1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
35 #include <net/hwbm.h>
36 #include "mvneta_bm.h"
37 #include <net/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tso.h>
40 #include <net/page_pool.h>
41 #include <net/pkt_cls.h>
42 #include <linux/bpf_trace.h>
43
44 /* Registers */
45 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
46 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
47 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
48 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
49 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
50 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
51 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
52 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
53 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
54 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
55 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
56 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
57 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
58 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
59 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
60 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
61 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
62 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
63 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
64 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
65 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
66 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
67 #define MVNETA_PORT_RX_RESET 0x1cc0
68 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
69 #define MVNETA_PHY_ADDR 0x2000
70 #define MVNETA_PHY_ADDR_MASK 0x1f
71 #define MVNETA_MBUS_RETRY 0x2010
72 #define MVNETA_UNIT_INTR_CAUSE 0x2080
73 #define MVNETA_UNIT_CONTROL 0x20B0
74 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
75 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
76 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
77 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
78 #define MVNETA_BASE_ADDR_ENABLE 0x2290
79 #define MVNETA_AC5_CNM_DDR_TARGET 0x2
80 #define MVNETA_AC5_CNM_DDR_ATTR 0xb
81 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
82 #define MVNETA_PORT_CONFIG 0x2400
83 #define MVNETA_UNI_PROMISC_MODE BIT(0)
84 #define MVNETA_DEF_RXQ(q) ((q) << 1)
85 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
86 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
87 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
88 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
89 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
90 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
91 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
92 MVNETA_DEF_RXQ_ARP(q) | \
93 MVNETA_DEF_RXQ_TCP(q) | \
94 MVNETA_DEF_RXQ_UDP(q) | \
95 MVNETA_DEF_RXQ_BPDU(q) | \
96 MVNETA_TX_UNSET_ERR_SUM | \
97 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
98 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
99 #define MVNETA_MAC_ADDR_LOW 0x2414
100 #define MVNETA_MAC_ADDR_HIGH 0x2418
101 #define MVNETA_SDMA_CONFIG 0x241c
102 #define MVNETA_SDMA_BRST_SIZE_16 4
103 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
104 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
105 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
106 #define MVNETA_DESC_SWAP BIT(6)
107 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
108 #define MVNETA_VLAN_PRIO_TO_RXQ 0x2440
109 #define MVNETA_VLAN_PRIO_RXQ_MAP(prio, rxq) ((rxq) << ((prio) * 3))
110 #define MVNETA_PORT_STATUS 0x2444
111 #define MVNETA_TX_IN_PRGRS BIT(0)
112 #define MVNETA_TX_FIFO_EMPTY BIT(8)
113 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
114 /* Only exists on Armada XP and Armada 370 */
115 #define MVNETA_SERDES_CFG 0x24A0
116 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
117 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
118 #define MVNETA_HSGMII_SERDES_PROTO 0x1107
119 #define MVNETA_TYPE_PRIO 0x24bc
120 #define MVNETA_FORCE_UNI BIT(21)
121 #define MVNETA_TXQ_CMD_1 0x24e4
122 #define MVNETA_TXQ_CMD 0x2448
123 #define MVNETA_TXQ_DISABLE_SHIFT 8
124 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
125 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
126 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
127 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
128 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
129 #define MVNETA_ACC_MODE 0x2500
130 #define MVNETA_BM_ADDRESS 0x2504
131 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
132 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
133 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
134 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
135 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
136 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
137
138 /* Exception Interrupt Port/Queue Cause register
139 *
140 * Their behavior depend of the mapping done using the PCPX2Q
141 * registers. For a given CPU if the bit associated to a queue is not
142 * set, then for the register a read from this CPU will always return
143 * 0 and a write won't do anything
144 */
145
146 #define MVNETA_INTR_NEW_CAUSE 0x25a0
147 #define MVNETA_INTR_NEW_MASK 0x25a4
148
149 /* bits 0..7 = TXQ SENT, one bit per queue.
150 * bits 8..15 = RXQ OCCUP, one bit per queue.
151 * bits 16..23 = RXQ FREE, one bit per queue.
152 * bit 29 = OLD_REG_SUM, see old reg ?
153 * bit 30 = TX_ERR_SUM, one bit for 4 ports
154 * bit 31 = MISC_SUM, one bit for 4 ports
155 */
156 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
157 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
158 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
159 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
160 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
161
162 #define MVNETA_INTR_OLD_CAUSE 0x25a8
163 #define MVNETA_INTR_OLD_MASK 0x25ac
164
165 /* Data Path Port/Queue Cause Register */
166 #define MVNETA_INTR_MISC_CAUSE 0x25b0
167 #define MVNETA_INTR_MISC_MASK 0x25b4
168
169 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
170 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
171 #define MVNETA_CAUSE_PTP BIT(4)
172
173 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
174 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
175 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
176 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
177 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
178 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
179 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
180 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
181
182 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
183 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
184 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
185
186 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
187 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
188 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
189
190 #define MVNETA_INTR_ENABLE 0x25b8
191 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
192 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
193
194 #define MVNETA_RXQ_CMD 0x2680
195 #define MVNETA_RXQ_DISABLE_SHIFT 8
196 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
197 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
198 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
199 #define MVNETA_GMAC_CTRL_0 0x2c00
200 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
201 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
202 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1)
203 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
204 #define MVNETA_GMAC_CTRL_2 0x2c08
205 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
206 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
207 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
208 #define MVNETA_GMAC2_PORT_RESET BIT(6)
209 #define MVNETA_GMAC_STATUS 0x2c10
210 #define MVNETA_GMAC_LINK_UP BIT(0)
211 #define MVNETA_GMAC_SPEED_1000 BIT(1)
212 #define MVNETA_GMAC_SPEED_100 BIT(2)
213 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
214 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
215 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
216 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
217 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
218 #define MVNETA_GMAC_AN_COMPLETE BIT(11)
219 #define MVNETA_GMAC_SYNC_OK BIT(14)
220 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
221 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
222 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
223 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
224 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3)
225 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4)
226 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
227 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
228 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
229 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8)
230 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9)
231 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
232 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
233 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
234 #define MVNETA_GMAC_CTRL_4 0x2c90
235 #define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1)
236 #define MVNETA_MIB_COUNTERS_BASE 0x3000
237 #define MVNETA_MIB_LATE_COLLISION 0x7c
238 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
239 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
240 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
241 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
242 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
243 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
244 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
245 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
246 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
247 #define MVNETA_TXQ_DEC_SENT_MASK 0xff
248 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
249 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
250 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
251 #define MVNETA_PORT_TX_RESET 0x3cf0
252 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
253 #define MVNETA_TXQ_CMD1_REG 0x3e00
254 #define MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 BIT(3)
255 #define MVNETA_TXQ_CMD1_BW_LIM_EN BIT(0)
256 #define MVNETA_REFILL_NUM_CLK_REG 0x3e08
257 #define MVNETA_REFILL_MAX_NUM_CLK 0x0000ffff
258 #define MVNETA_TX_MTU 0x3e0c
259 #define MVNETA_TX_TOKEN_SIZE 0x3e14
260 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
261 #define MVNETA_TXQ_BUCKET_REFILL_REG(q) (0x3e20 + ((q) << 2))
262 #define MVNETA_TXQ_BUCKET_REFILL_PERIOD_MASK 0x3ff00000
263 #define MVNETA_TXQ_BUCKET_REFILL_PERIOD_SHIFT 20
264 #define MVNETA_TXQ_BUCKET_REFILL_VALUE_MAX 0x0007ffff
265 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
266 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
267
268 /* The values of the bucket refill base period and refill period are taken from
269 * the reference manual, and adds up to a base resolution of 10Kbps. This allows
270 * to cover all rate-limit values from 10Kbps up to 5Gbps
271 */
272
273 /* Base period for the rate limit algorithm */
274 #define MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS 100
275
276 /* Number of Base Period to wait between each bucket refill */
277 #define MVNETA_TXQ_BUCKET_REFILL_PERIOD 1000
278
279 /* The base resolution for rate limiting, in bps. Any max_rate value should be
280 * a multiple of that value.
281 */
282 #define MVNETA_TXQ_RATE_LIMIT_RESOLUTION (NSEC_PER_SEC / \
283 (MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS * \
284 MVNETA_TXQ_BUCKET_REFILL_PERIOD))
285
286 #define MVNETA_LPI_CTRL_0 0x2cc0
287 #define MVNETA_LPI_CTRL_1 0x2cc4
288 #define MVNETA_LPI_REQUEST_ENABLE BIT(0)
289 #define MVNETA_LPI_CTRL_2 0x2cc8
290 #define MVNETA_LPI_STATUS 0x2ccc
291
292 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
293
294 /* Descriptor ring Macros */
295 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
296 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
297
298 /* Various constants */
299
300 /* Coalescing */
301 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
302 #define MVNETA_RX_COAL_PKTS 32
303 #define MVNETA_RX_COAL_USEC 100
304
305 /* The two bytes Marvell header. Either contains a special value used
306 * by Marvell switches when a specific hardware mode is enabled (not
307 * supported by this driver) or is filled automatically by zeroes on
308 * the RX side. Those two bytes being at the front of the Ethernet
309 * header, they allow to have the IP header aligned on a 4 bytes
310 * boundary automatically: the hardware skips those two bytes on its
311 * own.
312 */
313 #define MVNETA_MH_SIZE 2
314
315 #define MVNETA_VLAN_TAG_LEN 4
316
317 #define MVNETA_TX_CSUM_DEF_SIZE 1600
318 #define MVNETA_TX_CSUM_MAX_SIZE 9800
319 #define MVNETA_ACC_MODE_EXT1 1
320 #define MVNETA_ACC_MODE_EXT2 2
321
322 #define MVNETA_MAX_DECODE_WIN 6
323
324 /* Timeout constants */
325 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
326 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
327 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
328
329 #define MVNETA_TX_MTU_MAX 0x3ffff
330
331 /* The RSS lookup table actually has 256 entries but we do not use
332 * them yet
333 */
334 #define MVNETA_RSS_LU_TABLE_SIZE 1
335
336 /* Max number of Rx descriptors */
337 #define MVNETA_MAX_RXD 512
338
339 /* Max number of Tx descriptors */
340 #define MVNETA_MAX_TXD 1024
341
342 /* Max number of allowed TCP segments for software TSO */
343 #define MVNETA_MAX_TSO_SEGS 100
344
345 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
346
347 /* descriptor aligned size */
348 #define MVNETA_DESC_ALIGNED_SIZE 32
349
350 /* Number of bytes to be taken into account by HW when putting incoming data
351 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
352 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
353 */
354 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64
355
356 #define MVNETA_RX_PKT_SIZE(mtu) \
357 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
358 ETH_HLEN + ETH_FCS_LEN, \
359 cache_line_size())
360
361 /* Driver assumes that the last 3 bits are 0 */
362 #define MVNETA_SKB_HEADROOM ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8)
363 #define MVNETA_SKB_PAD (SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
364 MVNETA_SKB_HEADROOM))
365 #define MVNETA_MAX_RX_BUF_SIZE (PAGE_SIZE - MVNETA_SKB_PAD)
366
367 #define IS_TSO_HEADER(txq, addr) \
368 ((addr >= txq->tso_hdrs_phys) && \
369 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
370
371 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
372 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
373
374 enum {
375 ETHTOOL_STAT_EEE_WAKEUP,
376 ETHTOOL_STAT_SKB_ALLOC_ERR,
377 ETHTOOL_STAT_REFILL_ERR,
378 ETHTOOL_XDP_REDIRECT,
379 ETHTOOL_XDP_PASS,
380 ETHTOOL_XDP_DROP,
381 ETHTOOL_XDP_TX,
382 ETHTOOL_XDP_TX_ERR,
383 ETHTOOL_XDP_XMIT,
384 ETHTOOL_XDP_XMIT_ERR,
385 ETHTOOL_MAX_STATS,
386 };
387
388 struct mvneta_statistic {
389 unsigned short offset;
390 unsigned short type;
391 const char name[ETH_GSTRING_LEN];
392 };
393
394 #define T_REG_32 32
395 #define T_REG_64 64
396 #define T_SW 1
397
398 #define MVNETA_XDP_PASS 0
399 #define MVNETA_XDP_DROPPED BIT(0)
400 #define MVNETA_XDP_TX BIT(1)
401 #define MVNETA_XDP_REDIR BIT(2)
402
403 static const struct mvneta_statistic mvneta_statistics[] = {
404 { 0x3000, T_REG_64, "good_octets_received", },
405 { 0x3010, T_REG_32, "good_frames_received", },
406 { 0x3008, T_REG_32, "bad_octets_received", },
407 { 0x3014, T_REG_32, "bad_frames_received", },
408 { 0x3018, T_REG_32, "broadcast_frames_received", },
409 { 0x301c, T_REG_32, "multicast_frames_received", },
410 { 0x3050, T_REG_32, "unrec_mac_control_received", },
411 { 0x3058, T_REG_32, "good_fc_received", },
412 { 0x305c, T_REG_32, "bad_fc_received", },
413 { 0x3060, T_REG_32, "undersize_received", },
414 { 0x3064, T_REG_32, "fragments_received", },
415 { 0x3068, T_REG_32, "oversize_received", },
416 { 0x306c, T_REG_32, "jabber_received", },
417 { 0x3070, T_REG_32, "mac_receive_error", },
418 { 0x3074, T_REG_32, "bad_crc_event", },
419 { 0x3078, T_REG_32, "collision", },
420 { 0x307c, T_REG_32, "late_collision", },
421 { 0x2484, T_REG_32, "rx_discard", },
422 { 0x2488, T_REG_32, "rx_overrun", },
423 { 0x3020, T_REG_32, "frames_64_octets", },
424 { 0x3024, T_REG_32, "frames_65_to_127_octets", },
425 { 0x3028, T_REG_32, "frames_128_to_255_octets", },
426 { 0x302c, T_REG_32, "frames_256_to_511_octets", },
427 { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
428 { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
429 { 0x3038, T_REG_64, "good_octets_sent", },
430 { 0x3040, T_REG_32, "good_frames_sent", },
431 { 0x3044, T_REG_32, "excessive_collision", },
432 { 0x3048, T_REG_32, "multicast_frames_sent", },
433 { 0x304c, T_REG_32, "broadcast_frames_sent", },
434 { 0x3054, T_REG_32, "fc_sent", },
435 { 0x300c, T_REG_32, "internal_mac_transmit_err", },
436 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
437 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
438 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
439 { ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
440 { ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
441 { ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
442 { ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
443 { ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", },
444 { ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
445 { ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", },
446 };
447
448 struct mvneta_stats {
449 u64 rx_packets;
450 u64 rx_bytes;
451 u64 tx_packets;
452 u64 tx_bytes;
453 /* xdp */
454 u64 xdp_redirect;
455 u64 xdp_pass;
456 u64 xdp_drop;
457 u64 xdp_xmit;
458 u64 xdp_xmit_err;
459 u64 xdp_tx;
460 u64 xdp_tx_err;
461 };
462
463 struct mvneta_ethtool_stats {
464 struct mvneta_stats ps;
465 u64 skb_alloc_error;
466 u64 refill_error;
467 };
468
469 struct mvneta_pcpu_stats {
470 struct u64_stats_sync syncp;
471
472 struct mvneta_ethtool_stats es;
473 u64 rx_dropped;
474 u64 rx_errors;
475 };
476
477 struct mvneta_pcpu_port {
478 /* Pointer to the shared port */
479 struct mvneta_port *pp;
480
481 /* Pointer to the CPU-local NAPI struct */
482 struct napi_struct napi;
483
484 /* Cause of the previous interrupt */
485 u32 cause_rx_tx;
486 };
487
488 enum {
489 __MVNETA_DOWN,
490 };
491
492 struct mvneta_port {
493 u8 id;
494 struct mvneta_pcpu_port __percpu *ports;
495 struct mvneta_pcpu_stats __percpu *stats;
496
497 unsigned long state;
498
499 int pkt_size;
500 void __iomem *base;
501 struct mvneta_rx_queue *rxqs;
502 struct mvneta_tx_queue *txqs;
503 struct net_device *dev;
504 struct hlist_node node_online;
505 struct hlist_node node_dead;
506 int rxq_def;
507 /* Protect the access to the percpu interrupt registers,
508 * ensuring that the configuration remains coherent.
509 */
510 spinlock_t lock;
511 bool is_stopped;
512
513 u32 cause_rx_tx;
514 struct napi_struct napi;
515
516 struct bpf_prog *xdp_prog;
517
518 /* Core clock */
519 struct clk *clk;
520 /* AXI clock */
521 struct clk *clk_bus;
522 u8 mcast_count[256];
523 u16 tx_ring_size;
524 u16 rx_ring_size;
525
526 phy_interface_t phy_interface;
527 struct device_node *dn;
528 unsigned int tx_csum_limit;
529 struct phylink *phylink;
530 struct phylink_config phylink_config;
531 struct phylink_pcs phylink_pcs;
532 struct phy *comphy;
533
534 struct mvneta_bm *bm_priv;
535 struct mvneta_bm_pool *pool_long;
536 struct mvneta_bm_pool *pool_short;
537 int bm_win_id;
538
539 bool eee_enabled;
540 bool eee_active;
541 bool tx_lpi_enabled;
542
543 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
544
545 u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
546
547 /* Flags for special SoC configurations */
548 bool neta_armada3700;
549 bool neta_ac5;
550 u16 rx_offset_correction;
551 const struct mbus_dram_target_info *dram_target_info;
552 };
553
554 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
555 * layout of the transmit and reception DMA descriptors, and their
556 * layout is therefore defined by the hardware design
557 */
558
559 #define MVNETA_TX_L3_OFF_SHIFT 0
560 #define MVNETA_TX_IP_HLEN_SHIFT 8
561 #define MVNETA_TX_L4_UDP BIT(16)
562 #define MVNETA_TX_L3_IP6 BIT(17)
563 #define MVNETA_TXD_IP_CSUM BIT(18)
564 #define MVNETA_TXD_Z_PAD BIT(19)
565 #define MVNETA_TXD_L_DESC BIT(20)
566 #define MVNETA_TXD_F_DESC BIT(21)
567 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
568 MVNETA_TXD_L_DESC | \
569 MVNETA_TXD_F_DESC)
570 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
571 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
572
573 #define MVNETA_RXD_ERR_CRC 0x0
574 #define MVNETA_RXD_BM_POOL_SHIFT 13
575 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
576 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
577 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
578 #define MVNETA_RXD_ERR_LEN BIT(18)
579 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
580 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
581 #define MVNETA_RXD_L3_IP4 BIT(25)
582 #define MVNETA_RXD_LAST_DESC BIT(26)
583 #define MVNETA_RXD_FIRST_DESC BIT(27)
584 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \
585 MVNETA_RXD_LAST_DESC)
586 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
587
588 #if defined(__LITTLE_ENDIAN)
589 struct mvneta_tx_desc {
590 u32 command; /* Options used by HW for packet transmitting.*/
591 u16 reserved1; /* csum_l4 (for future use) */
592 u16 data_size; /* Data size of transmitted packet in bytes */
593 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
594 u32 reserved2; /* hw_cmd - (for future use, PMT) */
595 u32 reserved3[4]; /* Reserved - (for future use) */
596 };
597
598 struct mvneta_rx_desc {
599 u32 status; /* Info about received packet */
600 u16 reserved1; /* pnc_info - (for future use, PnC) */
601 u16 data_size; /* Size of received packet in bytes */
602
603 u32 buf_phys_addr; /* Physical address of the buffer */
604 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
605
606 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
607 u16 reserved3; /* prefetch_cmd, for future use */
608 u16 reserved4; /* csum_l4 - (for future use, PnC) */
609
610 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
611 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
612 };
613 #else
614 struct mvneta_tx_desc {
615 u16 data_size; /* Data size of transmitted packet in bytes */
616 u16 reserved1; /* csum_l4 (for future use) */
617 u32 command; /* Options used by HW for packet transmitting.*/
618 u32 reserved2; /* hw_cmd - (for future use, PMT) */
619 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
620 u32 reserved3[4]; /* Reserved - (for future use) */
621 };
622
623 struct mvneta_rx_desc {
624 u16 data_size; /* Size of received packet in bytes */
625 u16 reserved1; /* pnc_info - (for future use, PnC) */
626 u32 status; /* Info about received packet */
627
628 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
629 u32 buf_phys_addr; /* Physical address of the buffer */
630
631 u16 reserved4; /* csum_l4 - (for future use, PnC) */
632 u16 reserved3; /* prefetch_cmd, for future use */
633 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
634
635 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
636 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
637 };
638 #endif
639
640 enum mvneta_tx_buf_type {
641 MVNETA_TYPE_SKB,
642 MVNETA_TYPE_XDP_TX,
643 MVNETA_TYPE_XDP_NDO,
644 };
645
646 struct mvneta_tx_buf {
647 enum mvneta_tx_buf_type type;
648 union {
649 struct xdp_frame *xdpf;
650 struct sk_buff *skb;
651 };
652 };
653
654 struct mvneta_tx_queue {
655 /* Number of this TX queue, in the range 0-7 */
656 u8 id;
657
658 /* Number of TX DMA descriptors in the descriptor ring */
659 int size;
660
661 /* Number of currently used TX DMA descriptor in the
662 * descriptor ring
663 */
664 int count;
665 int pending;
666 int tx_stop_threshold;
667 int tx_wake_threshold;
668
669 /* Array of transmitted buffers */
670 struct mvneta_tx_buf *buf;
671
672 /* Index of last TX DMA descriptor that was inserted */
673 int txq_put_index;
674
675 /* Index of the TX DMA descriptor to be cleaned up */
676 int txq_get_index;
677
678 u32 done_pkts_coal;
679
680 /* Virtual address of the TX DMA descriptors array */
681 struct mvneta_tx_desc *descs;
682
683 /* DMA address of the TX DMA descriptors array */
684 dma_addr_t descs_phys;
685
686 /* Index of the last TX DMA descriptor */
687 int last_desc;
688
689 /* Index of the next TX DMA descriptor to process */
690 int next_desc_to_proc;
691
692 /* DMA buffers for TSO headers */
693 char *tso_hdrs;
694
695 /* DMA address of TSO headers */
696 dma_addr_t tso_hdrs_phys;
697
698 /* Affinity mask for CPUs*/
699 cpumask_t affinity_mask;
700 };
701
702 struct mvneta_rx_queue {
703 /* rx queue number, in the range 0-7 */
704 u8 id;
705
706 /* num of rx descriptors in the rx descriptor ring */
707 int size;
708
709 u32 pkts_coal;
710 u32 time_coal;
711
712 /* page_pool */
713 struct page_pool *page_pool;
714 struct xdp_rxq_info xdp_rxq;
715
716 /* Virtual address of the RX buffer */
717 void **buf_virt_addr;
718
719 /* Virtual address of the RX DMA descriptors array */
720 struct mvneta_rx_desc *descs;
721
722 /* DMA address of the RX DMA descriptors array */
723 dma_addr_t descs_phys;
724
725 /* Index of the last RX DMA descriptor */
726 int last_desc;
727
728 /* Index of the next RX DMA descriptor to process */
729 int next_desc_to_proc;
730
731 /* Index of first RX DMA descriptor to refill */
732 int first_to_refill;
733 u32 refill_num;
734 };
735
736 static enum cpuhp_state online_hpstate;
737 /* The hardware supports eight (8) rx queues, but we are only allowing
738 * the first one to be used. Therefore, let's just allocate one queue.
