1212 .ndo_open = ioc3_open,
1213 .ndo_stop = ioc3_close,
1214 .ndo_start_xmit = ioc3_start_xmit,
1215 .ndo_tx_timeout = ioc3_timeout,
1216 .ndo_get_stats = ioc3_get_stats,
1217 .ndo_set_rx_mode = ioc3_set_multicast_list,
1218 .ndo_do_ioctl = ioc3_ioctl,
1219 .ndo_validate_addr = eth_validate_addr,
1220 .ndo_set_mac_address = ioc3_set_mac_address,
1221 };
1222
ioc3_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1223 static int ioc3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1224 {
1225 unsigned int sw_physid1, sw_physid2;
1226 struct net_device *dev = NULL;
1227 struct ioc3_private *ip;
1228 struct ioc3 *ioc3;
1229 unsigned long ioc3_base, ioc3_size;
1230 u32 vendor, model, rev;
1231 int err, pci_using_dac;
1232
1233 /* Configure DMA attributes. */
1234 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1235 if (!err) {
1236 pci_using_dac = 1;
1237 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1238 if (err < 0) {
1239 printk(KERN_ERR "%s: Unable to obtain 64 bit DMA "
1240 "for consistent allocations\n", pci_name(pdev));
1241 goto out;
1242 }
1243 } else {
1244 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1245 if (err) {
1246 printk(KERN_ERR "%s: No usable DMA configuration, "
1247 "aborting.\n", pci_name(pdev));
1248 goto out;
1249 }
1250 pci_using_dac = 0;
1251 }
1252
1253 if (pci_enable_device(pdev))
1254 return -ENODEV;
1255
1256 dev = alloc_etherdev(sizeof(struct ioc3_private));
1257 if (!dev) {
1258 err = -ENOMEM;
1259 goto out_disable;
1260 }
1261
1262 if (pci_using_dac)
1263 dev->features |= NETIF_F_HIGHDMA;
1264
1265 err = pci_request_regions(pdev, "ioc3");
1266 if (err)
1267 goto out_free;
1268
1269 SET_NETDEV_DEV(dev, &pdev->dev);
1270
1271 ip = netdev_priv(dev);
1272 ip->dev = dev;
1273
1274 dev->irq = pdev->irq;
1275
1276 ioc3_base = pci_resource_start(pdev, 0);
1277 ioc3_size = pci_resource_len(pdev, 0);
1278 ioc3 = (struct ioc3 *) ioremap(ioc3_base, ioc3_size);
1279 if (!ioc3) {
1280 printk(KERN_CRIT "ioc3eth(%s): ioremap failed, goodbye.\n",
1281 pci_name(pdev));
1282 err = -ENOMEM;
1283 goto out_res;
1284 }
1285 ip->regs = ioc3;
1286
1287 #ifdef CONFIG_SERIAL_8250
1288 ioc3_serial_probe(pdev, ioc3);
1289 #endif
1290
1291 spin_lock_init(&ip->ioc3_lock);
1292 timer_setup(&ip->ioc3_timer, ioc3_timer, 0);
1293
1294 ioc3_stop(ip);
1295 ioc3_init(dev);
1296
1297 ip->pdev = pdev;
1298
1299 ip->mii.phy_id_mask = 0x1f;
1300 ip->mii.reg_num_mask = 0x1f;
1301 ip->mii.dev = dev;
1302 ip->mii.mdio_read = ioc3_mdio_read;
1303 ip->mii.mdio_write = ioc3_mdio_write;
1304
1305 ioc3_mii_init(ip);
1306
1307 if (ip->mii.phy_id == -1) {
1308 printk(KERN_CRIT "ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
1309 pci_name(pdev));
1310 err = -ENODEV;
1311 goto out_stop;
1312 }
1313
1314 ioc3_mii_start(ip);
1315 ioc3_ssram_disc(ip);
1316 ioc3_get_eaddr(ip);
1317
1318 /* The IOC3-specific entries in the device structure. */
1319 dev->watchdog_timeo = 5 * HZ;
1320 dev->netdev_ops = &ioc3_netdev_ops;
1321 dev->ethtool_ops = &ioc3_ethtool_ops;
1322 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
1323 dev->features = NETIF_F_IP_CSUM;
1324
1325 sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
1326 sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
1327
1328 err = register_netdev(dev);
1329 if (err)
1330 goto out_stop;
1331
1332 mii_check_media(&ip->mii, 1, 1);
1333 ioc3_setup_duplex(ip);
1334
1335 vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
1336 model = (sw_physid2 >> 4) & 0x3f;
1337 rev = sw_physid2 & 0xf;
1338 printk(KERN_INFO "%s: Using PHY %d, vendor 0x%x, model %d, "
1339 "rev %d.\n", dev->name, ip->mii.phy_id, vendor, model, rev);
1340 printk(KERN_INFO "%s: IOC3 SSRAM has %d kbyte.\n", dev->name,
1341 ip->emcr & EMCR_BUFSIZ ? 128 : 64);
1342
1343 return 0;
1344
1345 out_stop:
1346 ioc3_stop(ip);
1347 del_timer_sync(&ip->ioc3_timer);
1348 ioc3_free_rings(ip);
1349 out_res:
1350 pci_release_regions(pdev);
1351 out_free:
1352 free_netdev(dev);
1353 out_disable:
1354 /*
1355 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1356 * such a weird device ...
