1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/phylink.h>
32 #include <linux/platform_device.h>
33 #include <linux/skbuff.h>
34 #include <net/hwbm.h>
35 #include "mvneta_bm.h"
36 #include <net/ip.h>
37 #include <net/ipv6.h>
38 #include <net/tso.h>
39
40 /* Registers */
41 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
42 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
43 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
44 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
45 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
46 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
47 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
48 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
49 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
50 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
51 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
52 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
53 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
54 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
55 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
56 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
57 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
59 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
60 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
61 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
62 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
63 #define MVNETA_PORT_RX_RESET 0x1cc0
64 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
65 #define MVNETA_PHY_ADDR 0x2000
66 #define MVNETA_PHY_ADDR_MASK 0x1f
67 #define MVNETA_MBUS_RETRY 0x2010
68 #define MVNETA_UNIT_INTR_CAUSE 0x2080
69 #define MVNETA_UNIT_CONTROL 0x20B0
70 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
71 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
72 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
73 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
74 #define MVNETA_BASE_ADDR_ENABLE 0x2290
75 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
76 #define MVNETA_PORT_CONFIG 0x2400
77 #define MVNETA_UNI_PROMISC_MODE BIT(0)
78 #define MVNETA_DEF_RXQ(q) ((q) << 1)
79 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
80 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
81 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
82 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
83 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
84 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
85 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
86 MVNETA_DEF_RXQ_ARP(q) | \
87 MVNETA_DEF_RXQ_TCP(q) | \
88 MVNETA_DEF_RXQ_UDP(q) | \
89 MVNETA_DEF_RXQ_BPDU(q) | \
90 MVNETA_TX_UNSET_ERR_SUM | \
91 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
92 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
93 #define MVNETA_MAC_ADDR_LOW 0x2414
94 #define MVNETA_MAC_ADDR_HIGH 0x2418
95 #define MVNETA_SDMA_CONFIG 0x241c
96 #define MVNETA_SDMA_BRST_SIZE_16 4
97 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
98 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
99 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
100 #define MVNETA_DESC_SWAP BIT(6)
101 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
102 #define MVNETA_PORT_STATUS 0x2444
103 #define MVNETA_TX_IN_PRGRS BIT(1)
104 #define MVNETA_TX_FIFO_EMPTY BIT(8)
105 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
106 #define MVNETA_SERDES_CFG 0x24A0
107 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
108 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
109 #define MVNETA_TYPE_PRIO 0x24bc
110 #define MVNETA_FORCE_UNI BIT(21)
111 #define MVNETA_TXQ_CMD_1 0x24e4
112 #define MVNETA_TXQ_CMD 0x2448
113 #define MVNETA_TXQ_DISABLE_SHIFT 8
114 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
115 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
116 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
117 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
118 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
119 #define MVNETA_ACC_MODE 0x2500
120 #define MVNETA_BM_ADDRESS 0x2504
121 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
122 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
123 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
124 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
125 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
126 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
127
128 /* Exception Interrupt Port/Queue Cause register
129 *
130 * Their behavior depend of the mapping done using the PCPX2Q
131 * registers. For a given CPU if the bit associated to a queue is not
132 * set, then for the register a read from this CPU will always return
133 * 0 and a write won't do anything
134 */
135
136 #define MVNETA_INTR_NEW_CAUSE 0x25a0
137 #define MVNETA_INTR_NEW_MASK 0x25a4
138
139 /* bits 0..7 = TXQ SENT, one bit per queue.
140 * bits 8..15 = RXQ OCCUP, one bit per queue.
141 * bits 16..23 = RXQ FREE, one bit per queue.
142 * bit 29 = OLD_REG_SUM, see old reg ?
143 * bit 30 = TX_ERR_SUM, one bit for 4 ports
144 * bit 31 = MISC_SUM, one bit for 4 ports
145 */
146 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
147 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
148 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
149 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
150 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
151
152 #define MVNETA_INTR_OLD_CAUSE 0x25a8
153 #define MVNETA_INTR_OLD_MASK 0x25ac
154
155 /* Data Path Port/Queue Cause Register */
156 #define MVNETA_INTR_MISC_CAUSE 0x25b0
157 #define MVNETA_INTR_MISC_MASK 0x25b4
158
159 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
160 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
161 #define MVNETA_CAUSE_PTP BIT(4)
162
163 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
164 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
165 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
166 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
167 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
168 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
169 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
170 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
171
172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
174 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
175
176 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
177 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
178 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
179
180 #define MVNETA_INTR_ENABLE 0x25b8
181 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
182 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
183
184 #define MVNETA_RXQ_CMD 0x2680
185 #define MVNETA_RXQ_DISABLE_SHIFT 8
186 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
187 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
188 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
189 #define MVNETA_GMAC_CTRL_0 0x2c00
190 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
191 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
192 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1)
193 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
194 #define MVNETA_GMAC_CTRL_2 0x2c08
195 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
196 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
197 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
198 #define MVNETA_GMAC2_PORT_RESET BIT(6)
199 #define MVNETA_GMAC_STATUS 0x2c10
200 #define MVNETA_GMAC_LINK_UP BIT(0)
201 #define MVNETA_GMAC_SPEED_1000 BIT(1)
202 #define MVNETA_GMAC_SPEED_100 BIT(2)
203 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
204 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
205 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
206 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
207 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
208 #define MVNETA_GMAC_AN_COMPLETE BIT(11)
209 #define MVNETA_GMAC_SYNC_OK BIT(14)
210 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
211 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
212 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
213 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
214 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3)
215 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4)
216 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
217 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
218 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
219 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8)
220 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9)
221 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
222 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
223 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
224 #define MVNETA_MIB_COUNTERS_BASE 0x3000
225 #define MVNETA_MIB_LATE_COLLISION 0x7c
226 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
227 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
228 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
229 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
230 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
231 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
232 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
233 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
234 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
235 #define MVNETA_TXQ_DEC_SENT_MASK 0xff
236 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
237 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
238 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
239 #define MVNETA_PORT_TX_RESET 0x3cf0
240 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
241 #define MVNETA_TX_MTU 0x3e0c
242 #define MVNETA_TX_TOKEN_SIZE 0x3e14
243 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
244 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
245 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
246
247 #define MVNETA_LPI_CTRL_0 0x2cc0
248 #define MVNETA_LPI_CTRL_1 0x2cc4
249 #define MVNETA_LPI_REQUEST_ENABLE BIT(0)
250 #define MVNETA_LPI_CTRL_2 0x2cc8
251 #define MVNETA_LPI_STATUS 0x2ccc
252
253 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
254
255 /* Descriptor ring Macros */
256 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
257 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
258
259 /* Various constants */
260
261 /* Coalescing */
262 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
263 #define MVNETA_RX_COAL_PKTS 32
264 #define MVNETA_RX_COAL_USEC 100
265
266 /* The two bytes Marvell header. Either contains a special value used
267 * by Marvell switches when a specific hardware mode is enabled (not
268 * supported by this driver) or is filled automatically by zeroes on
269 * the RX side. Those two bytes being at the front of the Ethernet
270 * header, they allow to have the IP header aligned on a 4 bytes
271 * boundary automatically: the hardware skips those two bytes on its
272 * own.
273 */
274 #define MVNETA_MH_SIZE 2
275
276 #define MVNETA_VLAN_TAG_LEN 4
277
278 #define MVNETA_TX_CSUM_DEF_SIZE 1600
279 #define MVNETA_TX_CSUM_MAX_SIZE 9800
280 #define MVNETA_ACC_MODE_EXT1 1
281 #define MVNETA_ACC_MODE_EXT2 2
282
283 #define MVNETA_MAX_DECODE_WIN 6
284
285 /* Timeout constants */
286 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
287 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
288 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
289
290 #define MVNETA_TX_MTU_MAX 0x3ffff
291
292 /* The RSS lookup table actually has 256 entries but we do not use
293 * them yet
294 */
295 #define MVNETA_RSS_LU_TABLE_SIZE 1
296
297 /* Max number of Rx descriptors */
298 #define MVNETA_MAX_RXD 512
299
300 /* Max number of Tx descriptors */
301 #define MVNETA_MAX_TXD 1024
302
303 /* Max number of allowed TCP segments for software TSO */
304 #define MVNETA_MAX_TSO_SEGS 100
305
306 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
307
308 /* descriptor aligned size */
309 #define MVNETA_DESC_ALIGNED_SIZE 32
310
311 /* Number of bytes to be taken into account by HW when putting incoming data
312 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
313 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
314 */
315 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64
316
317 #define MVNETA_RX_PKT_SIZE(mtu) \
318 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
319 ETH_HLEN + ETH_FCS_LEN, \
320 cache_line_size())
321
322 #define IS_TSO_HEADER(txq, addr) \
323 ((addr >= txq->tso_hdrs_phys) && \
324 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
325
326 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
327 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
328
329 enum {
330 ETHTOOL_STAT_EEE_WAKEUP,
331 ETHTOOL_STAT_SKB_ALLOC_ERR,
332 ETHTOOL_STAT_REFILL_ERR,
333 ETHTOOL_MAX_STATS,
334 };
335
336 struct mvneta_statistic {
337 unsigned short offset;
338 unsigned short type;
339 const char name[ETH_GSTRING_LEN];
340 };
341
342 #define T_REG_32 32
343 #define T_REG_64 64
344 #define T_SW 1
345
346 static const struct mvneta_statistic mvneta_statistics[] = {
347 { 0x3000, T_REG_64, "good_octets_received", },
348 { 0x3010, T_REG_32, "good_frames_received", },
349 { 0x3008, T_REG_32, "bad_octets_received", },
350 { 0x3014, T_REG_32, "bad_frames_received", },
351 { 0x3018, T_REG_32, "broadcast_frames_received", },
352 { 0x301c, T_REG_32, "multicast_frames_received", },
353 { 0x3050, T_REG_32, "unrec_mac_control_received", },
354 { 0x3058, T_REG_32, "good_fc_received", },
355 { 0x305c, T_REG_32, "bad_fc_received", },
356 { 0x3060, T_REG_32, "undersize_received", },
357 { 0x3064, T_REG_32, "fragments_received", },
358 { 0x3068, T_REG_32, "oversize_received", },
359 { 0x306c, T_REG_32, "jabber_received", },
360 { 0x3070, T_REG_32, "mac_receive_error", },
361 { 0x3074, T_REG_32, "bad_crc_event", },
362 { 0x3078, T_REG_32, "collision", },
363 { 0x307c, T_REG_32, "late_collision", },
364 { 0x2484, T_REG_32, "rx_discard", },
365 { 0x2488, T_REG_32, "rx_overrun", },
366 { 0x3020, T_REG_32, "frames_64_octets", },
367 { 0x3024, T_REG_32, "frames_65_to_127_octets", },
368 { 0x3028, T_REG_32, "frames_128_to_255_octets", },
369 { 0x302c, T_REG_32, "frames_256_to_511_octets", },
370 { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
371 { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
372 { 0x3038, T_REG_64, "good_octets_sent", },
373 { 0x3040, T_REG_32, "good_frames_sent", },
374 { 0x3044, T_REG_32, "excessive_collision", },
375 { 0x3048, T_REG_32, "multicast_frames_sent", },
376 { 0x304c, T_REG_32, "broadcast_frames_sent", },
377 { 0x3054, T_REG_32, "fc_sent", },
378 { 0x300c, T_REG_32, "internal_mac_transmit_err", },
379 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
380 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
381 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
382 };
383
384 struct mvneta_pcpu_stats {
385 struct u64_stats_sync syncp;
386 u64 rx_packets;
387 u64 rx_bytes;
388 u64 tx_packets;
389 u64 tx_bytes;
390 };
391
392 struct mvneta_pcpu_port {
393 /* Pointer to the shared port */
394 struct mvneta_port *pp;
395
396 /* Pointer to the CPU-local NAPI struct */
397 struct napi_struct napi;
398
399 /* Cause of the previous interrupt */
400 u32 cause_rx_tx;
401 };
402
403 struct mvneta_port {
404 u8 id;
405 struct mvneta_pcpu_port __percpu *ports;
406 struct mvneta_pcpu_stats __percpu *stats;
407
408 int pkt_size;
409 unsigned int frag_size;
410 void __iomem *base;
411 struct mvneta_rx_queue *rxqs;
412 struct mvneta_tx_queue *txqs;
413 struct net_device *dev;
414 struct hlist_node node_online;
415 struct hlist_node node_dead;
416 int rxq_def;
417 /* Protect the access to the percpu interrupt registers,
418 * ensuring that the configuration remains coherent.