739 */
740 static int rxq_number = 8;
741 static int txq_number = 8;
742
743 static int rxq_def;
744
745 static int rx_copybreak __read_mostly = 256;
746
747 /* HW BM need that each port be identify by a unique ID */
748 static int global_port_id;
749
750 #define MVNETA_DRIVER_NAME "mvneta"
751 #define MVNETA_DRIVER_VERSION "1.0"
752
753 /* Utility/helper methods */
754
755 /* Write helper method */
mvreg_write(struct mvneta_port * pp,u32 offset,u32 data)756 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
757 {
758 writel(data, pp->base + offset);
759 }
760
761 /* Read helper method */
mvreg_read(struct mvneta_port * pp,u32 offset)762 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
763 {
764 return readl(pp->base + offset);
765 }
766
767 /* Increment txq get counter */
mvneta_txq_inc_get(struct mvneta_tx_queue * txq)768 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
769 {
770 txq->txq_get_index++;
771 if (txq->txq_get_index == txq->size)
772 txq->txq_get_index = 0;
773 }
774
775 /* Increment txq put counter */
mvneta_txq_inc_put(struct mvneta_tx_queue * txq)776 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
777 {
778 txq->txq_put_index++;
779 if (txq->txq_put_index == txq->size)
780 txq->txq_put_index = 0;
781 }
782
783
784 /* Clear all MIB counters */
mvneta_mib_counters_clear(struct mvneta_port * pp)785 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
786 {
787 int i;
788
789 /* Perform dummy reads from MIB counters */
790 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
791 mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
792 mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
793 mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
794 }
795
796 /* Get System Network Statistics */
797 static void
mvneta_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)798 mvneta_get_stats64(struct net_device *dev,
799 struct rtnl_link_stats64 *stats)
800 {
801 struct mvneta_port *pp = netdev_priv(dev);
802 unsigned int start;
803 int cpu;
804
805 for_each_possible_cpu(cpu) {
806 struct mvneta_pcpu_stats *cpu_stats;
807 u64 rx_packets;
808 u64 rx_bytes;
809 u64 rx_dropped;
810 u64 rx_errors;
811 u64 tx_packets;
812 u64 tx_bytes;
813
814 cpu_stats = per_cpu_ptr(pp->stats, cpu);
815 do {
816 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
817 rx_packets = cpu_stats->es.ps.rx_packets;
818 rx_bytes = cpu_stats->es.ps.rx_bytes;
819 rx_dropped = cpu_stats->rx_dropped;
820 rx_errors = cpu_stats->rx_errors;
821 tx_packets = cpu_stats->es.ps.tx_packets;
822 tx_bytes = cpu_stats->es.ps.tx_bytes;
823 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
824
825 stats->rx_packets += rx_packets;
826 stats->rx_bytes += rx_bytes;
827 stats->rx_dropped += rx_dropped;
828 stats->rx_errors += rx_errors;
829 stats->tx_packets += tx_packets;
830 stats->tx_bytes += tx_bytes;
831 }
832
833 stats->tx_dropped = dev->stats.tx_dropped;
834 }
835
836 /* Rx descriptors helper methods */
837
838 /* Checks whether the RX descriptor having this status is both the first
839 * and the last descriptor for the RX packet. Each RX packet is currently
840 * received through a single RX descriptor, so not having each RX
841 * descriptor with its first and last bits set is an error
842 */
mvneta_rxq_desc_is_first_last(u32 status)843 static int mvneta_rxq_desc_is_first_last(u32 status)
844 {
845 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
846 MVNETA_RXD_FIRST_LAST_DESC;
847 }
848
849 /* Add number of descriptors ready to receive new packets */
mvneta_rxq_non_occup_desc_add(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int ndescs)850 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
851 struct mvneta_rx_queue *rxq,
852 int ndescs)
853 {
854 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
855 * be added at once
856 */
857 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
858 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
859 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
860 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
861 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
862 }
863
864 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
865 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
866 }
867
868 /* Get number of RX descriptors occupied by received packets */
mvneta_rxq_busy_desc_num_get(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)869 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
870 struct mvneta_rx_queue *rxq)
871 {
872 u32 val;
873
874 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
875 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
876 }
877
878 /* Update num of rx desc called upon return from rx path or
879 * from mvneta_rxq_drop_pkts().
880 */
mvneta_rxq_desc_num_update(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int rx_done,int rx_filled)881 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
882 struct mvneta_rx_queue *rxq,
883 int rx_done, int rx_filled)
884 {
885 u32 val;
886
887 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
888 val = rx_done |
889 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
890 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
891 return;
892 }
893
894 /* Only 255 descriptors can be added at once */
895 while ((rx_done > 0) || (rx_filled > 0)) {
896 if (rx_done <= 0xff) {
897 val = rx_done;
898 rx_done = 0;
899 } else {
900 val = 0xff;
901 rx_done -= 0xff;
902 }
903 if (rx_filled <= 0xff) {
904 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
905 rx_filled = 0;
906 } else {
907 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
908 rx_filled -= 0xff;
909 }
910 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
911 }
912 }
913
914 /* Get pointer to next RX descriptor to be processed by SW */
915 static struct mvneta_rx_desc *
mvneta_rxq_next_desc_get(struct mvneta_rx_queue * rxq)916 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
917 {
918 int rx_desc = rxq->next_desc_to_proc;
919
920 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
921 prefetch(rxq->descs + rxq->next_desc_to_proc);
922 return rxq->descs + rx_desc;
923 }
924
925 /* Change maximum receive size of the port. */
mvneta_max_rx_size_set(struct mvneta_port * pp,int max_rx_size)926 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
927 {
928 u32 val;
929
930 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
931 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
932 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
933 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
934 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
935 }
936
937
938 /* Set rx queue offset */
mvneta_rxq_offset_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int offset)939 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
940 struct mvneta_rx_queue *rxq,
941 int offset)
942 {
943 u32 val;
944
945 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
946 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
947
948 /* Offset is in */
949 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
950 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
951 }
952
953
954 /* Tx descriptors helper methods */
955
956 /* Update HW with number of TX descriptors to be sent */
mvneta_txq_pend_desc_add(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int pend_desc)957 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
958 struct mvneta_tx_queue *txq,
959 int pend_desc)
960 {
961 u32 val;
962
963 pend_desc += txq->pending;
964
965 /* Only 255 Tx descriptors can be added at once */
966 do {
967 val = min(pend_desc, 255);
968 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
969 pend_desc -= val;
970 } while (pend_desc > 0);
971 txq->pending = 0;
972 }
973
974 /* Get pointer to next TX descriptor to be processed (send) by HW */
975 static struct mvneta_tx_desc *
mvneta_txq_next_desc_get(struct mvneta_tx_queue * txq)976 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
977 {
978 int tx_desc = txq->next_desc_to_proc;
979
980 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
981 return txq->descs + tx_desc;
982 }
983
984 /* Release the last allocated TX descriptor. Useful to handle DMA
985 * mapping failures in the TX path.
986 */
mvneta_txq_desc_put(struct mvneta_tx_queue * txq)987 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
988 {
989 if (txq->next_desc_to_proc == 0)
990 txq->next_desc_to_proc = txq->last_desc - 1;
991 else
992 txq->next_desc_to_proc--;
993 }
994
995 /* Set rxq buf size */
mvneta_rxq_buf_size_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int buf_size)996 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
997 struct mvneta_rx_queue *rxq,
998 int buf_size)
999 {
1000 u32 val;
1001
1002 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
1003
1004 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
1005 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
1006
1007 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
1008 }
1009
1010 /* Disable buffer management (BM) */
mvneta_rxq_bm_disable(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1011 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
1012 struct mvneta_rx_queue *rxq)
1013 {
1014 u32 val;
1015
1016 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1017 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
1018 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1019 }
1020
1021 /* Enable buffer management (BM) */
mvneta_rxq_bm_enable(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1022 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
1023 struct mvneta_rx_queue *rxq)
1024 {
1025 u32 val;
1026
1027 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1028 val |= MVNETA_RXQ_HW_BUF_ALLOC;
1029 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1030 }
1031
1032 /* Notify HW about port's assignment of pool for bigger packets */
mvneta_rxq_long_pool_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1033 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
1034 struct mvneta_rx_queue *rxq)
1035 {
1036 u32 val;
1037
1038 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1039 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
1040 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
1041
1042 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1043 }
1044
1045 /* Notify HW about port's assignment of pool for smaller packets */
mvneta_rxq_short_pool_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1046 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
1047 struct mvneta_rx_queue *rxq)
1048 {
1049 u32 val;
1050
1051 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1052 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
1053 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
1054
1055 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1056 }
1057
1058 /* Set port's receive buffer size for assigned BM pool */
mvneta_bm_pool_bufsize_set(struct mvneta_port * pp,int buf_size,u8 pool_id)1059 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
1060 int buf_size,
1061 u8 pool_id)
1062 {
1063 u32 val;
1064
1065 if (!IS_ALIGNED(buf_size, 8)) {
1066 dev_warn(pp->dev->dev.parent,
1067 "illegal buf_size value %d, round to %d\n",
1068 buf_size, ALIGN(buf_size, 8));
1069 buf_size = ALIGN(buf_size, 8);
1070 }
1071
1072 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1073 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1074 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1075 }
1076
1077 /* Configure MBUS window in order to enable access BM internal SRAM */
mvneta_mbus_io_win_set(struct mvneta_port * pp,u32 base,u32 wsize,u8 target,u8 attr)1078 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1079 u8 target, u8 attr)
1080 {
1081 u32 win_enable, win_protect;
1082 int i;
1083
1084 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1085
1086 if (pp->bm_win_id < 0) {
1087 /* Find first not occupied window */
1088 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1089 if (win_enable & (1 << i)) {
1090 pp->bm_win_id = i;
1091 break;
1092 }
1093 }
1094 if (i == MVNETA_MAX_DECODE_WIN)
1095 return -ENOMEM;
1096 } else {
1097 i = pp->bm_win_id;
1098 }
1099
1100 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1101 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1102
1103 if (i < 4)
1104 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1105
1106 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1107 (attr << 8) | target);
1108
1109 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1110
1111 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1112 win_protect |= 3 << (2 * i);
1113 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1114
1115 win_enable &= ~(1 << i);
1116 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1117
1118 return 0;
1119 }
1120
mvneta_bm_port_mbus_init(struct mvneta_port * pp)1121 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1122 {
1123 u32 wsize;
1124 u8 target, attr;
1125 int err;
1126
1127 /* Get BM window information */
1128 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1129 &target, &attr);
1130 if (err < 0)
1131 return err;
1132
1133 pp->bm_win_id = -1;
1134
1135 /* Open NETA -> BM window */
1136 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1137 target, attr);
1138 if (err < 0) {
1139 netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1140 return err;
1141 }
1142 return 0;
1143 }
1144
1145 /* Assign and initialize pools for port. In case of fail
1146 * buffer manager will remain disabled for current port.
1147 */
mvneta_bm_port_init(struct platform_device * pdev,struct mvneta_port * pp)1148 static int mvneta_bm_port_init(struct platform_device *pdev,
1149 struct mvneta_port *pp)
1150 {
1151 struct device_node *dn = pdev->dev.of_node;
1152 u32 long_pool_id, short_pool_id;
1153
1154 if (!pp->neta_armada3700) {
1155 int ret;
1156
1157 ret = mvneta_bm_port_mbus_init(pp);
1158 if (ret)
1159 return ret;
1160 }
1161
1162 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1163 netdev_info(pp->dev, "missing long pool id\n");
1164 return -EINVAL;
1165 }
1166
1167 /* Create port's long pool depending on mtu */
1168 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1169 MVNETA_BM_LONG, pp->id,
1170 MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1171 if (!pp->pool_long) {
1172 netdev_info(pp->dev, "fail to obtain long pool for port\n");
1173 return -ENOMEM;
1174 }
1175
1176 pp->pool_long->port_map |= 1 << pp->id;
1177
1178 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1179 pp->pool_long->id);
1180
1181 /* If short pool id is not defined, assume using single pool */
1182 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1183 short_pool_id = long_pool_id;
1184
1185 /* Create port's short pool */
1186 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1187 MVNETA_BM_SHORT, pp->id,
1188 MVNETA_BM_SHORT_PKT_SIZE);
1189 if (!pp->pool_short) {
1190 netdev_info(pp->dev, "fail to obtain short pool for port\n");
1191 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1192 return -ENOMEM;
1193 }
1194
1195 if (short_pool_id != long_pool_id) {
1196 pp->pool_short->port_map |= 1 << pp->id;
1197 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1198 pp->pool_short->id);
1199 }
1200
1201 return 0;
1202 }
1203
1204 /* Update settings of a pool for bigger packets */
mvneta_bm_update_mtu(struct mvneta_port * pp,int mtu)1205 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1206 {
1207 struct mvneta_bm_pool *bm_pool = pp->pool_long;
1208 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1209 int num;
1210
1211 /* Release all buffers from long pool */
1212 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1213 if (hwbm_pool->buf_num) {
1214 WARN(1, "cannot free all buffers in pool %d\n",
1215 bm_pool->id);
1216 goto bm_mtu_err;
1217 }
1218
1219 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1220 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1221 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1222 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1223
1224 /* Fill entire long pool */
1225 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1226 if (num != hwbm_pool->size) {
1227 WARN(1, "pool %d: %d of %d allocated\n",
1228 bm_pool->id, num, hwbm_pool->size);
1229 goto bm_mtu_err;
1230 }
1231 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1232
1233 return;
1234
1235 bm_mtu_err:
1236 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1237 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1238
1239 pp->bm_priv = NULL;
1240 pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
1241 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1242 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1243 }
1244
1245 /* Start the Ethernet port RX and TX activity */
mvneta_port_up(struct mvneta_port * pp)1246 static void mvneta_port_up(struct mvneta_port *pp)
1247 {
1248 int queue;
1249 u32 q_map;
1250
1251 /* Enable all initialized TXs. */
1252 q_map = 0;
1253 for (queue = 0; queue < txq_number; queue++) {
1254 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1255 if (txq->descs)
1256 q_map |= (1 << queue);
1257 }
1258 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1259
1260 q_map = 0;
1261 /* Enable all initialized RXQs. */
1262 for (queue = 0; queue < rxq_number; queue++) {
1263 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1264
1265 if (rxq->descs)
1266 q_map |= (1 << queue);
1267 }
1268 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1269 }
1270
1271 /* Stop the Ethernet port activity */
mvneta_port_down(struct mvneta_port * pp)1272 static void mvneta_port_down(struct mvneta_port *pp)
1273 {
1274 u32 val;
1275 int count;
1276
1277 /* Stop Rx port activity. Check port Rx activity. */
1278 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1279
1280 /* Issue stop command for active channels only */
1281 if (val != 0)
1282 mvreg_write(pp, MVNETA_RXQ_CMD,
1283 val << MVNETA_RXQ_DISABLE_SHIFT);
1284
1285 /* Wait for all Rx activity to terminate. */
1286 count = 0;
1287 do {
1288 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1289 netdev_warn(pp->dev,
1290 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1291 val);
1292 break;
1293 }
1294 mdelay(1);
1295
1296 val = mvreg_read(pp, MVNETA_RXQ_CMD);
1297 } while (val & MVNETA_RXQ_ENABLE_MASK);
1298
1299 /* Stop Tx port activity. Check port Tx activity. Issue stop
1300 * command for active channels only
1301 */
1302 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1303
1304 if (val != 0)
1305 mvreg_write(pp, MVNETA_TXQ_CMD,
1306 (val << MVNETA_TXQ_DISABLE_SHIFT));
1307
1308 /* Wait for all Tx activity to terminate. */
1309 count = 0;
1310 do {
1311 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1312 netdev_warn(pp->dev,
1313 "TIMEOUT for TX stopped status=0x%08x\n",
1314 val);
1315 break;
1316 }
1317 mdelay(1);
1318
1319 /* Check TX Command reg that all Txqs are stopped */
1320 val = mvreg_read(pp, MVNETA_TXQ_CMD);
1321
1322 } while (val & MVNETA_TXQ_ENABLE_MASK);
1323
1324 /* Double check to verify that TX FIFO is empty */
1325 count = 0;
1326 do {
1327 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1328 netdev_warn(pp->dev,
1329 "TX FIFO empty timeout status=0x%08x\n",
1330 val);
1331 break;
1332 }
1333 mdelay(1);
1334
1335 val = mvreg_read(pp, MVNETA_PORT_STATUS);
1336 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1337 (val & MVNETA_TX_IN_PRGRS));
1338
1339 udelay(200);
1340 }
1341
1342 /* Enable the port by setting the port enable bit of the MAC control register */
mvneta_port_enable(struct mvneta_port * pp)1343 static void mvneta_port_enable(struct mvneta_port *pp)
1344 {
1345 u32 val;
1346
1347 /* Enable port */
1348 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1349 val |= MVNETA_GMAC0_PORT_ENABLE;
1350 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1351 }
1352
1353 /* Disable the port and wait for about 200 usec before retuning */
mvneta_port_disable(struct mvneta_port * pp)1354 static void mvneta_port_disable(struct mvneta_port *pp)
1355 {
1356 u32 val;
1357
1358 /* Reset the Enable bit in the Serial Control Register */
1359 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1360 val &= ~MVNETA_GMAC0_PORT_ENABLE;
1361 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1362
1363 udelay(200);
1364 }
1365
1366 /* Multicast tables methods */
1367
1368 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
mvneta_set_ucast_table(struct mvneta_port * pp,int queue)1369 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1370 {
1371 int offset;
1372 u32 val;
1373
1374 if (queue == -1) {
1375 val = 0;
1376 } else {
1377 val = 0x1 | (queue << 1);
1378 val |= (val << 24) | (val << 16) | (val << 8);
1379 }
1380
1381 for (offset = 0; offset <= 0xc; offset += 4)
1382 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1383 }
1384
1385 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
mvneta_set_special_mcast_table(struct mvneta_port * pp,int queue)1386 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1387 {
1388 int offset;
1389 u32 val;
1390
1391 if (queue == -1) {
1392 val = 0;
1393 } else {
1394 val = 0x1 | (queue << 1);
1395 val |= (val << 24) | (val << 16) | (val << 8);
1396 }
1397
1398 for (offset = 0; offset <= 0xfc; offset += 4)
1399 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1400
1401 }
1402
1403 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
mvneta_set_other_mcast_table(struct mvneta_port * pp,int queue)1404 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1405 {
1406 int offset;
1407 u32 val;
1408
1409 if (queue == -1) {
1410 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1411 val = 0;
1412 } else {
1413 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1414 val = 0x1 | (queue << 1);
1415 val |= (val << 24) | (val << 16) | (val << 8);
1416 }
1417
1418 for (offset = 0; offset <= 0xfc; offset += 4)
1419 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1420 }
1421
mvneta_percpu_unmask_interrupt(void * arg)1422 static void mvneta_percpu_unmask_interrupt(void *arg)
1423 {
1424 struct mvneta_port *pp = arg;
1425
1426 /* All the queue are unmasked, but actually only the ones
1427 * mapped to this CPU will be unmasked
1428 */
1429 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1430 MVNETA_RX_INTR_MASK_ALL |
1431 MVNETA_TX_INTR_MASK_ALL |
1432 MVNETA_MISCINTR_INTR_MASK);
1433 }
1434
mvneta_percpu_mask_interrupt(void * arg)1435 static void mvneta_percpu_mask_interrupt(void *arg)
1436 {
1437 struct mvneta_port *pp = arg;
1438
1439 /* All the queue are masked, but actually only the ones
1440 * mapped to this CPU will be masked
1441 */
1442 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1443 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1444 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1445 }
1446
mvneta_percpu_clear_intr_cause(void * arg)1447 static void mvneta_percpu_clear_intr_cause(void *arg)
1448 {
1449 struct mvneta_port *pp = arg;
1450
1451 /* All the queue are cleared, but actually only the ones
1452 * mapped to this CPU will be cleared
1453 */
1454 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1455 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1456 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1457 }
1458
1459 /* This method sets defaults to the NETA port:
1460 * Clears interrupt Cause and Mask registers.
1461 * Clears all MAC tables.
1462 * Sets defaults to all registers.
1463 * Resets RX and TX descriptor rings.
1464 * Resets PHY.
1465 * This method can be called after mvneta_port_down() to return the port
1466 * settings to defaults.
1467 */
mvneta_defaults_set(struct mvneta_port * pp)1468 static void mvneta_defaults_set(struct mvneta_port *pp)
1469 {
1470 int cpu;
1471 int queue;
1472 u32 val;
1473 int max_cpu = num_present_cpus();
1474
1475 /* Clear all Cause registers */
1476 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1477
1478 /* Mask all interrupts */
1479 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1480 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1481
1482 /* Enable MBUS Retry bit16 */
1483 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1484
1485 /* Set CPU queue access map. CPUs are assigned to the RX and
1486 * TX queues modulo their number. If there is only one TX
1487 * queue then it is assigned to the CPU associated to the
1488 * default RX queue.
1489 */
1490 for_each_present_cpu(cpu) {
1491 int rxq_map = 0, txq_map = 0;
1492 int rxq, txq;
1493 if (!pp->neta_armada3700) {
1494 for (rxq = 0; rxq < rxq_number; rxq++)
1495 if ((rxq % max_cpu) == cpu)
1496 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1497
1498 for (txq = 0; txq < txq_number; txq++)
1499 if ((txq % max_cpu) == cpu)
1500 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1501
1502 /* With only one TX queue we configure a special case
1503 * which will allow to get all the irq on a single
1504 * CPU
1505 */
1506 if (txq_number == 1)
1507 txq_map = (cpu == pp->rxq_def) ?
1508 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1509
1510 } else {
1511 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1512 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1513 }
1514
1515 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1516 }
1517
1518 /* Reset RX and TX DMAs */
1519 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1520 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1521
1522 /* Disable Legacy WRR, Disable EJP, Release from reset */
1523 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1524 for (queue = 0; queue < txq_number; queue++) {
1525 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1526 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1527 }
1528
1529 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1530 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1531
1532 /* Set Port Acceleration Mode */
1533 if (pp->bm_priv)
1534 /* HW buffer management + legacy parser */
1535 val = MVNETA_ACC_MODE_EXT2;
1536 else
1537 /* SW buffer management + legacy parser */
1538 val = MVNETA_ACC_MODE_EXT1;
1539 mvreg_write(pp, MVNETA_ACC_MODE, val);
1540
1541 if (pp->bm_priv)
1542 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1543
1544 /* Update val of portCfg register accordingly with all RxQueue types */
1545 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1546 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1547
1548 val = 0;
1549 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1550 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1551
1552 /* Build PORT_SDMA_CONFIG_REG */
1553 val = 0;
1554
1555 /* Default burst size */
1556 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1557 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1558 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1559
1560 #if defined(__BIG_ENDIAN)
1561 val |= MVNETA_DESC_SWAP;
1562 #endif
1563
1564 /* Assign port SDMA configuration */
1565 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1566
1567 /* Disable PHY polling in hardware, since we're using the
1568 * kernel phylib to do this.
1569 */
1570 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1571 val &= ~MVNETA_PHY_POLLING_ENABLE;
1572 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1573
1574 mvneta_set_ucast_table(pp, -1);
1575 mvneta_set_special_mcast_table(pp, -1);
1576 mvneta_set_other_mcast_table(pp, -1);
1577
1578 /* Set port interrupt enable register - default enable all */
1579 mvreg_write(pp, MVNETA_INTR_ENABLE,
1580 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1581 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1582
1583 mvneta_mib_counters_clear(pp);
1584 }
1585
1586 /* Set max sizes for tx queues */
mvneta_txq_max_tx_size_set(struct mvneta_port * pp,int max_tx_size)1587 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1588
1589 {
1590 u32 val, size, mtu;
1591 int queue;
1592
1593 mtu = max_tx_size * 8;
1594 if (mtu > MVNETA_TX_MTU_MAX)
1595 mtu = MVNETA_TX_MTU_MAX;
1596
1597 /* Set MTU */
1598 val = mvreg_read(pp, MVNETA_TX_MTU);
1599 val &= ~MVNETA_TX_MTU_MAX;
1600 val |= mtu;
1601 mvreg_write(pp, MVNETA_TX_MTU, val);
1602
1603 /* TX token size and all TXQs token size must be larger that MTU */
1604 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1605
1606 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1607 if (size < mtu) {
1608 size = mtu;
1609 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1610 val |= size;
1611 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1612 }
1613 for (queue = 0; queue < txq_number; queue++) {
1614 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1615
1616 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1617 if (size < mtu) {
1618 size = mtu;
1619 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1620 val |= size;
1621 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1622 }
1623 }
1624 }
1625
1626 /* Set unicast address */
mvneta_set_ucast_addr(struct mvneta_port * pp,u8 last_nibble,int queue)1627 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1628 int queue)
1629 {
1630 unsigned int unicast_reg;
1631 unsigned int tbl_offset;
1632 unsigned int reg_offset;
1633
1634 /* Locate the Unicast table entry */
1635 last_nibble = (0xf & last_nibble);
1636
1637 /* offset from unicast tbl base */
1638 tbl_offset = (last_nibble / 4) * 4;
1639
1640 /* offset within the above reg */
1641 reg_offset = last_nibble % 4;
1642
1643 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1644
1645 if (queue == -1) {
1646 /* Clear accepts frame bit at specified unicast DA tbl entry */
1647 unicast_reg &= ~(0xff << (8 * reg_offset));
1648 } else {
1649 unicast_reg &= ~(0xff << (8 * reg_offset));
1650 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1651 }
1652
1653 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1654 }
1655
1656 /* Set mac address */
mvneta_mac_addr_set(struct mvneta_port * pp,const unsigned char * addr,int queue)1657 static void mvneta_mac_addr_set(struct mvneta_port *pp,
1658 const unsigned char *addr, int queue)
1659 {
1660 unsigned int mac_h;
1661 unsigned int mac_l;
1662
1663 if (queue != -1) {
1664 mac_l = (addr[4] << 8) | (addr[5]);
1665 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1666 (addr[2] << 8) | (addr[3] << 0);
1667
1668 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1669 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1670 }
1671
1672 /* Accept frames of this address */
1673 mvneta_set_ucast_addr(pp, addr[5], queue);
1674 }
1675
1676 /* Set the number of packets that will be received before RX interrupt
1677 * will be generated by HW.
