1 /* drivers/net/ethernet/micrel/ks8851.c
2  *
3  * Copyright 2009 Simtec Electronics
4  *	http://www.simtec.co.uk/
5  *	Ben Dooks <ben@simtec.co.uk>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #define DEBUG
15 
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/netdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/ethtool.h>
22 #include <linux/cache.h>
23 #include <linux/crc32.h>
24 #include <linux/mii.h>
25 #include <linux/eeprom_93cx6.h>
26 #include <linux/regulator/consumer.h>
27 
28 #include <linux/spi/spi.h>
29 #include <linux/gpio.h>
30 #include <linux/of_gpio.h>
31 #include <linux/of_net.h>
32 
33 #include "ks8851.h"
34 
35 /**
36  * struct ks8851_rxctrl - KS8851 driver rx control
37  * @mchash: Multicast hash-table data.
38  * @rxcr1: KS_RXCR1 register setting
39  * @rxcr2: KS_RXCR2 register setting
40  *
41  * Representation of the settings needs to control the receive filtering
42  * such as the multicast hash-filter and the receive register settings. This
43  * is used to make the job of working out if the receive settings change and
44  * then issuing the new settings to the worker that will send the necessary
45  * commands.
46  */
47 struct ks8851_rxctrl {
48 	u16	mchash[4];
49 	u16	rxcr1;
50 	u16	rxcr2;
51 };
52 
53 /**
54  * union ks8851_tx_hdr - tx header data
55  * @txb: The header as bytes
56  * @txw: The header as 16bit, little-endian words
57  *
58  * A dual representation of the tx header data to allow
59  * access to individual bytes, and to allow 16bit accesses
60  * with 16bit alignment.
61  */
62 union ks8851_tx_hdr {
63 	u8	txb[6];
64 	__le16	txw[3];
65 };
66 
67 /**
68  * struct ks8851_net - KS8851 driver private data
69  * @netdev: The network device we're bound to
70  * @spidev: The spi device we're bound to.
71  * @lock: Lock to ensure that the device is not accessed when busy.
72  * @statelock: Lock on this structure for tx list.
73  * @mii: The MII state information for the mii calls.
74  * @rxctrl: RX settings for @rxctrl_work.
75  * @tx_work: Work queue for tx packets
76  * @rxctrl_work: Work queue for updating RX mode and multicast lists
77  * @txq: Queue of packets for transmission.
78  * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
79  * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
80  * @txh: Space for generating packet TX header in DMA-able data
81  * @rxd: Space for receiving SPI data, in DMA-able space.
82  * @txd: Space for transmitting SPI data, in DMA-able space.
83  * @msg_enable: The message flags controlling driver output (see ethtool).
84  * @fid: Incrementing frame id tag.
85  * @rc_ier: Cached copy of KS_IER.
86  * @rc_ccr: Cached copy of KS_CCR.
87  * @rc_rxqcr: Cached copy of KS_RXQCR.
88  * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
89  * @vdd_reg:	Optional regulator supplying the chip
90  * @vdd_io: Optional digital power supply for IO
91  * @gpio: Optional reset_n gpio
92  *
93  * The @lock ensures that the chip is protected when certain operations are
94  * in progress. When the read or write packet transfer is in progress, most
95  * of the chip registers are not ccessible until the transfer is finished and
96  * the DMA has been de-asserted.
97  *
98  * The @statelock is used to protect information in the structure which may
99  * need to be accessed via several sources, such as the network driver layer
100  * or one of the work queues.
101  *
102  * We align the buffers we may use for rx/tx to ensure that if the SPI driver
103  * wants to DMA map them, it will not have any problems with data the driver
104  * modifies.
105  */
106 struct ks8851_net {
107 	struct net_device	*netdev;
108 	struct spi_device	*spidev;
109 	struct mutex		lock;
110 	spinlock_t		statelock;
111 
112 	union ks8851_tx_hdr	txh ____cacheline_aligned;
113 	u8			rxd[8];
114 	u8			txd[8];
115 
116 	u32			msg_enable ____cacheline_aligned;
117 	u16			tx_space;
118 	u8			fid;
119 
120 	u16			rc_ier;
121 	u16			rc_rxqcr;
122 	u16			rc_ccr;
123 
124 	struct mii_if_info	mii;
125 	struct ks8851_rxctrl	rxctrl;
126 
127 	struct work_struct	tx_work;
128 	struct work_struct	rxctrl_work;
129 
130 	struct sk_buff_head	txq;
131 
132 	struct spi_message	spi_msg1;
133 	struct spi_message	spi_msg2;
134 	struct spi_transfer	spi_xfer1;
135 	struct spi_transfer	spi_xfer2[2];
136 
137 	struct eeprom_93cx6	eeprom;
138 	struct regulator	*vdd_reg;
139 	struct regulator	*vdd_io;
140 	int			gpio;
141 };
142 
143 static int msg_enable;
144 
145 /* shift for byte-enable data */
146 #define BYTE_EN(_x)	((_x) << 2)
147 
148 /* turn register number and byte-enable mask into data for start of packet */
149 #define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6)
150 
151 /* SPI register read/write calls.
152  *
153  * All these calls issue SPI transactions to access the chip's registers. They
154  * all require that the necessary lock is held to prevent accesses when the
155  * chip is busy transferring packet data (RX/TX FIFO accesses).
156  */
157 
158 /**
159  * ks8851_wrreg16 - write 16bit register value to chip
160  * @ks: The chip state
161  * @reg: The register address
162  * @val: The value to write
163  *
164  * Issue a write to put the value @val into the register specified in @reg.
165  */
ks8851_wrreg16(struct ks8851_net * ks,unsigned reg,unsigned val)166 static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
167 {
168 	struct spi_transfer *xfer = &ks->spi_xfer1;
169 	struct spi_message *msg = &ks->spi_msg1;
170 	__le16 txb[2];
171 	int ret;
172 
173 	txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
174 	txb[1] = cpu_to_le16(val);
175 
176 	xfer->tx_buf = txb;
177 	xfer->rx_buf = NULL;
178 	xfer->len = 4;
179 
180 	ret = spi_sync(ks->spidev, msg);
181 	if (ret < 0)
182 		netdev_err(ks->netdev, "spi_sync() failed\n");
183 }
184 
185 /**
186  * ks8851_wrreg8 - write 8bit register value to chip
187  * @ks: The chip state
188  * @reg: The register address
189  * @val: The value to write
190  *
191  * Issue a write to put the value @val into the register specified in @reg.
192  */
ks8851_wrreg8(struct ks8851_net * ks,unsigned reg,unsigned val)193 static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
194 {
195 	struct spi_transfer *xfer = &ks->spi_xfer1;
196 	struct spi_message *msg = &ks->spi_msg1;
197 	__le16 txb[2];
198 	int ret;
199 	int bit;
200 
201 	bit = 1 << (reg & 3);
202 
203 	txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
204 	txb[1] = val;
205 
206 	xfer->tx_buf = txb;
207 	xfer->rx_buf = NULL;
208 	xfer->len = 3;
209 
210 	ret = spi_sync(ks->spidev, msg);
211 	if (ret < 0)
212 		netdev_err(ks->netdev, "spi_sync() failed\n");
213 }
214 
215 /**
216  * ks8851_rdreg - issue read register command and return the data
217  * @ks: The device state
218  * @op: The register address and byte enables in message format.