419 */
420 spinlock_t lock;
421 bool is_stopped;
422
423 u32 cause_rx_tx;
424 struct napi_struct napi;
425
426 /* Core clock */
427 struct clk *clk;
428 /* AXI clock */
429 struct clk *clk_bus;
430 u8 mcast_count[256];
431 u16 tx_ring_size;
432 u16 rx_ring_size;
433
434 phy_interface_t phy_interface;
435 struct device_node *dn;
436 unsigned int tx_csum_limit;
437 struct phylink *phylink;
438
439 struct mvneta_bm *bm_priv;
440 struct mvneta_bm_pool *pool_long;
441 struct mvneta_bm_pool *pool_short;
442 int bm_win_id;
443
444 bool eee_enabled;
445 bool eee_active;
446 bool tx_lpi_enabled;
447
448 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
449
450 u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
451
452 /* Flags for special SoC configurations */
453 bool neta_armada3700;
454 u16 rx_offset_correction;
455 const struct mbus_dram_target_info *dram_target_info;
456 };
457
458 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
459 * layout of the transmit and reception DMA descriptors, and their
460 * layout is therefore defined by the hardware design
461 */
462
463 #define MVNETA_TX_L3_OFF_SHIFT 0
464 #define MVNETA_TX_IP_HLEN_SHIFT 8
465 #define MVNETA_TX_L4_UDP BIT(16)
466 #define MVNETA_TX_L3_IP6 BIT(17)
467 #define MVNETA_TXD_IP_CSUM BIT(18)
468 #define MVNETA_TXD_Z_PAD BIT(19)
469 #define MVNETA_TXD_L_DESC BIT(20)
470 #define MVNETA_TXD_F_DESC BIT(21)
471 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
472 MVNETA_TXD_L_DESC | \
473 MVNETA_TXD_F_DESC)
474 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
475 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
476
477 #define MVNETA_RXD_ERR_CRC 0x0
478 #define MVNETA_RXD_BM_POOL_SHIFT 13
479 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
480 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
481 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
482 #define MVNETA_RXD_ERR_LEN BIT(18)
483 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
484 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
485 #define MVNETA_RXD_L3_IP4 BIT(25)
486 #define MVNETA_RXD_LAST_DESC BIT(26)
487 #define MVNETA_RXD_FIRST_DESC BIT(27)
488 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \
489 MVNETA_RXD_LAST_DESC)
490 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
491
492 #if defined(__LITTLE_ENDIAN)
493 struct mvneta_tx_desc {
494 u32 command; /* Options used by HW for packet transmitting.*/
495 u16 reserverd1; /* csum_l4 (for future use) */
496 u16 data_size; /* Data size of transmitted packet in bytes */
497 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
498 u32 reserved2; /* hw_cmd - (for future use, PMT) */
499 u32 reserved3[4]; /* Reserved - (for future use) */
500 };
501
502 struct mvneta_rx_desc {
503 u32 status; /* Info about received packet */
504 u16 reserved1; /* pnc_info - (for future use, PnC) */
505 u16 data_size; /* Size of received packet in bytes */
506
507 u32 buf_phys_addr; /* Physical address of the buffer */
508 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
509
510 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
511 u16 reserved3; /* prefetch_cmd, for future use */
512 u16 reserved4; /* csum_l4 - (for future use, PnC) */
513
514 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
515 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
516 };
517 #else
518 struct mvneta_tx_desc {
519 u16 data_size; /* Data size of transmitted packet in bytes */
520 u16 reserverd1; /* csum_l4 (for future use) */
521 u32 command; /* Options used by HW for packet transmitting.*/
522 u32 reserved2; /* hw_cmd - (for future use, PMT) */
523 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
524 u32 reserved3[4]; /* Reserved - (for future use) */
525 };
526
527 struct mvneta_rx_desc {
528 u16 data_size; /* Size of received packet in bytes */
529 u16 reserved1; /* pnc_info - (for future use, PnC) */
530 u32 status; /* Info about received packet */
531
532 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
533 u32 buf_phys_addr; /* Physical address of the buffer */
534
535 u16 reserved4; /* csum_l4 - (for future use, PnC) */
536 u16 reserved3; /* prefetch_cmd, for future use */
537 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
538
539 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
540 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
541 };
542 #endif
543
544 struct mvneta_tx_queue {
545 /* Number of this TX queue, in the range 0-7 */
546 u8 id;
547
548 /* Number of TX DMA descriptors in the descriptor ring */
549 int size;
550
551 /* Number of currently used TX DMA descriptor in the
552 * descriptor ring
553 */
554 int count;
555 int pending;
556 int tx_stop_threshold;
557 int tx_wake_threshold;
558
559 /* Array of transmitted skb */
560 struct sk_buff **tx_skb;
561
562 /* Index of last TX DMA descriptor that was inserted */
563 int txq_put_index;
564
565 /* Index of the TX DMA descriptor to be cleaned up */
566 int txq_get_index;
567
568 u32 done_pkts_coal;
569
570 /* Virtual address of the TX DMA descriptors array */
571 struct mvneta_tx_desc *descs;
572
573 /* DMA address of the TX DMA descriptors array */
574 dma_addr_t descs_phys;
575
576 /* Index of the last TX DMA descriptor */
577 int last_desc;
578
579 /* Index of the next TX DMA descriptor to process */
580 int next_desc_to_proc;
581
582 /* DMA buffers for TSO headers */
583 char *tso_hdrs;
584
585 /* DMA address of TSO headers */
586 dma_addr_t tso_hdrs_phys;
587
588 /* Affinity mask for CPUs*/
589 cpumask_t affinity_mask;
590 };
591
592 struct mvneta_rx_queue {
593 /* rx queue number, in the range 0-7 */
594 u8 id;
595
596 /* num of rx descriptors in the rx descriptor ring */
597 int size;
598
599 u32 pkts_coal;
600 u32 time_coal;
601
602 /* Virtual address of the RX buffer */
603 void **buf_virt_addr;
604
605 /* Virtual address of the RX DMA descriptors array */
606 struct mvneta_rx_desc *descs;
607
608 /* DMA address of the RX DMA descriptors array */
609 dma_addr_t descs_phys;
610
611 /* Index of the last RX DMA descriptor */
612 int last_desc;
613
614 /* Index of the next RX DMA descriptor to process */
615 int next_desc_to_proc;
616
617 /* Index of first RX DMA descriptor to refill */
618 int first_to_refill;
619 u32 refill_num;
620
621 /* pointer to uncomplete skb buffer */
622 struct sk_buff *skb;
623 int left_size;
624
625 /* error counters */
626 u32 skb_alloc_err;
627 u32 refill_err;
628 };
629
630 static enum cpuhp_state online_hpstate;
631 /* The hardware supports eight (8) rx queues, but we are only allowing
632 * the first one to be used. Therefore, let's just allocate one queue.
633 */
634 static int rxq_number = 8;
635 static int txq_number = 8;
636
637 static int rxq_def;
638
639 static int rx_copybreak __read_mostly = 256;
640 static int rx_header_size __read_mostly = 128;
641
642 /* HW BM need that each port be identify by a unique ID */
643 static int global_port_id;
644
645 #define MVNETA_DRIVER_NAME "mvneta"
646 #define MVNETA_DRIVER_VERSION "1.0"
647
648 /* Utility/helper methods */
649
650 /* Write helper method */
mvreg_write(struct mvneta_port * pp,u32 offset,u32 data)651 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
652 {
653 writel(data, pp->base + offset);
654 }
655
656 /* Read helper method */
mvreg_read(struct mvneta_port * pp,u32 offset)657 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
658 {
659 return readl(pp->base + offset);
660 }
661
662 /* Increment txq get counter */
mvneta_txq_inc_get(struct mvneta_tx_queue * txq)663 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
664 {
665 txq->txq_get_index++;
666 if (txq->txq_get_index == txq->size)
667 txq->txq_get_index = 0;
668 }
669
670 /* Increment txq put counter */
mvneta_txq_inc_put(struct mvneta_tx_queue * txq)671 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
672 {
673 txq->txq_put_index++;
674 if (txq->txq_put_index == txq->size)
675 txq->txq_put_index = 0;
676 }
677
678
679 /* Clear all MIB counters */
mvneta_mib_counters_clear(struct mvneta_port * pp)680 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
681 {
682 int i;
683 u32 dummy;
684
685 /* Perform dummy reads from MIB counters */
686 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
687 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
688 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
689 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
690 }
691
692 /* Get System Network Statistics */
693 static void
mvneta_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)694 mvneta_get_stats64(struct net_device *dev,
695 struct rtnl_link_stats64 *stats)
696 {
697 struct mvneta_port *pp = netdev_priv(dev);
698 unsigned int start;
699 int cpu;
700
701 for_each_possible_cpu(cpu) {
702 struct mvneta_pcpu_stats *cpu_stats;
703 u64 rx_packets;
704 u64 rx_bytes;
705 u64 tx_packets;
706 u64 tx_bytes;
707
708 cpu_stats = per_cpu_ptr(pp->stats, cpu);
709 do {
710 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
711 rx_packets = cpu_stats->rx_packets;
712 rx_bytes = cpu_stats->rx_bytes;
713 tx_packets = cpu_stats->tx_packets;
714 tx_bytes = cpu_stats->tx_bytes;
715 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
716
717 stats->rx_packets += rx_packets;
718 stats->rx_bytes += rx_bytes;
719 stats->tx_packets += tx_packets;
720 stats->tx_bytes += tx_bytes;
721 }
722
723 stats->rx_errors = dev->stats.rx_errors;
724 stats->rx_dropped = dev->stats.rx_dropped;
725
726 stats->tx_dropped = dev->stats.tx_dropped;
727 }
728
729 /* Rx descriptors helper methods */
730
731 /* Checks whether the RX descriptor having this status is both the first
732 * and the last descriptor for the RX packet. Each RX packet is currently
733 * received through a single RX descriptor, so not having each RX
734 * descriptor with its first and last bits set is an error
735 */
mvneta_rxq_desc_is_first_last(u32 status)736 static int mvneta_rxq_desc_is_first_last(u32 status)
737 {
738 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
739 MVNETA_RXD_FIRST_LAST_DESC;
740 }
741
742 /* Add number of descriptors ready to receive new packets */
mvneta_rxq_non_occup_desc_add(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int ndescs)743 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
744 struct mvneta_rx_queue *rxq,
745 int ndescs)
746 {
747 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
748 * be added at once
749 */
750 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
751 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
752 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
753 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
754 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
755 }
756
757 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
758 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
759 }
760
761 /* Get number of RX descriptors occupied by received packets */
mvneta_rxq_busy_desc_num_get(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)762 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
763 struct mvneta_rx_queue *rxq)
764 {
765 u32 val;
766
767 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
768 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
769 }
770
771 /* Update num of rx desc called upon return from rx path or
772 * from mvneta_rxq_drop_pkts().
773 */
mvneta_rxq_desc_num_update(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int rx_done,int rx_filled)774 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
775 struct mvneta_rx_queue *rxq,
776 int rx_done, int rx_filled)
777 {
778 u32 val;
779
780 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
781 val = rx_done |
782 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
783 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
784 return;
785 }
786
787 /* Only 255 descriptors can be added at once */
788 while ((rx_done > 0) || (rx_filled > 0)) {
789 if (rx_done <= 0xff) {
790 val = rx_done;
791 rx_done = 0;
792 } else {
793 val = 0xff;
794 rx_done -= 0xff;
795 }
796 if (rx_filled <= 0xff) {
797 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
798 rx_filled = 0;
799 } else {
800 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
801 rx_filled -= 0xff;
802 }
803 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
804 }
805 }
806
807 /* Get pointer to next RX descriptor to be processed by SW */
808 static struct mvneta_rx_desc *
mvneta_rxq_next_desc_get(struct mvneta_rx_queue * rxq)809 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
810 {
811 int rx_desc = rxq->next_desc_to_proc;
812
813 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
814 prefetch(rxq->descs + rxq->next_desc_to_proc);
815 return rxq->descs + rx_desc;
816 }
817
818 /* Change maximum receive size of the port. */
mvneta_max_rx_size_set(struct mvneta_port * pp,int max_rx_size)819 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
820 {
821 u32 val;
822
823 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
824 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
825 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
826 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
827 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
828 }
829
830
831 /* Set rx queue offset */
mvneta_rxq_offset_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int offset)832 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
833 struct mvneta_rx_queue *rxq,
834 int offset)
835 {
836 u32 val;
837
838 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
839 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
840
841 /* Offset is in */
842 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
843 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
844 }
845
846
847 /* Tx descriptors helper methods */
848
849 /* Update HW with number of TX descriptors to be sent */
mvneta_txq_pend_desc_add(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int pend_desc)850 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
851 struct mvneta_tx_queue *txq,
852 int pend_desc)
853 {
854 u32 val;
855
856 pend_desc += txq->pending;
857
858 /* Only 255 Tx descriptors can be added at once */
859 do {
860 val = min(pend_desc, 255);
861 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
862 pend_desc -= val;
863 } while (pend_desc > 0);
864 txq->pending = 0;
865 }
866
867 /* Get pointer to next TX descriptor to be processed (send) by HW */
868 static struct mvneta_tx_desc *
mvneta_txq_next_desc_get(struct mvneta_tx_queue * txq)869 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
870 {
871 int tx_desc = txq->next_desc_to_proc;
872
873 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
874 return txq->descs + tx_desc;
875 }
876
877 /* Release the last allocated TX descriptor. Useful to handle DMA
878 * mapping failures in the TX path.
879 */
mvneta_txq_desc_put(struct mvneta_tx_queue * txq)880 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
881 {
882 if (txq->next_desc_to_proc == 0)
883 txq->next_desc_to_proc = txq->last_desc - 1;
884 else
885 txq->next_desc_to_proc--;
886 }
887
888 /* Set rxq buf size */
mvneta_rxq_buf_size_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int buf_size)889 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
890 struct mvneta_rx_queue *rxq,
891 int buf_size)
892 {
893 u32 val;
894
895 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
896
897 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
898 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
899
900 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
901 }
902
903 /* Disable buffer management (BM) */
mvneta_rxq_bm_disable(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)904 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
905 struct mvneta_rx_queue *rxq)
906 {
907 u32 val;
908
909 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
910 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
911 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
912 }
913
914 /* Enable buffer management (BM) */
mvneta_rxq_bm_enable(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)915 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
916 struct mvneta_rx_queue *rxq)
917 {
918 u32 val;
919
920 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
921 val |= MVNETA_RXQ_HW_BUF_ALLOC;
922 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
923 }
924
925 /* Notify HW about port's assignment of pool for bigger packets */
mvneta_rxq_long_pool_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)926 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
927 struct mvneta_rx_queue *rxq)
928 {
929 u32 val;
930
931 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
932 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
933 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
934
935 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
936 }
937
938 /* Notify HW about port's assignment of pool for smaller packets */
mvneta_rxq_short_pool_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)939 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
940 struct mvneta_rx_queue *rxq)
941 {
942 u32 val;
943
944 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
945 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
946 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
947
948 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
949 }
950
951 /* Set port's receive buffer size for assigned BM pool */
mvneta_bm_pool_bufsize_set(struct mvneta_port * pp,int buf_size,u8 pool_id)952 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
953 int buf_size,
954 u8 pool_id)
955 {
956 u32 val;
957
958 if (!IS_ALIGNED(buf_size, 8)) {
959 dev_warn(pp->dev->dev.parent,
960 "illegal buf_size value %d, round to %d\n",
961 buf_size, ALIGN(buf_size, 8));
962 buf_size = ALIGN(buf_size, 8);
963 }
964
965 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
966 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
967 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
968 }
969
970 /* Configure MBUS window in order to enable access BM internal SRAM */
mvneta_mbus_io_win_set(struct mvneta_port * pp,u32 base,u32 wsize,u8 target,u8 attr)971 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
972 u8 target, u8 attr)
973 {
974 u32 win_enable, win_protect;
975 int i;
976
977 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
978
979 if (pp->bm_win_id < 0) {
980 /* Find first not occupied window */
981 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
982 if (win_enable & (1 << i)) {
983 pp->bm_win_id = i;
984 break;
985 }
986 }
987 if (i == MVNETA_MAX_DECODE_WIN)
988 return -ENOMEM;
989 } else {
990 i = pp->bm_win_id;
991 }
992
993 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
994 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
995
996 if (i < 4)
997 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
998
999 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1000 (attr << 8) | target);
1001
1002 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1003
1004 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1005 win_protect |= 3 << (2 * i);
1006 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1007
1008 win_enable &= ~(1 << i);
1009 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1010
1011 return 0;
1012 }
1013
mvneta_bm_port_mbus_init(struct mvneta_port * pp)1014 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1015 {
1016 u32 wsize;
1017 u8 target, attr;
1018 int err;
1019
1020 /* Get BM window information */
1021 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1022 &target, &attr);
1023 if (err < 0)
1024 return err;
1025
1026 pp->bm_win_id = -1;
1027
1028 /* Open NETA -> BM window */
1029 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1030 target, attr);
1031 if (err < 0) {
1032 netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1033 return err;
1034 }
1035 return 0;
1036 }
1037
1038 /* Assign and initialize pools for port. In case of fail
1039 * buffer manager will remain disabled for current port.