1678 */
mvneta_rx_pkts_coal_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,u32 value)1679 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1680 struct mvneta_rx_queue *rxq, u32 value)
1681 {
1682 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1683 value | MVNETA_RXQ_NON_OCCUPIED(0));
1684 }
1685
1686 /* Set the time delay in usec before RX interrupt will be generated by
1687 * HW.
1688 */
mvneta_rx_time_coal_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,u32 value)1689 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1690 struct mvneta_rx_queue *rxq, u32 value)
1691 {
1692 u32 val;
1693 unsigned long clk_rate;
1694
1695 clk_rate = clk_get_rate(pp->clk);
1696 val = (clk_rate / 1000000) * value;
1697
1698 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1699 }
1700
1701 /* Set threshold for TX_DONE pkts coalescing */
mvneta_tx_done_pkts_coal_set(struct mvneta_port * pp,struct mvneta_tx_queue * txq,u32 value)1702 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1703 struct mvneta_tx_queue *txq, u32 value)
1704 {
1705 u32 val;
1706
1707 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1708
1709 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1710 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1711
1712 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1713 }
1714
1715 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
mvneta_rx_desc_fill(struct mvneta_rx_desc * rx_desc,u32 phys_addr,void * virt_addr,struct mvneta_rx_queue * rxq)1716 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1717 u32 phys_addr, void *virt_addr,
1718 struct mvneta_rx_queue *rxq)
1719 {
1720 int i;
1721
1722 rx_desc->buf_phys_addr = phys_addr;
1723 i = rx_desc - rxq->descs;
1724 rxq->buf_virt_addr[i] = virt_addr;
1725 }
1726
1727 /* Decrement sent descriptors counter */
mvneta_txq_sent_desc_dec(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int sent_desc)1728 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1729 struct mvneta_tx_queue *txq,
1730 int sent_desc)
1731 {
1732 u32 val;
1733
1734 /* Only 255 TX descriptors can be updated at once */
1735 while (sent_desc > 0xff) {
1736 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1737 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1738 sent_desc = sent_desc - 0xff;
1739 }
1740
1741 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1742 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1743 }
1744
1745 /* Get number of TX descriptors already sent by HW */
mvneta_txq_sent_desc_num_get(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1746 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1747 struct mvneta_tx_queue *txq)
1748 {
1749 u32 val;
1750 int sent_desc;
1751
1752 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1753 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1754 MVNETA_TXQ_SENT_DESC_SHIFT;
1755
1756 return sent_desc;
1757 }
1758
1759 /* Get number of sent descriptors and decrement counter.
1760 * The number of sent descriptors is returned.
1761 */
mvneta_txq_sent_desc_proc(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1762 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1763 struct mvneta_tx_queue *txq)
1764 {
1765 int sent_desc;
1766
1767 /* Get number of sent descriptors */
1768 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1769
1770 /* Decrement sent descriptors counter */
1771 if (sent_desc)
1772 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1773
1774 return sent_desc;
1775 }
1776
1777 /* Set TXQ descriptors fields relevant for CSUM calculation */
mvneta_txq_desc_csum(int l3_offs,int l3_proto,int ip_hdr_len,int l4_proto)1778 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1779 int ip_hdr_len, int l4_proto)
1780 {
1781 u32 command;
1782
1783 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1784 * G_L4_chk, L4_type; required only for checksum
1785 * calculation
1786 */
1787 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1788 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1789
1790 if (l3_proto == htons(ETH_P_IP))
1791 command |= MVNETA_TXD_IP_CSUM;
1792 else
1793 command |= MVNETA_TX_L3_IP6;
1794
1795 if (l4_proto == IPPROTO_TCP)
1796 command |= MVNETA_TX_L4_CSUM_FULL;
1797 else if (l4_proto == IPPROTO_UDP)
1798 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1799 else
1800 command |= MVNETA_TX_L4_CSUM_NOT;
1801
1802 return command;
1803 }
1804
1805
1806 /* Display more error info */
mvneta_rx_error(struct mvneta_port * pp,struct mvneta_rx_desc * rx_desc)1807 static void mvneta_rx_error(struct mvneta_port *pp,
1808 struct mvneta_rx_desc *rx_desc)
1809 {
1810 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1811 u32 status = rx_desc->status;
1812
1813 /* update per-cpu counter */
1814 u64_stats_update_begin(&stats->syncp);
1815 stats->rx_errors++;
1816 u64_stats_update_end(&stats->syncp);
1817
1818 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1819 case MVNETA_RXD_ERR_CRC:
1820 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1821 status, rx_desc->data_size);
1822 break;
1823 case MVNETA_RXD_ERR_OVERRUN:
1824 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1825 status, rx_desc->data_size);
1826 break;
1827 case MVNETA_RXD_ERR_LEN:
1828 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1829 status, rx_desc->data_size);
1830 break;
1831 case MVNETA_RXD_ERR_RESOURCE:
1832 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1833 status, rx_desc->data_size);
1834 break;
1835 }
1836 }
1837
1838 /* Handle RX checksum offload based on the descriptor's status */
mvneta_rx_csum(struct mvneta_port * pp,u32 status)1839 static int mvneta_rx_csum(struct mvneta_port *pp, u32 status)
1840 {
1841 if ((pp->dev->features & NETIF_F_RXCSUM) &&
1842 (status & MVNETA_RXD_L3_IP4) &&
1843 (status & MVNETA_RXD_L4_CSUM_OK))
1844 return CHECKSUM_UNNECESSARY;
1845
1846 return CHECKSUM_NONE;
1847 }
1848
1849 /* Return tx queue pointer (find last set bit) according to <cause> returned
1850 * form tx_done reg. <cause> must not be null. The return value is always a
1851 * valid queue for matching the first one found in <cause>.
1852 */
mvneta_tx_done_policy(struct mvneta_port * pp,u32 cause)1853 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1854 u32 cause)
1855 {
1856 int queue = fls(cause) - 1;
1857
1858 return &pp->txqs[queue];
1859 }
1860
1861 /* Free tx queue skbuffs */
mvneta_txq_bufs_free(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int num,struct netdev_queue * nq,bool napi)1862 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1863 struct mvneta_tx_queue *txq, int num,
1864 struct netdev_queue *nq, bool napi)
1865 {
1866 unsigned int bytes_compl = 0, pkts_compl = 0;
1867 struct xdp_frame_bulk bq;
1868 int i;
1869
1870 xdp_frame_bulk_init(&bq);
1871
1872 rcu_read_lock(); /* need for xdp_return_frame_bulk */
1873
1874 for (i = 0; i < num; i++) {
1875 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1876 struct mvneta_tx_desc *tx_desc = txq->descs +
1877 txq->txq_get_index;
1878
1879 mvneta_txq_inc_get(txq);
1880
1881 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) &&
1882 buf->type != MVNETA_TYPE_XDP_TX)
1883 dma_unmap_single(pp->dev->dev.parent,
1884 tx_desc->buf_phys_addr,
1885 tx_desc->data_size, DMA_TO_DEVICE);
1886 if (buf->type == MVNETA_TYPE_SKB && buf->skb) {
1887 bytes_compl += buf->skb->len;
1888 pkts_compl++;
1889 dev_kfree_skb_any(buf->skb);
1890 } else if ((buf->type == MVNETA_TYPE_XDP_TX ||
1891 buf->type == MVNETA_TYPE_XDP_NDO) && buf->xdpf) {
1892 if (napi && buf->type == MVNETA_TYPE_XDP_TX)
1893 xdp_return_frame_rx_napi(buf->xdpf);
1894 else
1895 xdp_return_frame_bulk(buf->xdpf, &bq);
1896 }
1897 }
1898 xdp_flush_frame_bulk(&bq);
1899
1900 rcu_read_unlock();
1901
1902 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1903 }
1904
1905 /* Handle end of transmission */
mvneta_txq_done(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1906 static void mvneta_txq_done(struct mvneta_port *pp,
1907 struct mvneta_tx_queue *txq)
1908 {
1909 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1910 int tx_done;
1911
1912 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1913 if (!tx_done)
1914 return;
1915
1916 mvneta_txq_bufs_free(pp, txq, tx_done, nq, true);
1917
1918 txq->count -= tx_done;
1919
1920 if (netif_tx_queue_stopped(nq)) {
1921 if (txq->count <= txq->tx_wake_threshold)
1922 netif_tx_wake_queue(nq);
1923 }
1924 }
1925
1926 /* Refill processing for SW buffer management */
1927 /* Allocate page per descriptor */
mvneta_rx_refill(struct mvneta_port * pp,struct mvneta_rx_desc * rx_desc,struct mvneta_rx_queue * rxq,gfp_t gfp_mask)1928 static int mvneta_rx_refill(struct mvneta_port *pp,
1929 struct mvneta_rx_desc *rx_desc,
1930 struct mvneta_rx_queue *rxq,
1931 gfp_t gfp_mask)
1932 {
1933 dma_addr_t phys_addr;
1934 struct page *page;
1935
1936 page = page_pool_alloc_pages(rxq->page_pool,
1937 gfp_mask | __GFP_NOWARN);
1938 if (!page)
1939 return -ENOMEM;
1940
1941 phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1942 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1943
1944 return 0;
1945 }
1946
1947 /* Handle tx checksum */
mvneta_skb_tx_csum(struct sk_buff * skb)1948 static u32 mvneta_skb_tx_csum(struct sk_buff *skb)
1949 {
1950 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1951 int ip_hdr_len = 0;
1952 __be16 l3_proto = vlan_get_protocol(skb);
1953 u8 l4_proto;
1954
1955 if (l3_proto == htons(ETH_P_IP)) {
1956 struct iphdr *ip4h = ip_hdr(skb);
1957
1958 /* Calculate IPv4 checksum and L4 checksum */
1959 ip_hdr_len = ip4h->ihl;
1960 l4_proto = ip4h->protocol;
1961 } else if (l3_proto == htons(ETH_P_IPV6)) {
1962 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1963
1964 /* Read l4_protocol from one of IPv6 extra headers */
1965 if (skb_network_header_len(skb) > 0)
1966 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1967 l4_proto = ip6h->nexthdr;
1968 } else
1969 return MVNETA_TX_L4_CSUM_NOT;
1970
1971 return mvneta_txq_desc_csum(skb_network_offset(skb),
1972 l3_proto, ip_hdr_len, l4_proto);
1973 }
1974
1975 return MVNETA_TX_L4_CSUM_NOT;
1976 }
1977
1978 /* Drop packets received by the RXQ and free buffers */
mvneta_rxq_drop_pkts(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1979 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1980 struct mvneta_rx_queue *rxq)
1981 {
1982 int rx_done, i;
1983
1984 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1985 if (rx_done)
1986 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1987
1988 if (pp->bm_priv) {
1989 for (i = 0; i < rx_done; i++) {
1990 struct mvneta_rx_desc *rx_desc =
1991 mvneta_rxq_next_desc_get(rxq);
1992 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1993 struct mvneta_bm_pool *bm_pool;
1994
1995 bm_pool = &pp->bm_priv->bm_pools[pool_id];
1996 /* Return dropped buffer to the pool */
1997 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1998 rx_desc->buf_phys_addr);
1999 }
2000 return;
2001 }
2002
2003 for (i = 0; i < rxq->size; i++) {
2004 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
2005 void *data = rxq->buf_virt_addr[i];
2006 if (!data || !(rx_desc->buf_phys_addr))
2007 continue;
2008
2009 page_pool_put_full_page(rxq->page_pool, data, false);
2010 }
2011 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
2012 xdp_rxq_info_unreg(&rxq->xdp_rxq);
2013 page_pool_destroy(rxq->page_pool);
2014 rxq->page_pool = NULL;
2015 }
2016
2017 static void
mvneta_update_stats(struct mvneta_port * pp,struct mvneta_stats * ps)2018 mvneta_update_stats(struct mvneta_port *pp,
2019 struct mvneta_stats *ps)
2020 {
2021 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2022
2023 u64_stats_update_begin(&stats->syncp);
2024 stats->es.ps.rx_packets += ps->rx_packets;
2025 stats->es.ps.rx_bytes += ps->rx_bytes;
2026 /* xdp */
2027 stats->es.ps.xdp_redirect += ps->xdp_redirect;
2028 stats->es.ps.xdp_pass += ps->xdp_pass;
2029 stats->es.ps.xdp_drop += ps->xdp_drop;
2030 u64_stats_update_end(&stats->syncp);
2031 }
2032
2033 static inline
mvneta_rx_refill_queue(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)2034 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
2035 {
2036 struct mvneta_rx_desc *rx_desc;
2037 int curr_desc = rxq->first_to_refill;
2038 int i;
2039
2040 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
2041 rx_desc = rxq->descs + curr_desc;
2042 if (!(rx_desc->buf_phys_addr)) {
2043 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
2044 struct mvneta_pcpu_stats *stats;
2045
2046 pr_err("Can't refill queue %d. Done %d from %d\n",
2047 rxq->id, i, rxq->refill_num);
2048
2049 stats = this_cpu_ptr(pp->stats);
2050 u64_stats_update_begin(&stats->syncp);
2051 stats->es.refill_error++;
2052 u64_stats_update_end(&stats->syncp);
2053 break;
2054 }
2055 }
2056 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
2057 }
2058 rxq->refill_num -= i;
2059 rxq->first_to_refill = curr_desc;
2060
2061 return i;
2062 }
2063
2064 static void
mvneta_xdp_put_buff(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,struct xdp_buff * xdp,int sync_len)2065 mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2066 struct xdp_buff *xdp, int sync_len)
2067 {
2068 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2069 int i;
2070
2071 if (likely(!xdp_buff_has_frags(xdp)))
2072 goto out;
2073
2074 for (i = 0; i < sinfo->nr_frags; i++)
2075 page_pool_put_full_page(rxq->page_pool,
2076 skb_frag_page(&sinfo->frags[i]), true);
2077
2078 out:
2079 page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data),
2080 sync_len, true);
2081 }
2082
2083 static int
mvneta_xdp_submit_frame(struct mvneta_port * pp,struct mvneta_tx_queue * txq,struct xdp_frame * xdpf,int * nxmit_byte,bool dma_map)2084 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
2085 struct xdp_frame *xdpf, int *nxmit_byte, bool dma_map)
2086 {
2087 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2088 struct device *dev = pp->dev->dev.parent;
2089 struct mvneta_tx_desc *tx_desc;
2090 int i, num_frames = 1;
2091 struct page *page;
2092
2093 if (unlikely(xdp_frame_has_frags(xdpf)))
2094 num_frames += sinfo->nr_frags;
2095
2096 if (txq->count + num_frames >= txq->size)
2097 return MVNETA_XDP_DROPPED;
2098
2099 for (i = 0; i < num_frames; i++) {
2100 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2101 skb_frag_t *frag = NULL;
2102 int len = xdpf->len;
2103 dma_addr_t dma_addr;
2104
2105 if (unlikely(i)) { /* paged area */
2106 frag = &sinfo->frags[i - 1];
2107 len = skb_frag_size(frag);
2108 }
2109
2110 tx_desc = mvneta_txq_next_desc_get(txq);
2111 if (dma_map) {
2112 /* ndo_xdp_xmit */
2113 void *data;
2114
2115 data = unlikely(frag) ? skb_frag_address(frag)
2116 : xdpf->data;
2117 dma_addr = dma_map_single(dev, data, len,
2118 DMA_TO_DEVICE);
2119 if (dma_mapping_error(dev, dma_addr)) {
2120 mvneta_txq_desc_put(txq);
2121 goto unmap;
2122 }
2123
2124 buf->type = MVNETA_TYPE_XDP_NDO;
2125 } else {
2126 page = unlikely(frag) ? skb_frag_page(frag)
2127 : virt_to_page(xdpf->data);
2128 dma_addr = page_pool_get_dma_addr(page);
2129 if (unlikely(frag))
2130 dma_addr += skb_frag_off(frag);
2131 else
2132 dma_addr += sizeof(*xdpf) + xdpf->headroom;
2133 dma_sync_single_for_device(dev, dma_addr, len,
2134 DMA_BIDIRECTIONAL);
2135 buf->type = MVNETA_TYPE_XDP_TX;
2136 }
2137 buf->xdpf = unlikely(i) ? NULL : xdpf;
2138
2139 tx_desc->command = unlikely(i) ? 0 : MVNETA_TXD_F_DESC;
2140 tx_desc->buf_phys_addr = dma_addr;
2141 tx_desc->data_size = len;
2142 *nxmit_byte += len;
2143
2144 mvneta_txq_inc_put(txq);
2145 }
2146 /*last descriptor */
2147 tx_desc->command |= MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2148
2149 txq->pending += num_frames;
2150 txq->count += num_frames;
2151
2152 return MVNETA_XDP_TX;
2153
2154 unmap:
2155 for (i--; i >= 0; i--) {
2156 mvneta_txq_desc_put(txq);
2157 tx_desc = txq->descs + txq->next_desc_to_proc;
2158 dma_unmap_single(dev, tx_desc->buf_phys_addr,
2159 tx_desc->data_size,
2160 DMA_TO_DEVICE);
2161 }
2162
2163 return MVNETA_XDP_DROPPED;
2164 }
2165
2166 static int
mvneta_xdp_xmit_back(struct mvneta_port * pp,struct xdp_buff * xdp)2167 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2168 {
2169 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2170 struct mvneta_tx_queue *txq;
2171 struct netdev_queue *nq;
2172 int cpu, nxmit_byte = 0;
2173 struct xdp_frame *xdpf;
2174 u32 ret;
2175
2176 xdpf = xdp_convert_buff_to_frame(xdp);
2177 if (unlikely(!xdpf))
2178 return MVNETA_XDP_DROPPED;
2179
2180 cpu = smp_processor_id();
2181 txq = &pp->txqs[cpu % txq_number];
2182 nq = netdev_get_tx_queue(pp->dev, txq->id);
2183
2184 __netif_tx_lock(nq, cpu);
2185 ret = mvneta_xdp_submit_frame(pp, txq, xdpf, &nxmit_byte, false);
2186 if (ret == MVNETA_XDP_TX) {
2187 u64_stats_update_begin(&stats->syncp);
2188 stats->es.ps.tx_bytes += nxmit_byte;
2189 stats->es.ps.tx_packets++;
2190 stats->es.ps.xdp_tx++;
2191 u64_stats_update_end(&stats->syncp);
2192
2193 mvneta_txq_pend_desc_add(pp, txq, 0);
2194 } else {
2195 u64_stats_update_begin(&stats->syncp);
2196 stats->es.ps.xdp_tx_err++;
2197 u64_stats_update_end(&stats->syncp);
2198 }
2199 __netif_tx_unlock(nq);
2200
2201 return ret;
2202 }
2203
2204 static int
mvneta_xdp_xmit(struct net_device * dev,int num_frame,struct xdp_frame ** frames,u32 flags)2205 mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2206 struct xdp_frame **frames, u32 flags)
2207 {
2208 struct mvneta_port *pp = netdev_priv(dev);
2209 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2210 int i, nxmit_byte = 0, nxmit = 0;
2211 int cpu = smp_processor_id();
2212 struct mvneta_tx_queue *txq;
2213 struct netdev_queue *nq;
2214 u32 ret;
2215
2216 if (unlikely(test_bit(__MVNETA_DOWN, &pp->state)))
2217 return -ENETDOWN;
2218
2219 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2220 return -EINVAL;
2221
2222 txq = &pp->txqs[cpu % txq_number];
2223 nq = netdev_get_tx_queue(pp->dev, txq->id);
2224
2225 __netif_tx_lock(nq, cpu);
2226 for (i = 0; i < num_frame; i++) {
2227 ret = mvneta_xdp_submit_frame(pp, txq, frames[i], &nxmit_byte,
2228 true);
2229 if (ret != MVNETA_XDP_TX)
2230 break;
2231
2232 nxmit++;
2233 }
2234
2235 if (unlikely(flags & XDP_XMIT_FLUSH))
2236 mvneta_txq_pend_desc_add(pp, txq, 0);
2237 __netif_tx_unlock(nq);
2238
2239 u64_stats_update_begin(&stats->syncp);
2240 stats->es.ps.tx_bytes += nxmit_byte;
2241 stats->es.ps.tx_packets += nxmit;
2242 stats->es.ps.xdp_xmit += nxmit;
2243 stats->es.ps.xdp_xmit_err += num_frame - nxmit;
2244 u64_stats_update_end(&stats->syncp);
2245
2246 return nxmit;
2247 }
2248
2249 static int
mvneta_run_xdp(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,struct bpf_prog * prog,struct xdp_buff * xdp,u32 frame_sz,struct mvneta_stats * stats)2250 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2251 struct bpf_prog *prog, struct xdp_buff *xdp,
2252 u32 frame_sz, struct mvneta_stats *stats)
2253 {
2254 unsigned int len, data_len, sync;
2255 u32 ret, act;
2256
2257 len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2258 data_len = xdp->data_end - xdp->data;
2259 act = bpf_prog_run_xdp(prog, xdp);
2260
2261 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
2262 sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2263 sync = max(sync, len);
2264
2265 switch (act) {
2266 case XDP_PASS:
2267 stats->xdp_pass++;
2268 return MVNETA_XDP_PASS;
2269 case XDP_REDIRECT: {
2270 int err;
2271
2272 err = xdp_do_redirect(pp->dev, xdp, prog);
2273 if (unlikely(err)) {
2274 mvneta_xdp_put_buff(pp, rxq, xdp, sync);
2275 ret = MVNETA_XDP_DROPPED;
2276 } else {
2277 ret = MVNETA_XDP_REDIR;
2278 stats->xdp_redirect++;
2279 }
2280 break;
2281 }
2282 case XDP_TX:
2283 ret = mvneta_xdp_xmit_back(pp, xdp);
2284 if (ret != MVNETA_XDP_TX)
2285 mvneta_xdp_put_buff(pp, rxq, xdp, sync);
2286 break;
2287 default:
2288 bpf_warn_invalid_xdp_action(pp->dev, prog, act);
2289 fallthrough;
2290 case XDP_ABORTED:
2291 trace_xdp_exception(pp->dev, prog, act);
2292 fallthrough;
2293 case XDP_DROP:
2294 mvneta_xdp_put_buff(pp, rxq, xdp, sync);
2295 ret = MVNETA_XDP_DROPPED;
2296 stats->xdp_drop++;
2297 break;
2298 }
2299
2300 stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len;
2301 stats->rx_packets++;
2302
2303 return ret;
2304 }
2305
2306 static void
mvneta_swbm_rx_frame(struct mvneta_port * pp,struct mvneta_rx_desc * rx_desc,struct mvneta_rx_queue * rxq,struct xdp_buff * xdp,int * size,struct page * page)2307 mvneta_swbm_rx_frame(struct mvneta_port *pp,
2308 struct mvneta_rx_desc *rx_desc,
2309 struct mvneta_rx_queue *rxq,
2310 struct xdp_buff *xdp, int *size,
2311 struct page *page)
2312 {
2313 unsigned char *data = page_address(page);
2314 int data_len = -MVNETA_MH_SIZE, len;
2315 struct net_device *dev = pp->dev;
2316 enum dma_data_direction dma_dir;
2317
2318 if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2319 len = MVNETA_MAX_RX_BUF_SIZE;
2320 data_len += len;
2321 } else {
2322 len = *size;
2323 data_len += len - ETH_FCS_LEN;
2324 }
2325 *size = *size - len;
2326
2327 dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2328 dma_sync_single_for_cpu(dev->dev.parent,
2329 rx_desc->buf_phys_addr,