219  * @rxb: The RX buffer to return the result into
220  * @rxl: The length of data expected.
221  *
222  * This is the low level read call that issues the necessary spi message(s)
223  * to read data from the register specified in @op.
224  */
ks8851_rdreg(struct ks8851_net * ks,unsigned op,u8 * rxb,unsigned rxl)225 static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
226 			 u8 *rxb, unsigned rxl)
227 {
228 	struct spi_transfer *xfer;
229 	struct spi_message *msg;
230 	__le16 *txb = (__le16 *)ks->txd;
231 	u8 *trx = ks->rxd;
232 	int ret;
233 
234 	txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
235 
236 	if (ks->spidev->master->flags & SPI_MASTER_HALF_DUPLEX) {
237 		msg = &ks->spi_msg2;
238 		xfer = ks->spi_xfer2;
239 
240 		xfer->tx_buf = txb;
241 		xfer->rx_buf = NULL;
242 		xfer->len = 2;
243 
244 		xfer++;
245 		xfer->tx_buf = NULL;
246 		xfer->rx_buf = trx;
247 		xfer->len = rxl;
248 	} else {
249 		msg = &ks->spi_msg1;
250 		xfer = &ks->spi_xfer1;
251 
252 		xfer->tx_buf = txb;
253 		xfer->rx_buf = trx;
254 		xfer->len = rxl + 2;
255 	}
256 
257 	ret = spi_sync(ks->spidev, msg);
258 	if (ret < 0)
259 		netdev_err(ks->netdev, "read: spi_sync() failed\n");
260 	else if (ks->spidev->master->flags & SPI_MASTER_HALF_DUPLEX)
261 		memcpy(rxb, trx, rxl);
262 	else
263 		memcpy(rxb, trx + 2, rxl);
264 }
265 
266 /**
267  * ks8851_rdreg8 - read 8 bit register from device
268  * @ks: The chip information
269  * @reg: The register address
270  *
271  * Read a 8bit register from the chip, returning the result
272 */
ks8851_rdreg8(struct ks8851_net * ks,unsigned reg)273 static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
274 {
275 	u8 rxb[1];
276 
277 	ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
278 	return rxb[0];
279 }
280 
281 /**
282  * ks8851_rdreg16 - read 16 bit register from device
283  * @ks: The chip information
284  * @reg: The register address
285  *
286  * Read a 16bit register from the chip, returning the result
287 */
ks8851_rdreg16(struct ks8851_net * ks,unsigned reg)288 static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
289 {
290 	__le16 rx = 0;
291 
292 	ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
293 	return le16_to_cpu(rx);
294 }
295 
296 /**
297  * ks8851_rdreg32 - read 32 bit register from device
298  * @ks: The chip information
299  * @reg: The register address
300  *
301  * Read a 32bit register from the chip.
302  *
303  * Note, this read requires the address be aligned to 4 bytes.
304 */
ks8851_rdreg32(struct ks8851_net * ks,unsigned reg)305 static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
306 {
307 	__le32 rx = 0;
308 
309 	WARN_ON(reg & 3);
310 
311 	ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
312 	return le32_to_cpu(rx);
313 }
314 
315 /**
316  * ks8851_soft_reset - issue one of the soft reset to the device
317  * @ks: The device state.
318  * @op: The bit(s) to set in the GRR
319  *
320  * Issue the relevant soft-reset command to the device's GRR register
321  * specified by @op.
322  *
323  * Note, the delays are in there as a caution to ensure that the reset
324  * has time to take effect and then complete. Since the datasheet does
325  * not currently specify the exact sequence, we have chosen something
326  * that seems to work with our device.
327  */
ks8851_soft_reset(struct ks8851_net * ks,unsigned op)328 static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
329 {
330 	ks8851_wrreg16(ks, KS_GRR, op);
331 	mdelay(1);	/* wait a short time to effect reset */
332 	ks8851_wrreg16(ks, KS_GRR, 0);
333 	mdelay(1);	/* wait for condition to clear */
334 }
335 
336 /**
337  * ks8851_set_powermode - set power mode of the device
338  * @ks: The device state
339  * @pwrmode: The power mode value to write to KS_PMECR.
340  *
341  * Change the power mode of the chip.
342  */
ks8851_set_powermode(struct ks8851_net * ks,unsigned pwrmode)343 static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
344 {
345 	unsigned pmecr;
346 
347 	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
348 
349 	pmecr = ks8851_rdreg16(ks, KS_PMECR);
350 	pmecr &= ~PMECR_PM_MASK;
351 	pmecr |= pwrmode;
352 
353 	ks8851_wrreg16(ks, KS_PMECR, pmecr);
354 }
355 
356 /**
357  * ks8851_write_mac_addr - write mac address to device registers
358  * @dev: The network device
359  *
360  * Update the KS8851 MAC address registers from the address in @dev.
361  *
362  * This call assumes that the chip is not running, so there is no need to
363  * shutdown the RXQ process whilst setting this.
364 */
ks8851_write_mac_addr(struct net_device * dev)365 static int ks8851_write_mac_addr(struct net_device *dev)
366 {
367 	struct ks8851_net *ks = netdev_priv(dev);
368 	int i;
369 
370 	mutex_lock(&ks->lock);
371 
372 	/*
373 	 * Wake up chip in case it was powered off when stopped; otherwise,
374 	 * the first write to the MAC address does not take effect.
375 	 */
376 	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
377 	for (i = 0; i < ETH_ALEN; i++)
378 		ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
379 	if (!netif_running(dev))
380 		ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
381 
382 	mutex_unlock(&ks->lock);
383 
384 	return 0;
385 }
386 
387 /**
388  * ks8851_read_mac_addr - read mac address from device registers
389  * @dev: The network device
390  *
391  * Update our copy of the KS8851 MAC address from the registers of @dev.
392 */
ks8851_read_mac_addr(struct net_device * dev)393 static void ks8851_read_mac_addr(struct net_device *dev)
394 {
395 	struct ks8851_net *ks = netdev_priv(dev);
396 	int i;
397 
398 	mutex_lock(&ks->lock);
399 
400 	for (i = 0; i < ETH_ALEN; i++)
401 		dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));
402 
403 	mutex_unlock(&ks->lock);
404 }
405 
406 /**
407  * ks8851_init_mac - initialise the mac address
408  * @ks: The device structure
409  *
410  * Get or create the initial mac address for the device and then set that
411  * into the station address register. A mac address supplied in the device
412  * tree takes precedence. Otherwise, if there is an EEPROM present, then
413  * we try that. If no valid mac address is found we use eth_random_addr()
414  * to create a new one.