1040 */
mvneta_bm_port_init(struct platform_device * pdev,struct mvneta_port * pp)1041 static int mvneta_bm_port_init(struct platform_device *pdev,
1042 struct mvneta_port *pp)
1043 {
1044 struct device_node *dn = pdev->dev.of_node;
1045 u32 long_pool_id, short_pool_id;
1046
1047 if (!pp->neta_armada3700) {
1048 int ret;
1049
1050 ret = mvneta_bm_port_mbus_init(pp);
1051 if (ret)
1052 return ret;
1053 }
1054
1055 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1056 netdev_info(pp->dev, "missing long pool id\n");
1057 return -EINVAL;
1058 }
1059
1060 /* Create port's long pool depending on mtu */
1061 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1062 MVNETA_BM_LONG, pp->id,
1063 MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1064 if (!pp->pool_long) {
1065 netdev_info(pp->dev, "fail to obtain long pool for port\n");
1066 return -ENOMEM;
1067 }
1068
1069 pp->pool_long->port_map |= 1 << pp->id;
1070
1071 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1072 pp->pool_long->id);
1073
1074 /* If short pool id is not defined, assume using single pool */
1075 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1076 short_pool_id = long_pool_id;
1077
1078 /* Create port's short pool */
1079 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1080 MVNETA_BM_SHORT, pp->id,
1081 MVNETA_BM_SHORT_PKT_SIZE);
1082 if (!pp->pool_short) {
1083 netdev_info(pp->dev, "fail to obtain short pool for port\n");
1084 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1085 return -ENOMEM;
1086 }
1087
1088 if (short_pool_id != long_pool_id) {
1089 pp->pool_short->port_map |= 1 << pp->id;
1090 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1091 pp->pool_short->id);
1092 }
1093
1094 return 0;
1095 }
1096
1097 /* Update settings of a pool for bigger packets */
mvneta_bm_update_mtu(struct mvneta_port * pp,int mtu)1098 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1099 {
1100 struct mvneta_bm_pool *bm_pool = pp->pool_long;
1101 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1102 int num;
1103
1104 /* Release all buffers from long pool */
1105 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1106 if (hwbm_pool->buf_num) {
1107 WARN(1, "cannot free all buffers in pool %d\n",
1108 bm_pool->id);
1109 goto bm_mtu_err;
1110 }
1111
1112 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1113 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1114 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1115 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1116
1117 /* Fill entire long pool */
1118 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1119 if (num != hwbm_pool->size) {
1120 WARN(1, "pool %d: %d of %d allocated\n",
1121 bm_pool->id, num, hwbm_pool->size);
1122 goto bm_mtu_err;
1123 }
1124 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1125
1126 return;
1127
1128 bm_mtu_err:
1129 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1130 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1131
1132 pp->bm_priv = NULL;
1133 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1134 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1135 }
1136
1137 /* Start the Ethernet port RX and TX activity */
mvneta_port_up(struct mvneta_port * pp)1138 static void mvneta_port_up(struct mvneta_port *pp)
1139 {
1140 int queue;
1141 u32 q_map;
1142
1143 /* Enable all initialized TXs. */
1144 q_map = 0;
1145 for (queue = 0; queue < txq_number; queue++) {
1146 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1147 if (txq->descs)
1148 q_map |= (1 << queue);
1149 }
1150 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1151
1152 q_map = 0;
1153 /* Enable all initialized RXQs. */
1154 for (queue = 0; queue < rxq_number; queue++) {
1155 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1156
1157 if (rxq->descs)
1158 q_map |= (1 << queue);
1159 }
1160 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1161 }
1162
1163 /* Stop the Ethernet port activity */
mvneta_port_down(struct mvneta_port * pp)1164 static void mvneta_port_down(struct mvneta_port *pp)
1165 {
1166 u32 val;
1167 int count;
1168
1169 /* Stop Rx port activity. Check port Rx activity. */
1170 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1171
1172 /* Issue stop command for active channels only */
1173 if (val != 0)
1174 mvreg_write(pp, MVNETA_RXQ_CMD,
1175 val << MVNETA_RXQ_DISABLE_SHIFT);
1176
1177 /* Wait for all Rx activity to terminate. */
1178 count = 0;
1179 do {
1180 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1181 netdev_warn(pp->dev,
1182 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1183 val);
1184 break;
1185 }
1186 mdelay(1);
1187
1188 val = mvreg_read(pp, MVNETA_RXQ_CMD);
1189 } while (val & MVNETA_RXQ_ENABLE_MASK);
1190
1191 /* Stop Tx port activity. Check port Tx activity. Issue stop
1192 * command for active channels only
1193 */
1194 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1195
1196 if (val != 0)
1197 mvreg_write(pp, MVNETA_TXQ_CMD,
1198 (val << MVNETA_TXQ_DISABLE_SHIFT));
1199
1200 /* Wait for all Tx activity to terminate. */
1201 count = 0;
1202 do {
1203 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1204 netdev_warn(pp->dev,
1205 "TIMEOUT for TX stopped status=0x%08x\n",
1206 val);
1207 break;
1208 }
1209 mdelay(1);
1210
1211 /* Check TX Command reg that all Txqs are stopped */
1212 val = mvreg_read(pp, MVNETA_TXQ_CMD);
1213
1214 } while (val & MVNETA_TXQ_ENABLE_MASK);
1215
1216 /* Double check to verify that TX FIFO is empty */
1217 count = 0;
1218 do {
1219 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1220 netdev_warn(pp->dev,
1221 "TX FIFO empty timeout status=0x%08x\n",
1222 val);
1223 break;
1224 }
1225 mdelay(1);
1226
1227 val = mvreg_read(pp, MVNETA_PORT_STATUS);
1228 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1229 (val & MVNETA_TX_IN_PRGRS));
1230
1231 udelay(200);
1232 }
1233
1234 /* Enable the port by setting the port enable bit of the MAC control register */
mvneta_port_enable(struct mvneta_port * pp)1235 static void mvneta_port_enable(struct mvneta_port *pp)
1236 {
1237 u32 val;
1238
1239 /* Enable port */
1240 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1241 val |= MVNETA_GMAC0_PORT_ENABLE;
1242 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1243 }
1244
1245 /* Disable the port and wait for about 200 usec before retuning */
mvneta_port_disable(struct mvneta_port * pp)1246 static void mvneta_port_disable(struct mvneta_port *pp)
1247 {
1248 u32 val;
1249
1250 /* Reset the Enable bit in the Serial Control Register */
1251 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1252 val &= ~MVNETA_GMAC0_PORT_ENABLE;
1253 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1254
1255 udelay(200);
1256 }
1257
1258 /* Multicast tables methods */
1259
1260 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
mvneta_set_ucast_table(struct mvneta_port * pp,int queue)1261 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1262 {
1263 int offset;
1264 u32 val;
1265
1266 if (queue == -1) {
1267 val = 0;
1268 } else {
1269 val = 0x1 | (queue << 1);
1270 val |= (val << 24) | (val << 16) | (val << 8);
1271 }
1272
1273 for (offset = 0; offset <= 0xc; offset += 4)
1274 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1275 }
1276
1277 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
mvneta_set_special_mcast_table(struct mvneta_port * pp,int queue)1278 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1279 {
1280 int offset;
1281 u32 val;
1282
1283 if (queue == -1) {
1284 val = 0;
1285 } else {
1286 val = 0x1 | (queue << 1);
1287 val |= (val << 24) | (val << 16) | (val << 8);
1288 }
1289
1290 for (offset = 0; offset <= 0xfc; offset += 4)
1291 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1292
1293 }
1294
1295 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
mvneta_set_other_mcast_table(struct mvneta_port * pp,int queue)1296 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1297 {
1298 int offset;
1299 u32 val;
1300
1301 if (queue == -1) {
1302 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1303 val = 0;
1304 } else {
1305 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1306 val = 0x1 | (queue << 1);
1307 val |= (val << 24) | (val << 16) | (val << 8);
1308 }
1309
1310 for (offset = 0; offset <= 0xfc; offset += 4)
1311 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1312 }
1313
mvneta_percpu_unmask_interrupt(void * arg)1314 static void mvneta_percpu_unmask_interrupt(void *arg)
1315 {
1316 struct mvneta_port *pp = arg;
1317
1318 /* All the queue are unmasked, but actually only the ones
1319 * mapped to this CPU will be unmasked
1320 */
1321 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1322 MVNETA_RX_INTR_MASK_ALL |
1323 MVNETA_TX_INTR_MASK_ALL |
1324 MVNETA_MISCINTR_INTR_MASK);
1325 }
1326
mvneta_percpu_mask_interrupt(void * arg)1327 static void mvneta_percpu_mask_interrupt(void *arg)
1328 {
1329 struct mvneta_port *pp = arg;
1330
1331 /* All the queue are masked, but actually only the ones
1332 * mapped to this CPU will be masked
1333 */
1334 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1335 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1336 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1337 }
1338
mvneta_percpu_clear_intr_cause(void * arg)1339 static void mvneta_percpu_clear_intr_cause(void *arg)
1340 {
1341 struct mvneta_port *pp = arg;
1342
1343 /* All the queue are cleared, but actually only the ones
1344 * mapped to this CPU will be cleared
1345 */
1346 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1347 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1348 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1349 }
1350
1351 /* This method sets defaults to the NETA port:
1352 * Clears interrupt Cause and Mask registers.
1353 * Clears all MAC tables.
1354 * Sets defaults to all registers.
1355 * Resets RX and TX descriptor rings.
1356 * Resets PHY.
1357 * This method can be called after mvneta_port_down() to return the port
1358 * settings to defaults.
1359 */
mvneta_defaults_set(struct mvneta_port * pp)1360 static void mvneta_defaults_set(struct mvneta_port *pp)
1361 {
1362 int cpu;
1363 int queue;
1364 u32 val;
1365 int max_cpu = num_present_cpus();
1366
1367 /* Clear all Cause registers */
1368 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1369
1370 /* Mask all interrupts */
1371 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1372 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1373
1374 /* Enable MBUS Retry bit16 */
1375 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1376
1377 /* Set CPU queue access map. CPUs are assigned to the RX and
1378 * TX queues modulo their number. If there is only one TX
1379 * queue then it is assigned to the CPU associated to the
1380 * default RX queue.
1381 */
1382 for_each_present_cpu(cpu) {
1383 int rxq_map = 0, txq_map = 0;
1384 int rxq, txq;
1385 if (!pp->neta_armada3700) {
1386 for (rxq = 0; rxq < rxq_number; rxq++)
1387 if ((rxq % max_cpu) == cpu)
1388 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1389
1390 for (txq = 0; txq < txq_number; txq++)
1391 if ((txq % max_cpu) == cpu)
1392 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1393
1394 /* With only one TX queue we configure a special case
1395 * which will allow to get all the irq on a single
1396 * CPU
1397 */
1398 if (txq_number == 1)
1399 txq_map = (cpu == pp->rxq_def) ?
1400 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1401
1402 } else {
1403 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1404 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1405 }
1406
1407 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1408 }
1409
1410 /* Reset RX and TX DMAs */
1411 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1412 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1413
1414 /* Disable Legacy WRR, Disable EJP, Release from reset */
1415 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1416 for (queue = 0; queue < txq_number; queue++) {
1417 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1418 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1419 }
1420
1421 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1422 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1423
1424 /* Set Port Acceleration Mode */
1425 if (pp->bm_priv)
1426 /* HW buffer management + legacy parser */
1427 val = MVNETA_ACC_MODE_EXT2;
1428 else
1429 /* SW buffer management + legacy parser */
1430 val = MVNETA_ACC_MODE_EXT1;
1431 mvreg_write(pp, MVNETA_ACC_MODE, val);
1432
1433 if (pp->bm_priv)
1434 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1435
1436 /* Update val of portCfg register accordingly with all RxQueue types */
1437 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1438 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1439
1440 val = 0;
1441 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1442 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1443
1444 /* Build PORT_SDMA_CONFIG_REG */
1445 val = 0;
1446
1447 /* Default burst size */
1448 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1449 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1450 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1451
1452 #if defined(__BIG_ENDIAN)
1453 val |= MVNETA_DESC_SWAP;
1454 #endif
1455
1456 /* Assign port SDMA configuration */
1457 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1458
1459 /* Disable PHY polling in hardware, since we're using the
1460 * kernel phylib to do this.
1461 */
1462 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1463 val &= ~MVNETA_PHY_POLLING_ENABLE;
1464 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1465
1466 mvneta_set_ucast_table(pp, -1);
1467 mvneta_set_special_mcast_table(pp, -1);
1468 mvneta_set_other_mcast_table(pp, -1);
1469
1470 /* Set port interrupt enable register - default enable all */
1471 mvreg_write(pp, MVNETA_INTR_ENABLE,
1472 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1473 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1474
1475 mvneta_mib_counters_clear(pp);
1476 }
1477
1478 /* Set max sizes for tx queues */
mvneta_txq_max_tx_size_set(struct mvneta_port * pp,int max_tx_size)1479 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1480
1481 {
1482 u32 val, size, mtu;
1483 int queue;
1484
1485 mtu = max_tx_size * 8;
1486 if (mtu > MVNETA_TX_MTU_MAX)
1487 mtu = MVNETA_TX_MTU_MAX;
1488
1489 /* Set MTU */
1490 val = mvreg_read(pp, MVNETA_TX_MTU);
1491 val &= ~MVNETA_TX_MTU_MAX;
1492 val |= mtu;
1493 mvreg_write(pp, MVNETA_TX_MTU, val);
1494
1495 /* TX token size and all TXQs token size must be larger that MTU */
1496 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1497
1498 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1499 if (size < mtu) {
1500 size = mtu;
1501 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1502 val |= size;
1503 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1504 }
1505 for (queue = 0; queue < txq_number; queue++) {
1506 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1507
1508 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1509 if (size < mtu) {
1510 size = mtu;
1511 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1512 val |= size;
1513 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1514 }
1515 }
1516 }
1517
1518 /* Set unicast address */
mvneta_set_ucast_addr(struct mvneta_port * pp,u8 last_nibble,int queue)1519 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1520 int queue)
1521 {
1522 unsigned int unicast_reg;
1523 unsigned int tbl_offset;
1524 unsigned int reg_offset;
1525
1526 /* Locate the Unicast table entry */
1527 last_nibble = (0xf & last_nibble);
1528
1529 /* offset from unicast tbl base */
1530 tbl_offset = (last_nibble / 4) * 4;
1531
1532 /* offset within the above reg */
1533 reg_offset = last_nibble % 4;
1534
1535 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1536
1537 if (queue == -1) {
1538 /* Clear accepts frame bit at specified unicast DA tbl entry */
1539 unicast_reg &= ~(0xff << (8 * reg_offset));
1540 } else {
1541 unicast_reg &= ~(0xff << (8 * reg_offset));
1542 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1543 }
1544
1545 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1546 }
1547
1548 /* Set mac address */
mvneta_mac_addr_set(struct mvneta_port * pp,unsigned char * addr,int queue)1549 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1550 int queue)
1551 {
1552 unsigned int mac_h;
1553 unsigned int mac_l;
1554
1555 if (queue != -1) {
1556 mac_l = (addr[4] << 8) | (addr[5]);
1557 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1558 (addr[2] << 8) | (addr[3] << 0);
1559
1560 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1561 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1562 }
1563
1564 /* Accept frames of this address */
1565 mvneta_set_ucast_addr(pp, addr[5], queue);
1566 }
1567
1568 /* Set the number of packets that will be received before RX interrupt
1569 * will be generated by HW.
1570 */
mvneta_rx_pkts_coal_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,u32 value)1571 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1572 struct mvneta_rx_queue *rxq, u32 value)
1573 {
1574 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1575 value | MVNETA_RXQ_NON_OCCUPIED(0));
1576 }
1577
1578 /* Set the time delay in usec before RX interrupt will be generated by
1579 * HW.
1580 */
mvneta_rx_time_coal_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,u32 value)1581 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1582 struct mvneta_rx_queue *rxq, u32 value)
1583 {
1584 u32 val;
1585 unsigned long clk_rate;
1586
1587 clk_rate = clk_get_rate(pp->clk);
1588 val = (clk_rate / 1000000) * value;
1589
1590 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1591 }
1592
1593 /* Set threshold for TX_DONE pkts coalescing */
mvneta_tx_done_pkts_coal_set(struct mvneta_port * pp,struct mvneta_tx_queue * txq,u32 value)1594 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1595 struct mvneta_tx_queue *txq, u32 value)
1596 {
1597 u32 val;
1598
1599 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1600
1601 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1602 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1603
1604 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1605 }
1606
1607 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
mvneta_rx_desc_fill(struct mvneta_rx_desc * rx_desc,u32 phys_addr,void * virt_addr,struct mvneta_rx_queue * rxq)1608 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1609 u32 phys_addr, void *virt_addr,
1610 struct mvneta_rx_queue *rxq)
1611 {
1612 int i;
1613
1614 rx_desc->buf_phys_addr = phys_addr;
1615 i = rx_desc - rxq->descs;
1616 rxq->buf_virt_addr[i] = virt_addr;
1617 }
1618
1619 /* Decrement sent descriptors counter */
mvneta_txq_sent_desc_dec(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int sent_desc)1620 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1621 struct mvneta_tx_queue *txq,
1622 int sent_desc)
1623 {
1624 u32 val;
1625
1626 /* Only 255 TX descriptors can be updated at once */
1627 while (sent_desc > 0xff) {
1628 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1629 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1630 sent_desc = sent_desc - 0xff;
1631 }
1632
1633 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1634 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1635 }
1636
1637 /* Get number of TX descriptors already sent by HW */
mvneta_txq_sent_desc_num_get(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1638 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1639 struct mvneta_tx_queue *txq)
1640 {
1641 u32 val;
1642 int sent_desc;
1643
1644 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1645 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1646 MVNETA_TXQ_SENT_DESC_SHIFT;
1647
1648 return sent_desc;
1649 }
1650
1651 /* Get number of sent descriptors and decrement counter.