2330 len, dma_dir);
2331
2332 rx_desc->buf_phys_addr = 0;
2333
2334 /* Prefetch header */
2335 prefetch(data);
2336 xdp_buff_clear_frags_flag(xdp);
2337 xdp_prepare_buff(xdp, data, pp->rx_offset_correction + MVNETA_MH_SIZE,
2338 data_len, false);
2339 }
2340
2341 static void
mvneta_swbm_add_rx_fragment(struct mvneta_port * pp,struct mvneta_rx_desc * rx_desc,struct mvneta_rx_queue * rxq,struct xdp_buff * xdp,int * size,struct page * page)2342 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2343 struct mvneta_rx_desc *rx_desc,
2344 struct mvneta_rx_queue *rxq,
2345 struct xdp_buff *xdp, int *size,
2346 struct page *page)
2347 {
2348 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2349 struct net_device *dev = pp->dev;
2350 enum dma_data_direction dma_dir;
2351 int data_len, len;
2352
2353 if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2354 len = MVNETA_MAX_RX_BUF_SIZE;
2355 data_len = len;
2356 } else {
2357 len = *size;
2358 data_len = len - ETH_FCS_LEN;
2359 }
2360 dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2361 dma_sync_single_for_cpu(dev->dev.parent,
2362 rx_desc->buf_phys_addr,
2363 len, dma_dir);
2364 rx_desc->buf_phys_addr = 0;
2365
2366 if (!xdp_buff_has_frags(xdp))
2367 sinfo->nr_frags = 0;
2368
2369 if (data_len > 0 && sinfo->nr_frags < MAX_SKB_FRAGS) {
2370 skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags++];
2371
2372 skb_frag_off_set(frag, pp->rx_offset_correction);
2373 skb_frag_size_set(frag, data_len);
2374 __skb_frag_set_page(frag, page);
2375
2376 if (!xdp_buff_has_frags(xdp)) {
2377 sinfo->xdp_frags_size = *size;
2378 xdp_buff_set_frags_flag(xdp);
2379 }
2380 if (page_is_pfmemalloc(page))
2381 xdp_buff_set_frag_pfmemalloc(xdp);
2382 } else {
2383 page_pool_put_full_page(rxq->page_pool, page, true);
2384 }
2385 *size -= len;
2386 }
2387
2388 static struct sk_buff *
mvneta_swbm_build_skb(struct mvneta_port * pp,struct page_pool * pool,struct xdp_buff * xdp,u32 desc_status)2389 mvneta_swbm_build_skb(struct mvneta_port *pp, struct page_pool *pool,
2390 struct xdp_buff *xdp, u32 desc_status)
2391 {
2392 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2393 struct sk_buff *skb;
2394 u8 num_frags;
2395
2396 if (unlikely(xdp_buff_has_frags(xdp)))
2397 num_frags = sinfo->nr_frags;
2398
2399 skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2400 if (!skb)
2401 return ERR_PTR(-ENOMEM);
2402
2403 skb_mark_for_recycle(skb);
2404
2405 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2406 skb_put(skb, xdp->data_end - xdp->data);
2407 skb->ip_summed = mvneta_rx_csum(pp, desc_status);
2408
2409 if (unlikely(xdp_buff_has_frags(xdp)))
2410 xdp_update_skb_shared_info(skb, num_frags,
2411 sinfo->xdp_frags_size,
2412 num_frags * xdp->frame_sz,
2413 xdp_buff_is_frag_pfmemalloc(xdp));
2414
2415 return skb;
2416 }
2417
2418 /* Main rx processing when using software buffer management */
mvneta_rx_swbm(struct napi_struct * napi,struct mvneta_port * pp,int budget,struct mvneta_rx_queue * rxq)2419 static int mvneta_rx_swbm(struct napi_struct *napi,
2420 struct mvneta_port *pp, int budget,
2421 struct mvneta_rx_queue *rxq)
2422 {
2423 int rx_proc = 0, rx_todo, refill, size = 0;
2424 struct net_device *dev = pp->dev;
2425 struct mvneta_stats ps = {};
2426 struct bpf_prog *xdp_prog;
2427 u32 desc_status, frame_sz;
2428 struct xdp_buff xdp_buf;
2429
2430 xdp_init_buff(&xdp_buf, PAGE_SIZE, &rxq->xdp_rxq);
2431 xdp_buf.data_hard_start = NULL;
2432
2433 /* Get number of received packets */
2434 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2435
2436 xdp_prog = READ_ONCE(pp->xdp_prog);
2437
2438 /* Fairness NAPI loop */
2439 while (rx_proc < budget && rx_proc < rx_todo) {
2440 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2441 u32 rx_status, index;
2442 struct sk_buff *skb;
2443 struct page *page;
2444
2445 index = rx_desc - rxq->descs;
2446 page = (struct page *)rxq->buf_virt_addr[index];
2447
2448 rx_status = rx_desc->status;
2449 rx_proc++;
2450 rxq->refill_num++;
2451
2452 if (rx_status & MVNETA_RXD_FIRST_DESC) {
2453 /* Check errors only for FIRST descriptor */
2454 if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2455 mvneta_rx_error(pp, rx_desc);
2456 goto next;
2457 }
2458
2459 size = rx_desc->data_size;
2460 frame_sz = size - ETH_FCS_LEN;
2461 desc_status = rx_status;
2462
2463 mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2464 &size, page);
2465 } else {
2466 if (unlikely(!xdp_buf.data_hard_start)) {
2467 rx_desc->buf_phys_addr = 0;
2468 page_pool_put_full_page(rxq->page_pool, page,
2469 true);
2470 goto next;
2471 }
2472
2473 mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf,
2474 &size, page);
2475 } /* Middle or Last descriptor */
2476
2477 if (!(rx_status & MVNETA_RXD_LAST_DESC))
2478 /* no last descriptor this time */
2479 continue;
2480
2481 if (size) {
2482 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1);
2483 goto next;
2484 }
2485
2486 if (xdp_prog &&
2487 mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps))
2488 goto next;
2489
2490 skb = mvneta_swbm_build_skb(pp, rxq->page_pool, &xdp_buf, desc_status);
2491 if (IS_ERR(skb)) {
2492 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2493
2494 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1);
2495
2496 u64_stats_update_begin(&stats->syncp);
2497 stats->es.skb_alloc_error++;
2498 stats->rx_dropped++;
2499 u64_stats_update_end(&stats->syncp);
2500
2501 goto next;
2502 }
2503
2504 ps.rx_bytes += skb->len;
2505 ps.rx_packets++;
2506
2507 skb->protocol = eth_type_trans(skb, dev);
2508 napi_gro_receive(napi, skb);
2509 next:
2510 xdp_buf.data_hard_start = NULL;
2511 }
2512
2513 if (xdp_buf.data_hard_start)
2514 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1);
2515
2516 if (ps.xdp_redirect)
2517 xdp_do_flush_map();
2518
2519 if (ps.rx_packets)
2520 mvneta_update_stats(pp, &ps);
2521
2522 /* return some buffers to hardware queue, one at a time is too slow */
2523 refill = mvneta_rx_refill_queue(pp, rxq);
2524
2525 /* Update rxq management counters */
2526 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2527
2528 return ps.rx_packets;
2529 }
2530
2531 /* Main rx processing when using hardware buffer management */
mvneta_rx_hwbm(struct napi_struct * napi,struct mvneta_port * pp,int rx_todo,struct mvneta_rx_queue * rxq)2532 static int mvneta_rx_hwbm(struct napi_struct *napi,
2533 struct mvneta_port *pp, int rx_todo,
2534 struct mvneta_rx_queue *rxq)
2535 {
2536 struct net_device *dev = pp->dev;
2537 int rx_done;
2538 u32 rcvd_pkts = 0;
2539 u32 rcvd_bytes = 0;
2540
2541 /* Get number of received packets */
2542 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2543
2544 if (rx_todo > rx_done)
2545 rx_todo = rx_done;
2546
2547 rx_done = 0;
2548
2549 /* Fairness NAPI loop */
2550 while (rx_done < rx_todo) {
2551 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2552 struct mvneta_bm_pool *bm_pool = NULL;
2553 struct sk_buff *skb;
2554 unsigned char *data;
2555 dma_addr_t phys_addr;
2556 u32 rx_status, frag_size;
2557 int rx_bytes, err;
2558 u8 pool_id;
2559
2560 rx_done++;
2561 rx_status = rx_desc->status;
2562 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2563 data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2564 phys_addr = rx_desc->buf_phys_addr;
2565 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2566 bm_pool = &pp->bm_priv->bm_pools[pool_id];
2567
2568 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2569 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2570 err_drop_frame_ret_pool:
2571 /* Return the buffer to the pool */
2572 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2573 rx_desc->buf_phys_addr);
2574 err_drop_frame:
2575 mvneta_rx_error(pp, rx_desc);
2576 /* leave the descriptor untouched */
2577 continue;
2578 }
2579
2580 if (rx_bytes <= rx_copybreak) {
2581 /* better copy a small frame and not unmap the DMA region */
2582 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2583 if (unlikely(!skb))
2584 goto err_drop_frame_ret_pool;
2585
2586 dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2587 rx_desc->buf_phys_addr,
2588 MVNETA_MH_SIZE + NET_SKB_PAD,
2589 rx_bytes,
2590 DMA_FROM_DEVICE);
2591 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2592 rx_bytes);
2593
2594 skb->protocol = eth_type_trans(skb, dev);
2595 skb->ip_summed = mvneta_rx_csum(pp, rx_status);
2596 napi_gro_receive(napi, skb);
2597
2598 rcvd_pkts++;
2599 rcvd_bytes += rx_bytes;
2600
2601 /* Return the buffer to the pool */
2602 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2603 rx_desc->buf_phys_addr);
2604
2605 /* leave the descriptor and buffer untouched */
2606 continue;
2607 }
2608
2609 /* Refill processing */
2610 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2611 if (err) {
2612 struct mvneta_pcpu_stats *stats;
2613
2614 netdev_err(dev, "Linux processing - Can't refill\n");
2615
2616 stats = this_cpu_ptr(pp->stats);
2617 u64_stats_update_begin(&stats->syncp);
2618 stats->es.refill_error++;
2619 u64_stats_update_end(&stats->syncp);
2620
2621 goto err_drop_frame_ret_pool;
2622 }
2623
2624 frag_size = bm_pool->hwbm_pool.frag_size;
2625
2626 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2627
2628 /* After refill old buffer has to be unmapped regardless
2629 * the skb is successfully built or not.
2630 */
2631 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2632 bm_pool->buf_size, DMA_FROM_DEVICE);
2633 if (!skb)
2634 goto err_drop_frame;
2635
2636 rcvd_pkts++;
2637 rcvd_bytes += rx_bytes;
2638
2639 /* Linux processing */
2640 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2641 skb_put(skb, rx_bytes);
2642
2643 skb->protocol = eth_type_trans(skb, dev);
2644 skb->ip_summed = mvneta_rx_csum(pp, rx_status);
2645
2646 napi_gro_receive(napi, skb);
2647 }
2648
2649 if (rcvd_pkts) {
2650 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2651
2652 u64_stats_update_begin(&stats->syncp);
2653 stats->es.ps.rx_packets += rcvd_pkts;
2654 stats->es.ps.rx_bytes += rcvd_bytes;
2655 u64_stats_update_end(&stats->syncp);
2656 }
2657
2658 /* Update rxq management counters */
2659 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2660
2661 return rx_done;
2662 }
2663
2664 static inline void
mvneta_tso_put_hdr(struct sk_buff * skb,struct mvneta_tx_queue * txq)2665 mvneta_tso_put_hdr(struct sk_buff *skb, struct mvneta_tx_queue *txq)
2666 {
2667 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2668 int hdr_len = skb_tcp_all_headers(skb);
2669 struct mvneta_tx_desc *tx_desc;
2670
2671 tx_desc = mvneta_txq_next_desc_get(txq);
2672 tx_desc->data_size = hdr_len;
2673 tx_desc->command = mvneta_skb_tx_csum(skb);
2674 tx_desc->command |= MVNETA_TXD_F_DESC;
2675 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2676 txq->txq_put_index * TSO_HEADER_SIZE;
2677 buf->type = MVNETA_TYPE_SKB;
2678 buf->skb = NULL;
2679
2680 mvneta_txq_inc_put(txq);
2681 }
2682
2683 static inline int
mvneta_tso_put_data(struct net_device * dev,struct mvneta_tx_queue * txq,struct sk_buff * skb,char * data,int size,bool last_tcp,bool is_last)2684 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2685 struct sk_buff *skb, char *data, int size,
2686 bool last_tcp, bool is_last)
2687 {
2688 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2689 struct mvneta_tx_desc *tx_desc;
2690
2691 tx_desc = mvneta_txq_next_desc_get(txq);
2692 tx_desc->data_size = size;
2693 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2694 size, DMA_TO_DEVICE);
2695 if (unlikely(dma_mapping_error(dev->dev.parent,
2696 tx_desc->buf_phys_addr))) {
2697 mvneta_txq_desc_put(txq);
2698 return -ENOMEM;
2699 }
2700
2701 tx_desc->command = 0;
2702 buf->type = MVNETA_TYPE_SKB;
2703 buf->skb = NULL;
2704
2705 if (last_tcp) {
2706 /* last descriptor in the TCP packet */
2707 tx_desc->command = MVNETA_TXD_L_DESC;
2708
2709 /* last descriptor in SKB */
2710 if (is_last)
2711 buf->skb = skb;
2712 }
2713 mvneta_txq_inc_put(txq);
2714 return 0;
2715 }
2716
mvneta_tx_tso(struct sk_buff * skb,struct net_device * dev,struct mvneta_tx_queue * txq)2717 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2718 struct mvneta_tx_queue *txq)
2719 {
2720 int hdr_len, total_len, data_left;
2721 int desc_count = 0;
2722 struct mvneta_port *pp = netdev_priv(dev);
2723 struct tso_t tso;
2724 int i;
2725
2726 /* Count needed descriptors */
2727 if ((txq->count + tso_count_descs(skb)) >= txq->size)
2728 return 0;
2729
2730 if (skb_headlen(skb) < skb_tcp_all_headers(skb)) {
2731 pr_info("*** Is this even possible?\n");
2732 return 0;
2733 }
2734
2735 /* Initialize the TSO handler, and prepare the first payload */
2736 hdr_len = tso_start(skb, &tso);
2737
2738 total_len = skb->len - hdr_len;
2739 while (total_len > 0) {
2740 char *hdr;
2741
2742 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2743 total_len -= data_left;
2744 desc_count++;
2745
2746 /* prepare packet headers: MAC + IP + TCP */
2747 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2748 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2749
2750 mvneta_tso_put_hdr(skb, txq);
2751
2752 while (data_left > 0) {
2753 int size;
2754 desc_count++;
2755
2756 size = min_t(int, tso.size, data_left);
2757
2758 if (mvneta_tso_put_data(dev, txq, skb,
2759 tso.data, size,
2760 size == data_left,
2761 total_len == 0))
2762 goto err_release;
2763 data_left -= size;
2764
2765 tso_build_data(skb, &tso, size);
2766 }
2767 }
2768
2769 return desc_count;
2770
2771 err_release:
2772 /* Release all used data descriptors; header descriptors must not
2773 * be DMA-unmapped.
2774 */
2775 for (i = desc_count - 1; i >= 0; i--) {
2776 struct mvneta_tx_desc *tx_desc = txq->descs + i;
2777 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2778 dma_unmap_single(pp->dev->dev.parent,
2779 tx_desc->buf_phys_addr,
2780 tx_desc->data_size,
2781 DMA_TO_DEVICE);
2782 mvneta_txq_desc_put(txq);
2783 }
2784 return 0;
2785 }
2786
2787 /* Handle tx fragmentation processing */
mvneta_tx_frag_process(struct mvneta_port * pp,struct sk_buff * skb,struct mvneta_tx_queue * txq)2788 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2789 struct mvneta_tx_queue *txq)
2790 {
2791 struct mvneta_tx_desc *tx_desc;
2792 int i, nr_frags = skb_shinfo(skb)->nr_frags;
2793
2794 for (i = 0; i < nr_frags; i++) {
2795 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2796 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2797 void *addr = skb_frag_address(frag);
2798
2799 tx_desc = mvneta_txq_next_desc_get(txq);
2800 tx_desc->data_size = skb_frag_size(frag);
2801
2802 tx_desc->buf_phys_addr =
2803 dma_map_single(pp->dev->dev.parent, addr,
2804 tx_desc->data_size, DMA_TO_DEVICE);
2805
2806 if (dma_mapping_error(pp->dev->dev.parent,
2807 tx_desc->buf_phys_addr)) {
2808 mvneta_txq_desc_put(txq);
2809 goto error;
2810 }
2811
2812 if (i == nr_frags - 1) {
2813 /* Last descriptor */
2814 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2815 buf->skb = skb;
2816 } else {
2817 /* Descriptor in the middle: Not First, Not Last */
2818 tx_desc->command = 0;
2819 buf->skb = NULL;
2820 }
2821 buf->type = MVNETA_TYPE_SKB;
2822 mvneta_txq_inc_put(txq);
2823 }
2824
2825 return 0;
2826
2827 error:
2828 /* Release all descriptors that were used to map fragments of
2829 * this packet, as well as the corresponding DMA mappings
2830 */
2831 for (i = i - 1; i >= 0; i--) {
2832 tx_desc = txq->descs + i;
2833 dma_unmap_single(pp->dev->dev.parent,
2834 tx_desc->buf_phys_addr,
2835 tx_desc->data_size,
2836 DMA_TO_DEVICE);
2837 mvneta_txq_desc_put(txq);
2838 }
2839
2840 return -ENOMEM;
2841 }
2842
2843 /* Main tx processing */
mvneta_tx(struct sk_buff * skb,struct net_device * dev)2844 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2845 {
2846 struct mvneta_port *pp = netdev_priv(dev);
2847 u16 txq_id = skb_get_queue_mapping(skb);
2848 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2849 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2850 struct mvneta_tx_desc *tx_desc;
2851 int len = skb->len;
2852 int frags = 0;
2853 u32 tx_cmd;
2854
2855 if (!netif_running(dev))
2856 goto out;
2857
2858 if (skb_is_gso(skb)) {
2859 frags = mvneta_tx_tso(skb, dev, txq);
2860 goto out;
2861 }
2862
2863 frags = skb_shinfo(skb)->nr_frags + 1;
2864
2865 /* Get a descriptor for the first part of the packet */
2866 tx_desc = mvneta_txq_next_desc_get(txq);
2867
2868 tx_cmd = mvneta_skb_tx_csum(skb);
2869
2870 tx_desc->data_size = skb_headlen(skb);
2871
2872 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2873 tx_desc->data_size,
2874 DMA_TO_DEVICE);
2875 if (unlikely(dma_mapping_error(dev->dev.parent,
2876 tx_desc->buf_phys_addr))) {
2877 mvneta_txq_desc_put(txq);
2878 frags = 0;
2879 goto out;
2880 }
2881
2882 buf->type = MVNETA_TYPE_SKB;
2883 if (frags == 1) {
2884 /* First and Last descriptor */
2885 tx_cmd |= MVNETA_TXD_FLZ_DESC;
2886 tx_desc->command = tx_cmd;
2887 buf->skb = skb;
2888 mvneta_txq_inc_put(txq);
2889 } else {
2890 /* First but not Last */
2891 tx_cmd |= MVNETA_TXD_F_DESC;
2892 buf->skb = NULL;
2893 mvneta_txq_inc_put(txq);
2894 tx_desc->command = tx_cmd;
2895 /* Continue with other skb fragments */
2896 if (mvneta_tx_frag_process(pp, skb, txq)) {
2897 dma_unmap_single(dev->dev.parent,
2898 tx_desc->buf_phys_addr,
2899 tx_desc->data_size,
2900 DMA_TO_DEVICE);
2901 mvneta_txq_desc_put(txq);
2902 frags = 0;
2903 goto out;
2904 }
2905 }
2906
2907 out:
2908 if (frags > 0) {
2909 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2910 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2911
2912 netdev_tx_sent_queue(nq, len);
2913
2914 txq->count += frags;
2915 if (txq->count >= txq->tx_stop_threshold)
2916 netif_tx_stop_queue(nq);
2917
2918 if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2919 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2920 mvneta_txq_pend_desc_add(pp, txq, frags);
2921 else
2922 txq->pending += frags;
2923
2924 u64_stats_update_begin(&stats->syncp);
2925 stats->es.ps.tx_bytes += len;
2926 stats->es.ps.tx_packets++;
2927 u64_stats_update_end(&stats->syncp);
2928 } else {
2929 dev->stats.tx_dropped++;
2930 dev_kfree_skb_any(skb);
2931 }
2932
2933 return NETDEV_TX_OK;
2934 }
2935
2936
2937 /* Free tx resources, when resetting a port */
mvneta_txq_done_force(struct mvneta_port * pp,struct mvneta_tx_queue * txq)2938 static void mvneta_txq_done_force(struct mvneta_port *pp,
2939 struct mvneta_tx_queue *txq)
2940
2941 {
2942 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2943 int tx_done = txq->count;
2944
2945 mvneta_txq_bufs_free(pp, txq, tx_done, nq, false);
2946
2947 /* reset txq */
2948 txq->count = 0;
2949 txq->txq_put_index = 0;
2950 txq->txq_get_index = 0;
2951 }
2952
2953 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2954 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2955 */
mvneta_tx_done_gbe(struct mvneta_port * pp,u32 cause_tx_done)2956 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2957 {
2958 struct mvneta_tx_queue *txq;
2959 struct netdev_queue *nq;
2960 int cpu = smp_processor_id();
2961
2962 while (cause_tx_done) {
2963 txq = mvneta_tx_done_policy(pp, cause_tx_done);
2964
2965 nq = netdev_get_tx_queue(pp->dev, txq->id);
2966 __netif_tx_lock(nq, cpu);
2967
2968 if (txq->count)
2969 mvneta_txq_done(pp, txq);
2970
2971 __netif_tx_unlock(nq);
2972 cause_tx_done &= ~((1 << txq->id));
2973 }
2974 }
2975
2976 /* Compute crc8 of the specified address, using a unique algorithm ,
2977 * according to hw spec, different than generic crc8 algorithm
2978 */
mvneta_addr_crc(unsigned char * addr)2979 static int mvneta_addr_crc(unsigned char *addr)
2980 {
2981 int crc = 0;
2982 int i;
2983
2984 for (i = 0; i < ETH_ALEN; i++) {
2985 int j;
2986
2987 crc = (crc ^ addr[i]) << 8;
2988 for (j = 7; j >= 0; j--) {
2989 if (crc & (0x100 << j))
2990 crc ^= 0x107 << j;
2991 }
2992 }
2993
2994 return crc;
2995 }
2996
2997 /* This method controls the net device special MAC multicast support.
2998 * The Special Multicast Table for MAC addresses supports MAC of the form
2999 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
3000 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
3001 * Table entries in the DA-Filter table. This method set the Special
3002 * Multicast Table appropriate entry.
3003 */
mvneta_set_special_mcast_addr(struct mvneta_port * pp,unsigned char last_byte,int queue)3004 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
3005 unsigned char last_byte,
3006 int queue)
3007 {
3008 unsigned int smc_table_reg;
3009 unsigned int tbl_offset;
3010 unsigned int reg_offset;
3011
3012 /* Register offset from SMC table base */
3013 tbl_offset = (last_byte / 4);
3014 /* Entry offset within the above reg */
3015 reg_offset = last_byte % 4;
3016
3017 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
3018 + tbl_offset * 4));
3019
3020 if (queue == -1)
3021 smc_table_reg &= ~(0xff << (8 * reg_offset));
3022 else {
3023 smc_table_reg &= ~(0xff << (8 * reg_offset));
3024 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
3025 }
3026
3027 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
3028 smc_table_reg);
3029 }
3030
3031 /* This method controls the network device Other MAC multicast support.