1357 */
1358 out:
1359 return err;
1360 }
1361
ioc3_remove_one(struct pci_dev * pdev)1362 static void ioc3_remove_one(struct pci_dev *pdev)
1363 {
1364 struct net_device *dev = pci_get_drvdata(pdev);
1365 struct ioc3_private *ip = netdev_priv(dev);
1366 struct ioc3 *ioc3 = ip->regs;
1367
1368 unregister_netdev(dev);
1369 del_timer_sync(&ip->ioc3_timer);
1370
1371 iounmap(ioc3);
1372 pci_release_regions(pdev);
1373 free_netdev(dev);
1374 /*
1375 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1376 * such a weird device ...
1377 */
1378 }
1379
1380 static const struct pci_device_id ioc3_pci_tbl[] = {
1381 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
1382 { 0 }
1383 };
1384 MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
1385
1386 static struct pci_driver ioc3_driver = {
1387 .name = "ioc3-eth",
1388 .id_table = ioc3_pci_tbl,
1389 .probe = ioc3_probe,
1390 .remove = ioc3_remove_one,
1391 };
1392
ioc3_start_xmit(struct sk_buff * skb,struct net_device * dev)1393 static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
1394 {
1395 unsigned long data;
1396 struct ioc3_private *ip = netdev_priv(dev);
1397 struct ioc3 *ioc3 = ip->regs;
1398 unsigned int len;
1399 struct ioc3_etxd *desc;
1400 uint32_t w0 = 0;
1401 int produce;
1402
1403 /*
1404 * IOC3 has a fairly simple minded checksumming hardware which simply
1405 * adds up the 1's complement checksum for the entire packet and
1406 * inserts it at an offset which can be specified in the descriptor
1407 * into the transmit packet. This means we have to compensate for the
1408 * MAC header which should not be summed and the TCP/UDP pseudo headers
1409 * manually.