415  */
ks8851_init_mac(struct ks8851_net * ks)416 static void ks8851_init_mac(struct ks8851_net *ks)
417 {
418 	struct net_device *dev = ks->netdev;
419 	const u8 *mac_addr;
420 
421 	mac_addr = of_get_mac_address(ks->spidev->dev.of_node);
422 	if (mac_addr) {
423 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
424 		ks8851_write_mac_addr(dev);
425 		return;
426 	}
427 
428 	if (ks->rc_ccr & CCR_EEPROM) {
429 		ks8851_read_mac_addr(dev);
430 		if (is_valid_ether_addr(dev->dev_addr))
431 			return;
432 
433 		netdev_err(ks->netdev, "invalid mac address read %pM\n",
434 				dev->dev_addr);
435 	}
436 
437 	eth_hw_addr_random(dev);
438 	ks8851_write_mac_addr(dev);
439 }
440 
441 /**
442  * ks8851_rdfifo - read data from the receive fifo
443  * @ks: The device state.
444  * @buff: The buffer address
445  * @len: The length of the data to read
446  *
447  * Issue an RXQ FIFO read command and read the @len amount of data from
448  * the FIFO into the buffer specified by @buff.
449  */
ks8851_rdfifo(struct ks8851_net * ks,u8 * buff,unsigned len)450 static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
451 {
452 	struct spi_transfer *xfer = ks->spi_xfer2;
453 	struct spi_message *msg = &ks->spi_msg2;
454 	u8 txb[1];
455 	int ret;
456 
457 	netif_dbg(ks, rx_status, ks->netdev,
458 		  "%s: %d@%p\n", __func__, len, buff);
459 
460 	/* set the operation we're issuing */
461 	txb[0] = KS_SPIOP_RXFIFO;
462 
463 	xfer->tx_buf = txb;
464 	xfer->rx_buf = NULL;
465 	xfer->len = 1;
466 
467 	xfer++;
468 	xfer->rx_buf = buff;
469 	xfer->tx_buf = NULL;
470 	xfer->len = len;
471 
472 	ret = spi_sync(ks->spidev, msg);
473 	if (ret < 0)
474 		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
475 }
476 
477 /**
478  * ks8851_dbg_dumpkkt - dump initial packet contents to debug
479  * @ks: The device state
480  * @rxpkt: The data for the received packet
481  *
482  * Dump the initial data from the packet to dev_dbg().
483 */
ks8851_dbg_dumpkkt(struct ks8851_net * ks,u8 * rxpkt)484 static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
485 {
486 	netdev_dbg(ks->netdev,
487 		   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
488 		   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
489 		   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
490 		   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
491 }
492 
493 /**
494  * ks8851_rx_pkts - receive packets from the host
495  * @ks: The device information.
496  *
497  * This is called from the IRQ work queue when the system detects that there
498  * are packets in the receive queue. Find out how many packets there are and
499  * read them from the FIFO.
500  */
ks8851_rx_pkts(struct ks8851_net * ks)501 static void ks8851_rx_pkts(struct ks8851_net *ks)
502 {
503 	struct sk_buff *skb;
504 	unsigned rxfc;
505 	unsigned rxlen;
506 	unsigned rxstat;
507 	u32 rxh;
508 	u8 *rxpkt;
509 
510 	rxfc = ks8851_rdreg8(ks, KS_RXFC);
511 
512 	netif_dbg(ks, rx_status, ks->netdev,
513 		  "%s: %d packets\n", __func__, rxfc);
514 
515 	/* Currently we're issuing a read per packet, but we could possibly
516 	 * improve the code by issuing a single read, getting the receive
517 	 * header, allocating the packet and then reading the packet data
518 	 * out in one go.
519 	 *
520 	 * This form of operation would require us to hold the SPI bus'
521 	 * chipselect low during the entie transaction to avoid any
522 	 * reset to the data stream coming from the chip.
523 	 */
524 
525 	for (; rxfc != 0; rxfc--) {
526 		rxh = ks8851_rdreg32(ks, KS_RXFHSR);
527 		rxstat = rxh & 0xffff;
528 		rxlen = (rxh >> 16) & 0xfff;
529 
530 		netif_dbg(ks, rx_status, ks->netdev,
531 			  "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
532 
533 		/* the length of the packet includes the 32bit CRC */
534 
535 		/* set dma read address */
536 		ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
537 
538 		/* start the packet dma process, and set auto-dequeue rx */
539 		ks8851_wrreg16(ks, KS_RXQCR,
540 			       ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
541 
542 		if (rxlen > 4) {
543 			unsigned int rxalign;
544 
545 			rxlen -= 4;
546 			rxalign = ALIGN(rxlen, 4);
547 			skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
548 			if (skb) {
549 
550 				/* 4 bytes of status header + 4 bytes of
551 				 * garbage: we put them before ethernet
552 				 * header, so that they are copied,
553 				 * but ignored.
554 				 */
555 
556 				rxpkt = skb_put(skb, rxlen) - 8;
557 
558 				ks8851_rdfifo(ks, rxpkt, rxalign + 8);
559 
560 				if (netif_msg_pktdata(ks))
561 					ks8851_dbg_dumpkkt(ks, rxpkt);
562 
563 				skb->protocol = eth_type_trans(skb, ks->netdev);
564 				netif_rx_ni(skb);
565 
566 				ks->netdev->stats.rx_packets++;
567 				ks->netdev->stats.rx_bytes += rxlen;
568 			}
569 		}
570 
571 		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
572 	}
573 }
574 
575 /**
576  * ks8851_irq - IRQ handler for dealing with interrupt requests
577  * @irq: IRQ number
578  * @_ks: cookie
579  *
580  * This handler is invoked when the IRQ line asserts to find out what happened.
581  * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
582  * in thread context.
583  *
584  * Read the interrupt status, work out what needs to be done and then clear
585  * any of the interrupts that are not needed.