1652 * The number of sent descriptors is returned.
1653 */
mvneta_txq_sent_desc_proc(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1654 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1655 struct mvneta_tx_queue *txq)
1656 {
1657 int sent_desc;
1658
1659 /* Get number of sent descriptors */
1660 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1661
1662 /* Decrement sent descriptors counter */
1663 if (sent_desc)
1664 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1665
1666 return sent_desc;
1667 }
1668
1669 /* Set TXQ descriptors fields relevant for CSUM calculation */
mvneta_txq_desc_csum(int l3_offs,int l3_proto,int ip_hdr_len,int l4_proto)1670 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1671 int ip_hdr_len, int l4_proto)
1672 {
1673 u32 command;
1674
1675 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1676 * G_L4_chk, L4_type; required only for checksum
1677 * calculation
1678 */
1679 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1680 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1681
1682 if (l3_proto == htons(ETH_P_IP))
1683 command |= MVNETA_TXD_IP_CSUM;
1684 else
1685 command |= MVNETA_TX_L3_IP6;
1686
1687 if (l4_proto == IPPROTO_TCP)
1688 command |= MVNETA_TX_L4_CSUM_FULL;
1689 else if (l4_proto == IPPROTO_UDP)
1690 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1691 else
1692 command |= MVNETA_TX_L4_CSUM_NOT;
1693
1694 return command;
1695 }
1696
1697
1698 /* Display more error info */
mvneta_rx_error(struct mvneta_port * pp,struct mvneta_rx_desc * rx_desc)1699 static void mvneta_rx_error(struct mvneta_port *pp,
1700 struct mvneta_rx_desc *rx_desc)
1701 {
1702 u32 status = rx_desc->status;
1703
1704 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1705 case MVNETA_RXD_ERR_CRC:
1706 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1707 status, rx_desc->data_size);
1708 break;
1709 case MVNETA_RXD_ERR_OVERRUN:
1710 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1711 status, rx_desc->data_size);
1712 break;
1713 case MVNETA_RXD_ERR_LEN:
1714 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1715 status, rx_desc->data_size);
1716 break;
1717 case MVNETA_RXD_ERR_RESOURCE:
1718 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1719 status, rx_desc->data_size);
1720 break;
1721 }
1722 }
1723
1724 /* Handle RX checksum offload based on the descriptor's status */
mvneta_rx_csum(struct mvneta_port * pp,u32 status,struct sk_buff * skb)1725 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1726 struct sk_buff *skb)
1727 {
1728 if ((pp->dev->features & NETIF_F_RXCSUM) &&
1729 (status & MVNETA_RXD_L3_IP4) &&
1730 (status & MVNETA_RXD_L4_CSUM_OK)) {
1731 skb->csum = 0;
1732 skb->ip_summed = CHECKSUM_UNNECESSARY;
1733 return;
1734 }
1735
1736 skb->ip_summed = CHECKSUM_NONE;
1737 }
1738
1739 /* Return tx queue pointer (find last set bit) according to <cause> returned
1740 * form tx_done reg. <cause> must not be null. The return value is always a
1741 * valid queue for matching the first one found in <cause>.
1742 */
mvneta_tx_done_policy(struct mvneta_port * pp,u32 cause)1743 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1744 u32 cause)
1745 {
1746 int queue = fls(cause) - 1;
1747
1748 return &pp->txqs[queue];
1749 }
1750
1751 /* Free tx queue skbuffs */
mvneta_txq_bufs_free(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int num,struct netdev_queue * nq)1752 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1753 struct mvneta_tx_queue *txq, int num,
1754 struct netdev_queue *nq)
1755 {
1756 unsigned int bytes_compl = 0, pkts_compl = 0;
1757 int i;
1758
1759 for (i = 0; i < num; i++) {
1760 struct mvneta_tx_desc *tx_desc = txq->descs +
1761 txq->txq_get_index;
1762 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1763
1764 if (skb) {
1765 bytes_compl += skb->len;
1766 pkts_compl++;
1767 }
1768
1769 mvneta_txq_inc_get(txq);
1770
1771 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1772 dma_unmap_single(pp->dev->dev.parent,
1773 tx_desc->buf_phys_addr,
1774 tx_desc->data_size, DMA_TO_DEVICE);
1775 if (!skb)
1776 continue;
1777 dev_kfree_skb_any(skb);
1778 }
1779
1780 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1781 }
1782
1783 /* Handle end of transmission */
mvneta_txq_done(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1784 static void mvneta_txq_done(struct mvneta_port *pp,
1785 struct mvneta_tx_queue *txq)
1786 {
1787 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1788 int tx_done;
1789
1790 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1791 if (!tx_done)
1792 return;
1793
1794 mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1795
1796 txq->count -= tx_done;
1797
1798 if (netif_tx_queue_stopped(nq)) {
1799 if (txq->count <= txq->tx_wake_threshold)
1800 netif_tx_wake_queue(nq);
1801 }
1802 }
1803
1804 /* Refill processing for SW buffer management */
1805 /* Allocate page per descriptor */
mvneta_rx_refill(struct mvneta_port * pp,struct mvneta_rx_desc * rx_desc,struct mvneta_rx_queue * rxq,gfp_t gfp_mask)1806 static int mvneta_rx_refill(struct mvneta_port *pp,
1807 struct mvneta_rx_desc *rx_desc,
1808 struct mvneta_rx_queue *rxq,
1809 gfp_t gfp_mask)
1810 {
1811 dma_addr_t phys_addr;
1812 struct page *page;
1813
1814 page = __dev_alloc_page(gfp_mask);
1815 if (!page)
1816 return -ENOMEM;
1817
1818 /* map page for use */
1819 phys_addr = dma_map_page(pp->dev->dev.parent, page, 0, PAGE_SIZE,
1820 DMA_FROM_DEVICE);
1821 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1822 __free_page(page);
1823 return -ENOMEM;
1824 }
1825
1826 phys_addr += pp->rx_offset_correction;
1827 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1828 return 0;
1829 }
1830
1831 /* Handle tx checksum */
mvneta_skb_tx_csum(struct mvneta_port * pp,struct sk_buff * skb)1832 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1833 {
1834 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1835 int ip_hdr_len = 0;
1836 __be16 l3_proto = vlan_get_protocol(skb);
1837 u8 l4_proto;
1838
1839 if (l3_proto == htons(ETH_P_IP)) {
1840 struct iphdr *ip4h = ip_hdr(skb);
1841
1842 /* Calculate IPv4 checksum and L4 checksum */
1843 ip_hdr_len = ip4h->ihl;
1844 l4_proto = ip4h->protocol;
1845 } else if (l3_proto == htons(ETH_P_IPV6)) {
1846 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1847
1848 /* Read l4_protocol from one of IPv6 extra headers */
1849 if (skb_network_header_len(skb) > 0)
1850 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1851 l4_proto = ip6h->nexthdr;
1852 } else
1853 return MVNETA_TX_L4_CSUM_NOT;
1854
1855 return mvneta_txq_desc_csum(skb_network_offset(skb),
1856 l3_proto, ip_hdr_len, l4_proto);
1857 }
1858
1859 return MVNETA_TX_L4_CSUM_NOT;
1860 }
1861
1862 /* Drop packets received by the RXQ and free buffers */
mvneta_rxq_drop_pkts(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1863 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1864 struct mvneta_rx_queue *rxq)
1865 {
1866 int rx_done, i;
1867
1868 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1869 if (rx_done)
1870 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1871
1872 if (pp->bm_priv) {
1873 for (i = 0; i < rx_done; i++) {
1874 struct mvneta_rx_desc *rx_desc =
1875 mvneta_rxq_next_desc_get(rxq);
1876 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1877 struct mvneta_bm_pool *bm_pool;
1878
1879 bm_pool = &pp->bm_priv->bm_pools[pool_id];
1880 /* Return dropped buffer to the pool */
1881 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1882 rx_desc->buf_phys_addr);
1883 }
1884 return;
1885 }
1886
1887 for (i = 0; i < rxq->size; i++) {
1888 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1889 void *data = rxq->buf_virt_addr[i];
1890 if (!data || !(rx_desc->buf_phys_addr))
1891 continue;
1892
1893 dma_unmap_page(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1894 PAGE_SIZE, DMA_FROM_DEVICE);
1895 __free_page(data);
1896 }
1897 }
1898
1899 static inline
mvneta_rx_refill_queue(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1900 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
1901 {
1902 struct mvneta_rx_desc *rx_desc;
1903 int curr_desc = rxq->first_to_refill;
1904 int i;
1905
1906 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
1907 rx_desc = rxq->descs + curr_desc;
1908 if (!(rx_desc->buf_phys_addr)) {
1909 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
1910 pr_err("Can't refill queue %d. Done %d from %d\n",
1911 rxq->id, i, rxq->refill_num);
1912 rxq->refill_err++;
1913 break;
1914 }
1915 }
1916 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
1917 }
1918 rxq->refill_num -= i;
1919 rxq->first_to_refill = curr_desc;
1920
1921 return i;
1922 }
1923
1924 /* Main rx processing when using software buffer management */
mvneta_rx_swbm(struct napi_struct * napi,struct mvneta_port * pp,int budget,struct mvneta_rx_queue * rxq)1925 static int mvneta_rx_swbm(struct napi_struct *napi,
1926 struct mvneta_port *pp, int budget,
1927 struct mvneta_rx_queue *rxq)
1928 {
1929 struct net_device *dev = pp->dev;
1930 int rx_todo, rx_proc;
1931 int refill = 0;
1932 u32 rcvd_pkts = 0;
1933 u32 rcvd_bytes = 0;
1934
1935 /* Get number of received packets */
1936 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
1937 rx_proc = 0;
1938
1939 /* Fairness NAPI loop */
1940 while ((rcvd_pkts < budget) && (rx_proc < rx_todo)) {
1941 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1942 unsigned char *data;
1943 struct page *page;
1944 dma_addr_t phys_addr;
1945 u32 rx_status, index;
1946 int rx_bytes, skb_size, copy_size;
1947 int frag_num, frag_size, frag_offset;
1948
1949 index = rx_desc - rxq->descs;
1950 page = (struct page *)rxq->buf_virt_addr[index];
1951 data = page_address(page);
1952 /* Prefetch header */
1953 prefetch(data);
1954
1955 phys_addr = rx_desc->buf_phys_addr;
1956 rx_status = rx_desc->status;
1957 rx_proc++;
1958 rxq->refill_num++;
1959
1960 if (rx_status & MVNETA_RXD_FIRST_DESC) {
1961 /* Check errors only for FIRST descriptor */
1962 if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
1963 mvneta_rx_error(pp, rx_desc);
1964 dev->stats.rx_errors++;
1965 /* leave the descriptor untouched */
1966 continue;
1967 }
1968 rx_bytes = rx_desc->data_size -
1969 (ETH_FCS_LEN + MVNETA_MH_SIZE);
1970
1971 /* Allocate small skb for each new packet */
1972 skb_size = max(rx_copybreak, rx_header_size);
1973 rxq->skb = netdev_alloc_skb_ip_align(dev, skb_size);
1974 if (unlikely(!rxq->skb)) {
1975 netdev_err(dev,
1976 "Can't allocate skb on queue %d\n",
1977 rxq->id);
1978 dev->stats.rx_dropped++;
1979 rxq->skb_alloc_err++;
1980 continue;
1981 }
1982 copy_size = min(skb_size, rx_bytes);
1983
1984 /* Copy data from buffer to SKB, skip Marvell header */
1985 memcpy(rxq->skb->data, data + MVNETA_MH_SIZE,
1986 copy_size);
1987 skb_put(rxq->skb, copy_size);
1988 rxq->left_size = rx_bytes - copy_size;
1989
1990 mvneta_rx_csum(pp, rx_status, rxq->skb);
1991 if (rxq->left_size == 0) {
1992 int size = copy_size + MVNETA_MH_SIZE;
1993
1994 dma_sync_single_range_for_cpu(dev->dev.parent,
1995 phys_addr, 0,
1996 size,
1997 DMA_FROM_DEVICE);
1998
1999 /* leave the descriptor and buffer untouched */
2000 } else {
2001 /* refill descriptor with new buffer later */
2002 rx_desc->buf_phys_addr = 0;
2003
2004 frag_num = 0;
2005 frag_offset = copy_size + MVNETA_MH_SIZE;
2006 frag_size = min(rxq->left_size,
2007 (int)(PAGE_SIZE - frag_offset));
2008 skb_add_rx_frag(rxq->skb, frag_num, page,
2009 frag_offset, frag_size,
2010 PAGE_SIZE);
2011 dma_unmap_page(dev->dev.parent, phys_addr,
2012 PAGE_SIZE, DMA_FROM_DEVICE);
2013 rxq->left_size -= frag_size;
2014 }
2015 } else {
2016 /* Middle or Last descriptor */
2017 if (unlikely(!rxq->skb)) {
2018 pr_debug("no skb for rx_status 0x%x\n",
2019 rx_status);
2020 continue;
2021 }
2022 if (!rxq->left_size) {
2023 /* last descriptor has only FCS */
2024 /* and can be discarded */
2025 dma_sync_single_range_for_cpu(dev->dev.parent,
2026 phys_addr, 0,
2027 ETH_FCS_LEN,
2028 DMA_FROM_DEVICE);
2029 /* leave the descriptor and buffer untouched */
2030 } else {
2031 /* refill descriptor with new buffer later */
2032 rx_desc->buf_phys_addr = 0;
2033
2034 frag_num = skb_shinfo(rxq->skb)->nr_frags;
2035 frag_offset = 0;
2036 frag_size = min(rxq->left_size,
2037 (int)(PAGE_SIZE - frag_offset));
2038 skb_add_rx_frag(rxq->skb, frag_num, page,
2039 frag_offset, frag_size,
2040 PAGE_SIZE);
2041
2042 dma_unmap_page(dev->dev.parent, phys_addr,
2043 PAGE_SIZE, DMA_FROM_DEVICE);
2044
2045 rxq->left_size -= frag_size;
2046 }
2047 } /* Middle or Last descriptor */
2048
2049 if (!(rx_status & MVNETA_RXD_LAST_DESC))
2050 /* no last descriptor this time */
2051 continue;
2052
2053 if (rxq->left_size) {
2054 pr_err("get last desc, but left_size (%d) != 0\n",
2055 rxq->left_size);
2056 dev_kfree_skb_any(rxq->skb);
2057 rxq->left_size = 0;
2058 rxq->skb = NULL;
2059 continue;
2060 }
2061 rcvd_pkts++;
2062 rcvd_bytes += rxq->skb->len;
2063
2064 /* Linux processing */
2065 rxq->skb->protocol = eth_type_trans(rxq->skb, dev);
2066
2067 if (dev->features & NETIF_F_GRO)
2068 napi_gro_receive(napi, rxq->skb);
2069 else
2070 netif_receive_skb(rxq->skb);
2071
2072 /* clean uncomplete skb pointer in queue */
2073 rxq->skb = NULL;
2074 rxq->left_size = 0;
2075 }
2076
2077 if (rcvd_pkts) {
2078 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2079
2080 u64_stats_update_begin(&stats->syncp);
2081 stats->rx_packets += rcvd_pkts;
2082 stats->rx_bytes += rcvd_bytes;
2083 u64_stats_update_end(&stats->syncp);
2084 }
2085
2086 /* return some buffers to hardware queue, one at a time is too slow */
2087 refill = mvneta_rx_refill_queue(pp, rxq);
2088
2089 /* Update rxq management counters */
2090 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2091
2092 return rcvd_pkts;
2093 }
2094
2095 /* Main rx processing when using hardware buffer management */
mvneta_rx_hwbm(struct napi_struct * napi,struct mvneta_port * pp,int rx_todo,struct mvneta_rx_queue * rxq)2096 static int mvneta_rx_hwbm(struct napi_struct *napi,
2097 struct mvneta_port *pp, int rx_todo,
2098 struct mvneta_rx_queue *rxq)
2099 {
2100 struct net_device *dev = pp->dev;
2101 int rx_done;
2102 u32 rcvd_pkts = 0;
2103 u32 rcvd_bytes = 0;
2104
2105 /* Get number of received packets */
2106 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2107
2108 if (rx_todo > rx_done)
2109 rx_todo = rx_done;
2110
2111 rx_done = 0;
2112
2113 /* Fairness NAPI loop */
2114 while (rx_done < rx_todo) {
2115 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2116 struct mvneta_bm_pool *bm_pool = NULL;
2117 struct sk_buff *skb;
2118 unsigned char *data;
2119 dma_addr_t phys_addr;
2120 u32 rx_status, frag_size;
2121 int rx_bytes, err;
2122 u8 pool_id;
2123
2124 rx_done++;
2125 rx_status = rx_desc->status;
2126 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2127 data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2128 phys_addr = rx_desc->buf_phys_addr;
2129 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2130 bm_pool = &pp->bm_priv->bm_pools[pool_id];
2131
2132 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2133 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2134 err_drop_frame_ret_pool:
2135 /* Return the buffer to the pool */
2136 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2137 rx_desc->buf_phys_addr);
2138 err_drop_frame:
2139 dev->stats.rx_errors++;
2140 mvneta_rx_error(pp, rx_desc);
2141 /* leave the descriptor untouched */
2142 continue;
2143 }
2144
2145 if (rx_bytes <= rx_copybreak) {
2146 /* better copy a small frame and not unmap the DMA region */
2147 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2148 if (unlikely(!skb))
2149 goto err_drop_frame_ret_pool;
2150
2151 dma_sync_single_range_for_cpu(dev->dev.parent,
2152 rx_desc->buf_phys_addr,
2153 MVNETA_MH_SIZE + NET_SKB_PAD,
2154 rx_bytes,
2155 DMA_FROM_DEVICE);
2156 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2157 rx_bytes);
2158
2159 skb->protocol = eth_type_trans(skb, dev);
2160 mvneta_rx_csum(pp, rx_status, skb);
2161 napi_gro_receive(napi, skb);
2162
2163 rcvd_pkts++;
2164 rcvd_bytes += rx_bytes;
2165
2166 /* Return the buffer to the pool */
2167 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2168 rx_desc->buf_phys_addr);
2169
2170 /* leave the descriptor and buffer untouched */
2171 continue;
2172 }
2173
2174 /* Refill processing */
2175 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2176 if (err) {
2177 netdev_err(dev, "Linux processing - Can't refill\n");
2178 rxq->refill_err++;
2179 goto err_drop_frame_ret_pool;
2180 }
2181
2182 frag_size = bm_pool->hwbm_pool.frag_size;
2183
2184 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2185
2186 /* After refill old buffer has to be unmapped regardless
2187 * the skb is successfully built or not.