1410 */
1411 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1412 const struct iphdr *ih = ip_hdr(skb);
1413 const int proto = ntohs(ih->protocol);
1414 unsigned int csoff;
1415 uint32_t csum, ehsum;
1416 uint16_t *eh;
1417
1418 /* The MAC header. skb->mac seem the logic approach
1419 to find the MAC header - except it's a NULL pointer ... */
1420 eh = (uint16_t *) skb->data;
1421
1422 /* Sum up dest addr, src addr and protocol */
1423 ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1424
1425 /* Fold ehsum. can't use csum_fold which negates also ... */
1426 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1427 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1428
1429 /* Skip IP header; it's sum is always zero and was
1430 already filled in by ip_output.c */
1431 csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1432 ih->tot_len - (ih->ihl << 2),
1433 proto, 0xffff ^ ehsum);
1434
1435 csum = (csum & 0xffff) + (csum >> 16); /* Fold again */
1436 csum = (csum & 0xffff) + (csum >> 16);
1437
1438 csoff = ETH_HLEN + (ih->ihl << 2);
1439 if (proto == IPPROTO_UDP) {
1440 csoff += offsetof(struct udphdr, check);
1441 udp_hdr(skb)->check = csum;
1442 }
1443 if (proto == IPPROTO_TCP) {
1444 csoff += offsetof(struct tcphdr, check);
1445 tcp_hdr(skb)->check = csum;
1446 }
1447
1448 w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1449 }
1450
1451 spin_lock_irq(&ip->ioc3_lock);
1452
1453 data = (unsigned long) skb->data;
1454 len = skb->len;
1455
1456 produce = ip->tx_pi;
1457 desc = &ip->txr[produce];
1458
1459 if (len <= 104) {
1460 /* Short packet, let's copy it directly into the ring. */
1461 skb_copy_from_linear_data(skb, desc->data, skb->len);
1462 if (len < ETH_ZLEN) {
1463 /* Very short packet, pad with zeros at the end. */
1464 memset(desc->data + len, 0, ETH_ZLEN - len);
1465 len = ETH_ZLEN;
1466 }
1467 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1468 desc->bufcnt = cpu_to_be32(len);
1469 } else if ((data ^ (data + len - 1)) & 0x4000) {
1470 unsigned long b2 = (data | 0x3fffUL) + 1UL;
1471 unsigned long s1 = b2 - data;
1472 unsigned long s2 = data + len - b2;
1473
1474 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE |
1475 ETXD_B1V | ETXD_B2V | w0);
1476 desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1477 (s2 << ETXD_B2CNT_SHIFT));
1478 desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
1479 desc->p2 = cpu_to_be64(ioc3_map((void *) b2, 1));
1480 } else {
1481 /* Normal sized packet that doesn't cross a page boundary. */
1482 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1483 desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1484 desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
1485 }
1486
1487 BARRIER();
1488
1489 ip->tx_skbs[produce] = skb; /* Remember skb */
1490 produce = (produce + 1) & 127;
1491 ip->tx_pi = produce;
1492 ioc3_w_etpir(produce << 7); /* Fire ... */
1493
1494 ip->txqlen++;
1495
1496 if (ip->txqlen >= 127)
1497 netif_stop_queue(dev);
1498
1499 spin_unlock_irq(&ip->ioc3_lock);
1500
1501 return NETDEV_TX_OK;
1502 }
1503
ioc3_timeout(struct net_device * dev)1504 static void ioc3_timeout(struct net_device *dev)
1505 {
1506 struct ioc3_private *ip = netdev_priv(dev);
1507
1508 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
1509
1510 spin_lock_irq(&ip->ioc3_lock);
1511
1512 ioc3_stop(ip);
1513 ioc3_init(dev);
1514 ioc3_mii_init(ip);
1515 ioc3_mii_start(ip);
1516
1517 spin_unlock_irq(&ip->ioc3_lock);
1518
1519 netif_wake_queue(dev);
1520 }
1521
1522 /*
1523 * Given a multicast ethernet address, this routine calculates the
1524 * address's bit index in the logical address filter mask
1525 */
1526
ioc3_hash(const unsigned char * addr)1527 static inline unsigned int ioc3_hash(const unsigned char *addr)
1528 {
1529 unsigned int temp = 0;
1530 u32 crc;
1531 int bits;
1532
1533 crc = ether_crc_le(ETH_ALEN, addr);
1534
1535 crc &= 0x3f; /* bit reverse lowest 6 bits for hash index */
1536 for (bits = 6; --bits >= 0; ) {