586  */
ks8851_irq(int irq,void * _ks)587 static irqreturn_t ks8851_irq(int irq, void *_ks)
588 {
589 	struct ks8851_net *ks = _ks;
590 	unsigned status;
591 	unsigned handled = 0;
592 
593 	mutex_lock(&ks->lock);
594 
595 	status = ks8851_rdreg16(ks, KS_ISR);
596 
597 	netif_dbg(ks, intr, ks->netdev,
598 		  "%s: status 0x%04x\n", __func__, status);
599 
600 	if (status & IRQ_LCI)
601 		handled |= IRQ_LCI;
602 
603 	if (status & IRQ_LDI) {
604 		u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
605 		pmecr &= ~PMECR_WKEVT_MASK;
606 		ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
607 
608 		handled |= IRQ_LDI;
609 	}
610 
611 	if (status & IRQ_RXPSI)
612 		handled |= IRQ_RXPSI;
613 
614 	if (status & IRQ_TXI) {
615 		handled |= IRQ_TXI;
616 
617 		/* no lock here, tx queue should have been stopped */
618 
619 		/* update our idea of how much tx space is available to the
620 		 * system */
621 		ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
622 
623 		netif_dbg(ks, intr, ks->netdev,
624 			  "%s: txspace %d\n", __func__, ks->tx_space);
625 	}
626 
627 	if (status & IRQ_RXI)
628 		handled |= IRQ_RXI;
629 
630 	if (status & IRQ_SPIBEI) {
631 		dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
632 		handled |= IRQ_SPIBEI;
633 	}
634 
635 	ks8851_wrreg16(ks, KS_ISR, handled);
636 
637 	if (status & IRQ_RXI) {
638 		/* the datasheet says to disable the rx interrupt during
639 		 * packet read-out, however we're masking the interrupt
640 		 * from the device so do not bother masking just the RX
641 		 * from the device. */
642 
643 		ks8851_rx_pkts(ks);
644 	}
645 
646 	/* if something stopped the rx process, probably due to wanting
647 	 * to change the rx settings, then do something about restarting
648 	 * it. */
649 	if (status & IRQ_RXPSI) {
650 		struct ks8851_rxctrl *rxc = &ks->rxctrl;
651 
652 		/* update the multicast hash table */
653 		ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
654 		ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
655 		ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
656 		ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
657 
658 		ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
659 		ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
660 	}
661 
662 	mutex_unlock(&ks->lock);
663 
664 	if (status & IRQ_LCI)
665 		mii_check_link(&ks->mii);
666 
667 	if (status & IRQ_TXI)
668 		netif_wake_queue(ks->netdev);
669 
670 	return IRQ_HANDLED;
671 }
672 
673 /**
674  * calc_txlen - calculate size of message to send packet
675  * @len: Length of data
676  *
677  * Returns the size of the TXFIFO message needed to send
678  * this packet.
679  */
calc_txlen(unsigned len)680 static inline unsigned calc_txlen(unsigned len)
681 {
682 	return ALIGN(len + 4, 4);
683 }
684 
685 /**
686  * ks8851_wrpkt - write packet to TX FIFO
687  * @ks: The device state.
688  * @txp: The sk_buff to transmit.
689  * @irq: IRQ on completion of the packet.
690  *
691  * Send the @txp to the chip. This means creating the relevant packet header
692  * specifying the length of the packet and the other information the chip
693  * needs, such as IRQ on completion. Send the header and the packet data to
694  * the device.
695  */
ks8851_wrpkt(struct ks8851_net * ks,struct sk_buff * txp,bool irq)696 static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
697 {
698 	struct spi_transfer *xfer = ks->spi_xfer2;
699 	struct spi_message *msg = &ks->spi_msg2;
700 	unsigned fid = 0;
701 	int ret;
702 
703 	netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
704 		  __func__, txp, txp->len, txp->data, irq);
705 
706 	fid = ks->fid++;
707 	fid &= TXFR_TXFID_MASK;
708 
709 	if (irq)
710 		fid |= TXFR_TXIC;	/* irq on completion */
711 
712 	/* start header at txb[1] to align txw entries */
713 	ks->txh.txb[1] = KS_SPIOP_TXFIFO;
714 	ks->txh.txw[1] = cpu_to_le16(fid);
715 	ks->txh.txw[2] = cpu_to_le16(txp->len);
716 
717 	xfer->tx_buf = &ks->txh.txb[1];
718 	xfer->rx_buf = NULL;
719 	xfer->len = 5;
720 
721 	xfer++;
722 	xfer->tx_buf = txp->data;
723 	xfer->rx_buf = NULL;
724 	xfer->len = ALIGN(txp->len, 4);
725 
726 	ret = spi_sync(ks->spidev, msg);
727 	if (ret < 0)
728 		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
729 }
730 
731 /**
732  * ks8851_done_tx - update and then free skbuff after transmitting
733  * @ks: The device state
734  * @txb: The buffer transmitted
735  */
ks8851_done_tx(struct ks8851_net * ks,struct sk_buff * txb)736 static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
737 {
738 	struct net_device *dev = ks->netdev;
739 
740 	dev->stats.tx_bytes += txb->len;
741 	dev->stats.tx_packets++;
742 
743 	dev_kfree_skb(txb);
744 }
745 
746 /**
747  * ks8851_tx_work - process tx packet(s)
748  * @work: The work strucutre what was scheduled.
749  *
750  * This is called when a number of packets have been scheduled for
751  * transmission and need to be sent to the device.
752  */
ks8851_tx_work(struct work_struct * work)753 static void ks8851_tx_work(struct work_struct *work)
754 {
755 	struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
756 	struct sk_buff *txb;
757 	bool last = skb_queue_empty(&ks->txq);
758 
759 	mutex_lock(&ks->lock);
760 
761 	while (!last) {
762 		txb = skb_dequeue(&ks->txq);
763 		last = skb_queue_empty(&ks->txq);
764 
765 		if (txb != NULL) {
766 			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
767 			ks8851_wrpkt(ks, txb, last);
768 			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
769 			ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
770 
771 			ks8851_done_tx(ks, txb);
772 		}
773 	}
774 
775 	mutex_unlock(&ks->lock);
776 }
777 
778 /**
779  * ks8851_net_open - open network device
780  * @dev: The network device being opened.
781  *
782  * Called when the network device is marked active, such as a user executing
783  * 'ifconfig up' on the device.
784  */
ks8851_net_open(struct net_device * dev)785 static int ks8851_net_open(struct net_device *dev)
786 {
787 	struct ks8851_net *ks = netdev_priv(dev);
788 
789 	/* lock the card, even if we may not actually be doing anything
790 	 * else at the moment */
791 	mutex_lock(&ks->lock);
792 
793 	netif_dbg(ks, ifup, ks->netdev, "opening\n");
794 
795 	/* bring chip out of any power saving mode it was in */
796 	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
797 
798 	/* issue a soft reset to the RX/TX QMU to put it into a known
799 	 * state. */
800 	ks8851_soft_reset(ks, GRR_QMU);
801 
802 	/* setup transmission parameters */
803 
804 	ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
805 				     TXCR_TXPE | /* pad to min length */
806 				     TXCR_TXCRC | /* add CRC */
807 				     TXCR_TXFCE)); /* enable flow control */
808 
809 	/* auto-increment tx data, reset tx pointer */
810 	ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
811 
812 	/* setup receiver control */
813 
814 	ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
815 				      RXCR1_RXFCE | /* enable flow control */
816 				      RXCR1_RXBE | /* broadcast enable */
817 				      RXCR1_RXUE | /* unicast enable */
818 				      RXCR1_RXE)); /* enable rx block */
819 
820 	/* transfer entire frames out in one go */
821 	ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
822 
823 	/* set receive counter timeouts */
824 	ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
825 	ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
826 	ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
827 
828 	ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
829 			RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
830 			RXQCR_RXDTTE);  /* IRQ on time exceeded */
831 
832 	ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
833 
834 	/* clear then enable interrupts */
835 
836 #define STD_IRQ (IRQ_LCI |	/* Link Change */	\
837 		 IRQ_TXI |	/* TX done */		\
838 		 IRQ_RXI |	/* RX done */		\
839 		 IRQ_SPIBEI |	/* SPI bus error */	\
840 		 IRQ_TXPSI |	/* TX process stop */	\
841 		 IRQ_RXPSI)	/* RX process stop */
842 
843 	ks->rc_ier = STD_IRQ;
844 	ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
845 	ks8851_wrreg16(ks, KS_IER, STD_IRQ);
846 
847 	netif_start_queue(ks->netdev);
848 
849 	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
850 
851 	mutex_unlock(&ks->lock);
852 	return 0;
853 }
854 
855 /**
856  * ks8851_net_stop - close network device
857  * @dev: The device being closed.