2188 */
2189 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2190 bm_pool->buf_size, DMA_FROM_DEVICE);
2191 if (!skb)
2192 goto err_drop_frame;
2193
2194 rcvd_pkts++;
2195 rcvd_bytes += rx_bytes;
2196
2197 /* Linux processing */
2198 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2199 skb_put(skb, rx_bytes);
2200
2201 skb->protocol = eth_type_trans(skb, dev);
2202
2203 mvneta_rx_csum(pp, rx_status, skb);
2204
2205 napi_gro_receive(napi, skb);
2206 }
2207
2208 if (rcvd_pkts) {
2209 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2210
2211 u64_stats_update_begin(&stats->syncp);
2212 stats->rx_packets += rcvd_pkts;
2213 stats->rx_bytes += rcvd_bytes;
2214 u64_stats_update_end(&stats->syncp);
2215 }
2216
2217 /* Update rxq management counters */
2218 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2219
2220 return rx_done;
2221 }
2222
2223 static inline void
mvneta_tso_put_hdr(struct sk_buff * skb,struct mvneta_port * pp,struct mvneta_tx_queue * txq)2224 mvneta_tso_put_hdr(struct sk_buff *skb,
2225 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2226 {
2227 struct mvneta_tx_desc *tx_desc;
2228 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2229
2230 txq->tx_skb[txq->txq_put_index] = NULL;
2231 tx_desc = mvneta_txq_next_desc_get(txq);
2232 tx_desc->data_size = hdr_len;
2233 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2234 tx_desc->command |= MVNETA_TXD_F_DESC;
2235 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2236 txq->txq_put_index * TSO_HEADER_SIZE;
2237 mvneta_txq_inc_put(txq);
2238 }
2239
2240 static inline int
mvneta_tso_put_data(struct net_device * dev,struct mvneta_tx_queue * txq,struct sk_buff * skb,char * data,int size,bool last_tcp,bool is_last)2241 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2242 struct sk_buff *skb, char *data, int size,
2243 bool last_tcp, bool is_last)
2244 {
2245 struct mvneta_tx_desc *tx_desc;
2246
2247 tx_desc = mvneta_txq_next_desc_get(txq);
2248 tx_desc->data_size = size;
2249 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2250 size, DMA_TO_DEVICE);
2251 if (unlikely(dma_mapping_error(dev->dev.parent,
2252 tx_desc->buf_phys_addr))) {
2253 mvneta_txq_desc_put(txq);
2254 return -ENOMEM;
2255 }
2256
2257 tx_desc->command = 0;
2258 txq->tx_skb[txq->txq_put_index] = NULL;
2259
2260 if (last_tcp) {
2261 /* last descriptor in the TCP packet */
2262 tx_desc->command = MVNETA_TXD_L_DESC;
2263
2264 /* last descriptor in SKB */
2265 if (is_last)
2266 txq->tx_skb[txq->txq_put_index] = skb;
2267 }
2268 mvneta_txq_inc_put(txq);
2269 return 0;
2270 }
2271
mvneta_tx_tso(struct sk_buff * skb,struct net_device * dev,struct mvneta_tx_queue * txq)2272 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2273 struct mvneta_tx_queue *txq)
2274 {
2275 int total_len, data_left;
2276 int desc_count = 0;
2277 struct mvneta_port *pp = netdev_priv(dev);
2278 struct tso_t tso;
2279 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2280 int i;
2281
2282 /* Count needed descriptors */
2283 if ((txq->count + tso_count_descs(skb)) >= txq->size)
2284 return 0;
2285
2286 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2287 pr_info("*** Is this even possible???!?!?\n");
2288 return 0;
2289 }
2290
2291 /* Initialize the TSO handler, and prepare the first payload */
2292 tso_start(skb, &tso);
2293
2294 total_len = skb->len - hdr_len;
2295 while (total_len > 0) {
2296 char *hdr;
2297
2298 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2299 total_len -= data_left;
2300 desc_count++;
2301
2302 /* prepare packet headers: MAC + IP + TCP */
2303 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2304 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2305
2306 mvneta_tso_put_hdr(skb, pp, txq);
2307
2308 while (data_left > 0) {
2309 int size;
2310 desc_count++;
2311
2312 size = min_t(int, tso.size, data_left);
2313
2314 if (mvneta_tso_put_data(dev, txq, skb,
2315 tso.data, size,
2316 size == data_left,
2317 total_len == 0))
2318 goto err_release;
2319 data_left -= size;
2320
2321 tso_build_data(skb, &tso, size);
2322 }
2323 }
2324
2325 return desc_count;
2326
2327 err_release:
2328 /* Release all used data descriptors; header descriptors must not
2329 * be DMA-unmapped.
2330 */
2331 for (i = desc_count - 1; i >= 0; i--) {
2332 struct mvneta_tx_desc *tx_desc = txq->descs + i;
2333 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2334 dma_unmap_single(pp->dev->dev.parent,
2335 tx_desc->buf_phys_addr,
2336 tx_desc->data_size,
2337 DMA_TO_DEVICE);
2338 mvneta_txq_desc_put(txq);
2339 }
2340 return 0;
2341 }
2342
2343 /* Handle tx fragmentation processing */
mvneta_tx_frag_process(struct mvneta_port * pp,struct sk_buff * skb,struct mvneta_tx_queue * txq)2344 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2345 struct mvneta_tx_queue *txq)
2346 {
2347 struct mvneta_tx_desc *tx_desc;
2348 int i, nr_frags = skb_shinfo(skb)->nr_frags;
2349
2350 for (i = 0; i < nr_frags; i++) {
2351 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2352 void *addr = page_address(frag->page.p) + frag->page_offset;
2353
2354 tx_desc = mvneta_txq_next_desc_get(txq);
2355 tx_desc->data_size = frag->size;
2356
2357 tx_desc->buf_phys_addr =
2358 dma_map_single(pp->dev->dev.parent, addr,
2359 tx_desc->data_size, DMA_TO_DEVICE);
2360
2361 if (dma_mapping_error(pp->dev->dev.parent,
2362 tx_desc->buf_phys_addr)) {
2363 mvneta_txq_desc_put(txq);
2364 goto error;
2365 }
2366
2367 if (i == nr_frags - 1) {
2368 /* Last descriptor */
2369 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2370 txq->tx_skb[txq->txq_put_index] = skb;
2371 } else {
2372 /* Descriptor in the middle: Not First, Not Last */
2373 tx_desc->command = 0;
2374 txq->tx_skb[txq->txq_put_index] = NULL;
2375 }
2376 mvneta_txq_inc_put(txq);
2377 }
2378
2379 return 0;
2380
2381 error:
2382 /* Release all descriptors that were used to map fragments of
2383 * this packet, as well as the corresponding DMA mappings
2384 */
2385 for (i = i - 1; i >= 0; i--) {
2386 tx_desc = txq->descs + i;
2387 dma_unmap_single(pp->dev->dev.parent,
2388 tx_desc->buf_phys_addr,
2389 tx_desc->data_size,
2390 DMA_TO_DEVICE);
2391 mvneta_txq_desc_put(txq);
2392 }
2393
2394 return -ENOMEM;
2395 }
2396
2397 /* Main tx processing */
mvneta_tx(struct sk_buff * skb,struct net_device * dev)2398 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2399 {
2400 struct mvneta_port *pp = netdev_priv(dev);
2401 u16 txq_id = skb_get_queue_mapping(skb);
2402 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2403 struct mvneta_tx_desc *tx_desc;
2404 int len = skb->len;
2405 int frags = 0;
2406 u32 tx_cmd;
2407
2408 if (!netif_running(dev))
2409 goto out;
2410
2411 if (skb_is_gso(skb)) {
2412 frags = mvneta_tx_tso(skb, dev, txq);
2413 goto out;
2414 }
2415
2416 frags = skb_shinfo(skb)->nr_frags + 1;
2417
2418 /* Get a descriptor for the first part of the packet */
2419 tx_desc = mvneta_txq_next_desc_get(txq);
2420
2421 tx_cmd = mvneta_skb_tx_csum(pp, skb);
2422
2423 tx_desc->data_size = skb_headlen(skb);
2424
2425 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2426 tx_desc->data_size,
2427 DMA_TO_DEVICE);
2428 if (unlikely(dma_mapping_error(dev->dev.parent,
2429 tx_desc->buf_phys_addr))) {
2430 mvneta_txq_desc_put(txq);
2431 frags = 0;
2432 goto out;
2433 }
2434
2435 if (frags == 1) {
2436 /* First and Last descriptor */
2437 tx_cmd |= MVNETA_TXD_FLZ_DESC;
2438 tx_desc->command = tx_cmd;
2439 txq->tx_skb[txq->txq_put_index] = skb;
2440 mvneta_txq_inc_put(txq);
2441 } else {
2442 /* First but not Last */
2443 tx_cmd |= MVNETA_TXD_F_DESC;
2444 txq->tx_skb[txq->txq_put_index] = NULL;
2445 mvneta_txq_inc_put(txq);
2446 tx_desc->command = tx_cmd;
2447 /* Continue with other skb fragments */
2448 if (mvneta_tx_frag_process(pp, skb, txq)) {
2449 dma_unmap_single(dev->dev.parent,
2450 tx_desc->buf_phys_addr,
2451 tx_desc->data_size,
2452 DMA_TO_DEVICE);
2453 mvneta_txq_desc_put(txq);
2454 frags = 0;
2455 goto out;
2456 }
2457 }
2458
2459 out:
2460 if (frags > 0) {
2461 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2462 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2463
2464 netdev_tx_sent_queue(nq, len);
2465
2466 txq->count += frags;
2467 if (txq->count >= txq->tx_stop_threshold)
2468 netif_tx_stop_queue(nq);
2469
2470 if (!skb->xmit_more || netif_xmit_stopped(nq) ||
2471 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2472 mvneta_txq_pend_desc_add(pp, txq, frags);
2473 else
2474 txq->pending += frags;
2475
2476 u64_stats_update_begin(&stats->syncp);
2477 stats->tx_packets++;
2478 stats->tx_bytes += len;
2479 u64_stats_update_end(&stats->syncp);
2480 } else {
2481 dev->stats.tx_dropped++;
2482 dev_kfree_skb_any(skb);
2483 }
2484
2485 return NETDEV_TX_OK;
2486 }
2487
2488
2489 /* Free tx resources, when resetting a port */
mvneta_txq_done_force(struct mvneta_port * pp,struct mvneta_tx_queue * txq)2490 static void mvneta_txq_done_force(struct mvneta_port *pp,
2491 struct mvneta_tx_queue *txq)
2492
2493 {
2494 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2495 int tx_done = txq->count;
2496
2497 mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2498
2499 /* reset txq */
2500 txq->count = 0;
2501 txq->txq_put_index = 0;
2502 txq->txq_get_index = 0;
2503 }
2504
2505 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2506 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2507 */
mvneta_tx_done_gbe(struct mvneta_port * pp,u32 cause_tx_done)2508 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2509 {
2510 struct mvneta_tx_queue *txq;
2511 struct netdev_queue *nq;
2512
2513 while (cause_tx_done) {
2514 txq = mvneta_tx_done_policy(pp, cause_tx_done);
2515
2516 nq = netdev_get_tx_queue(pp->dev, txq->id);
2517 __netif_tx_lock(nq, smp_processor_id());
2518
2519 if (txq->count)
2520 mvneta_txq_done(pp, txq);
2521
2522 __netif_tx_unlock(nq);
2523 cause_tx_done &= ~((1 << txq->id));
2524 }
2525 }
2526
2527 /* Compute crc8 of the specified address, using a unique algorithm ,
2528 * according to hw spec, different than generic crc8 algorithm
2529 */
mvneta_addr_crc(unsigned char * addr)2530 static int mvneta_addr_crc(unsigned char *addr)
2531 {
2532 int crc = 0;
2533 int i;
2534
2535 for (i = 0; i < ETH_ALEN; i++) {
2536 int j;
2537
2538 crc = (crc ^ addr[i]) << 8;
2539 for (j = 7; j >= 0; j--) {
2540 if (crc & (0x100 << j))
2541 crc ^= 0x107 << j;
2542 }
2543 }
2544
2545 return crc;
2546 }
2547
2548 /* This method controls the net device special MAC multicast support.