3032 * The Other Multicast Table is used for multicast of another type.
3033 * A CRC-8 is used as an index to the Other Multicast Table entries
3034 * in the DA-Filter table.
3035 * The method gets the CRC-8 value from the calling routine and
3036 * sets the Other Multicast Table appropriate entry according to the
3037 * specified CRC-8 .
3038 */
mvneta_set_other_mcast_addr(struct mvneta_port * pp,unsigned char crc8,int queue)3039 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
3040 unsigned char crc8,
3041 int queue)
3042 {
3043 unsigned int omc_table_reg;
3044 unsigned int tbl_offset;
3045 unsigned int reg_offset;
3046
3047 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
3048 reg_offset = crc8 % 4; /* Entry offset within the above reg */
3049
3050 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
3051
3052 if (queue == -1) {
3053 /* Clear accepts frame bit at specified Other DA table entry */
3054 omc_table_reg &= ~(0xff << (8 * reg_offset));
3055 } else {
3056 omc_table_reg &= ~(0xff << (8 * reg_offset));
3057 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
3058 }
3059
3060 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
3061 }
3062
3063 /* The network device supports multicast using two tables:
3064 * 1) Special Multicast Table for MAC addresses of the form
3065 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
3066 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
3067 * Table entries in the DA-Filter table.
3068 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
3069 * is used as an index to the Other Multicast Table entries in the
3070 * DA-Filter table.
3071 */
mvneta_mcast_addr_set(struct mvneta_port * pp,unsigned char * p_addr,int queue)3072 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
3073 int queue)
3074 {
3075 unsigned char crc_result = 0;
3076
3077 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
3078 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
3079 return 0;
3080 }
3081
3082 crc_result = mvneta_addr_crc(p_addr);
3083 if (queue == -1) {
3084 if (pp->mcast_count[crc_result] == 0) {
3085 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
3086 crc_result);
3087 return -EINVAL;
3088 }
3089
3090 pp->mcast_count[crc_result]--;
3091 if (pp->mcast_count[crc_result] != 0) {
3092 netdev_info(pp->dev,
3093 "After delete there are %d valid Mcast for crc8=0x%02x\n",
3094 pp->mcast_count[crc_result], crc_result);
3095 return -EINVAL;
3096 }
3097 } else
3098 pp->mcast_count[crc_result]++;
3099
3100 mvneta_set_other_mcast_addr(pp, crc_result, queue);
3101
3102 return 0;
3103 }
3104
3105 /* Configure Fitering mode of Ethernet port */
mvneta_rx_unicast_promisc_set(struct mvneta_port * pp,int is_promisc)3106 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
3107 int is_promisc)
3108 {
3109 u32 port_cfg_reg, val;
3110
3111 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
3112
3113 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
3114
3115 /* Set / Clear UPM bit in port configuration register */
3116 if (is_promisc) {
3117 /* Accept all Unicast addresses */
3118 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
3119 val |= MVNETA_FORCE_UNI;
3120 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
3121 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
3122 } else {
3123 /* Reject all Unicast addresses */
3124 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
3125 val &= ~MVNETA_FORCE_UNI;
3126 }
3127
3128 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
3129 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
3130 }
3131
3132 /* register unicast and multicast addresses */
mvneta_set_rx_mode(struct net_device * dev)3133 static void mvneta_set_rx_mode(struct net_device *dev)
3134 {
3135 struct mvneta_port *pp = netdev_priv(dev);
3136 struct netdev_hw_addr *ha;
3137
3138 if (dev->flags & IFF_PROMISC) {
3139 /* Accept all: Multicast + Unicast */
3140 mvneta_rx_unicast_promisc_set(pp, 1);
3141 mvneta_set_ucast_table(pp, pp->rxq_def);
3142 mvneta_set_special_mcast_table(pp, pp->rxq_def);
3143 mvneta_set_other_mcast_table(pp, pp->rxq_def);
3144 } else {
3145 /* Accept single Unicast */
3146 mvneta_rx_unicast_promisc_set(pp, 0);
3147 mvneta_set_ucast_table(pp, -1);
3148 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
3149
3150 if (dev->flags & IFF_ALLMULTI) {
3151 /* Accept all multicast */
3152 mvneta_set_special_mcast_table(pp, pp->rxq_def);
3153 mvneta_set_other_mcast_table(pp, pp->rxq_def);
3154 } else {
3155 /* Accept only initialized multicast */
3156 mvneta_set_special_mcast_table(pp, -1);
3157 mvneta_set_other_mcast_table(pp, -1);
3158
3159 if (!netdev_mc_empty(dev)) {
3160 netdev_for_each_mc_addr(ha, dev) {
3161 mvneta_mcast_addr_set(pp, ha->addr,
3162 pp->rxq_def);
3163 }
3164 }
3165 }
3166 }
3167 }
3168
3169 /* Interrupt handling - the callback for request_irq() */
mvneta_isr(int irq,void * dev_id)3170 static irqreturn_t mvneta_isr(int irq, void *dev_id)
3171 {
3172 struct mvneta_port *pp = (struct mvneta_port *)dev_id;
3173
3174 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
3175 napi_schedule(&pp->napi);
3176
3177 return IRQ_HANDLED;
3178 }
3179
3180 /* Interrupt handling - the callback for request_percpu_irq() */
mvneta_percpu_isr(int irq,void * dev_id)3181 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
3182 {
3183 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
3184
3185 disable_percpu_irq(port->pp->dev->irq);
3186 napi_schedule(&port->napi);
3187
3188 return IRQ_HANDLED;
3189 }
3190
mvneta_link_change(struct mvneta_port * pp)3191 static void mvneta_link_change(struct mvneta_port *pp)
3192 {
3193 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3194
3195 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
3196 }
3197
3198 /* NAPI handler
3199 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3200 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3201 * Bits 8 -15 of the cause Rx Tx register indicate that are received
3202 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3203 * Each CPU has its own causeRxTx register
3204 */
mvneta_poll(struct napi_struct * napi,int budget)3205 static int mvneta_poll(struct napi_struct *napi, int budget)
3206 {
3207 int rx_done = 0;
3208 u32 cause_rx_tx;
3209 int rx_queue;
3210 struct mvneta_port *pp = netdev_priv(napi->dev);
3211 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
3212
3213 if (!netif_running(pp->dev)) {
3214 napi_complete(napi);
3215 return rx_done;
3216 }
3217
3218 /* Read cause register */
3219 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3220 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3221 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3222
3223 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3224
3225 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3226 MVNETA_CAUSE_LINK_CHANGE))
3227 mvneta_link_change(pp);
3228 }
3229
3230 /* Release Tx descriptors */
3231 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3232 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3233 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3234 }
3235
3236 /* For the case where the last mvneta_poll did not process all
3237 * RX packets
3238 */
3239 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3240 port->cause_rx_tx;
3241
3242 rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3243 if (rx_queue) {
3244 rx_queue = rx_queue - 1;
3245 if (pp->bm_priv)
3246 rx_done = mvneta_rx_hwbm(napi, pp, budget,
3247 &pp->rxqs[rx_queue]);
3248 else
3249 rx_done = mvneta_rx_swbm(napi, pp, budget,
3250 &pp->rxqs[rx_queue]);
3251 }
3252
3253 if (rx_done < budget) {
3254 cause_rx_tx = 0;
3255 napi_complete_done(napi, rx_done);
3256
3257 if (pp->neta_armada3700) {
3258 unsigned long flags;
3259
3260 local_irq_save(flags);
3261 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3262 MVNETA_RX_INTR_MASK(rxq_number) |
3263 MVNETA_TX_INTR_MASK(txq_number) |
3264 MVNETA_MISCINTR_INTR_MASK);
3265 local_irq_restore(flags);
3266 } else {
3267 enable_percpu_irq(pp->dev->irq, 0);
3268 }
3269 }
3270
3271 if (pp->neta_armada3700)
3272 pp->cause_rx_tx = cause_rx_tx;
3273 else
3274 port->cause_rx_tx = cause_rx_tx;
3275
3276 return rx_done;
3277 }
3278
mvneta_create_page_pool(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int size)3279 static int mvneta_create_page_pool(struct mvneta_port *pp,
3280 struct mvneta_rx_queue *rxq, int size)
3281 {
3282 struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3283 struct page_pool_params pp_params = {
3284 .order = 0,
3285 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3286 .pool_size = size,
3287 .nid = NUMA_NO_NODE,
3288 .dev = pp->dev->dev.parent,
3289 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3290 .offset = pp->rx_offset_correction,
3291 .max_len = MVNETA_MAX_RX_BUF_SIZE,
3292 };
3293 int err;
3294
3295 rxq->page_pool = page_pool_create(&pp_params);
3296 if (IS_ERR(rxq->page_pool)) {
3297 err = PTR_ERR(rxq->page_pool);
3298 rxq->page_pool = NULL;
3299 return err;
3300 }
3301
3302 err = __xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id, 0,
3303 PAGE_SIZE);
3304 if (err < 0)
3305 goto err_free_pp;
3306
3307 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3308 rxq->page_pool);
3309 if (err)
3310 goto err_unregister_rxq;
3311
3312 return 0;
3313
3314 err_unregister_rxq:
3315 xdp_rxq_info_unreg(&rxq->xdp_rxq);
3316 err_free_pp:
3317 page_pool_destroy(rxq->page_pool);
3318 rxq->page_pool = NULL;
3319 return err;
3320 }
3321
3322 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
mvneta_rxq_fill(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int num)3323 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3324 int num)
3325 {
3326 int i, err;
3327
3328 err = mvneta_create_page_pool(pp, rxq, num);
3329 if (err < 0)
3330 return err;
3331
3332 for (i = 0; i < num; i++) {
3333 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3334 if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3335 GFP_KERNEL) != 0) {
3336 netdev_err(pp->dev,
3337 "%s:rxq %d, %d of %d buffs filled\n",
3338 __func__, rxq->id, i, num);
3339 break;
3340 }
3341 }
3342
3343 /* Add this number of RX descriptors as non occupied (ready to
3344 * get packets)
3345 */
3346 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3347
3348 return i;
3349 }
3350
3351 /* Free all packets pending transmit from all TXQs and reset TX port */
mvneta_tx_reset(struct mvneta_port * pp)3352 static void mvneta_tx_reset(struct mvneta_port *pp)
3353 {
3354 int queue;
3355
3356 /* free the skb's in the tx ring */
3357 for (queue = 0; queue < txq_number; queue++)
3358 mvneta_txq_done_force(pp, &pp->txqs[queue]);
3359
3360 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3361 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3362 }
3363
mvneta_rx_reset(struct mvneta_port * pp)3364 static void mvneta_rx_reset(struct mvneta_port *pp)
3365 {
3366 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3367 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3368 }
3369
3370 /* Rx/Tx queue initialization/cleanup methods */
3371
mvneta_rxq_sw_init(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)3372 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3373 struct mvneta_rx_queue *rxq)
3374 {
3375 rxq->size = pp->rx_ring_size;
3376
3377 /* Allocate memory for RX descriptors */
3378 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3379 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3380 &rxq->descs_phys, GFP_KERNEL);
3381 if (!rxq->descs)
3382 return -ENOMEM;
3383
3384 rxq->last_desc = rxq->size - 1;
3385
3386 return 0;
3387 }
3388
mvneta_rxq_hw_init(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)3389 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3390 struct mvneta_rx_queue *rxq)
3391 {
3392 /* Set Rx descriptors queue starting address */
3393 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3394 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3395
3396 /* Set coalescing pkts and time */
3397 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3398 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3399
3400 if (!pp->bm_priv) {
3401 /* Set Offset */
3402 mvneta_rxq_offset_set(pp, rxq, 0);
3403 mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3404 MVNETA_MAX_RX_BUF_SIZE :
3405 MVNETA_RX_BUF_SIZE(pp->pkt_size));
3406 mvneta_rxq_bm_disable(pp, rxq);
3407 mvneta_rxq_fill(pp, rxq, rxq->size);
3408 } else {
3409 /* Set Offset */
3410 mvneta_rxq_offset_set(pp, rxq,
3411 NET_SKB_PAD - pp->rx_offset_correction);
3412
3413 mvneta_rxq_bm_enable(pp, rxq);
3414 /* Fill RXQ with buffers from RX pool */
3415 mvneta_rxq_long_pool_set(pp, rxq);
3416 mvneta_rxq_short_pool_set(pp, rxq);
3417 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3418 }
3419 }
3420
3421 /* Create a specified RX queue */
mvneta_rxq_init(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)3422 static int mvneta_rxq_init(struct mvneta_port *pp,
3423 struct mvneta_rx_queue *rxq)
3424
3425 {
3426 int ret;
3427
3428 ret = mvneta_rxq_sw_init(pp, rxq);
3429 if (ret < 0)
3430 return ret;
3431
3432 mvneta_rxq_hw_init(pp, rxq);
3433
3434 return 0;
3435 }
3436
3437 /* Cleanup Rx queue */
mvneta_rxq_deinit(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)3438 static void mvneta_rxq_deinit(struct mvneta_port *pp,
3439 struct mvneta_rx_queue *rxq)
3440 {
3441 mvneta_rxq_drop_pkts(pp, rxq);
3442
3443 if (rxq->descs)
3444 dma_free_coherent(pp->dev->dev.parent,
3445 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3446 rxq->descs,
3447 rxq->descs_phys);
3448
3449 rxq->descs = NULL;
3450 rxq->last_desc = 0;
3451 rxq->next_desc_to_proc = 0;
3452 rxq->descs_phys = 0;
3453 rxq->first_to_refill = 0;
3454 rxq->refill_num = 0;
3455 }
3456
mvneta_txq_sw_init(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3457 static int mvneta_txq_sw_init(struct mvneta_port *pp,
3458 struct mvneta_tx_queue *txq)
3459 {
3460 int cpu;
3461
3462 txq->size = pp->tx_ring_size;
3463
3464 /* A queue must always have room for at least one skb.
3465 * Therefore, stop the queue when the free entries reaches
3466 * the maximum number of descriptors per skb.
3467 */
3468 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3469 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3470
3471 /* Allocate memory for TX descriptors */
3472 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3473 txq->size * MVNETA_DESC_ALIGNED_SIZE,
3474 &txq->descs_phys, GFP_KERNEL);
3475 if (!txq->descs)
3476 return -ENOMEM;
3477
3478 txq->last_desc = txq->size - 1;
3479
3480 txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3481 if (!txq->buf)
3482 return -ENOMEM;
3483
3484 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3485 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3486 txq->size * TSO_HEADER_SIZE,
3487 &txq->tso_hdrs_phys, GFP_KERNEL);
3488 if (!txq->tso_hdrs)
3489 return -ENOMEM;
3490
3491 /* Setup XPS mapping */
3492 if (pp->neta_armada3700)
3493 cpu = 0;
3494 else if (txq_number > 1)
3495 cpu = txq->id % num_present_cpus();
3496 else
3497 cpu = pp->rxq_def % num_present_cpus();
3498 cpumask_set_cpu(cpu, &txq->affinity_mask);
3499 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3500
3501 return 0;
3502 }
3503
mvneta_txq_hw_init(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3504 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3505 struct mvneta_tx_queue *txq)
3506 {
3507 /* Set maximum bandwidth for enabled TXQs */
3508 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3509 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3510
3511 /* Set Tx descriptors queue starting address */
3512 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3513 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3514
3515 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3516 }
3517
3518 /* Create and initialize a tx queue */
mvneta_txq_init(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3519 static int mvneta_txq_init(struct mvneta_port *pp,
3520 struct mvneta_tx_queue *txq)
3521 {
3522 int ret;
3523
3524 ret = mvneta_txq_sw_init(pp, txq);
3525 if (ret < 0)
3526 return ret;
3527
3528 mvneta_txq_hw_init(pp, txq);
3529
3530 return 0;
3531 }
3532
3533 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
mvneta_txq_sw_deinit(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3534 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3535 struct mvneta_tx_queue *txq)
3536 {
3537 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3538
3539 kfree(txq->buf);
3540
3541 if (txq->tso_hdrs)
3542 dma_free_coherent(pp->dev->dev.parent,
3543 txq->size * TSO_HEADER_SIZE,
3544 txq->tso_hdrs, txq->tso_hdrs_phys);
3545 if (txq->descs)
3546 dma_free_coherent(pp->dev->dev.parent,
3547 txq->size * MVNETA_DESC_ALIGNED_SIZE,
3548 txq->descs, txq->descs_phys);
3549
3550 netdev_tx_reset_queue(nq);
3551
3552 txq->descs = NULL;
3553 txq->last_desc = 0;
3554 txq->next_desc_to_proc = 0;
3555 txq->descs_phys = 0;
3556 }
3557
mvneta_txq_hw_deinit(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3558 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3559 struct mvneta_tx_queue *txq)
3560 {
3561 /* Set minimum bandwidth for disabled TXQs */
3562 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3563 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3564
3565 /* Set Tx descriptors queue starting address and size */
3566 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3567 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3568 }
3569
mvneta_txq_deinit(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3570 static void mvneta_txq_deinit(struct mvneta_port *pp,
3571 struct mvneta_tx_queue *txq)
3572 {
3573 mvneta_txq_sw_deinit(pp, txq);
3574 mvneta_txq_hw_deinit(pp, txq);
3575 }
3576
3577 /* Cleanup all Tx queues */
mvneta_cleanup_txqs(struct mvneta_port * pp)3578 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3579 {
3580 int queue;
3581
3582 for (queue = 0; queue < txq_number; queue++)
3583 mvneta_txq_deinit(pp, &pp->txqs[queue]);
3584 }
3585
3586 /* Cleanup all Rx queues */
mvneta_cleanup_rxqs(struct mvneta_port * pp)3587 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3588 {
3589 int queue;
3590
3591 for (queue = 0; queue < rxq_number; queue++)
3592 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3593 }
3594
3595
3596 /* Init all Rx queues */
mvneta_setup_rxqs(struct mvneta_port * pp)3597 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3598 {
3599 int queue;
3600
3601 for (queue = 0; queue < rxq_number; queue++) {
3602 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3603
3604 if (err) {
3605 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3606 __func__, queue);
3607 mvneta_cleanup_rxqs(pp);
3608 return err;
3609 }
3610 }
3611
3612 return 0;
3613 }
3614
3615 /* Init all tx queues */
mvneta_setup_txqs(struct mvneta_port * pp)3616 static int mvneta_setup_txqs(struct mvneta_port *pp)
3617 {
3618 int queue;
3619
3620 for (queue = 0; queue < txq_number; queue++) {
3621 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3622 if (err) {
3623 netdev_err(pp->dev, "%s: can't create txq=%d\n",
3624 __func__, queue);
3625 mvneta_cleanup_txqs(pp);
3626 return err;
3627 }
3628 }
3629
3630 return 0;
3631 }
3632
mvneta_comphy_init(struct mvneta_port * pp,phy_interface_t interface)3633 static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface)
3634 {
3635 int ret;
3636
3637 ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface);
3638 if (ret)
3639 return ret;
3640
3641 return phy_power_on(pp->comphy);
3642 }
3643
mvneta_config_interface(struct mvneta_port * pp,phy_interface_t interface)3644 static int mvneta_config_interface(struct mvneta_port *pp,
3645 phy_interface_t interface)
3646 {
3647 int ret = 0;
3648
3649 if (pp->comphy) {
3650 if (interface == PHY_INTERFACE_MODE_SGMII ||
3651 interface == PHY_INTERFACE_MODE_1000BASEX ||
3652 interface == PHY_INTERFACE_MODE_2500BASEX) {
3653 ret = mvneta_comphy_init(pp, interface);
3654 }
3655 } else {
3656 switch (interface) {
3657 case PHY_INTERFACE_MODE_QSGMII:
3658 mvreg_write(pp, MVNETA_SERDES_CFG,
3659 MVNETA_QSGMII_SERDES_PROTO);
3660 break;
3661
3662 case PHY_INTERFACE_MODE_SGMII:
3663 case PHY_INTERFACE_MODE_1000BASEX:
3664 mvreg_write(pp, MVNETA_SERDES_CFG,
3665 MVNETA_SGMII_SERDES_PROTO);
3666 break;
3667
3668 case PHY_INTERFACE_MODE_2500BASEX:
3669 mvreg_write(pp, MVNETA_SERDES_CFG,
3670 MVNETA_HSGMII_SERDES_PROTO);
3671 break;
3672 default:
3673 break;
3674 }
3675 }
3676
3677 pp->phy_interface = interface;
3678
3679 return ret;
3680 }
3681
mvneta_start_dev(struct mvneta_port * pp)3682 static void mvneta_start_dev(struct mvneta_port *pp)
3683 {
3684 int cpu;
3685
3686 WARN_ON(mvneta_config_interface(pp, pp->phy_interface));
3687
3688 mvneta_max_rx_size_set(pp, pp->pkt_size);
3689 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3690
3691 /* start the Rx/Tx activity */
3692 mvneta_port_enable(pp);
3693
3694 if (!pp->neta_armada3700) {
3695 /* Enable polling on the port */
3696 for_each_online_cpu(cpu) {
3697 struct mvneta_pcpu_port *port =
3698 per_cpu_ptr(pp->ports, cpu);
3699
3700 napi_enable(&port->napi);
3701 }
3702 } else {
3703 napi_enable(&pp->napi);
3704 }
3705
3706 /* Unmask interrupts. It has to be done from each CPU */
3707 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3708
3709 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3710 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3711 MVNETA_CAUSE_LINK_CHANGE);
3712
3713 phylink_start(pp->phylink);
3714
3715 /* We may have called phylink_speed_down before */
3716 phylink_speed_up(pp->phylink);
3717
3718 netif_tx_start_all_queues(pp->dev);
3719
3720 clear_bit(__MVNETA_DOWN, &pp->state);
3721 }
3722
mvneta_stop_dev(struct mvneta_port * pp)3723 static void mvneta_stop_dev(struct mvneta_port *pp)
3724 {
3725 unsigned int cpu;
3726
3727 set_bit(__MVNETA_DOWN, &pp->state);
3728
3729 if (device_may_wakeup(&pp->dev->dev))
3730 phylink_speed_down(pp->phylink, false);
3731
3732 phylink_stop(pp->phylink);
3733
3734 if (!pp->neta_armada3700) {
3735 for_each_online_cpu(cpu) {
3736 struct mvneta_pcpu_port *port =
3737 per_cpu_ptr(pp->ports, cpu);
3738
3739 napi_disable(&port->napi);
3740 }
3741 } else {
3742 napi_disable(&pp->napi);
3743 }
3744
3745 netif_carrier_off(pp->dev);
3746
3747 mvneta_port_down(pp);
3748 netif_tx_stop_all_queues(pp->dev);
3749
3750 /* Stop the port activity */
3751 mvneta_port_disable(pp);
3752
3753 /* Clear all ethernet port interrupts */
3754 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3755
3756 /* Mask all ethernet port interrupts */
3757 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3758
3759 mvneta_tx_reset(pp);
3760 mvneta_rx_reset(pp);
3761
3762 WARN_ON(phy_power_off(pp->comphy));
3763 }
3764
mvneta_percpu_enable(void * arg)3765 static void mvneta_percpu_enable(void *arg)
3766 {
3767 struct mvneta_port *pp = arg;
3768
3769 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3770 }
3771
mvneta_percpu_disable(void * arg)3772 static void mvneta_percpu_disable(void *arg)
3773 {
3774 struct mvneta_port *pp = arg;
3775
3776 disable_percpu_irq(pp->dev->irq);
3777 }
3778
3779 /* Change the device mtu */
mvneta_change_mtu(struct net_device * dev,int mtu)3780 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3781 {
3782 struct mvneta_port *pp = netdev_priv(dev);
3783 struct bpf_prog *prog = pp->xdp_prog;
3784 int ret;
3785
3786 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3787 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3788 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3789 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3790 }
3791
3792 if (prog && !prog->aux->xdp_has_frags &&
3793 mtu > MVNETA_MAX_RX_BUF_SIZE) {
3794 netdev_info(dev, "Illegal MTU %d for XDP prog without frags\n",
3795 mtu);
3796
3797 return -EINVAL;
3798 }
3799
3800 dev->mtu = mtu;
3801
3802 if (!netif_running(dev)) {
3803 if (pp->bm_priv)
3804 mvneta_bm_update_mtu(pp, mtu);
3805
3806 netdev_update_features(dev);
3807 return 0;
3808 }
3809
3810 /* The interface is running, so we have to force a
3811 * reallocation of the queues
3812 */
3813 mvneta_stop_dev(pp);
3814 on_each_cpu(mvneta_percpu_disable, pp, true);
3815
3816 mvneta_cleanup_txqs(pp);
3817 mvneta_cleanup_rxqs(pp);
3818
3819 if (pp->bm_priv)
3820 mvneta_bm_update_mtu(pp, mtu);
3821
3822 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3823
3824 ret = mvneta_setup_rxqs(pp);
3825 if (ret) {
3826 netdev_err(dev, "unable to setup rxqs after MTU change\n");
3827 return ret;
3828 }
3829
3830 ret = mvneta_setup_txqs(pp);
3831 if (ret) {
3832 netdev_err(dev, "unable to setup txqs after MTU change\n");
3833 return ret;
3834 }
3835
3836 on_each_cpu(mvneta_percpu_enable, pp, true);
3837 mvneta_start_dev(pp);
3838
3839 netdev_update_features(dev);
3840
3841 return 0;
3842 }
3843
mvneta_fix_features(struct net_device * dev,netdev_features_t features)3844 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3845 netdev_features_t features)
3846 {
3847 struct mvneta_port *pp = netdev_priv(dev);
3848
3849 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3850 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3851 netdev_info(dev,
3852 "Disable IP checksum for MTU greater than %dB\n",
3853 pp->tx_csum_limit);
3854 }
3855
3856 return features;
3857 }
3858
3859 /* Get mac address */
mvneta_get_mac_addr(struct mvneta_port * pp,unsigned char * addr)3860 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3861 {
3862 u32 mac_addr_l, mac_addr_h;
3863
3864 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3865 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3866 addr[0] = (mac_addr_h >> 24) & 0xFF;
3867 addr[1] = (mac_addr_h >> 16) & 0xFF;
3868 addr[2] = (mac_addr_h >> 8) & 0xFF;
3869 addr[3] = mac_addr_h & 0xFF;
3870 addr[4] = (mac_addr_l >> 8) & 0xFF;
3871 addr[5] = mac_addr_l & 0xFF;
3872 }
3873
3874 /* Handle setting mac address */
mvneta_set_mac_addr(struct net_device * dev,void * addr)3875 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3876 {
3877 struct mvneta_port *pp = netdev_priv(dev);
3878 struct sockaddr *sockaddr = addr;
3879 int ret;
3880
3881 ret = eth_prepare_mac_addr_change(dev, addr);
3882 if (ret < 0)
3883 return ret;
3884 /* Remove previous address table entry */
3885 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3886
3887 /* Set new addr in hw */
3888 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3889
3890 eth_commit_mac_addr_change(dev, addr);
3891 return 0;
3892 }
3893
mvneta_pcs_to_port(struct phylink_pcs * pcs)3894 static struct mvneta_port *mvneta_pcs_to_port(struct phylink_pcs *pcs)
3895 {
3896 return container_of(pcs, struct mvneta_port, phylink_pcs);
3897 }
3898
mvneta_pcs_validate(struct phylink_pcs * pcs,unsigned long * supported,const struct phylink_link_state * state)3899 static int mvneta_pcs_validate(struct phylink_pcs *pcs,
3900 unsigned long *supported,
3901 const struct phylink_link_state *state)
3902 {
3903 /* We only support QSGMII, SGMII, 802.3z and RGMII modes.