858  *
859  * Called to close down a network device which has been active. Cancell any
860  * work, shutdown the RX and TX process and then place the chip into a low
861  * power state whilst it is not being used.
862  */
ks8851_net_stop(struct net_device * dev)863 static int ks8851_net_stop(struct net_device *dev)
864 {
865 	struct ks8851_net *ks = netdev_priv(dev);
866 
867 	netif_info(ks, ifdown, dev, "shutting down\n");
868 
869 	netif_stop_queue(dev);
870 
871 	mutex_lock(&ks->lock);
872 	/* turn off the IRQs and ack any outstanding */
873 	ks8851_wrreg16(ks, KS_IER, 0x0000);
874 	ks8851_wrreg16(ks, KS_ISR, 0xffff);
875 	mutex_unlock(&ks->lock);
876 
877 	/* stop any outstanding work */
878 	flush_work(&ks->tx_work);
879 	flush_work(&ks->rxctrl_work);
880 
881 	mutex_lock(&ks->lock);
882 	/* shutdown RX process */
883 	ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
884 
885 	/* shutdown TX process */
886 	ks8851_wrreg16(ks, KS_TXCR, 0x0000);
887 
888 	/* set powermode to soft power down to save power */
889 	ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
890 	mutex_unlock(&ks->lock);
891 
892 	/* ensure any queued tx buffers are dumped */
893 	while (!skb_queue_empty(&ks->txq)) {
894 		struct sk_buff *txb = skb_dequeue(&ks->txq);
895 
896 		netif_dbg(ks, ifdown, ks->netdev,
897 			  "%s: freeing txb %p\n", __func__, txb);
898 
899 		dev_kfree_skb(txb);
900 	}
901 
902 	return 0;
903 }
904 
905 /**
906  * ks8851_start_xmit - transmit packet
907  * @skb: The buffer to transmit
908  * @dev: The device used to transmit the packet.
909  *
910  * Called by the network layer to transmit the @skb. Queue the packet for
911  * the device and schedule the necessary work to transmit the packet when
912  * it is free.
913  *
914  * We do this to firstly avoid sleeping with the network device locked,
915  * and secondly so we can round up more than one packet to transmit which
916  * means we can try and avoid generating too many transmit done interrupts.
917  */
ks8851_start_xmit(struct sk_buff * skb,struct net_device * dev)918 static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
919 				     struct net_device *dev)
920 {
921 	struct ks8851_net *ks = netdev_priv(dev);
922 	unsigned needed = calc_txlen(skb->len);
923 	netdev_tx_t ret = NETDEV_TX_OK;
924 
925 	netif_dbg(ks, tx_queued, ks->netdev,
926 		  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
927 
928 	spin_lock(&ks->statelock);
929 
930 	if (needed > ks->tx_space) {
931 		netif_stop_queue(dev);
932 		ret = NETDEV_TX_BUSY;
933 	} else {
934 		ks->tx_space -= needed;
935 		skb_queue_tail(&ks->txq, skb);
936 	}
937 
938 	spin_unlock(&ks->statelock);
939 	schedule_work(&ks->tx_work);
940 
941 	return ret;
942 }
943 
944 /**
945  * ks8851_rxctrl_work - work handler to change rx mode
946  * @work: The work structure this belongs to.
947  *
948  * Lock the device and issue the necessary changes to the receive mode from
949  * the network device layer. This is done so that we can do this without
950  * having to sleep whilst holding the network device lock.
951  *
952  * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
953  * receive parameters are programmed, we issue a write to disable the RXQ and
954  * then wait for the interrupt handler to be triggered once the RXQ shutdown is
955  * complete. The interrupt handler then writes the new values into the chip.
956  */
ks8851_rxctrl_work(struct work_struct * work)957 static void ks8851_rxctrl_work(struct work_struct *work)
958 {
959 	struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
960 
961 	mutex_lock(&ks->lock);
962 
963 	/* need to shutdown RXQ before modifying filter parameters */
964 	ks8851_wrreg16(ks, KS_RXCR1, 0x00);
965 
966 	mutex_unlock(&ks->lock);
967 }
968 
ks8851_set_rx_mode(struct net_device * dev)969 static void ks8851_set_rx_mode(struct net_device *dev)
970 {
971 	struct ks8851_net *ks = netdev_priv(dev);
972 	struct ks8851_rxctrl rxctrl;
973 
974 	memset(&rxctrl, 0, sizeof(rxctrl));
975 
976 	if (dev->flags & IFF_PROMISC) {
977 		/* interface to receive everything */
978 
979 		rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
980 	} else if (dev->flags & IFF_ALLMULTI) {
981 		/* accept all multicast packets */
982 
983 		rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
984 				RXCR1_RXPAFMA | RXCR1_RXMAFMA);
985 	} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
986 		struct netdev_hw_addr *ha;
987 		u32 crc;
988 
989 		/* accept some multicast */
990 
991 		netdev_for_each_mc_addr(ha, dev) {
992 			crc = ether_crc(ETH_ALEN, ha->addr);
993 			crc >>= (32 - 6);  /* get top six bits */
994 
995 			rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
996 		}
997 
998 		rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
999 	} else {
1000 		/* just accept broadcast / unicast */
1001 		rxctrl.rxcr1 = RXCR1_RXPAFMA;
1002 	}
1003 
1004 	rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
1005 			 RXCR1_RXBE | /* broadcast enable */
1006 			 RXCR1_RXE | /* RX process enable */
1007 			 RXCR1_RXFCE); /* enable flow control */
1008 
1009 	rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
1010 
1011 	/* schedule work to do the actual set of the data if needed */
1012 
1013 	spin_lock(&ks->statelock);
1014 
1015 	if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1016 		memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1017 		schedule_work(&ks->rxctrl_work);
1018 	}
1019 
1020 	spin_unlock(&ks->statelock);
1021 }
1022 
ks8851_set_mac_address(struct net_device * dev,void * addr)1023 static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1024 {
1025 	struct sockaddr *sa = addr;
1026 
1027 	if (netif_running(dev))
1028 		return -EBUSY;
1029 
1030 	if (!is_valid_ether_addr(sa->sa_data))
1031 		return -EADDRNOTAVAIL;
1032 
1033 	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1034 	return ks8851_write_mac_addr(dev);
1035 }
1036 
ks8851_net_ioctl(struct net_device * dev,struct ifreq * req,int cmd)1037 static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1038 {
1039 	struct ks8851_net *ks = netdev_priv(dev);
1040 
1041 	if (!netif_running(dev))
1042 		return -EINVAL;
1043 
1044 	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1045 }
1046 
1047 static const struct net_device_ops ks8851_netdev_ops = {
1048 	.ndo_open		= ks8851_net_open,
1049 	.ndo_stop		= ks8851_net_stop,
1050 	.ndo_do_ioctl		= ks8851_net_ioctl,
1051 	.ndo_start_xmit		= ks8851_start_xmit,
1052 	.ndo_set_mac_address	= ks8851_set_mac_address,
1053 	.ndo_set_rx_mode	= ks8851_set_rx_mode,
1054 	.ndo_validate_addr	= eth_validate_addr,
1055 };
1056 
1057 /* ethtool support */