2549 * The Special Multicast Table for MAC addresses supports MAC of the form
2550 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2551 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2552 * Table entries in the DA-Filter table. This method set the Special
2553 * Multicast Table appropriate entry.
2554 */
mvneta_set_special_mcast_addr(struct mvneta_port * pp,unsigned char last_byte,int queue)2555 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2556 unsigned char last_byte,
2557 int queue)
2558 {
2559 unsigned int smc_table_reg;
2560 unsigned int tbl_offset;
2561 unsigned int reg_offset;
2562
2563 /* Register offset from SMC table base */
2564 tbl_offset = (last_byte / 4);
2565 /* Entry offset within the above reg */
2566 reg_offset = last_byte % 4;
2567
2568 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2569 + tbl_offset * 4));
2570
2571 if (queue == -1)
2572 smc_table_reg &= ~(0xff << (8 * reg_offset));
2573 else {
2574 smc_table_reg &= ~(0xff << (8 * reg_offset));
2575 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2576 }
2577
2578 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2579 smc_table_reg);
2580 }
2581
2582 /* This method controls the network device Other MAC multicast support.
2583 * The Other Multicast Table is used for multicast of another type.
2584 * A CRC-8 is used as an index to the Other Multicast Table entries
2585 * in the DA-Filter table.
2586 * The method gets the CRC-8 value from the calling routine and
2587 * sets the Other Multicast Table appropriate entry according to the
2588 * specified CRC-8 .
2589 */
mvneta_set_other_mcast_addr(struct mvneta_port * pp,unsigned char crc8,int queue)2590 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2591 unsigned char crc8,
2592 int queue)
2593 {
2594 unsigned int omc_table_reg;
2595 unsigned int tbl_offset;
2596 unsigned int reg_offset;
2597
2598 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2599 reg_offset = crc8 % 4; /* Entry offset within the above reg */
2600
2601 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2602
2603 if (queue == -1) {
2604 /* Clear accepts frame bit at specified Other DA table entry */
2605 omc_table_reg &= ~(0xff << (8 * reg_offset));
2606 } else {
2607 omc_table_reg &= ~(0xff << (8 * reg_offset));
2608 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2609 }
2610
2611 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2612 }
2613
2614 /* The network device supports multicast using two tables:
2615 * 1) Special Multicast Table for MAC addresses of the form
2616 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2617 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2618 * Table entries in the DA-Filter table.
2619 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2620 * is used as an index to the Other Multicast Table entries in the
2621 * DA-Filter table.
2622 */
mvneta_mcast_addr_set(struct mvneta_port * pp,unsigned char * p_addr,int queue)2623 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2624 int queue)
2625 {
2626 unsigned char crc_result = 0;
2627
2628 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2629 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2630 return 0;
2631 }
2632
2633 crc_result = mvneta_addr_crc(p_addr);
2634 if (queue == -1) {
2635 if (pp->mcast_count[crc_result] == 0) {
2636 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2637 crc_result);
2638 return -EINVAL;
2639 }
2640
2641 pp->mcast_count[crc_result]--;
2642 if (pp->mcast_count[crc_result] != 0) {
2643 netdev_info(pp->dev,
2644 "After delete there are %d valid Mcast for crc8=0x%02x\n",
2645 pp->mcast_count[crc_result], crc_result);
2646 return -EINVAL;
2647 }
2648 } else
2649 pp->mcast_count[crc_result]++;
2650
2651 mvneta_set_other_mcast_addr(pp, crc_result, queue);
2652
2653 return 0;
2654 }
2655
2656 /* Configure Fitering mode of Ethernet port */
mvneta_rx_unicast_promisc_set(struct mvneta_port * pp,int is_promisc)2657 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2658 int is_promisc)
2659 {
2660 u32 port_cfg_reg, val;
2661
2662 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2663
2664 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2665
2666 /* Set / Clear UPM bit in port configuration register */
2667 if (is_promisc) {
2668 /* Accept all Unicast addresses */
2669 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2670 val |= MVNETA_FORCE_UNI;
2671 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2672 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2673 } else {
2674 /* Reject all Unicast addresses */
2675 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2676 val &= ~MVNETA_FORCE_UNI;
2677 }
2678
2679 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2680 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2681 }
2682
2683 /* register unicast and multicast addresses */
mvneta_set_rx_mode(struct net_device * dev)2684 static void mvneta_set_rx_mode(struct net_device *dev)
2685 {
2686 struct mvneta_port *pp = netdev_priv(dev);
2687 struct netdev_hw_addr *ha;
2688
2689 if (dev->flags & IFF_PROMISC) {
2690 /* Accept all: Multicast + Unicast */
2691 mvneta_rx_unicast_promisc_set(pp, 1);
2692 mvneta_set_ucast_table(pp, pp->rxq_def);
2693 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2694 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2695 } else {
2696 /* Accept single Unicast */
2697 mvneta_rx_unicast_promisc_set(pp, 0);
2698 mvneta_set_ucast_table(pp, -1);
2699 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2700
2701 if (dev->flags & IFF_ALLMULTI) {
2702 /* Accept all multicast */
2703 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2704 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2705 } else {
2706 /* Accept only initialized multicast */
2707 mvneta_set_special_mcast_table(pp, -1);
2708 mvneta_set_other_mcast_table(pp, -1);
2709
2710 if (!netdev_mc_empty(dev)) {
2711 netdev_for_each_mc_addr(ha, dev) {
2712 mvneta_mcast_addr_set(pp, ha->addr,
2713 pp->rxq_def);
2714 }
2715 }
2716 }
2717 }
2718 }
2719
2720 /* Interrupt handling - the callback for request_irq() */
mvneta_isr(int irq,void * dev_id)2721 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2722 {
2723 struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2724
2725 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2726 napi_schedule(&pp->napi);
2727
2728 return IRQ_HANDLED;
2729 }
2730
2731 /* Interrupt handling - the callback for request_percpu_irq() */
mvneta_percpu_isr(int irq,void * dev_id)2732 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2733 {
2734 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2735
2736 disable_percpu_irq(port->pp->dev->irq);
2737 napi_schedule(&port->napi);
2738
2739 return IRQ_HANDLED;
2740 }
2741
mvneta_link_change(struct mvneta_port * pp)2742 static void mvneta_link_change(struct mvneta_port *pp)
2743 {
2744 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2745
2746 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
2747 }
2748
2749 /* NAPI handler
2750 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2751 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2752 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2753 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2754 * Each CPU has its own causeRxTx register
2755 */
mvneta_poll(struct napi_struct * napi,int budget)2756 static int mvneta_poll(struct napi_struct *napi, int budget)
2757 {
2758 int rx_done = 0;
2759 u32 cause_rx_tx;
2760 int rx_queue;
2761 struct mvneta_port *pp = netdev_priv(napi->dev);
2762 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2763
2764 if (!netif_running(pp->dev)) {
2765 napi_complete(napi);
2766 return rx_done;
2767 }
2768
2769 /* Read cause register */
2770 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2771 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2772 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2773
2774 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2775
2776 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2777 MVNETA_CAUSE_LINK_CHANGE))
2778 mvneta_link_change(pp);
2779 }
2780
2781 /* Release Tx descriptors */
2782 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2783 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2784 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2785 }
2786
2787 /* For the case where the last mvneta_poll did not process all
2788 * RX packets
2789 */
2790 rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2791
2792 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
2793 port->cause_rx_tx;
2794
2795 if (rx_queue) {
2796 rx_queue = rx_queue - 1;
2797 if (pp->bm_priv)
2798 rx_done = mvneta_rx_hwbm(napi, pp, budget,
2799 &pp->rxqs[rx_queue]);
2800 else
2801 rx_done = mvneta_rx_swbm(napi, pp, budget,
2802 &pp->rxqs[rx_queue]);
2803 }
2804
2805 if (rx_done < budget) {
2806 cause_rx_tx = 0;
2807 napi_complete_done(napi, rx_done);
2808
2809 if (pp->neta_armada3700) {
2810 unsigned long flags;
2811
2812 local_irq_save(flags);
2813 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2814 MVNETA_RX_INTR_MASK(rxq_number) |
2815 MVNETA_TX_INTR_MASK(txq_number) |
2816 MVNETA_MISCINTR_INTR_MASK);
2817 local_irq_restore(flags);
2818 } else {
2819 enable_percpu_irq(pp->dev->irq, 0);
2820 }
2821 }
2822
2823 if (pp->neta_armada3700)
2824 pp->cause_rx_tx = cause_rx_tx;
2825 else
2826 port->cause_rx_tx = cause_rx_tx;
2827
2828 return rx_done;
2829 }
2830
2831 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
mvneta_rxq_fill(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int num)2832 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2833 int num)
2834 {
2835 int i;
2836
2837 for (i = 0; i < num; i++) {
2838 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2839 if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
2840 GFP_KERNEL) != 0) {
2841 netdev_err(pp->dev,
2842 "%s:rxq %d, %d of %d buffs filled\n",
2843 __func__, rxq->id, i, num);
2844 break;
2845 }
2846 }
2847
2848 /* Add this number of RX descriptors as non occupied (ready to
2849 * get packets)
2850 */
2851 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2852
2853 return i;
2854 }
2855
2856 /* Free all packets pending transmit from all TXQs and reset TX port */
mvneta_tx_reset(struct mvneta_port * pp)2857 static void mvneta_tx_reset(struct mvneta_port *pp)
2858 {
2859 int queue;
2860
2861 /* free the skb's in the tx ring */
2862 for (queue = 0; queue < txq_number; queue++)
2863 mvneta_txq_done_force(pp, &pp->txqs[queue]);
2864
2865 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2866 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2867 }
2868
mvneta_rx_reset(struct mvneta_port * pp)2869 static void mvneta_rx_reset(struct mvneta_port *pp)
2870 {
2871 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2872 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2873 }
2874
2875 /* Rx/Tx queue initialization/cleanup methods */
2876
mvneta_rxq_sw_init(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)2877 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
2878 struct mvneta_rx_queue *rxq)
2879 {
2880 rxq->size = pp->rx_ring_size;
2881
2882 /* Allocate memory for RX descriptors */
2883 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2884 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2885 &rxq->descs_phys, GFP_KERNEL);
2886 if (!rxq->descs)
2887 return -ENOMEM;
2888
2889 rxq->last_desc = rxq->size - 1;
2890
2891 return 0;
2892 }
2893
mvneta_rxq_hw_init(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)2894 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
2895 struct mvneta_rx_queue *rxq)
2896 {
2897 /* Set Rx descriptors queue starting address */
2898 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2899 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2900
2901 /* Set coalescing pkts and time */
2902 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2903 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2904
2905 if (!pp->bm_priv) {
2906 /* Set Offset */
2907 mvneta_rxq_offset_set(pp, rxq, 0);
2908 mvneta_rxq_buf_size_set(pp, rxq, pp->frag_size);
2909 mvneta_rxq_bm_disable(pp, rxq);
2910 mvneta_rxq_fill(pp, rxq, rxq->size);
2911 } else {
2912 /* Set Offset */
2913 mvneta_rxq_offset_set(pp, rxq,
2914 NET_SKB_PAD - pp->rx_offset_correction);
2915
2916 mvneta_rxq_bm_enable(pp, rxq);
2917 /* Fill RXQ with buffers from RX pool */
2918 mvneta_rxq_long_pool_set(pp, rxq);
2919 mvneta_rxq_short_pool_set(pp, rxq);
2920 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
2921 }
2922 }
2923
2924 /* Create a specified RX queue */
mvneta_rxq_init(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)2925 static int mvneta_rxq_init(struct mvneta_port *pp,
2926 struct mvneta_rx_queue *rxq)
2927
2928 {
2929 int ret;
2930
2931 ret = mvneta_rxq_sw_init(pp, rxq);
2932 if (ret < 0)
2933 return ret;
2934
2935 mvneta_rxq_hw_init(pp, rxq);
2936
2937 return 0;
2938 }
2939
2940 /* Cleanup Rx queue */
mvneta_rxq_deinit(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)2941 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2942 struct mvneta_rx_queue *rxq)
2943 {
2944 mvneta_rxq_drop_pkts(pp, rxq);
2945
2946 if (rxq->skb)
2947 dev_kfree_skb_any(rxq->skb);
2948
2949 if (rxq->descs)
2950 dma_free_coherent(pp->dev->dev.parent,
2951 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2952 rxq->descs,
2953 rxq->descs_phys);
2954
2955 rxq->descs = NULL;
2956 rxq->last_desc = 0;
2957 rxq->next_desc_to_proc = 0;
2958 rxq->descs_phys = 0;
2959 rxq->first_to_refill = 0;
2960 rxq->refill_num = 0;
2961 rxq->skb = NULL;
2962 rxq->left_size = 0;
2963 }
2964
mvneta_txq_sw_init(struct mvneta_port * pp,struct mvneta_tx_queue * txq)2965 static int mvneta_txq_sw_init(struct mvneta_port *pp,
2966 struct mvneta_tx_queue *txq)
2967 {
2968 int cpu;
2969
2970 txq->size = pp->tx_ring_size;
2971
2972 /* A queue must always have room for at least one skb.
2973 * Therefore, stop the queue when the free entries reaches
2974 * the maximum number of descriptors per skb.