3904 * When in 802.3z mode, we must have AN enabled:
3905 * "Bit 2 Field InBandAnEn In-band Auto-Negotiation enable. ...
3906 * When <PortType> = 1 (1000BASE-X) this field must be set to 1."
3907 */
3908 if (phy_interface_mode_is_8023z(state->interface) &&
3909 !phylink_test(state->advertising, Autoneg))
3910 return -EINVAL;
3911
3912 return 0;
3913 }
3914
mvneta_pcs_get_state(struct phylink_pcs * pcs,struct phylink_link_state * state)3915 static void mvneta_pcs_get_state(struct phylink_pcs *pcs,
3916 struct phylink_link_state *state)
3917 {
3918 struct mvneta_port *pp = mvneta_pcs_to_port(pcs);
3919 u32 gmac_stat;
3920
3921 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3922
3923 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3924 state->speed =
3925 state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3926 SPEED_2500 : SPEED_1000;
3927 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3928 state->speed = SPEED_100;
3929 else
3930 state->speed = SPEED_10;
3931
3932 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3933 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3934 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3935
3936 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3937 state->pause |= MLO_PAUSE_RX;
3938 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3939 state->pause |= MLO_PAUSE_TX;
3940 }
3941
mvneta_pcs_config(struct phylink_pcs * pcs,unsigned int mode,phy_interface_t interface,const unsigned long * advertising,bool permit_pause_to_mac)3942 static int mvneta_pcs_config(struct phylink_pcs *pcs,
3943 unsigned int mode, phy_interface_t interface,
3944 const unsigned long *advertising,
3945 bool permit_pause_to_mac)
3946 {
3947 struct mvneta_port *pp = mvneta_pcs_to_port(pcs);
3948 u32 mask, val, an, old_an, changed;
3949
3950 mask = MVNETA_GMAC_INBAND_AN_ENABLE |
3951 MVNETA_GMAC_INBAND_RESTART_AN |
3952 MVNETA_GMAC_AN_SPEED_EN |
3953 MVNETA_GMAC_AN_FLOW_CTRL_EN |
3954 MVNETA_GMAC_AN_DUPLEX_EN;
3955
3956 if (phylink_autoneg_inband(mode)) {
3957 mask |= MVNETA_GMAC_CONFIG_MII_SPEED |
3958 MVNETA_GMAC_CONFIG_GMII_SPEED |
3959 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3960 val = MVNETA_GMAC_INBAND_AN_ENABLE;
3961
3962 if (interface == PHY_INTERFACE_MODE_SGMII) {
3963 /* SGMII mode receives the speed and duplex from PHY */
3964 val |= MVNETA_GMAC_AN_SPEED_EN |
3965 MVNETA_GMAC_AN_DUPLEX_EN;
3966 } else {
3967 /* 802.3z mode has fixed speed and duplex */
3968 val |= MVNETA_GMAC_CONFIG_GMII_SPEED |
3969 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3970
3971 /* The FLOW_CTRL_EN bit selects either the hardware
3972 * automatically or the CONFIG_FLOW_CTRL manually
3973 * controls the GMAC pause mode.
3974 */
3975 if (permit_pause_to_mac)
3976 val |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3977
3978 /* Update the advertisement bits */
3979 mask |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3980 if (phylink_test(advertising, Pause))
3981 val |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3982 }
3983 } else {
3984 /* Phy or fixed speed - disable in-band AN modes */
3985 val = 0;
3986 }
3987
3988 old_an = an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3989 an = (an & ~mask) | val;
3990 changed = old_an ^ an;
3991 if (changed)
3992 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, an);
3993
3994 /* We are only interested in the advertisement bits changing */
3995 return !!(changed & MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL);
3996 }
3997
mvneta_pcs_an_restart(struct phylink_pcs * pcs)3998 static void mvneta_pcs_an_restart(struct phylink_pcs *pcs)
3999 {
4000 struct mvneta_port *pp = mvneta_pcs_to_port(pcs);
4001 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4002
4003 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
4004 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
4005 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
4006 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
4007 }
4008
4009 static const struct phylink_pcs_ops mvneta_phylink_pcs_ops = {
4010 .pcs_validate = mvneta_pcs_validate,
4011 .pcs_get_state = mvneta_pcs_get_state,
4012 .pcs_config = mvneta_pcs_config,
4013 .pcs_an_restart = mvneta_pcs_an_restart,
4014 };
4015
mvneta_mac_select_pcs(struct phylink_config * config,phy_interface_t interface)4016 static struct phylink_pcs *mvneta_mac_select_pcs(struct phylink_config *config,
4017 phy_interface_t interface)
4018 {
4019 struct net_device *ndev = to_net_dev(config->dev);
4020 struct mvneta_port *pp = netdev_priv(ndev);
4021
4022 return &pp->phylink_pcs;
4023 }
4024
mvneta_mac_prepare(struct phylink_config * config,unsigned int mode,phy_interface_t interface)4025 static int mvneta_mac_prepare(struct phylink_config *config, unsigned int mode,
4026 phy_interface_t interface)
4027 {
4028 struct net_device *ndev = to_net_dev(config->dev);
4029 struct mvneta_port *pp = netdev_priv(ndev);
4030 u32 val;
4031
4032 if (pp->phy_interface != interface ||
4033 phylink_autoneg_inband(mode)) {
4034 /* Force the link down when changing the interface or if in
4035 * in-band mode. According to Armada 370 documentation, we
4036 * can only change the port mode and in-band enable when the
4037 * link is down.
4038 */
4039 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4040 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4041 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4042 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4043 }
4044
4045 if (pp->phy_interface != interface)
4046 WARN_ON(phy_power_off(pp->comphy));
4047
4048 /* Enable the 1ms clock */
4049 if (phylink_autoneg_inband(mode)) {
4050 unsigned long rate = clk_get_rate(pp->clk);
4051
4052 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER,
4053 MVNETA_GMAC_1MS_CLOCK_ENABLE | (rate / 1000));
4054 }
4055
4056 return 0;
4057 }
4058
mvneta_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)4059 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
4060 const struct phylink_link_state *state)
4061 {
4062 struct net_device *ndev = to_net_dev(config->dev);
4063 struct mvneta_port *pp = netdev_priv(ndev);
4064 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
4065 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
4066 u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
4067
4068 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
4069 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
4070 MVNETA_GMAC2_PORT_RESET);
4071 new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
4072
4073 /* Even though it might look weird, when we're configured in
4074 * SGMII or QSGMII mode, the RGMII bit needs to be set.
4075 */
4076 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
4077
4078 if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
4079 state->interface == PHY_INTERFACE_MODE_SGMII ||
4080 phy_interface_mode_is_8023z(state->interface))
4081 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
4082
4083 if (!phylink_autoneg_inband(mode)) {
4084 /* Phy or fixed speed - nothing to do, leave the
4085 * configured speed, duplex and flow control as-is.
4086 */
4087 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
4088 /* SGMII mode receives the state from the PHY */
4089 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
4090 } else {
4091 /* 802.3z negotiation - only 1000base-X */
4092 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
4093 }
4094
4095 /* When at 2.5G, the link partner can send frames with shortened
4096 * preambles.
4097 */
4098 if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
4099 new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
4100
4101 if (new_ctrl0 != gmac_ctrl0)
4102 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
4103 if (new_ctrl2 != gmac_ctrl2)
4104 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
4105 if (new_ctrl4 != gmac_ctrl4)
4106 mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
4107
4108 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
4109 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4110 MVNETA_GMAC2_PORT_RESET) != 0)
4111 continue;
4112 }
4113 }
4114
mvneta_mac_finish(struct phylink_config * config,unsigned int mode,phy_interface_t interface)4115 static int mvneta_mac_finish(struct phylink_config *config, unsigned int mode,
4116 phy_interface_t interface)
4117 {
4118 struct net_device *ndev = to_net_dev(config->dev);
4119 struct mvneta_port *pp = netdev_priv(ndev);
4120 u32 val, clk;
4121
4122 /* Disable 1ms clock if not in in-band mode */
4123 if (!phylink_autoneg_inband(mode)) {
4124 clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
4125 clk &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
4126 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, clk);
4127 }
4128
4129 if (pp->phy_interface != interface)
4130 /* Enable the Serdes PHY */
4131 WARN_ON(mvneta_config_interface(pp, interface));
4132
4133 /* Allow the link to come up if in in-band mode, otherwise the
4134 * link is forced via mac_link_down()/mac_link_up()
4135 */
4136 if (phylink_autoneg_inband(mode)) {
4137 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4138 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
4139 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4140 }
4141
4142 return 0;
4143 }
4144
mvneta_set_eee(struct mvneta_port * pp,bool enable)4145 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
4146 {
4147 u32 lpi_ctl1;
4148
4149 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
4150 if (enable)
4151 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
4152 else
4153 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
4154 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
4155 }
4156
mvneta_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)4157 static void mvneta_mac_link_down(struct phylink_config *config,
4158 unsigned int mode, phy_interface_t interface)
4159 {
4160 struct net_device *ndev = to_net_dev(config->dev);
4161 struct mvneta_port *pp = netdev_priv(ndev);
4162 u32 val;
4163
4164 mvneta_port_down(pp);
4165
4166 if (!phylink_autoneg_inband(mode)) {
4167 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4168 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4169 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4170 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4171 }
4172
4173 pp->eee_active = false;
4174 mvneta_set_eee(pp, false);
4175 }
4176
mvneta_mac_link_up(struct phylink_config * config,struct phy_device * phy,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)4177 static void mvneta_mac_link_up(struct phylink_config *config,
4178 struct phy_device *phy,
4179 unsigned int mode, phy_interface_t interface,
4180 int speed, int duplex,
4181 bool tx_pause, bool rx_pause)
4182 {
4183 struct net_device *ndev = to_net_dev(config->dev);
4184 struct mvneta_port *pp = netdev_priv(ndev);
4185 u32 val;
4186
4187 if (!phylink_autoneg_inband(mode)) {
4188 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4189 val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN |
4190 MVNETA_GMAC_CONFIG_MII_SPEED |
4191 MVNETA_GMAC_CONFIG_GMII_SPEED |
4192 MVNETA_GMAC_CONFIG_FLOW_CTRL |
4193 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
4194 val |= MVNETA_GMAC_FORCE_LINK_PASS;
4195
4196 if (speed == SPEED_1000 || speed == SPEED_2500)
4197 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
4198 else if (speed == SPEED_100)
4199 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
4200
4201 if (duplex == DUPLEX_FULL)
4202 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4203
4204 if (tx_pause || rx_pause)
4205 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4206
4207 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4208 } else {
4209 /* When inband doesn't cover flow control or flow control is
4210 * disabled, we need to manually configure it. This bit will
4211 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset.
4212 */
4213 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4214 val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL;
4215
4216 if (tx_pause || rx_pause)
4217 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4218
4219 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4220 }
4221
4222 mvneta_port_up(pp);
4223
4224 if (phy && pp->eee_enabled) {
4225 pp->eee_active = phy_init_eee(phy, false) >= 0;
4226 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
4227 }
4228 }
4229
4230 static const struct phylink_mac_ops mvneta_phylink_ops = {
4231 .validate = phylink_generic_validate,
4232 .mac_select_pcs = mvneta_mac_select_pcs,
4233 .mac_prepare = mvneta_mac_prepare,
4234 .mac_config = mvneta_mac_config,
4235 .mac_finish = mvneta_mac_finish,
4236 .mac_link_down = mvneta_mac_link_down,
4237 .mac_link_up = mvneta_mac_link_up,
4238 };
4239
mvneta_mdio_probe(struct mvneta_port * pp)4240 static int mvneta_mdio_probe(struct mvneta_port *pp)
4241 {
4242 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
4243 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
4244
4245 if (err)
4246 netdev_err(pp->dev, "could not attach PHY: %d\n", err);
4247
4248 phylink_ethtool_get_wol(pp->phylink, &wol);
4249 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
4250
4251 /* PHY WoL may be enabled but device wakeup disabled */
4252 if (wol.supported)
4253 device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts);
4254
4255 return err;
4256 }
4257
mvneta_mdio_remove(struct mvneta_port * pp)4258 static void mvneta_mdio_remove(struct mvneta_port *pp)
4259 {
4260 phylink_disconnect_phy(pp->phylink);
4261 }
4262
4263 /* Electing a CPU must be done in an atomic way: it should be done
4264 * after or before the removal/insertion of a CPU and this function is
4265 * not reentrant.
4266 */
mvneta_percpu_elect(struct mvneta_port * pp)4267 static void mvneta_percpu_elect(struct mvneta_port *pp)
4268 {
4269 int elected_cpu = 0, max_cpu, cpu, i = 0;
4270
4271 /* Use the cpu associated to the rxq when it is online, in all
4272 * the other cases, use the cpu 0 which can't be offline.
4273 */
4274 if (pp->rxq_def < nr_cpu_ids && cpu_online(pp->rxq_def))
4275 elected_cpu = pp->rxq_def;
4276
4277 max_cpu = num_present_cpus();
4278
4279 for_each_online_cpu(cpu) {
4280 int rxq_map = 0, txq_map = 0;
4281 int rxq;
4282
4283 for (rxq = 0; rxq < rxq_number; rxq++)
4284 if ((rxq % max_cpu) == cpu)
4285 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
4286
4287 if (cpu == elected_cpu)
4288 /* Map the default receive queue to the elected CPU */
4289 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
4290
4291 /* We update the TX queue map only if we have one
4292 * queue. In this case we associate the TX queue to
4293 * the CPU bound to the default RX queue
4294 */
4295 if (txq_number == 1)
4296 txq_map = (cpu == elected_cpu) ?
4297 MVNETA_CPU_TXQ_ACCESS(1) : 0;
4298 else
4299 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
4300 MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
4301
4302 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
4303
4304 /* Update the interrupt mask on each CPU according the
4305 * new mapping
4306 */
4307 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4308 pp, true);
4309 i++;
4310
4311 }
4312 };
4313
mvneta_cpu_online(unsigned int cpu,struct hlist_node * node)4314 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
4315 {
4316 int other_cpu;
4317 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4318 node_online);
4319 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4320
4321 /* Armada 3700's per-cpu interrupt for mvneta is broken, all interrupts
4322 * are routed to CPU 0, so we don't need all the cpu-hotplug support
4323 */
4324 if (pp->neta_armada3700)
4325 return 0;
4326
4327 spin_lock(&pp->lock);
4328 /*
4329 * Configuring the driver for a new CPU while the driver is
4330 * stopping is racy, so just avoid it.
4331 */
4332 if (pp->is_stopped) {
4333 spin_unlock(&pp->lock);
4334 return 0;
4335 }
4336 netif_tx_stop_all_queues(pp->dev);
4337
4338 /*
4339 * We have to synchronise on tha napi of each CPU except the one
4340 * just being woken up
4341 */
4342 for_each_online_cpu(other_cpu) {
4343 if (other_cpu != cpu) {
4344 struct mvneta_pcpu_port *other_port =
4345 per_cpu_ptr(pp->ports, other_cpu);
4346
4347 napi_synchronize(&other_port->napi);
4348 }
4349 }
4350
4351 /* Mask all ethernet port interrupts */
4352 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4353 napi_enable(&port->napi);
4354
4355 /*
4356 * Enable per-CPU interrupts on the CPU that is
4357 * brought up.
4358 */
4359 mvneta_percpu_enable(pp);
4360
4361 /*
4362 * Enable per-CPU interrupt on the one CPU we care
4363 * about.
4364 */
4365 mvneta_percpu_elect(pp);
4366
4367 /* Unmask all ethernet port interrupts */
4368 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4369 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4370 MVNETA_CAUSE_PHY_STATUS_CHANGE |
4371 MVNETA_CAUSE_LINK_CHANGE);
4372 netif_tx_start_all_queues(pp->dev);
4373 spin_unlock(&pp->lock);
4374 return 0;
4375 }
4376
mvneta_cpu_down_prepare(unsigned int cpu,struct hlist_node * node)4377 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4378 {
4379 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4380 node_online);
4381 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4382
4383 /*
4384 * Thanks to this lock we are sure that any pending cpu election is
4385 * done.
4386 */
4387 spin_lock(&pp->lock);
4388 /* Mask all ethernet port interrupts */
4389 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4390 spin_unlock(&pp->lock);
4391
4392 napi_synchronize(&port->napi);
4393 napi_disable(&port->napi);
4394 /* Disable per-CPU interrupts on the CPU that is brought down. */
4395 mvneta_percpu_disable(pp);
4396 return 0;
4397 }
4398
mvneta_cpu_dead(unsigned int cpu,struct hlist_node * node)4399 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4400 {
4401 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4402 node_dead);
4403
4404 /* Check if a new CPU must be elected now this on is down */
4405 spin_lock(&pp->lock);
4406 mvneta_percpu_elect(pp);
4407 spin_unlock(&pp->lock);
4408 /* Unmask all ethernet port interrupts */
4409 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4410 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4411 MVNETA_CAUSE_PHY_STATUS_CHANGE |
4412 MVNETA_CAUSE_LINK_CHANGE);
4413 netif_tx_start_all_queues(pp->dev);
4414 return 0;
4415 }
4416
mvneta_open(struct net_device * dev)4417 static int mvneta_open(struct net_device *dev)
4418 {
4419 struct mvneta_port *pp = netdev_priv(dev);
4420 int ret;
4421
4422 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4423
4424 ret = mvneta_setup_rxqs(pp);
4425 if (ret)
4426 return ret;
4427
4428 ret = mvneta_setup_txqs(pp);
4429 if (ret)
4430 goto err_cleanup_rxqs;
4431
4432 /* Connect to port interrupt line */
4433 if (pp->neta_armada3700)
4434 ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4435 dev->name, pp);
4436 else
4437 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4438 dev->name, pp->ports);
4439 if (ret) {
4440 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4441 goto err_cleanup_txqs;
4442 }
4443
4444 if (!pp->neta_armada3700) {
4445 /* Enable per-CPU interrupt on all the CPU to handle our RX
4446 * queue interrupts
4447 */
4448 on_each_cpu(mvneta_percpu_enable, pp, true);
4449
4450 pp->is_stopped = false;
4451 /* Register a CPU notifier to handle the case where our CPU
4452 * might be taken offline.
4453 */
4454 ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4455 &pp->node_online);
4456 if (ret)
4457 goto err_free_irq;
4458
4459 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4460 &pp->node_dead);
4461 if (ret)
4462 goto err_free_online_hp;
4463 }
4464
4465 ret = mvneta_mdio_probe(pp);
4466 if (ret < 0) {
4467 netdev_err(dev, "cannot probe MDIO bus\n");
4468 goto err_free_dead_hp;
4469 }
4470
4471 mvneta_start_dev(pp);
4472
4473 return 0;
4474
4475 err_free_dead_hp:
4476 if (!pp->neta_armada3700)
4477 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4478 &pp->node_dead);
4479 err_free_online_hp:
4480 if (!pp->neta_armada3700)
4481 cpuhp_state_remove_instance_nocalls(online_hpstate,
4482 &pp->node_online);
4483 err_free_irq:
4484 if (pp->neta_armada3700) {
4485 free_irq(pp->dev->irq, pp);
4486 } else {
4487 on_each_cpu(mvneta_percpu_disable, pp, true);
4488 free_percpu_irq(pp->dev->irq, pp->ports);
4489 }
4490 err_cleanup_txqs:
4491 mvneta_cleanup_txqs(pp);
4492 err_cleanup_rxqs:
4493 mvneta_cleanup_rxqs(pp);
4494 return ret;
4495 }
4496
4497 /* Stop the port, free port interrupt line */
mvneta_stop(struct net_device * dev)4498 static int mvneta_stop(struct net_device *dev)
4499 {
4500 struct mvneta_port *pp = netdev_priv(dev);
4501
4502 if (!pp->neta_armada3700) {
4503 /* Inform that we are stopping so we don't want to setup the
4504 * driver for new CPUs in the notifiers. The code of the
4505 * notifier for CPU online is protected by the same spinlock,
4506 * so when we get the lock, the notifer work is done.