1058 
ks8851_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * di)1059 static void ks8851_get_drvinfo(struct net_device *dev,
1060 			       struct ethtool_drvinfo *di)
1061 {
1062 	strlcpy(di->driver, "KS8851", sizeof(di->driver));
1063 	strlcpy(di->version, "1.00", sizeof(di->version));
1064 	strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1065 }
1066 
ks8851_get_msglevel(struct net_device * dev)1067 static u32 ks8851_get_msglevel(struct net_device *dev)
1068 {
1069 	struct ks8851_net *ks = netdev_priv(dev);
1070 	return ks->msg_enable;
1071 }
1072 
ks8851_set_msglevel(struct net_device * dev,u32 to)1073 static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1074 {
1075 	struct ks8851_net *ks = netdev_priv(dev);
1076 	ks->msg_enable = to;
1077 }
1078 
ks8851_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1079 static int ks8851_get_link_ksettings(struct net_device *dev,
1080 				     struct ethtool_link_ksettings *cmd)
1081 {
1082 	struct ks8851_net *ks = netdev_priv(dev);
1083 
1084 	mii_ethtool_get_link_ksettings(&ks->mii, cmd);
1085 
1086 	return 0;
1087 }
1088 
ks8851_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1089 static int ks8851_set_link_ksettings(struct net_device *dev,
1090 				     const struct ethtool_link_ksettings *cmd)
1091 {
1092 	struct ks8851_net *ks = netdev_priv(dev);
1093 	return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
1094 }
1095 
ks8851_get_link(struct net_device * dev)1096 static u32 ks8851_get_link(struct net_device *dev)
1097 {
1098 	struct ks8851_net *ks = netdev_priv(dev);
1099 	return mii_link_ok(&ks->mii);
1100 }
1101 
ks8851_nway_reset(struct net_device * dev)1102 static int ks8851_nway_reset(struct net_device *dev)
1103 {
1104 	struct ks8851_net *ks = netdev_priv(dev);
1105 	return mii_nway_restart(&ks->mii);
1106 }
1107 
1108 /* EEPROM support */
1109 
ks8851_eeprom_regread(struct eeprom_93cx6 * ee)1110 static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
1111 {
1112 	struct ks8851_net *ks = ee->data;
1113 	unsigned val;
1114 
1115 	val = ks8851_rdreg16(ks, KS_EEPCR);
1116 
1117 	ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
1118 	ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
1119 	ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
1120 }
1121 
ks8851_eeprom_regwrite(struct eeprom_93cx6 * ee)1122 static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
1123 {
1124 	struct ks8851_net *ks = ee->data;
1125 	unsigned val = EEPCR_EESA;	/* default - eeprom access on */
1126 
1127 	if (ee->drive_data)
1128 		val |= EEPCR_EESRWA;
1129 	if (ee->reg_data_in)
1130 		val |= EEPCR_EEDO;
1131 	if (ee->reg_data_clock)
1132 		val |= EEPCR_EESCK;
1133 	if (ee->reg_chip_select)
1134 		val |= EEPCR_EECS;
1135 
1136 	ks8851_wrreg16(ks, KS_EEPCR, val);
1137 }
1138 
1139 /**
1140  * ks8851_eeprom_claim - claim device EEPROM and activate the interface
1141  * @ks: The network device state.
1142  *
1143  * Check for the presence of an EEPROM, and then activate software access
1144  * to the device.
1145  */
ks8851_eeprom_claim(struct ks8851_net * ks)1146 static int ks8851_eeprom_claim(struct ks8851_net *ks)
1147 {
1148 	if (!(ks->rc_ccr & CCR_EEPROM))
1149 		return -ENOENT;
1150 
1151 	mutex_lock(&ks->lock);
1152 
1153 	/* start with clock low, cs high */
1154 	ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
1155 	return 0;
1156 }
1157 
1158 /**
1159  * ks8851_eeprom_release - release the EEPROM interface
1160  * @ks: The device state
1161  *
1162  * Release the software access to the device EEPROM
1163  */
ks8851_eeprom_release(struct ks8851_net * ks)1164 static void ks8851_eeprom_release(struct ks8851_net *ks)
1165 {
1166 	unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
1167 
1168 	ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
1169 	mutex_unlock(&ks->lock);
1170 }
1171 
1172 #define KS_EEPROM_MAGIC (0x00008851)
1173 
ks8851_set_eeprom(struct net_device * dev,struct ethtool_eeprom * ee,u8 * data)1174 static int ks8851_set_eeprom(struct net_device *dev,
1175 			     struct ethtool_eeprom *ee, u8 *data)
1176 {
1177 	struct ks8851_net *ks = netdev_priv(dev);
1178 	int offset = ee->offset;
1179 	int len = ee->len;
1180 	u16 tmp;
1181 
1182 	/* currently only support byte writing */
1183 	if (len != 1)
1184 		return -EINVAL;
1185 
1186 	if (ee->magic != KS_EEPROM_MAGIC)
1187 		return -EINVAL;
1188 
1189 	if (ks8851_eeprom_claim(ks))
1190 		return -ENOENT;
1191 
1192 	eeprom_93cx6_wren(&ks->eeprom, true);
1193 
1194 	/* ethtool currently only supports writing bytes, which means
1195 	 * we have to read/modify/write our 16bit EEPROMs */
1196 
1197 	eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
1198 
1199 	if (offset & 1) {
1200 		tmp &= 0xff;
1201 		tmp |= *data << 8;
1202 	} else {
1203 		tmp &= 0xff00;
1204 		tmp |= *data;
1205 	}
1206 
1207 	eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
1208 	eeprom_93cx6_wren(&ks->eeprom, false);
1209 
1210 	ks8851_eeprom_release(ks);
1211 
1212 	return 0;
1213 }
1214 
ks8851_get_eeprom(struct net_device * dev,struct ethtool_eeprom * ee,u8 * data)1215 static int ks8851_get_eeprom(struct net_device *dev,
1216 			     struct ethtool_eeprom *ee, u8 *data)
1217 {
1218 	struct ks8851_net *ks = netdev_priv(dev);
1219 	int offset = ee->offset;
1220 	int len = ee->len;
1221 
1222 	/* must be 2 byte aligned */
1223 	if (len & 1 || offset & 1)
1224 		return -EINVAL;
1225 
1226 	if (ks8851_eeprom_claim(ks))
1227 		return -ENOENT;
1228 
1229 	ee->magic = KS_EEPROM_MAGIC;
1230 
1231 	eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
1232 	ks8851_eeprom_release(ks);
1233 
1234 	return 0;
1235 }
1236 
ks8851_get_eeprom_len(struct net_device * dev)1237 static int ks8851_get_eeprom_len(struct net_device *dev)
1238 {
1239 	struct ks8851_net *ks = netdev_priv(dev);
1240 
1241 	/* currently, we assume it is an 93C46 attached, so return 128 */
1242 	return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
1243 }
1244 
1245 static const struct ethtool_ops ks8851_ethtool_ops = {
1246 	.get_drvinfo	= ks8851_get_drvinfo,
1247 	.get_msglevel	= ks8851_get_msglevel,
1248 	.set_msglevel	= ks8851_set_msglevel,
1249 	.get_link	= ks8851_get_link,
1250 	.nway_reset	= ks8851_nway_reset,
1251 	.get_eeprom_len	= ks8851_get_eeprom_len,
1252 	.get_eeprom	= ks8851_get_eeprom,
1253 	.set_eeprom	= ks8851_set_eeprom,
1254 	.get_link_ksettings = ks8851_get_link_ksettings,
1255 	.set_link_ksettings = ks8851_set_link_ksettings,
1256 };
1257 
1258 /* MII interface controls */
1259 
1260 /**
1261  * ks8851_phy_reg - convert MII register into a KS8851 register
1262  * @reg: MII register number.