1537 temp <<= 1;
1538 temp |= (crc & 0x1);
1539 crc >>= 1;
1540 }
1541
1542 return temp;
1543 }
1544
ioc3_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1545 static void ioc3_get_drvinfo (struct net_device *dev,
1546 struct ethtool_drvinfo *info)
1547 {
1548 struct ioc3_private *ip = netdev_priv(dev);
1549
1550 strlcpy(info->driver, IOC3_NAME, sizeof(info->driver));
1551 strlcpy(info->version, IOC3_VERSION, sizeof(info->version));
1552 strlcpy(info->bus_info, pci_name(ip->pdev), sizeof(info->bus_info));
1553 }
1554
ioc3_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1555 static int ioc3_get_link_ksettings(struct net_device *dev,
1556 struct ethtool_link_ksettings *cmd)
1557 {
1558 struct ioc3_private *ip = netdev_priv(dev);
1559
1560 spin_lock_irq(&ip->ioc3_lock);
1561 mii_ethtool_get_link_ksettings(&ip->mii, cmd);
1562 spin_unlock_irq(&ip->ioc3_lock);
1563
1564 return 0;
1565 }
1566
ioc3_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1567 static int ioc3_set_link_ksettings(struct net_device *dev,
1568 const struct ethtool_link_ksettings *cmd)
1569 {
1570 struct ioc3_private *ip = netdev_priv(dev);
1571 int rc;
1572
1573 spin_lock_irq(&ip->ioc3_lock);
1574 rc = mii_ethtool_set_link_ksettings(&ip->mii, cmd);
1575 spin_unlock_irq(&ip->ioc3_lock);
1576
1577 return rc;
1578 }
1579
ioc3_nway_reset(struct net_device * dev)1580 static int ioc3_nway_reset(struct net_device *dev)
1581 {
1582 struct ioc3_private *ip = netdev_priv(dev);
1583 int rc;
1584
1585 spin_lock_irq(&ip->ioc3_lock);
1586 rc = mii_nway_restart(&ip->mii);
1587 spin_unlock_irq(&ip->ioc3_lock);
1588
1589 return rc;
1590 }
1591
ioc3_get_link(struct net_device * dev)1592 static u32 ioc3_get_link(struct net_device *dev)
1593 {
1594 struct ioc3_private *ip = netdev_priv(dev);
1595 int rc;
1596
1597 spin_lock_irq(&ip->ioc3_lock);
1598 rc = mii_link_ok(&ip->mii);
1599 spin_unlock_irq(&ip->ioc3_lock);
1600
1601 return rc;
1602 }
1603
1604 static const struct ethtool_ops ioc3_ethtool_ops = {
1605 .get_drvinfo = ioc3_get_drvinfo,
1606 .nway_reset = ioc3_nway_reset,
1607 .get_link = ioc3_get_link,
1608 .get_link_ksettings = ioc3_get_link_ksettings,
1609 .set_link_ksettings = ioc3_set_link_ksettings,
1610 };
1611
ioc3_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1612 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1613 {
1614 struct ioc3_private *ip = netdev_priv(dev);
1615 int rc;
1616
1617 spin_lock_irq(&ip->ioc3_lock);
1618 rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1619 spin_unlock_irq(&ip->ioc3_lock);
1620
1621 return rc;
1622 }
1623
ioc3_set_multicast_list(struct net_device * dev)1624 static void ioc3_set_multicast_list(struct net_device *dev)
1625 {
1626 struct netdev_hw_addr *ha;
1627 struct ioc3_private *ip = netdev_priv(dev);
1628 struct ioc3 *ioc3 = ip->regs;
1629 u64 ehar = 0;
1630
1631 netif_stop_queue(dev); /* Lock out others. */
1632
1633 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1634 ip->emcr |= EMCR_PROMISC;
1635 ioc3_w_emcr(ip->emcr);
1636 (void) ioc3_r_emcr();
1637 } else {
1638 ip->emcr &= ~EMCR_PROMISC;
1639 ioc3_w_emcr(ip->emcr); /* Clear promiscuous. */
1640 (void) ioc3_r_emcr();
1641
1642 if ((dev->flags & IFF_ALLMULTI) ||
1643 (netdev_mc_count(dev) > 64)) {
1644 /* Too many for hashing to make sense or we want all
1645 multicast packets anyway, so skip computing all the
1646 hashes and just accept all packets. */
1647 ip->ehar_h = 0xffffffff;
1648 ip->ehar_l = 0xffffffff;
1649 } else {
1650 netdev_for_each_mc_addr(ha, dev) {
1651 ehar |= (1UL << ioc3_hash(ha->addr));
1652 }
1653 ip->ehar_h = ehar >> 32;
1654 ip->ehar_l = ehar & 0xffffffff;
1655 }
1656 ioc3_w_ehar_h(ip->ehar_h);
1657 ioc3_w_ehar_l(ip->ehar_l);
1658 }
1659
1660 netif_wake_queue(dev); /* Let us get going again. */
1661 }
1662
1663 module_pci_driver(ioc3_driver);
1664 MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1665 MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1666 MODULE_LICENSE("GPL");
1667