4507 */
4508 spin_lock(&pp->lock);
4509 pp->is_stopped = true;
4510 spin_unlock(&pp->lock);
4511
4512 mvneta_stop_dev(pp);
4513 mvneta_mdio_remove(pp);
4514
4515 cpuhp_state_remove_instance_nocalls(online_hpstate,
4516 &pp->node_online);
4517 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4518 &pp->node_dead);
4519 on_each_cpu(mvneta_percpu_disable, pp, true);
4520 free_percpu_irq(dev->irq, pp->ports);
4521 } else {
4522 mvneta_stop_dev(pp);
4523 mvneta_mdio_remove(pp);
4524 free_irq(dev->irq, pp);
4525 }
4526
4527 mvneta_cleanup_rxqs(pp);
4528 mvneta_cleanup_txqs(pp);
4529
4530 return 0;
4531 }
4532
mvneta_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)4533 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4534 {
4535 struct mvneta_port *pp = netdev_priv(dev);
4536
4537 return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4538 }
4539
mvneta_xdp_setup(struct net_device * dev,struct bpf_prog * prog,struct netlink_ext_ack * extack)4540 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4541 struct netlink_ext_ack *extack)
4542 {
4543 bool need_update, running = netif_running(dev);
4544 struct mvneta_port *pp = netdev_priv(dev);
4545 struct bpf_prog *old_prog;
4546
4547 if (prog && !prog->aux->xdp_has_frags &&
4548 dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4549 NL_SET_ERR_MSG_MOD(extack, "prog does not support XDP frags");
4550 return -EOPNOTSUPP;
4551 }
4552
4553 if (pp->bm_priv) {
4554 NL_SET_ERR_MSG_MOD(extack,
4555 "Hardware Buffer Management not supported on XDP");
4556 return -EOPNOTSUPP;
4557 }
4558
4559 need_update = !!pp->xdp_prog != !!prog;
4560 if (running && need_update)
4561 mvneta_stop(dev);
4562
4563 old_prog = xchg(&pp->xdp_prog, prog);
4564 if (old_prog)
4565 bpf_prog_put(old_prog);
4566
4567 if (running && need_update)
4568 return mvneta_open(dev);
4569
4570 return 0;
4571 }
4572
mvneta_xdp(struct net_device * dev,struct netdev_bpf * xdp)4573 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4574 {
4575 switch (xdp->command) {
4576 case XDP_SETUP_PROG:
4577 return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4578 default:
4579 return -EINVAL;
4580 }
4581 }
4582
4583 /* Ethtool methods */
4584
4585 /* Set link ksettings (phy address, speed) for ethtools */
4586 static int
mvneta_ethtool_set_link_ksettings(struct net_device * ndev,const struct ethtool_link_ksettings * cmd)4587 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4588 const struct ethtool_link_ksettings *cmd)
4589 {
4590 struct mvneta_port *pp = netdev_priv(ndev);
4591
4592 return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4593 }
4594
4595 /* Get link ksettings for ethtools */
4596 static int
mvneta_ethtool_get_link_ksettings(struct net_device * ndev,struct ethtool_link_ksettings * cmd)4597 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4598 struct ethtool_link_ksettings *cmd)
4599 {
4600 struct mvneta_port *pp = netdev_priv(ndev);
4601
4602 return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4603 }
4604
mvneta_ethtool_nway_reset(struct net_device * dev)4605 static int mvneta_ethtool_nway_reset(struct net_device *dev)
4606 {
4607 struct mvneta_port *pp = netdev_priv(dev);
4608
4609 return phylink_ethtool_nway_reset(pp->phylink);
4610 }
4611
4612 /* Set interrupt coalescing for ethtools */
4613 static int
mvneta_ethtool_set_coalesce(struct net_device * dev,struct ethtool_coalesce * c,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)4614 mvneta_ethtool_set_coalesce(struct net_device *dev,
4615 struct ethtool_coalesce *c,
4616 struct kernel_ethtool_coalesce *kernel_coal,
4617 struct netlink_ext_ack *extack)
4618 {
4619 struct mvneta_port *pp = netdev_priv(dev);
4620 int queue;
4621
4622 for (queue = 0; queue < rxq_number; queue++) {
4623 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4624 rxq->time_coal = c->rx_coalesce_usecs;
4625 rxq->pkts_coal = c->rx_max_coalesced_frames;
4626 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4627 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4628 }
4629
4630 for (queue = 0; queue < txq_number; queue++) {
4631 struct mvneta_tx_queue *txq = &pp->txqs[queue];
4632 txq->done_pkts_coal = c->tx_max_coalesced_frames;
4633 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4634 }
4635
4636 return 0;
4637 }
4638
4639 /* get coalescing for ethtools */
4640 static int
mvneta_ethtool_get_coalesce(struct net_device * dev,struct ethtool_coalesce * c,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)4641 mvneta_ethtool_get_coalesce(struct net_device *dev,
4642 struct ethtool_coalesce *c,
4643 struct kernel_ethtool_coalesce *kernel_coal,
4644 struct netlink_ext_ack *extack)
4645 {
4646 struct mvneta_port *pp = netdev_priv(dev);
4647
4648 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
4649 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
4650
4651 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
4652 return 0;
4653 }
4654
4655
mvneta_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * drvinfo)4656 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4657 struct ethtool_drvinfo *drvinfo)
4658 {
4659 strscpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4660 sizeof(drvinfo->driver));
4661 strscpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4662 sizeof(drvinfo->version));
4663 strscpy(drvinfo->bus_info, dev_name(&dev->dev),
4664 sizeof(drvinfo->bus_info));
4665 }
4666
4667
4668 static void
mvneta_ethtool_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)4669 mvneta_ethtool_get_ringparam(struct net_device *netdev,
4670 struct ethtool_ringparam *ring,
4671 struct kernel_ethtool_ringparam *kernel_ring,
4672 struct netlink_ext_ack *extack)
4673 {
4674 struct mvneta_port *pp = netdev_priv(netdev);
4675
4676 ring->rx_max_pending = MVNETA_MAX_RXD;
4677 ring->tx_max_pending = MVNETA_MAX_TXD;
4678 ring->rx_pending = pp->rx_ring_size;
4679 ring->tx_pending = pp->tx_ring_size;
4680 }
4681
4682 static int
mvneta_ethtool_set_ringparam(struct net_device * dev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)4683 mvneta_ethtool_set_ringparam(struct net_device *dev,
4684 struct ethtool_ringparam *ring,
4685 struct kernel_ethtool_ringparam *kernel_ring,
4686 struct netlink_ext_ack *extack)
4687 {
4688 struct mvneta_port *pp = netdev_priv(dev);
4689
4690 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4691 return -EINVAL;
4692 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4693 ring->rx_pending : MVNETA_MAX_RXD;
4694
4695 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4696 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4697 if (pp->tx_ring_size != ring->tx_pending)
4698 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4699 pp->tx_ring_size, ring->tx_pending);
4700
4701 if (netif_running(dev)) {
4702 mvneta_stop(dev);
4703 if (mvneta_open(dev)) {
4704 netdev_err(dev,
4705 "error on opening device after ring param change\n");
4706 return -ENOMEM;
4707 }
4708 }
4709
4710 return 0;
4711 }
4712
mvneta_ethtool_get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * pause)4713 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4714 struct ethtool_pauseparam *pause)
4715 {
4716 struct mvneta_port *pp = netdev_priv(dev);
4717
4718 phylink_ethtool_get_pauseparam(pp->phylink, pause);
4719 }
4720
mvneta_ethtool_set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * pause)4721 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4722 struct ethtool_pauseparam *pause)
4723 {
4724 struct mvneta_port *pp = netdev_priv(dev);
4725
4726 return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4727 }
4728
mvneta_ethtool_get_strings(struct net_device * netdev,u32 sset,u8 * data)4729 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4730 u8 *data)
4731 {
4732 if (sset == ETH_SS_STATS) {
4733 int i;
4734
4735 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4736 memcpy(data + i * ETH_GSTRING_LEN,
4737 mvneta_statistics[i].name, ETH_GSTRING_LEN);
4738
4739 data += ETH_GSTRING_LEN * ARRAY_SIZE(mvneta_statistics);
4740 page_pool_ethtool_stats_get_strings(data);
4741 }
4742 }
4743
4744 static void
mvneta_ethtool_update_pcpu_stats(struct mvneta_port * pp,struct mvneta_ethtool_stats * es)4745 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
4746 struct mvneta_ethtool_stats *es)
4747 {
4748 unsigned int start;
4749 int cpu;
4750
4751 for_each_possible_cpu(cpu) {
4752 struct mvneta_pcpu_stats *stats;
4753 u64 skb_alloc_error;
4754 u64 refill_error;
4755 u64 xdp_redirect;
4756 u64 xdp_xmit_err;
4757 u64 xdp_tx_err;
4758 u64 xdp_pass;
4759 u64 xdp_drop;
4760 u64 xdp_xmit;
4761 u64 xdp_tx;
4762
4763 stats = per_cpu_ptr(pp->stats, cpu);
4764 do {
4765 start = u64_stats_fetch_begin_irq(&stats->syncp);
4766 skb_alloc_error = stats->es.skb_alloc_error;
4767 refill_error = stats->es.refill_error;
4768 xdp_redirect = stats->es.ps.xdp_redirect;
4769 xdp_pass = stats->es.ps.xdp_pass;
4770 xdp_drop = stats->es.ps.xdp_drop;
4771 xdp_xmit = stats->es.ps.xdp_xmit;
4772 xdp_xmit_err = stats->es.ps.xdp_xmit_err;
4773 xdp_tx = stats->es.ps.xdp_tx;
4774 xdp_tx_err = stats->es.ps.xdp_tx_err;
4775 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
4776
4777 es->skb_alloc_error += skb_alloc_error;
4778 es->refill_error += refill_error;
4779 es->ps.xdp_redirect += xdp_redirect;
4780 es->ps.xdp_pass += xdp_pass;
4781 es->ps.xdp_drop += xdp_drop;
4782 es->ps.xdp_xmit += xdp_xmit;
4783 es->ps.xdp_xmit_err += xdp_xmit_err;
4784 es->ps.xdp_tx += xdp_tx;
4785 es->ps.xdp_tx_err += xdp_tx_err;
4786 }
4787 }
4788
mvneta_ethtool_update_stats(struct mvneta_port * pp)4789 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4790 {
4791 struct mvneta_ethtool_stats stats = {};
4792 const struct mvneta_statistic *s;
4793 void __iomem *base = pp->base;
4794 u32 high, low;
4795 u64 val;
4796 int i;
4797
4798 mvneta_ethtool_update_pcpu_stats(pp, &stats);
4799 for (i = 0, s = mvneta_statistics;
4800 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4801 s++, i++) {
4802 switch (s->type) {
4803 case T_REG_32:
4804 val = readl_relaxed(base + s->offset);
4805 pp->ethtool_stats[i] += val;
4806 break;
4807 case T_REG_64:
4808 /* Docs say to read low 32-bit then high */
4809 low = readl_relaxed(base + s->offset);
4810 high = readl_relaxed(base + s->offset + 4);
4811 val = (u64)high << 32 | low;
4812 pp->ethtool_stats[i] += val;
4813 break;
4814 case T_SW:
4815 switch (s->offset) {
4816 case ETHTOOL_STAT_EEE_WAKEUP:
4817 val = phylink_get_eee_err(pp->phylink);
4818 pp->ethtool_stats[i] += val;
4819 break;
4820 case ETHTOOL_STAT_SKB_ALLOC_ERR:
4821 pp->ethtool_stats[i] = stats.skb_alloc_error;
4822 break;
4823 case ETHTOOL_STAT_REFILL_ERR:
4824 pp->ethtool_stats[i] = stats.refill_error;
4825 break;
4826 case ETHTOOL_XDP_REDIRECT:
4827 pp->ethtool_stats[i] = stats.ps.xdp_redirect;
4828 break;
4829 case ETHTOOL_XDP_PASS:
4830 pp->ethtool_stats[i] = stats.ps.xdp_pass;
4831 break;
4832 case ETHTOOL_XDP_DROP:
4833 pp->ethtool_stats[i] = stats.ps.xdp_drop;
4834 break;
4835 case ETHTOOL_XDP_TX:
4836 pp->ethtool_stats[i] = stats.ps.xdp_tx;
4837 break;
4838 case ETHTOOL_XDP_TX_ERR:
4839 pp->ethtool_stats[i] = stats.ps.xdp_tx_err;
4840 break;
4841 case ETHTOOL_XDP_XMIT:
4842 pp->ethtool_stats[i] = stats.ps.xdp_xmit;
4843 break;
4844 case ETHTOOL_XDP_XMIT_ERR:
4845 pp->ethtool_stats[i] = stats.ps.xdp_xmit_err;
4846 break;
4847 }
4848 break;
4849 }
4850 }
4851 }
4852
mvneta_ethtool_pp_stats(struct mvneta_port * pp,u64 * data)4853 static void mvneta_ethtool_pp_stats(struct mvneta_port *pp, u64 *data)
4854 {
4855 struct page_pool_stats stats = {};
4856 int i;
4857
4858 for (i = 0; i < rxq_number; i++)
4859 page_pool_get_stats(pp->rxqs[i].page_pool, &stats);
4860
4861 page_pool_ethtool_stats_get(data, &stats);
4862 }
4863
mvneta_ethtool_get_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)4864 static void mvneta_ethtool_get_stats(struct net_device *dev,
4865 struct ethtool_stats *stats, u64 *data)
4866 {
4867 struct mvneta_port *pp = netdev_priv(dev);
4868 int i;
4869
4870 mvneta_ethtool_update_stats(pp);
4871
4872 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4873 *data++ = pp->ethtool_stats[i];
4874
4875 mvneta_ethtool_pp_stats(pp, data);
4876 }
4877
mvneta_ethtool_get_sset_count(struct net_device * dev,int sset)4878 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4879 {
4880 if (sset == ETH_SS_STATS)
4881 return ARRAY_SIZE(mvneta_statistics) +
4882 page_pool_ethtool_stats_get_count();
4883
4884 return -EOPNOTSUPP;
4885 }
4886
mvneta_ethtool_get_rxfh_indir_size(struct net_device * dev)4887 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4888 {
4889 return MVNETA_RSS_LU_TABLE_SIZE;
4890 }
4891
mvneta_ethtool_get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * info,u32 * rules __always_unused)4892 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4893 struct ethtool_rxnfc *info,
4894 u32 *rules __always_unused)
4895 {
4896 switch (info->cmd) {
4897 case ETHTOOL_GRXRINGS:
4898 info->data = rxq_number;
4899 return 0;
4900 case ETHTOOL_GRXFH:
4901 return -EOPNOTSUPP;
4902 default:
4903 return -EOPNOTSUPP;
4904 }
4905 }
4906
mvneta_config_rss(struct mvneta_port * pp)4907 static int mvneta_config_rss(struct mvneta_port *pp)
4908 {
4909 int cpu;
4910 u32 val;
4911
4912 netif_tx_stop_all_queues(pp->dev);
4913
4914 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4915
4916 if (!pp->neta_armada3700) {
4917 /* We have to synchronise on the napi of each CPU */
4918 for_each_online_cpu(cpu) {
4919 struct mvneta_pcpu_port *pcpu_port =
4920 per_cpu_ptr(pp->ports, cpu);
4921
4922 napi_synchronize(&pcpu_port->napi);
4923 napi_disable(&pcpu_port->napi);
4924 }
4925 } else {
4926 napi_synchronize(&pp->napi);
4927 napi_disable(&pp->napi);
4928 }
4929
4930 pp->rxq_def = pp->indir[0];
4931
4932 /* Update unicast mapping */
4933 mvneta_set_rx_mode(pp->dev);
4934
4935 /* Update val of portCfg register accordingly with all RxQueue types */
4936 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4937 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4938
4939 /* Update the elected CPU matching the new rxq_def */
4940 spin_lock(&pp->lock);
4941 mvneta_percpu_elect(pp);
4942 spin_unlock(&pp->lock);
4943
4944 if (!pp->neta_armada3700) {
4945 /* We have to synchronise on the napi of each CPU */
4946 for_each_online_cpu(cpu) {
4947 struct mvneta_pcpu_port *pcpu_port =
4948 per_cpu_ptr(pp->ports, cpu);
4949
4950 napi_enable(&pcpu_port->napi);
4951 }
4952 } else {
4953 napi_enable(&pp->napi);
4954 }
4955
4956 netif_tx_start_all_queues(pp->dev);
4957
4958 return 0;
4959 }
4960
mvneta_ethtool_set_rxfh(struct net_device * dev,const u32 * indir,const u8 * key,const u8 hfunc)4961 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4962 const u8 *key, const u8 hfunc)
4963 {
4964 struct mvneta_port *pp = netdev_priv(dev);
4965
4966 /* Current code for Armada 3700 doesn't support RSS features yet */
4967 if (pp->neta_armada3700)
4968 return -EOPNOTSUPP;
4969
4970 /* We require at least one supported parameter to be changed
4971 * and no change in any of the unsupported parameters
4972 */
4973 if (key ||
4974 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4975 return -EOPNOTSUPP;
4976
4977 if (!indir)
4978 return 0;
4979
4980 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4981
4982 return mvneta_config_rss(pp);
4983 }
4984
mvneta_ethtool_get_rxfh(struct net_device * dev,u32 * indir,u8 * key,u8 * hfunc)4985 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4986 u8 *hfunc)
4987 {
4988 struct mvneta_port *pp = netdev_priv(dev);
4989
4990 /* Current code for Armada 3700 doesn't support RSS features yet */
4991 if (pp->neta_armada3700)
4992 return -EOPNOTSUPP;
4993
4994 if (hfunc)
4995 *hfunc = ETH_RSS_HASH_TOP;
4996
4997 if (!indir)
4998 return 0;
4999
5000 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
5001
5002 return 0;
5003 }
5004
mvneta_ethtool_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)5005 static void mvneta_ethtool_get_wol(struct net_device *dev,
5006 struct ethtool_wolinfo *wol)
5007 {
5008 struct mvneta_port *pp = netdev_priv(dev);
5009
5010 phylink_ethtool_get_wol(pp->phylink, wol);
5011 }
5012
mvneta_ethtool_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)5013 static int mvneta_ethtool_set_wol(struct net_device *dev,
5014 struct ethtool_wolinfo *wol)
5015 {
5016 struct mvneta_port *pp = netdev_priv(dev);
5017 int ret;
5018
5019 ret = phylink_ethtool_set_wol(pp->phylink, wol);
5020 if (!ret)
5021 device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
5022
5023 return ret;
5024 }
5025
mvneta_ethtool_get_eee(struct net_device * dev,struct ethtool_eee * eee)5026 static int mvneta_ethtool_get_eee(struct net_device *dev,
5027 struct ethtool_eee *eee)
5028 {
5029 struct mvneta_port *pp = netdev_priv(dev);
5030 u32 lpi_ctl0;
5031
5032 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
5033
5034 eee->eee_enabled = pp->eee_enabled;
5035 eee->eee_active = pp->eee_active;
5036 eee->tx_lpi_enabled = pp->tx_lpi_enabled;
5037 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
5038
5039 return phylink_ethtool_get_eee(pp->phylink, eee);
5040 }
5041
mvneta_ethtool_set_eee(struct net_device * dev,struct ethtool_eee * eee)5042 static int mvneta_ethtool_set_eee(struct net_device *dev,
5043 struct ethtool_eee *eee)
5044 {
5045 struct mvneta_port *pp = netdev_priv(dev);
5046 u32 lpi_ctl0;
5047
5048 /* The Armada 37x documents do not give limits for this other than
5049 * it being an 8-bit register.