2975 */
2976 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2977 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2978
2979 /* Allocate memory for TX descriptors */
2980 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2981 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2982 &txq->descs_phys, GFP_KERNEL);
2983 if (!txq->descs)
2984 return -ENOMEM;
2985
2986 txq->last_desc = txq->size - 1;
2987
2988 txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb),
2989 GFP_KERNEL);
2990 if (!txq->tx_skb) {
2991 dma_free_coherent(pp->dev->dev.parent,
2992 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2993 txq->descs, txq->descs_phys);
2994 return -ENOMEM;
2995 }
2996
2997 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2998 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2999 txq->size * TSO_HEADER_SIZE,
3000 &txq->tso_hdrs_phys, GFP_KERNEL);
3001 if (!txq->tso_hdrs) {
3002 kfree(txq->tx_skb);
3003 dma_free_coherent(pp->dev->dev.parent,
3004 txq->size * MVNETA_DESC_ALIGNED_SIZE,
3005 txq->descs, txq->descs_phys);
3006 return -ENOMEM;
3007 }
3008
3009 /* Setup XPS mapping */
3010 if (txq_number > 1)
3011 cpu = txq->id % num_present_cpus();
3012 else
3013 cpu = pp->rxq_def % num_present_cpus();
3014 cpumask_set_cpu(cpu, &txq->affinity_mask);
3015 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3016
3017 return 0;
3018 }
3019
mvneta_txq_hw_init(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3020 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3021 struct mvneta_tx_queue *txq)
3022 {
3023 /* Set maximum bandwidth for enabled TXQs */
3024 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3025 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3026
3027 /* Set Tx descriptors queue starting address */
3028 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3029 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3030
3031 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3032 }
3033
3034 /* Create and initialize a tx queue */
mvneta_txq_init(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3035 static int mvneta_txq_init(struct mvneta_port *pp,
3036 struct mvneta_tx_queue *txq)
3037 {
3038 int ret;
3039
3040 ret = mvneta_txq_sw_init(pp, txq);
3041 if (ret < 0)
3042 return ret;
3043
3044 mvneta_txq_hw_init(pp, txq);
3045
3046 return 0;
3047 }
3048
3049 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
mvneta_txq_sw_deinit(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3050 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3051 struct mvneta_tx_queue *txq)
3052 {
3053 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3054
3055 kfree(txq->tx_skb);
3056
3057 if (txq->tso_hdrs)
3058 dma_free_coherent(pp->dev->dev.parent,
3059 txq->size * TSO_HEADER_SIZE,
3060 txq->tso_hdrs, txq->tso_hdrs_phys);
3061 if (txq->descs)
3062 dma_free_coherent(pp->dev->dev.parent,
3063 txq->size * MVNETA_DESC_ALIGNED_SIZE,
3064 txq->descs, txq->descs_phys);
3065
3066 netdev_tx_reset_queue(nq);
3067
3068 txq->descs = NULL;
3069 txq->last_desc = 0;
3070 txq->next_desc_to_proc = 0;
3071 txq->descs_phys = 0;
3072 }
3073
mvneta_txq_hw_deinit(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3074 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3075 struct mvneta_tx_queue *txq)
3076 {
3077 /* Set minimum bandwidth for disabled TXQs */
3078 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3079 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3080
3081 /* Set Tx descriptors queue starting address and size */
3082 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3083 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3084 }
3085
mvneta_txq_deinit(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3086 static void mvneta_txq_deinit(struct mvneta_port *pp,
3087 struct mvneta_tx_queue *txq)
3088 {
3089 mvneta_txq_sw_deinit(pp, txq);
3090 mvneta_txq_hw_deinit(pp, txq);
3091 }
3092
3093 /* Cleanup all Tx queues */
mvneta_cleanup_txqs(struct mvneta_port * pp)3094 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3095 {
3096 int queue;
3097
3098 for (queue = 0; queue < txq_number; queue++)
3099 mvneta_txq_deinit(pp, &pp->txqs[queue]);
3100 }
3101
3102 /* Cleanup all Rx queues */
mvneta_cleanup_rxqs(struct mvneta_port * pp)3103 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3104 {
3105 int queue;
3106
3107 for (queue = 0; queue < rxq_number; queue++)
3108 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3109 }
3110
3111
3112 /* Init all Rx queues */
mvneta_setup_rxqs(struct mvneta_port * pp)3113 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3114 {
3115 int queue;
3116
3117 for (queue = 0; queue < rxq_number; queue++) {
3118 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3119
3120 if (err) {
3121 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3122 __func__, queue);
3123 mvneta_cleanup_rxqs(pp);
3124 return err;
3125 }
3126 }
3127
3128 return 0;
3129 }
3130
3131 /* Init all tx queues */
mvneta_setup_txqs(struct mvneta_port * pp)3132 static int mvneta_setup_txqs(struct mvneta_port *pp)
3133 {
3134 int queue;
3135
3136 for (queue = 0; queue < txq_number; queue++) {
3137 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3138 if (err) {
3139 netdev_err(pp->dev, "%s: can't create txq=%d\n",
3140 __func__, queue);
3141 mvneta_cleanup_txqs(pp);
3142 return err;
3143 }
3144 }
3145
3146 return 0;
3147 }
3148
mvneta_start_dev(struct mvneta_port * pp)3149 static void mvneta_start_dev(struct mvneta_port *pp)
3150 {
3151 int cpu;
3152
3153 mvneta_max_rx_size_set(pp, pp->pkt_size);
3154 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3155
3156 /* start the Rx/Tx activity */
3157 mvneta_port_enable(pp);
3158
3159 if (!pp->neta_armada3700) {
3160 /* Enable polling on the port */
3161 for_each_online_cpu(cpu) {
3162 struct mvneta_pcpu_port *port =
3163 per_cpu_ptr(pp->ports, cpu);
3164
3165 napi_enable(&port->napi);
3166 }
3167 } else {
3168 napi_enable(&pp->napi);
3169 }
3170
3171 /* Unmask interrupts. It has to be done from each CPU */
3172 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3173
3174 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3175 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3176 MVNETA_CAUSE_LINK_CHANGE);
3177
3178 phylink_start(pp->phylink);
3179 netif_tx_start_all_queues(pp->dev);
3180 }
3181
mvneta_stop_dev(struct mvneta_port * pp)3182 static void mvneta_stop_dev(struct mvneta_port *pp)
3183 {
3184 unsigned int cpu;
3185
3186 phylink_stop(pp->phylink);
3187
3188 if (!pp->neta_armada3700) {
3189 for_each_online_cpu(cpu) {
3190 struct mvneta_pcpu_port *port =
3191 per_cpu_ptr(pp->ports, cpu);
3192
3193 napi_disable(&port->napi);
3194 }
3195 } else {
3196 napi_disable(&pp->napi);
3197 }
3198
3199 netif_carrier_off(pp->dev);
3200
3201 mvneta_port_down(pp);
3202 netif_tx_stop_all_queues(pp->dev);
3203
3204 /* Stop the port activity */
3205 mvneta_port_disable(pp);
3206
3207 /* Clear all ethernet port interrupts */
3208 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3209
3210 /* Mask all ethernet port interrupts */
3211 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3212
3213 mvneta_tx_reset(pp);
3214 mvneta_rx_reset(pp);
3215 }
3216
mvneta_percpu_enable(void * arg)3217 static void mvneta_percpu_enable(void *arg)
3218 {
3219 struct mvneta_port *pp = arg;
3220
3221 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3222 }
3223
mvneta_percpu_disable(void * arg)3224 static void mvneta_percpu_disable(void *arg)
3225 {
3226 struct mvneta_port *pp = arg;
3227
3228 disable_percpu_irq(pp->dev->irq);
3229 }
3230
3231 /* Change the device mtu */
mvneta_change_mtu(struct net_device * dev,int mtu)3232 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3233 {
3234 struct mvneta_port *pp = netdev_priv(dev);
3235 int ret;
3236
3237 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3238 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3239 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3240 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3241 }
3242
3243 dev->mtu = mtu;
3244
3245 if (!netif_running(dev)) {
3246 if (pp->bm_priv)
3247 mvneta_bm_update_mtu(pp, mtu);
3248
3249 netdev_update_features(dev);
3250 return 0;
3251 }
3252
3253 /* The interface is running, so we have to force a
3254 * reallocation of the queues
3255 */
3256 mvneta_stop_dev(pp);
3257 on_each_cpu(mvneta_percpu_disable, pp, true);
3258
3259 mvneta_cleanup_txqs(pp);
3260 mvneta_cleanup_rxqs(pp);
3261
3262 if (pp->bm_priv)
3263 mvneta_bm_update_mtu(pp, mtu);
3264
3265 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3266
3267 ret = mvneta_setup_rxqs(pp);
3268 if (ret) {
3269 netdev_err(dev, "unable to setup rxqs after MTU change\n");
3270 return ret;
3271 }
3272
3273 ret = mvneta_setup_txqs(pp);
3274 if (ret) {
3275 netdev_err(dev, "unable to setup txqs after MTU change\n");
3276 return ret;
3277 }
3278
3279 on_each_cpu(mvneta_percpu_enable, pp, true);
3280 mvneta_start_dev(pp);
3281
3282 netdev_update_features(dev);
3283
3284 return 0;
3285 }
3286
mvneta_fix_features(struct net_device * dev,netdev_features_t features)3287 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3288 netdev_features_t features)
3289 {
3290 struct mvneta_port *pp = netdev_priv(dev);
3291
3292 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3293 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3294 netdev_info(dev,
3295 "Disable IP checksum for MTU greater than %dB\n",
3296 pp->tx_csum_limit);
3297 }
3298
3299 return features;
3300 }
3301
3302 /* Get mac address */
mvneta_get_mac_addr(struct mvneta_port * pp,unsigned char * addr)3303 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3304 {
3305 u32 mac_addr_l, mac_addr_h;
3306
3307 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3308 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3309 addr[0] = (mac_addr_h >> 24) & 0xFF;
3310 addr[1] = (mac_addr_h >> 16) & 0xFF;
3311 addr[2] = (mac_addr_h >> 8) & 0xFF;
3312 addr[3] = mac_addr_h & 0xFF;
3313 addr[4] = (mac_addr_l >> 8) & 0xFF;
3314 addr[5] = mac_addr_l & 0xFF;
3315 }
3316
3317 /* Handle setting mac address */
mvneta_set_mac_addr(struct net_device * dev,void * addr)3318 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3319 {
3320 struct mvneta_port *pp = netdev_priv(dev);
3321 struct sockaddr *sockaddr = addr;
3322 int ret;
3323
3324 ret = eth_prepare_mac_addr_change(dev, addr);
3325 if (ret < 0)
3326 return ret;
3327 /* Remove previous address table entry */
3328 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3329
3330 /* Set new addr in hw */
3331 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3332
3333 eth_commit_mac_addr_change(dev, addr);
3334 return 0;
3335 }
3336
mvneta_validate(struct net_device * ndev,unsigned long * supported,struct phylink_link_state * state)3337 static void mvneta_validate(struct net_device *ndev, unsigned long *supported,
3338 struct phylink_link_state *state)
3339 {
3340 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3341
3342 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3343 if (state->interface != PHY_INTERFACE_MODE_NA &&
3344 state->interface != PHY_INTERFACE_MODE_QSGMII &&
3345 state->interface != PHY_INTERFACE_MODE_SGMII &&
3346 !phy_interface_mode_is_8023z(state->interface) &&
3347 !phy_interface_mode_is_rgmii(state->interface)) {
3348 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3349 return;
3350 }
3351
3352 /* Allow all the expected bits */
3353 phylink_set(mask, Autoneg);
3354 phylink_set_port_modes(mask);
3355
3356 /* Asymmetric pause is unsupported */
3357 phylink_set(mask, Pause);
3358 /* Half-duplex at speeds higher than 100Mbit is unsupported */
3359 phylink_set(mask, 1000baseT_Full);
3360 phylink_set(mask, 1000baseX_Full);
3361
3362 if (!phy_interface_mode_is_8023z(state->interface)) {
3363 /* 10M and 100M are only supported in non-802.3z mode */
3364 phylink_set(mask, 10baseT_Half);
3365 phylink_set(mask, 10baseT_Full);
3366 phylink_set(mask, 100baseT_Half);
3367 phylink_set(mask, 100baseT_Full);
3368 }
3369
3370 bitmap_and(supported, supported, mask,
3371 __ETHTOOL_LINK_MODE_MASK_NBITS);
3372 bitmap_and(state->advertising, state->advertising, mask,
3373 __ETHTOOL_LINK_MODE_MASK_NBITS);
3374 }
3375
mvneta_mac_link_state(struct net_device * ndev,struct phylink_link_state * state)3376 static int mvneta_mac_link_state(struct net_device *ndev,
3377 struct phylink_link_state *state)
3378 {
3379 struct mvneta_port *pp = netdev_priv(ndev);
3380 u32 gmac_stat;
3381
3382 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3383
3384 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3385 state->speed = SPEED_1000;
3386 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3387 state->speed = SPEED_100;
3388 else
3389 state->speed = SPEED_10;
3390
3391 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3392 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3393 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3394
3395 state->pause = 0;
3396 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3397 state->pause |= MLO_PAUSE_RX;
3398 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3399 state->pause |= MLO_PAUSE_TX;
3400
3401 return 1;
3402 }
3403
mvneta_mac_an_restart(struct net_device * ndev)3404 static void mvneta_mac_an_restart(struct net_device *ndev)
3405 {
3406 struct mvneta_port *pp = netdev_priv(ndev);
3407 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3408
3409 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3410 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3411 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3412 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3413 }
3414
mvneta_mac_config(struct net_device * ndev,unsigned int mode,const struct phylink_link_state * state)3415 static void mvneta_mac_config(struct net_device *ndev, unsigned int mode,
3416 const struct phylink_link_state *state)
3417 {
3418 struct mvneta_port *pp = netdev_priv(ndev);
3419 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3420 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3421 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3422 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3423
3424 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3425 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3426 MVNETA_GMAC2_PORT_RESET);
3427 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3428 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3429 MVNETA_GMAC_INBAND_RESTART_AN |
3430 MVNETA_GMAC_CONFIG_MII_SPEED |
3431 MVNETA_GMAC_CONFIG_GMII_SPEED |
3432 MVNETA_GMAC_AN_SPEED_EN |
3433 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3434 MVNETA_GMAC_CONFIG_FLOW_CTRL |
3435 MVNETA_GMAC_AN_FLOW_CTRL_EN |
3436 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
3437 MVNETA_GMAC_AN_DUPLEX_EN);
3438
3439 /* Even though it might look weird, when we're configured in
3440 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3441 */
3442 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3443
3444 if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3445 state->interface == PHY_INTERFACE_MODE_SGMII ||
3446 phy_interface_mode_is_8023z(state->interface))
3447 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3448
3449 if (phylink_test(state->advertising, Pause))
3450 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3451 if (state->pause & MLO_PAUSE_TXRX_MASK)
3452 new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
3453
3454 if (!phylink_autoneg_inband(mode)) {
3455 /* Phy or fixed speed */
3456 if (state->duplex)
3457 new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3458
3459 if (state->speed == SPEED_1000)
3460 new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3461 else if (state->speed == SPEED_100)
3462 new_an |= MVNETA_GMAC_CONFIG_MII_SPEED;
3463 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3464 /* SGMII mode receives the state from the PHY */
3465 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3466 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3467 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3468 MVNETA_GMAC_FORCE_LINK_PASS)) |
3469 MVNETA_GMAC_INBAND_AN_ENABLE |
3470 MVNETA_GMAC_AN_SPEED_EN |
3471 MVNETA_GMAC_AN_DUPLEX_EN;
3472 } else {
3473 /* 802.3z negotiation - only 1000base-X */
3474 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3475 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3476 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3477 MVNETA_GMAC_FORCE_LINK_PASS)) |
3478 MVNETA_GMAC_INBAND_AN_ENABLE |
3479 MVNETA_GMAC_CONFIG_GMII_SPEED |
3480 /* The MAC only supports FD mode */
3481 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3482
3483 if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3484 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3485 }
3486
3487 /* Armada 370 documentation says we can only change the port mode
3488 * and in-band enable when the link is down, so force it down
3489 * while making these changes. We also do this for GMAC_CTRL2 */
3490 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3491 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3492 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3493 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3494 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3495 MVNETA_GMAC_FORCE_LINK_DOWN);
3496 }
3497
3498 if (new_ctrl0 != gmac_ctrl0)
3499 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
3500 if (new_ctrl2 != gmac_ctrl2)
3501 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
3502 if (new_clk != gmac_clk)
3503 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
3504 if (new_an != gmac_an)
3505 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
3506
3507 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
3508 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3509 MVNETA_GMAC2_PORT_RESET) != 0)
3510 continue;
3511 }
3512 }
3513
mvneta_set_eee(struct mvneta_port * pp,bool enable)3514 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
3515 {
3516 u32 lpi_ctl1;
3517
3518 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
3519 if (enable)
3520 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
3521 else
3522 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
3523 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
3524 }
3525
mvneta_mac_link_down(struct net_device * ndev,unsigned int mode,phy_interface_t interface)3526 static void mvneta_mac_link_down(struct net_device *ndev, unsigned int mode,
3527 phy_interface_t interface)
3528 {
3529 struct mvneta_port *pp = netdev_priv(ndev);
3530 u32 val;
3531
3532 mvneta_port_down(pp);
3533
3534 if (!phylink_autoneg_inband(mode)) {
3535 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3536 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3537 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3538 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3539 }
3540
3541 pp->eee_active = false;
3542 mvneta_set_eee(pp, false);
3543 }
3544
mvneta_mac_link_up(struct net_device * ndev,unsigned int mode,phy_interface_t interface,struct phy_device * phy)3545 static void mvneta_mac_link_up(struct net_device *ndev, unsigned int mode,
3546 phy_interface_t interface,
3547 struct phy_device *phy)
3548 {
3549 struct mvneta_port *pp = netdev_priv(ndev);
3550 u32 val;
3551
3552 if (!phylink_autoneg_inband(mode)) {
3553 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3554 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3555 val |= MVNETA_GMAC_FORCE_LINK_PASS;
3556 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3557 }
3558
3559 mvneta_port_up(pp);
3560
3561 if (phy && pp->eee_enabled) {
3562 pp->eee_active = phy_init_eee(phy, 0) >= 0;
3563 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
3564 }
3565 }
3566
3567 static const struct phylink_mac_ops mvneta_phylink_ops = {
3568 .validate = mvneta_validate,
3569 .mac_link_state = mvneta_mac_link_state,
3570 .mac_an_restart = mvneta_mac_an_restart,
3571 .mac_config = mvneta_mac_config,
3572 .mac_link_down = mvneta_mac_link_down,
3573 .mac_link_up = mvneta_mac_link_up,
3574 };
3575
mvneta_mdio_probe(struct mvneta_port * pp)3576 static int mvneta_mdio_probe(struct mvneta_port *pp)
3577 {
3578 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
3579 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
3580
3581 if (err)
3582 netdev_err(pp->dev, "could not attach PHY: %d\n", err);
3583
3584 phylink_ethtool_get_wol(pp->phylink, &wol);
3585 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
3586
3587 return err;
3588 }
3589
mvneta_mdio_remove(struct mvneta_port * pp)3590 static void mvneta_mdio_remove(struct mvneta_port *pp)
3591 {
3592 phylink_disconnect_phy(pp->phylink);
3593 }
3594
3595 /* Electing a CPU must be done in an atomic way: it should be done
3596 * after or before the removal/insertion of a CPU and this function is
3597 * not reentrant.