1263  *
1264  * Return the KS8851 register number for the corresponding MII PHY register
1265  * if possible. Return zero if the MII register has no direct mapping to the
1266  * KS8851 register set.
1267  */
ks8851_phy_reg(int reg)1268 static int ks8851_phy_reg(int reg)
1269 {
1270 	switch (reg) {
1271 	case MII_BMCR:
1272 		return KS_P1MBCR;
1273 	case MII_BMSR:
1274 		return KS_P1MBSR;
1275 	case MII_PHYSID1:
1276 		return KS_PHY1ILR;
1277 	case MII_PHYSID2:
1278 		return KS_PHY1IHR;
1279 	case MII_ADVERTISE:
1280 		return KS_P1ANAR;
1281 	case MII_LPA:
1282 		return KS_P1ANLPR;
1283 	}
1284 
1285 	return 0x0;
1286 }
1287 
1288 /**
1289  * ks8851_phy_read - MII interface PHY register read.
1290  * @dev: The network device the PHY is on.
1291  * @phy_addr: Address of PHY (ignored as we only have one)
1292  * @reg: The register to read.
1293  *
1294  * This call reads data from the PHY register specified in @reg. Since the
1295  * device does not support all the MII registers, the non-existent values
1296  * are always returned as zero.
1297  *
1298  * We return zero for unsupported registers as the MII code does not check
1299  * the value returned for any error status, and simply returns it to the
1300  * caller. The mii-tool that the driver was tested with takes any -ve error
1301  * as real PHY capabilities, thus displaying incorrect data to the user.
1302  */
ks8851_phy_read(struct net_device * dev,int phy_addr,int reg)1303 static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1304 {
1305 	struct ks8851_net *ks = netdev_priv(dev);
1306 	int ksreg;
1307 	int result;
1308 
1309 	ksreg = ks8851_phy_reg(reg);
1310 	if (!ksreg)
1311 		return 0x0;	/* no error return allowed, so use zero */
1312 
1313 	mutex_lock(&ks->lock);
1314 	result = ks8851_rdreg16(ks, ksreg);
1315 	mutex_unlock(&ks->lock);
1316 
1317 	return result;
1318 }
1319 
ks8851_phy_write(struct net_device * dev,int phy,int reg,int value)1320 static void ks8851_phy_write(struct net_device *dev,
1321 			     int phy, int reg, int value)
1322 {
1323 	struct ks8851_net *ks = netdev_priv(dev);
1324 	int ksreg;
1325 
1326 	ksreg = ks8851_phy_reg(reg);
1327 	if (ksreg) {
1328 		mutex_lock(&ks->lock);
1329 		ks8851_wrreg16(ks, ksreg, value);
1330 		mutex_unlock(&ks->lock);
1331 	}
1332 }
1333 
1334 /**
1335  * ks8851_read_selftest - read the selftest memory info.
1336  * @ks: The device state
1337  *
1338  * Read and check the TX/RX memory selftest information.
1339  */
ks8851_read_selftest(struct ks8851_net * ks)1340 static int ks8851_read_selftest(struct ks8851_net *ks)
1341 {
1342 	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1343 	int ret = 0;
1344 	unsigned rd;
1345 
1346 	rd = ks8851_rdreg16(ks, KS_MBIR);
1347 
1348 	if ((rd & both_done) != both_done) {
1349 		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1350 		return 0;
1351 	}
1352 
1353 	if (rd & MBIR_TXMBFA) {
1354 		netdev_err(ks->netdev, "TX memory selftest fail\n");
1355 		ret |= 1;
1356 	}
1357 
1358 	if (rd & MBIR_RXMBFA) {
1359 		netdev_err(ks->netdev, "RX memory selftest fail\n");
1360 		ret |= 2;
1361 	}
1362 
1363 	return 0;
1364 }
1365 
1366 /* driver bus management functions */
1367 
1368 #ifdef CONFIG_PM_SLEEP
1369 
ks8851_suspend(struct device * dev)1370 static int ks8851_suspend(struct device *dev)
1371 {
1372 	struct ks8851_net *ks = dev_get_drvdata(dev);
1373 	struct net_device *netdev = ks->netdev;
1374 
1375 	if (netif_running(netdev)) {
1376 		netif_device_detach(netdev);
1377 		ks8851_net_stop(netdev);
1378 	}
1379 
1380 	return 0;
1381 }
1382 
ks8851_resume(struct device * dev)1383 static int ks8851_resume(struct device *dev)
1384 {
1385 	struct ks8851_net *ks = dev_get_drvdata(dev);
1386 	struct net_device *netdev = ks->netdev;
1387 
1388 	if (netif_running(netdev)) {
1389 		ks8851_net_open(netdev);
1390 		netif_device_attach(netdev);
1391 	}
1392 
1393 	return 0;
1394 }
1395 #endif
1396 
1397 static SIMPLE_DEV_PM_OPS(ks8851_pm_ops, ks8851_suspend, ks8851_resume);
1398 
ks8851_probe(struct spi_device * spi)1399 static int ks8851_probe(struct spi_device *spi)
1400 {
1401 	struct net_device *ndev;
1402 	struct ks8851_net *ks;
1403 	int ret;
1404 	unsigned cider;
1405 	int gpio;
1406 
1407 	ndev = alloc_etherdev(sizeof(struct ks8851_net));
1408 	if (!ndev)
1409 		return -ENOMEM;
1410 
1411 	spi->bits_per_word = 8;
1412 
1413 	ks = netdev_priv(ndev);
1414 
1415 	ks->netdev = ndev;
1416 	ks->spidev = spi;
1417 	ks->tx_space = 6144;
1418 
1419 	gpio = of_get_named_gpio_flags(spi->dev.of_node, "reset-gpios",
1420 				       0, NULL);
1421 	if (gpio == -EPROBE_DEFER) {
1422 		ret = gpio;
1423 		goto err_gpio;
1424 	}
1425 
1426 	ks->gpio = gpio;
1427 	if (gpio_is_valid(gpio)) {
1428 		ret = devm_gpio_request_one(&spi->dev, gpio,
1429 					    GPIOF_OUT_INIT_LOW, "ks8851_rst_n");
1430 		if (ret) {
1431 			dev_err(&spi->dev, "reset gpio request failed\n");
1432 			goto err_gpio;
1433 		}
1434 	}
1435 
1436 	ks->vdd_io = devm_regulator_get(&spi->dev, "vdd-io");
1437 	if (IS_ERR(ks->vdd_io)) {
1438 		ret = PTR_ERR(ks->vdd_io);