5050 */
5051 if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
5052 return -EINVAL;
5053
5054 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
5055 lpi_ctl0 &= ~(0xff << 8);
5056 lpi_ctl0 |= eee->tx_lpi_timer << 8;
5057 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
5058
5059 pp->eee_enabled = eee->eee_enabled;
5060 pp->tx_lpi_enabled = eee->tx_lpi_enabled;
5061
5062 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
5063
5064 return phylink_ethtool_set_eee(pp->phylink, eee);
5065 }
5066
mvneta_clear_rx_prio_map(struct mvneta_port * pp)5067 static void mvneta_clear_rx_prio_map(struct mvneta_port *pp)
5068 {
5069 mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, 0);
5070 }
5071
mvneta_map_vlan_prio_to_rxq(struct mvneta_port * pp,u8 pri,u8 rxq)5072 static void mvneta_map_vlan_prio_to_rxq(struct mvneta_port *pp, u8 pri, u8 rxq)
5073 {
5074 u32 val = mvreg_read(pp, MVNETA_VLAN_PRIO_TO_RXQ);
5075
5076 val &= ~MVNETA_VLAN_PRIO_RXQ_MAP(pri, 0x7);
5077 val |= MVNETA_VLAN_PRIO_RXQ_MAP(pri, rxq);
5078
5079 mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, val);
5080 }
5081
mvneta_enable_per_queue_rate_limit(struct mvneta_port * pp)5082 static int mvneta_enable_per_queue_rate_limit(struct mvneta_port *pp)
5083 {
5084 unsigned long core_clk_rate;
5085 u32 refill_cycles;
5086 u32 val;
5087
5088 core_clk_rate = clk_get_rate(pp->clk);
5089 if (!core_clk_rate)
5090 return -EINVAL;
5091
5092 refill_cycles = MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS /
5093 (NSEC_PER_SEC / core_clk_rate);
5094
5095 if (refill_cycles > MVNETA_REFILL_MAX_NUM_CLK)
5096 return -EINVAL;
5097
5098 /* Enable bw limit algorithm version 3 */
5099 val = mvreg_read(pp, MVNETA_TXQ_CMD1_REG);
5100 val &= ~(MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 | MVNETA_TXQ_CMD1_BW_LIM_EN);
5101 mvreg_write(pp, MVNETA_TXQ_CMD1_REG, val);
5102
5103 /* Set the base refill rate */
5104 mvreg_write(pp, MVNETA_REFILL_NUM_CLK_REG, refill_cycles);
5105
5106 return 0;
5107 }
5108
mvneta_disable_per_queue_rate_limit(struct mvneta_port * pp)5109 static void mvneta_disable_per_queue_rate_limit(struct mvneta_port *pp)
5110 {
5111 u32 val = mvreg_read(pp, MVNETA_TXQ_CMD1_REG);
5112
5113 val |= (MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 | MVNETA_TXQ_CMD1_BW_LIM_EN);
5114 mvreg_write(pp, MVNETA_TXQ_CMD1_REG, val);
5115 }
5116
mvneta_setup_queue_rates(struct mvneta_port * pp,int queue,u64 min_rate,u64 max_rate)5117 static int mvneta_setup_queue_rates(struct mvneta_port *pp, int queue,
5118 u64 min_rate, u64 max_rate)
5119 {
5120 u32 refill_val, rem;
5121 u32 val = 0;
5122
5123 /* Convert to from Bps to bps */
5124 max_rate *= 8;
5125
5126 if (min_rate)
5127 return -EINVAL;
5128
5129 refill_val = div_u64_rem(max_rate, MVNETA_TXQ_RATE_LIMIT_RESOLUTION,
5130 &rem);
5131
5132 if (rem || !refill_val ||
5133 refill_val > MVNETA_TXQ_BUCKET_REFILL_VALUE_MAX)
5134 return -EINVAL;
5135
5136 val = refill_val;
5137 val |= (MVNETA_TXQ_BUCKET_REFILL_PERIOD <<
5138 MVNETA_TXQ_BUCKET_REFILL_PERIOD_SHIFT);
5139
5140 mvreg_write(pp, MVNETA_TXQ_BUCKET_REFILL_REG(queue), val);
5141
5142 return 0;
5143 }
5144
mvneta_setup_mqprio(struct net_device * dev,struct tc_mqprio_qopt_offload * mqprio)5145 static int mvneta_setup_mqprio(struct net_device *dev,
5146 struct tc_mqprio_qopt_offload *mqprio)
5147 {
5148 struct mvneta_port *pp = netdev_priv(dev);
5149 int rxq, txq, tc, ret;
5150 u8 num_tc;
5151
5152 if (mqprio->qopt.hw != TC_MQPRIO_HW_OFFLOAD_TCS)
5153 return 0;
5154
5155 num_tc = mqprio->qopt.num_tc;
5156
5157 if (num_tc > rxq_number)
5158 return -EINVAL;
5159
5160 mvneta_clear_rx_prio_map(pp);
5161
5162 if (!num_tc) {
5163 mvneta_disable_per_queue_rate_limit(pp);
5164 netdev_reset_tc(dev);
5165 return 0;
5166 }
5167
5168 netdev_set_num_tc(dev, mqprio->qopt.num_tc);
5169
5170 for (tc = 0; tc < mqprio->qopt.num_tc; tc++) {
5171 netdev_set_tc_queue(dev, tc, mqprio->qopt.count[tc],
5172 mqprio->qopt.offset[tc]);
5173
5174 for (rxq = mqprio->qopt.offset[tc];
5175 rxq < mqprio->qopt.count[tc] + mqprio->qopt.offset[tc];
5176 rxq++) {
5177 if (rxq >= rxq_number)
5178 return -EINVAL;
5179
5180 mvneta_map_vlan_prio_to_rxq(pp, tc, rxq);
5181 }
5182 }
5183
5184 if (mqprio->shaper != TC_MQPRIO_SHAPER_BW_RATE) {
5185 mvneta_disable_per_queue_rate_limit(pp);
5186 return 0;
5187 }
5188
5189 if (mqprio->qopt.num_tc > txq_number)
5190 return -EINVAL;
5191
5192 ret = mvneta_enable_per_queue_rate_limit(pp);
5193 if (ret)
5194 return ret;
5195
5196 for (tc = 0; tc < mqprio->qopt.num_tc; tc++) {
5197 for (txq = mqprio->qopt.offset[tc];
5198 txq < mqprio->qopt.count[tc] + mqprio->qopt.offset[tc];
5199 txq++) {
5200 if (txq >= txq_number)
5201 return -EINVAL;
5202
5203 ret = mvneta_setup_queue_rates(pp, txq,
5204 mqprio->min_rate[tc],
5205 mqprio->max_rate[tc]);
5206 if (ret)
5207 return ret;
5208 }
5209 }
5210
5211 return 0;
5212 }
5213
mvneta_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)5214 static int mvneta_setup_tc(struct net_device *dev, enum tc_setup_type type,
5215 void *type_data)
5216 {
5217 switch (type) {
5218 case TC_SETUP_QDISC_MQPRIO:
5219 return mvneta_setup_mqprio(dev, type_data);
5220 default:
5221 return -EOPNOTSUPP;
5222 }
5223 }
5224
5225 static const struct net_device_ops mvneta_netdev_ops = {
5226 .ndo_open = mvneta_open,
5227 .ndo_stop = mvneta_stop,
5228 .ndo_start_xmit = mvneta_tx,
5229 .ndo_set_rx_mode = mvneta_set_rx_mode,
5230 .ndo_set_mac_address = mvneta_set_mac_addr,
5231 .ndo_change_mtu = mvneta_change_mtu,
5232 .ndo_fix_features = mvneta_fix_features,
5233 .ndo_get_stats64 = mvneta_get_stats64,
5234 .ndo_eth_ioctl = mvneta_ioctl,
5235 .ndo_bpf = mvneta_xdp,
5236 .ndo_xdp_xmit = mvneta_xdp_xmit,
5237 .ndo_setup_tc = mvneta_setup_tc,
5238 };
5239
5240 static const struct ethtool_ops mvneta_eth_tool_ops = {
5241 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
5242 ETHTOOL_COALESCE_MAX_FRAMES,
5243 .nway_reset = mvneta_ethtool_nway_reset,
5244 .get_link = ethtool_op_get_link,
5245 .set_coalesce = mvneta_ethtool_set_coalesce,
5246 .get_coalesce = mvneta_ethtool_get_coalesce,
5247 .get_drvinfo = mvneta_ethtool_get_drvinfo,
5248 .get_ringparam = mvneta_ethtool_get_ringparam,
5249 .set_ringparam = mvneta_ethtool_set_ringparam,
5250 .get_pauseparam = mvneta_ethtool_get_pauseparam,
5251 .set_pauseparam = mvneta_ethtool_set_pauseparam,
5252 .get_strings = mvneta_ethtool_get_strings,
5253 .get_ethtool_stats = mvneta_ethtool_get_stats,
5254 .get_sset_count = mvneta_ethtool_get_sset_count,
5255 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
5256 .get_rxnfc = mvneta_ethtool_get_rxnfc,
5257 .get_rxfh = mvneta_ethtool_get_rxfh,
5258 .set_rxfh = mvneta_ethtool_set_rxfh,
5259 .get_link_ksettings = mvneta_ethtool_get_link_ksettings,
5260 .set_link_ksettings = mvneta_ethtool_set_link_ksettings,
5261 .get_wol = mvneta_ethtool_get_wol,
5262 .set_wol = mvneta_ethtool_set_wol,
5263 .get_eee = mvneta_ethtool_get_eee,
5264 .set_eee = mvneta_ethtool_set_eee,
5265 };
5266
5267 /* Initialize hw */
mvneta_init(struct device * dev,struct mvneta_port * pp)5268 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
5269 {
5270 int queue;
5271
5272 /* Disable port */
5273 mvneta_port_disable(pp);
5274
5275 /* Set port default values */
5276 mvneta_defaults_set(pp);
5277
5278 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
5279 if (!pp->txqs)
5280 return -ENOMEM;
5281
5282 /* Initialize TX descriptor rings */
5283 for (queue = 0; queue < txq_number; queue++) {
5284 struct mvneta_tx_queue *txq = &pp->txqs[queue];
5285 txq->id = queue;
5286 txq->size = pp->tx_ring_size;
5287 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
5288 }
5289
5290 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
5291 if (!pp->rxqs)
5292 return -ENOMEM;
5293
5294 /* Create Rx descriptor rings */
5295 for (queue = 0; queue < rxq_number; queue++) {
5296 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5297 rxq->id = queue;
5298 rxq->size = pp->rx_ring_size;
5299 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
5300 rxq->time_coal = MVNETA_RX_COAL_USEC;
5301 rxq->buf_virt_addr
5302 = devm_kmalloc_array(pp->dev->dev.parent,
5303 rxq->size,
5304 sizeof(*rxq->buf_virt_addr),
5305 GFP_KERNEL);
5306 if (!rxq->buf_virt_addr)
5307 return -ENOMEM;
5308 }
5309
5310 return 0;
5311 }
5312
5313 /* platform glue : initialize decoding windows */
mvneta_conf_mbus_windows(struct mvneta_port * pp,const struct mbus_dram_target_info * dram)5314 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
5315 const struct mbus_dram_target_info *dram)
5316 {
5317 u32 win_enable;
5318 u32 win_protect;
5319 int i;
5320
5321 for (i = 0; i < 6; i++) {
5322 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
5323 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
5324
5325 if (i < 4)
5326 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
5327 }
5328
5329 win_enable = 0x3f;
5330 win_protect = 0;
5331
5332 if (dram) {
5333 for (i = 0; i < dram->num_cs; i++) {
5334 const struct mbus_dram_window *cs = dram->cs + i;
5335
5336 mvreg_write(pp, MVNETA_WIN_BASE(i),
5337 (cs->base & 0xffff0000) |
5338 (cs->mbus_attr << 8) |
5339 dram->mbus_dram_target_id);
5340
5341 mvreg_write(pp, MVNETA_WIN_SIZE(i),
5342 (cs->size - 1) & 0xffff0000);
5343
5344 win_enable &= ~(1 << i);
5345 win_protect |= 3 << (2 * i);
5346 }
5347 } else {
5348 if (pp->neta_ac5)
5349 mvreg_write(pp, MVNETA_WIN_BASE(0),
5350 (MVNETA_AC5_CNM_DDR_ATTR << 8) |
5351 MVNETA_AC5_CNM_DDR_TARGET);
5352 /* For Armada3700 open default 4GB Mbus window, leaving
5353 * arbitration of target/attribute to a different layer
5354 * of configuration.
5355 */
5356 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
5357 win_enable &= ~BIT(0);
5358 win_protect = 3;
5359 }
5360
5361 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
5362 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
5363 }
5364
5365 /* Power up the port */
mvneta_port_power_up(struct mvneta_port * pp,int phy_mode)5366 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
5367 {
5368 /* MAC Cause register should be cleared */
5369 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
5370
5371 if (phy_mode != PHY_INTERFACE_MODE_QSGMII &&
5372 phy_mode != PHY_INTERFACE_MODE_SGMII &&
5373 !phy_interface_mode_is_8023z(phy_mode) &&
5374 !phy_interface_mode_is_rgmii(phy_mode))
5375 return -EINVAL;
5376
5377 return 0;
5378 }
5379
5380 /* Device initialization routine */
mvneta_probe(struct platform_device * pdev)5381 static int mvneta_probe(struct platform_device *pdev)
5382 {
5383 struct device_node *dn = pdev->dev.of_node;
5384 struct device_node *bm_node;
5385 struct mvneta_port *pp;
5386 struct net_device *dev;
5387 struct phylink *phylink;
5388 struct phy *comphy;
5389 char hw_mac_addr[ETH_ALEN];
5390 phy_interface_t phy_mode;
5391 const char *mac_from;
5392 int tx_csum_limit;
5393 int err;
5394 int cpu;
5395
5396 dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
5397 txq_number, rxq_number);
5398 if (!dev)
5399 return -ENOMEM;
5400
5401 dev->tx_queue_len = MVNETA_MAX_TXD;
5402 dev->watchdog_timeo = 5 * HZ;
5403 dev->netdev_ops = &mvneta_netdev_ops;
5404 dev->ethtool_ops = &mvneta_eth_tool_ops;
5405
5406 pp = netdev_priv(dev);
5407 spin_lock_init(&pp->lock);
5408 pp->dn = dn;
5409
5410 pp->rxq_def = rxq_def;
5411 pp->indir[0] = rxq_def;
5412
5413 err = of_get_phy_mode(dn, &phy_mode);
5414 if (err) {
5415 dev_err(&pdev->dev, "incorrect phy-mode\n");
5416 return err;
5417 }
5418
5419 pp->phy_interface = phy_mode;
5420
5421 comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
5422 if (comphy == ERR_PTR(-EPROBE_DEFER))
5423 return -EPROBE_DEFER;
5424
5425 if (IS_ERR(comphy))
5426 comphy = NULL;
5427
5428 pp->comphy = comphy;
5429
5430 pp->base = devm_platform_ioremap_resource(pdev, 0);
5431 if (IS_ERR(pp->base))
5432 return PTR_ERR(pp->base);
5433
5434 /* Get special SoC configurations */
5435 if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
5436 pp->neta_armada3700 = true;
5437 if (of_device_is_compatible(dn, "marvell,armada-ac5-neta")) {
5438 pp->neta_armada3700 = true;
5439 pp->neta_ac5 = true;
5440 }
5441
5442 dev->irq = irq_of_parse_and_map(dn, 0);
5443 if (dev->irq == 0)
5444 return -EINVAL;
5445
5446 pp->clk = devm_clk_get(&pdev->dev, "core");
5447 if (IS_ERR(pp->clk))
5448 pp->clk = devm_clk_get(&pdev->dev, NULL);
5449 if (IS_ERR(pp->clk)) {
5450 err = PTR_ERR(pp->clk);
5451 goto err_free_irq;
5452 }
5453
5454 clk_prepare_enable(pp->clk);
5455
5456 pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
5457 if (!IS_ERR(pp->clk_bus))
5458 clk_prepare_enable(pp->clk_bus);
5459
5460 pp->phylink_pcs.ops = &mvneta_phylink_pcs_ops;
5461
5462 pp->phylink_config.dev = &dev->dev;
5463 pp->phylink_config.type = PHYLINK_NETDEV;
5464 pp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_10 |
5465 MAC_100 | MAC_1000FD | MAC_2500FD;
5466
5467 phy_interface_set_rgmii(pp->phylink_config.supported_interfaces);
5468 __set_bit(PHY_INTERFACE_MODE_QSGMII,
5469 pp->phylink_config.supported_interfaces);
5470 if (comphy) {
5471 /* If a COMPHY is present, we can support any of the serdes
5472 * modes and switch between them.
5473 */
5474 __set_bit(PHY_INTERFACE_MODE_SGMII,
5475 pp->phylink_config.supported_interfaces);
5476 __set_bit(PHY_INTERFACE_MODE_1000BASEX,
5477 pp->phylink_config.supported_interfaces);
5478 __set_bit(PHY_INTERFACE_MODE_2500BASEX,
5479 pp->phylink_config.supported_interfaces);
5480 } else if (phy_mode == PHY_INTERFACE_MODE_2500BASEX) {
5481 /* No COMPHY, with only 2500BASE-X mode supported */
5482 __set_bit(PHY_INTERFACE_MODE_2500BASEX,
5483 pp->phylink_config.supported_interfaces);
5484 } else if (phy_mode == PHY_INTERFACE_MODE_1000BASEX ||
5485 phy_mode == PHY_INTERFACE_MODE_SGMII) {
5486 /* No COMPHY, we can switch between 1000BASE-X and SGMII */
5487 __set_bit(PHY_INTERFACE_MODE_1000BASEX,
5488 pp->phylink_config.supported_interfaces);
5489 __set_bit(PHY_INTERFACE_MODE_SGMII,
5490 pp->phylink_config.supported_interfaces);
5491 }
5492
5493 phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
5494 phy_mode, &mvneta_phylink_ops);
5495 if (IS_ERR(phylink)) {
5496 err = PTR_ERR(phylink);
5497 goto err_clk;
5498 }
5499
5500 pp->phylink = phylink;
5501
5502 /* Alloc per-cpu port structure */
5503 pp->ports = alloc_percpu(struct mvneta_pcpu_port);
5504 if (!pp->ports) {
5505 err = -ENOMEM;
5506 goto err_free_phylink;
5507 }
5508
5509 /* Alloc per-cpu stats */
5510 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
5511 if (!pp->stats) {
5512 err = -ENOMEM;
5513 goto err_free_ports;
5514 }
5515
5516 err = of_get_ethdev_address(dn, dev);
5517 if (!err) {
5518 mac_from = "device tree";
5519 } else {
5520 mvneta_get_mac_addr(pp, hw_mac_addr);
5521 if (is_valid_ether_addr(hw_mac_addr)) {
5522 mac_from = "hardware";
5523 eth_hw_addr_set(dev, hw_mac_addr);
5524 } else {
5525 mac_from = "random";
5526 eth_hw_addr_random(dev);
5527 }
5528 }
5529
5530 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
5531 if (tx_csum_limit < 0 ||
5532 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
5533 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5534 dev_info(&pdev->dev,
5535 "Wrong TX csum limit in DT, set to %dB\n",
5536 MVNETA_TX_CSUM_DEF_SIZE);
5537 }
5538 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
5539 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5540 } else {
5541 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
5542 }
5543
5544 pp->tx_csum_limit = tx_csum_limit;
5545
5546 pp->dram_target_info = mv_mbus_dram_info();
5547 /* Armada3700 requires setting default configuration of Mbus
5548 * windows, however without using filled mbus_dram_target_info
5549 * structure.
5550 */
5551 if (pp->dram_target_info || pp->neta_armada3700)
5552 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5553
5554 pp->tx_ring_size = MVNETA_MAX_TXD;
5555 pp->rx_ring_size = MVNETA_MAX_RXD;
5556
5557 pp->dev = dev;
5558 SET_NETDEV_DEV(dev, &pdev->dev);
5559
5560 pp->id = global_port_id++;
5561
5562 /* Obtain access to BM resources if enabled and already initialized */
5563 bm_node = of_parse_phandle(dn, "buffer-manager", 0);
5564 if (bm_node) {
5565 pp->bm_priv = mvneta_bm_get(bm_node);
5566 if (pp->bm_priv) {
5567 err = mvneta_bm_port_init(pdev, pp);
5568 if (err < 0) {
5569 dev_info(&pdev->dev,
5570 "use SW buffer management\n");
5571 mvneta_bm_put(pp->bm_priv);
5572 pp->bm_priv = NULL;
5573 }
5574 }
5575 /* Set RX packet offset correction for platforms, whose
5576 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
5577 * platforms and 0B for 32-bit ones.
5578 */
5579 pp->rx_offset_correction = max(0,
5580 NET_SKB_PAD -
5581 MVNETA_RX_PKT_OFFSET_CORRECTION);
5582 }
5583 of_node_put(bm_node);
5584
5585 /* sw buffer management */
5586 if (!pp->bm_priv)
5587 pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5588
5589 err = mvneta_init(&pdev->dev, pp);
5590 if (err < 0)
5591 goto err_netdev;
5592
5593 err = mvneta_port_power_up(pp, pp->phy_interface);
5594 if (err < 0) {
5595 dev_err(&pdev->dev, "can't power up port\n");
5596 goto err_netdev;
5597 }
5598
5599 /* Armada3700 network controller does not support per-cpu
5600 * operation, so only single NAPI should be initialized.
5601 */
5602 if (pp->neta_armada3700) {
5603 netif_napi_add(dev, &pp->napi, mvneta_poll);
5604 } else {
5605 for_each_present_cpu(cpu) {
5606 struct mvneta_pcpu_port *port =
5607 per_cpu_ptr(pp->ports, cpu);
5608
5609 netif_napi_add(dev, &port->napi, mvneta_poll);
5610 port->pp = pp;
5611 }
5612 }
5613
5614 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5615 NETIF_F_TSO | NETIF_F_RXCSUM;
5616 dev->hw_features |= dev->features;
5617 dev->vlan_features |= dev->features;
5618 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5619 netif_set_tso_max_segs(dev, MVNETA_MAX_TSO_SEGS);
5620
5621 /* MTU range: 68 - 9676 */
5622 dev->min_mtu = ETH_MIN_MTU;
5623 /* 9676 == 9700 - 20 and rounding to 8 */
5624 dev->max_mtu = 9676;
5625
5626 err = register_netdev(dev);
5627 if (err < 0) {
5628 dev_err(&pdev->dev, "failed to register\n");
5629 goto err_netdev;
5630 }
5631
5632 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5633 dev->dev_addr);
5634
5635 platform_set_drvdata(pdev, pp->dev);
5636
5637 return 0;
5638
5639 err_netdev:
5640 if (pp->bm_priv) {
5641 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5642 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5643 1 << pp->id);
5644 mvneta_bm_put(pp->bm_priv);
5645 }
5646 free_percpu(pp->stats);
5647 err_free_ports:
5648 free_percpu(pp->ports);
5649 err_free_phylink:
5650 if (pp->phylink)
5651 phylink_destroy(pp->phylink);
5652 err_clk:
5653 clk_disable_unprepare(pp->clk_bus);
5654 clk_disable_unprepare(pp->clk);
5655 err_free_irq:
5656 irq_dispose_mapping(dev->irq);
5657 return err;
5658 }
5659
5660 /* Device removal routine */
mvneta_remove(struct platform_device * pdev)5661 static int mvneta_remove(struct platform_device *pdev)
5662 {
5663 struct net_device *dev = platform_get_drvdata(pdev);
5664 struct mvneta_port *pp = netdev_priv(dev);
5665
5666 unregister_netdev(dev);
5667 clk_disable_unprepare(pp->clk_bus);
5668 clk_disable_unprepare(pp->clk);
5669 free_percpu(pp->ports);
5670 free_percpu(pp->stats);
5671 irq_dispose_mapping(dev->irq);
5672 phylink_destroy(pp->phylink);
5673
5674 if (pp->bm_priv) {
5675 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5676 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5677 1 << pp->id);
5678 mvneta_bm_put(pp->bm_priv);
5679 }
5680
5681 return 0;
5682 }
5683
5684 #ifdef CONFIG_PM_SLEEP
mvneta_suspend(struct device * device)5685 static int mvneta_suspend(struct device *device)
5686 {
5687 int queue;
5688 struct net_device *dev = dev_get_drvdata(device);
5689 struct mvneta_port *pp = netdev_priv(dev);
5690
5691 if (!netif_running(dev))
5692 goto clean_exit;
5693
5694 if (!pp->neta_armada3700) {
5695 spin_lock(&pp->lock);
5696 pp->is_stopped = true;
5697 spin_unlock(&pp->lock);
5698
5699 cpuhp_state_remove_instance_nocalls(online_hpstate,
5700 &pp->node_online);
5701 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5702 &pp->node_dead);
5703 }
5704
5705 rtnl_lock();
5706 mvneta_stop_dev(pp);
5707 rtnl_unlock();
5708
5709 for (queue = 0; queue < rxq_number; queue++) {
5710 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5711
5712 mvneta_rxq_drop_pkts(pp, rxq);
5713 }
5714
5715 for (queue = 0; queue < txq_number; queue++) {
5716 struct mvneta_tx_queue *txq = &pp->txqs[queue];
5717
5718 mvneta_txq_hw_deinit(pp, txq);
5719 }
5720
5721 clean_exit:
5722 netif_device_detach(dev);
5723 clk_disable_unprepare(pp->clk_bus);
5724 clk_disable_unprepare(pp->clk);
5725
5726 return 0;
5727 }
5728
mvneta_resume(struct device * device)5729 static int mvneta_resume(struct device *device)
5730 {
5731 struct platform_device *pdev = to_platform_device(device);
5732 struct net_device *dev = dev_get_drvdata(device);
5733 struct mvneta_port *pp = netdev_priv(dev);
5734 int err, queue;
5735
5736 clk_prepare_enable(pp->clk);
5737 if (!IS_ERR(pp->clk_bus))
5738 clk_prepare_enable(pp->clk_bus);
5739 if (pp->dram_target_info || pp->neta_armada3700)
5740 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5741 if (pp->bm_priv) {
5742 err = mvneta_bm_port_init(pdev, pp);
5743 if (err < 0) {
5744 dev_info(&pdev->dev, "use SW buffer management\n");
5745 pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5746 pp->bm_priv = NULL;
5747 }
5748 }
5749 mvneta_defaults_set(pp);
5750 err = mvneta_port_power_up(pp, pp->phy_interface);
5751 if (err < 0) {
5752 dev_err(device, "can't power up port\n");
5753 return err;
5754 }
5755
5756 netif_device_attach(dev);
5757
5758 if (!netif_running(dev))
5759 return 0;
5760
5761 for (queue = 0; queue < rxq_number; queue++) {
5762 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5763
5764 rxq->next_desc_to_proc = 0;
5765 mvneta_rxq_hw_init(pp, rxq);
5766 }
5767
5768 for (queue = 0; queue < txq_number; queue++) {
5769 struct mvneta_tx_queue *txq = &pp->txqs[queue];
5770
5771 txq->next_desc_to_proc = 0;
5772 mvneta_txq_hw_init(pp, txq);
5773 }
5774
5775 if (!pp->neta_armada3700) {
5776 spin_lock(&pp->lock);
5777 pp->is_stopped = false;
5778 spin_unlock(&pp->lock);
5779 cpuhp_state_add_instance_nocalls(online_hpstate,
5780 &pp->node_online);
5781 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5782 &pp->node_dead);
5783 }
5784
5785 rtnl_lock();
5786 mvneta_start_dev(pp);
5787 rtnl_unlock();
5788 mvneta_set_rx_mode(dev);
5789
5790 return 0;
5791 }
5792 #endif
5793
5794 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5795
5796 static const struct of_device_id mvneta_match[] = {
5797 { .compatible = "marvell,armada-370-neta" },
5798 { .compatible = "marvell,armada-xp-neta" },
5799 { .compatible = "marvell,armada-3700-neta" },
5800 { .compatible = "marvell,armada-ac5-neta" },
5801 { }
5802 };
5803 MODULE_DEVICE_TABLE(of, mvneta_match);
5804
5805 static struct platform_driver mvneta_driver = {
5806 .probe = mvneta_probe,
5807 .remove = mvneta_remove,
5808 .driver = {
5809 .name = MVNETA_DRIVER_NAME,
5810 .of_match_table = mvneta_match,
5811 .pm = &mvneta_pm_ops,
5812 },
5813 };
5814
mvneta_driver_init(void)5815 static int __init mvneta_driver_init(void)
5816 {
5817 int ret;
5818
5819 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online",
5820 mvneta_cpu_online,
5821 mvneta_cpu_down_prepare);
5822 if (ret < 0)
5823 goto out;
5824 online_hpstate = ret;
5825 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5826 NULL, mvneta_cpu_dead);
5827 if (ret)
5828 goto err_dead;
5829
5830 ret = platform_driver_register(&mvneta_driver);
5831 if (ret)
5832 goto err;
5833 return 0;
5834
5835 err:
5836 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5837 err_dead:
5838 cpuhp_remove_multi_state(online_hpstate);
5839 out:
5840 return ret;
5841 }
5842 module_init(mvneta_driver_init);
5843
mvneta_driver_exit(void)5844 static void __exit mvneta_driver_exit(void)
5845 {
5846 platform_driver_unregister(&mvneta_driver);
5847 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5848 cpuhp_remove_multi_state(online_hpstate);
5849 }
5850 module_exit(mvneta_driver_exit);
5851
5852 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5853 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5854 MODULE_LICENSE("GPL");
5855
5856 module_param(rxq_number, int, 0444);
5857 module_param(txq_number, int, 0444);
5858
5859 module_param(rxq_def, int, 0444);
5860 module_param(rx_copybreak, int, 0644);
5861