1439 		goto err_reg_io;
1440 	}
1441 
1442 	ret = regulator_enable(ks->vdd_io);
1443 	if (ret) {
1444 		dev_err(&spi->dev, "regulator vdd_io enable fail: %d\n",
1445 			ret);
1446 		goto err_reg_io;
1447 	}
1448 
1449 	ks->vdd_reg = devm_regulator_get(&spi->dev, "vdd");
1450 	if (IS_ERR(ks->vdd_reg)) {
1451 		ret = PTR_ERR(ks->vdd_reg);
1452 		goto err_reg;
1453 	}
1454 
1455 	ret = regulator_enable(ks->vdd_reg);
1456 	if (ret) {
1457 		dev_err(&spi->dev, "regulator vdd enable fail: %d\n",
1458 			ret);
1459 		goto err_reg;
1460 	}
1461 
1462 	if (gpio_is_valid(gpio)) {
1463 		usleep_range(10000, 11000);
1464 		gpio_set_value(gpio, 1);
1465 	}
1466 
1467 	mutex_init(&ks->lock);
1468 	spin_lock_init(&ks->statelock);
1469 
1470 	INIT_WORK(&ks->tx_work, ks8851_tx_work);
1471 	INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1472 
1473 	/* initialise pre-made spi transfer messages */
1474 
1475 	spi_message_init(&ks->spi_msg1);
1476 	spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1477 
1478 	spi_message_init(&ks->spi_msg2);
1479 	spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1480 	spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1481 
1482 	/* setup EEPROM state */
1483 
1484 	ks->eeprom.data = ks;
1485 	ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1486 	ks->eeprom.register_read = ks8851_eeprom_regread;
1487 	ks->eeprom.register_write = ks8851_eeprom_regwrite;
1488 
1489 	/* setup mii state */
1490 	ks->mii.dev		= ndev;
1491 	ks->mii.phy_id		= 1,
1492 	ks->mii.phy_id_mask	= 1;
1493 	ks->mii.reg_num_mask	= 0xf;
1494 	ks->mii.mdio_read	= ks8851_phy_read;
1495 	ks->mii.mdio_write	= ks8851_phy_write;
1496 
1497 	dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1498 
1499 	/* set the default message enable */
1500 	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1501 						     NETIF_MSG_PROBE |
1502 						     NETIF_MSG_LINK));
1503 
1504 	skb_queue_head_init(&ks->txq);
1505 
1506 	ndev->ethtool_ops = &ks8851_ethtool_ops;
1507 	SET_NETDEV_DEV(ndev, &spi->dev);
1508 
1509 	spi_set_drvdata(spi, ks);
1510 
1511 	ndev->if_port = IF_PORT_100BASET;
1512 	ndev->netdev_ops = &ks8851_netdev_ops;
1513 	ndev->irq = spi->irq;
1514 
1515 	/* issue a global soft reset to reset the device. */
1516 	ks8851_soft_reset(ks, GRR_GSR);
1517 
1518 	/* simple check for a valid chip being connected to the bus */
1519 	cider = ks8851_rdreg16(ks, KS_CIDER);
1520 	if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1521 		dev_err(&spi->dev, "failed to read device ID\n");
1522 		ret = -ENODEV;
1523 		goto err_id;
1524 	}
1525 
1526 	/* cache the contents of the CCR register for EEPROM, etc. */
1527 	ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1528 
1529 	ks8851_read_selftest(ks);
1530 	ks8851_init_mac(ks);
1531 
1532 	ret = request_threaded_irq(spi->irq, NULL, ks8851_irq,
1533 				   IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1534 				   ndev->name, ks);
1535 	if (ret < 0) {
1536 		dev_err(&spi->dev, "failed to get irq\n");
1537 		goto err_irq;
1538 	}
1539 
1540 	ret = register_netdev(ndev);
1541 	if (ret) {
1542 		dev_err(&spi->dev, "failed to register network device\n");
1543 		goto err_netdev;
1544 	}
1545 
1546 	netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1547 		    CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq,
1548 		    ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1549 
1550 	return 0;
1551 
1552 
1553 err_netdev:
1554 	free_irq(ndev->irq, ks);
1555 
1556 err_irq:
1557 	if (gpio_is_valid(gpio))
1558 		gpio_set_value(gpio, 0);
1559 err_id:
1560 	regulator_disable(ks->vdd_reg);
1561 err_reg:
1562 	regulator_disable(ks->vdd_io);
1563 err_reg_io:
1564 err_gpio:
1565 	free_netdev(ndev);
1566 	return ret;
1567 }
1568 
ks8851_remove(struct spi_device * spi)1569 static int ks8851_remove(struct spi_device *spi)
1570 {
1571 	struct ks8851_net *priv = spi_get_drvdata(spi);
1572 
1573 	if (netif_msg_drv(priv))
1574 		dev_info(&spi->dev, "remove\n");
1575 
1576 	unregister_netdev(priv->netdev);
1577 	free_irq(spi->irq, priv);
1578 	if (gpio_is_valid(priv->gpio))
1579 		gpio_set_value(priv->gpio, 0);
1580 	regulator_disable(priv->vdd_reg);
1581 	regulator_disable(priv->vdd_io);
1582 	free_netdev(priv->netdev);
1583 
1584 	return 0;
1585 }
1586 
1587 static const struct of_device_id ks8851_match_table[] = {
1588 	{ .compatible = "micrel,ks8851" },
1589 	{ }
1590 };
1591 MODULE_DEVICE_TABLE(of, ks8851_match_table);
1592 
1593 static struct spi_driver ks8851_driver = {
1594 	.driver = {
1595 		.name = "ks8851",
1596 		.of_match_table = ks8851_match_table,
1597 		.pm = &ks8851_pm_ops,
1598 	},
1599 	.probe = ks8851_probe,
1600 	.remove = ks8851_remove,
1601 };
1602 module_spi_driver(ks8851_driver);
1603 
1604 MODULE_DESCRIPTION("KS8851 Network driver");
1605 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1606 MODULE_LICENSE("GPL");
1607 
1608 module_param_named(message, msg_enable, int, 0);
1609 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1610 MODULE_ALIAS("spi:ks8851");
1611