3598 */
mvneta_percpu_elect(struct mvneta_port * pp)3599 static void mvneta_percpu_elect(struct mvneta_port *pp)
3600 {
3601 int elected_cpu = 0, max_cpu, cpu, i = 0;
3602
3603 /* Use the cpu associated to the rxq when it is online, in all
3604 * the other cases, use the cpu 0 which can't be offline.
3605 */
3606 if (cpu_online(pp->rxq_def))
3607 elected_cpu = pp->rxq_def;
3608
3609 max_cpu = num_present_cpus();
3610
3611 for_each_online_cpu(cpu) {
3612 int rxq_map = 0, txq_map = 0;
3613 int rxq;
3614
3615 for (rxq = 0; rxq < rxq_number; rxq++)
3616 if ((rxq % max_cpu) == cpu)
3617 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3618
3619 if (cpu == elected_cpu)
3620 /* Map the default receive queue queue to the
3621 * elected CPU
3622 */
3623 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3624
3625 /* We update the TX queue map only if we have one
3626 * queue. In this case we associate the TX queue to
3627 * the CPU bound to the default RX queue
3628 */
3629 if (txq_number == 1)
3630 txq_map = (cpu == elected_cpu) ?
3631 MVNETA_CPU_TXQ_ACCESS(1) : 0;
3632 else
3633 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3634 MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3635
3636 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3637
3638 /* Update the interrupt mask on each CPU according the
3639 * new mapping
3640 */
3641 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3642 pp, true);
3643 i++;
3644
3645 }
3646 };
3647
mvneta_cpu_online(unsigned int cpu,struct hlist_node * node)3648 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3649 {
3650 int other_cpu;
3651 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3652 node_online);
3653 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3654
3655
3656 spin_lock(&pp->lock);
3657 /*
3658 * Configuring the driver for a new CPU while the driver is
3659 * stopping is racy, so just avoid it.
3660 */
3661 if (pp->is_stopped) {
3662 spin_unlock(&pp->lock);
3663 return 0;
3664 }
3665 netif_tx_stop_all_queues(pp->dev);
3666
3667 /*
3668 * We have to synchronise on tha napi of each CPU except the one
3669 * just being woken up
3670 */
3671 for_each_online_cpu(other_cpu) {
3672 if (other_cpu != cpu) {
3673 struct mvneta_pcpu_port *other_port =
3674 per_cpu_ptr(pp->ports, other_cpu);
3675
3676 napi_synchronize(&other_port->napi);
3677 }
3678 }
3679
3680 /* Mask all ethernet port interrupts */
3681 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3682 napi_enable(&port->napi);
3683
3684 /*
3685 * Enable per-CPU interrupts on the CPU that is
3686 * brought up.
3687 */
3688 mvneta_percpu_enable(pp);
3689
3690 /*
3691 * Enable per-CPU interrupt on the one CPU we care
3692 * about.
3693 */
3694 mvneta_percpu_elect(pp);
3695
3696 /* Unmask all ethernet port interrupts */
3697 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3698 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3699 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3700 MVNETA_CAUSE_LINK_CHANGE);
3701 netif_tx_start_all_queues(pp->dev);
3702 spin_unlock(&pp->lock);
3703 return 0;
3704 }
3705
mvneta_cpu_down_prepare(unsigned int cpu,struct hlist_node * node)3706 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
3707 {
3708 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3709 node_online);
3710 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3711
3712 /*
3713 * Thanks to this lock we are sure that any pending cpu election is
3714 * done.
3715 */
3716 spin_lock(&pp->lock);
3717 /* Mask all ethernet port interrupts */
3718 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3719 spin_unlock(&pp->lock);
3720
3721 napi_synchronize(&port->napi);
3722 napi_disable(&port->napi);
3723 /* Disable per-CPU interrupts on the CPU that is brought down. */
3724 mvneta_percpu_disable(pp);
3725 return 0;
3726 }
3727
mvneta_cpu_dead(unsigned int cpu,struct hlist_node * node)3728 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
3729 {
3730 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3731 node_dead);
3732
3733 /* Check if a new CPU must be elected now this on is down */
3734 spin_lock(&pp->lock);
3735 mvneta_percpu_elect(pp);
3736 spin_unlock(&pp->lock);
3737 /* Unmask all ethernet port interrupts */
3738 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3739 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3740 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3741 MVNETA_CAUSE_LINK_CHANGE);
3742 netif_tx_start_all_queues(pp->dev);
3743 return 0;
3744 }
3745
mvneta_open(struct net_device * dev)3746 static int mvneta_open(struct net_device *dev)
3747 {
3748 struct mvneta_port *pp = netdev_priv(dev);
3749 int ret;
3750
3751 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3752 pp->frag_size = PAGE_SIZE;
3753
3754 ret = mvneta_setup_rxqs(pp);
3755 if (ret)
3756 return ret;
3757
3758 ret = mvneta_setup_txqs(pp);
3759 if (ret)
3760 goto err_cleanup_rxqs;
3761
3762 /* Connect to port interrupt line */
3763 if (pp->neta_armada3700)
3764 ret = request_irq(pp->dev->irq, mvneta_isr, 0,
3765 dev->name, pp);
3766 else
3767 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
3768 dev->name, pp->ports);
3769 if (ret) {
3770 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3771 goto err_cleanup_txqs;
3772 }
3773
3774 if (!pp->neta_armada3700) {
3775 /* Enable per-CPU interrupt on all the CPU to handle our RX
3776 * queue interrupts
3777 */
3778 on_each_cpu(mvneta_percpu_enable, pp, true);
3779
3780 pp->is_stopped = false;
3781 /* Register a CPU notifier to handle the case where our CPU
3782 * might be taken offline.
3783 */
3784 ret = cpuhp_state_add_instance_nocalls(online_hpstate,
3785 &pp->node_online);
3786 if (ret)
3787 goto err_free_irq;
3788
3789 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3790 &pp->node_dead);
3791 if (ret)
3792 goto err_free_online_hp;
3793 }
3794
3795 /* In default link is down */
3796 netif_carrier_off(pp->dev);
3797
3798 ret = mvneta_mdio_probe(pp);
3799 if (ret < 0) {
3800 netdev_err(dev, "cannot probe MDIO bus\n");
3801 goto err_free_dead_hp;
3802 }
3803
3804 mvneta_start_dev(pp);
3805
3806 return 0;
3807
3808 err_free_dead_hp:
3809 if (!pp->neta_armada3700)
3810 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3811 &pp->node_dead);
3812 err_free_online_hp:
3813 if (!pp->neta_armada3700)
3814 cpuhp_state_remove_instance_nocalls(online_hpstate,
3815 &pp->node_online);
3816 err_free_irq:
3817 if (pp->neta_armada3700) {
3818 free_irq(pp->dev->irq, pp);
3819 } else {
3820 on_each_cpu(mvneta_percpu_disable, pp, true);
3821 free_percpu_irq(pp->dev->irq, pp->ports);
3822 }
3823 err_cleanup_txqs:
3824 mvneta_cleanup_txqs(pp);
3825 err_cleanup_rxqs:
3826 mvneta_cleanup_rxqs(pp);
3827 return ret;
3828 }
3829
3830 /* Stop the port, free port interrupt line */
mvneta_stop(struct net_device * dev)3831 static int mvneta_stop(struct net_device *dev)
3832 {
3833 struct mvneta_port *pp = netdev_priv(dev);
3834
3835 if (!pp->neta_armada3700) {
3836 /* Inform that we are stopping so we don't want to setup the
3837 * driver for new CPUs in the notifiers. The code of the
3838 * notifier for CPU online is protected by the same spinlock,
3839 * so when we get the lock, the notifer work is done.
3840 */
3841 spin_lock(&pp->lock);
3842 pp->is_stopped = true;
3843 spin_unlock(&pp->lock);
3844
3845 mvneta_stop_dev(pp);
3846 mvneta_mdio_remove(pp);
3847
3848 cpuhp_state_remove_instance_nocalls(online_hpstate,
3849 &pp->node_online);
3850 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3851 &pp->node_dead);
3852 on_each_cpu(mvneta_percpu_disable, pp, true);
3853 free_percpu_irq(dev->irq, pp->ports);
3854 } else {
3855 mvneta_stop_dev(pp);
3856 mvneta_mdio_remove(pp);
3857 free_irq(dev->irq, pp);
3858 }
3859
3860 mvneta_cleanup_rxqs(pp);
3861 mvneta_cleanup_txqs(pp);
3862
3863 return 0;
3864 }
3865
mvneta_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)3866 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3867 {
3868 struct mvneta_port *pp = netdev_priv(dev);
3869
3870 return phylink_mii_ioctl(pp->phylink, ifr, cmd);
3871 }
3872
3873 /* Ethtool methods */
3874
3875 /* Set link ksettings (phy address, speed) for ethtools */
3876 static int
mvneta_ethtool_set_link_ksettings(struct net_device * ndev,const struct ethtool_link_ksettings * cmd)3877 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3878 const struct ethtool_link_ksettings *cmd)
3879 {
3880 struct mvneta_port *pp = netdev_priv(ndev);
3881
3882 return phylink_ethtool_ksettings_set(pp->phylink, cmd);
3883 }
3884
3885 /* Get link ksettings for ethtools */
3886 static int
mvneta_ethtool_get_link_ksettings(struct net_device * ndev,struct ethtool_link_ksettings * cmd)3887 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
3888 struct ethtool_link_ksettings *cmd)
3889 {
3890 struct mvneta_port *pp = netdev_priv(ndev);
3891
3892 return phylink_ethtool_ksettings_get(pp->phylink, cmd);
3893 }
3894
mvneta_ethtool_nway_reset(struct net_device * dev)3895 static int mvneta_ethtool_nway_reset(struct net_device *dev)
3896 {
3897 struct mvneta_port *pp = netdev_priv(dev);
3898
3899 return phylink_ethtool_nway_reset(pp->phylink);
3900 }
3901
3902 /* Set interrupt coalescing for ethtools */
mvneta_ethtool_set_coalesce(struct net_device * dev,struct ethtool_coalesce * c)3903 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3904 struct ethtool_coalesce *c)
3905 {
3906 struct mvneta_port *pp = netdev_priv(dev);
3907 int queue;
3908
3909 for (queue = 0; queue < rxq_number; queue++) {
3910 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3911 rxq->time_coal = c->rx_coalesce_usecs;
3912 rxq->pkts_coal = c->rx_max_coalesced_frames;
3913 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3914 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3915 }
3916
3917 for (queue = 0; queue < txq_number; queue++) {
3918 struct mvneta_tx_queue *txq = &pp->txqs[queue];
3919 txq->done_pkts_coal = c->tx_max_coalesced_frames;
3920 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3921 }
3922
3923 return 0;
3924 }
3925
3926 /* get coalescing for ethtools */
mvneta_ethtool_get_coalesce(struct net_device * dev,struct ethtool_coalesce * c)3927 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3928 struct ethtool_coalesce *c)
3929 {
3930 struct mvneta_port *pp = netdev_priv(dev);
3931
3932 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
3933 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
3934
3935 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
3936 return 0;
3937 }
3938
3939
mvneta_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * drvinfo)3940 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3941 struct ethtool_drvinfo *drvinfo)
3942 {
3943 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3944 sizeof(drvinfo->driver));
3945 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3946 sizeof(drvinfo->version));
3947 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3948 sizeof(drvinfo->bus_info));
3949 }
3950
3951
mvneta_ethtool_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)3952 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3953 struct ethtool_ringparam *ring)
3954 {
3955 struct mvneta_port *pp = netdev_priv(netdev);
3956
3957 ring->rx_max_pending = MVNETA_MAX_RXD;
3958 ring->tx_max_pending = MVNETA_MAX_TXD;
3959 ring->rx_pending = pp->rx_ring_size;
3960 ring->tx_pending = pp->tx_ring_size;
3961 }
3962
mvneta_ethtool_set_ringparam(struct net_device * dev,struct ethtool_ringparam * ring)3963 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3964 struct ethtool_ringparam *ring)
3965 {
3966 struct mvneta_port *pp = netdev_priv(dev);
3967
3968 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3969 return -EINVAL;
3970 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3971 ring->rx_pending : MVNETA_MAX_RXD;
3972
3973 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3974 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3975 if (pp->tx_ring_size != ring->tx_pending)
3976 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3977 pp->tx_ring_size, ring->tx_pending);
3978
3979 if (netif_running(dev)) {
3980 mvneta_stop(dev);
3981 if (mvneta_open(dev)) {
3982 netdev_err(dev,
3983 "error on opening device after ring param change\n");
3984 return -ENOMEM;
3985 }
3986 }
3987
3988 return 0;
3989 }
3990
mvneta_ethtool_get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * pause)3991 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
3992 struct ethtool_pauseparam *pause)
3993 {
3994 struct mvneta_port *pp = netdev_priv(dev);
3995
3996 phylink_ethtool_get_pauseparam(pp->phylink, pause);
3997 }
3998
mvneta_ethtool_set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * pause)3999 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4000 struct ethtool_pauseparam *pause)
4001 {
4002 struct mvneta_port *pp = netdev_priv(dev);
4003
4004 return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4005 }
4006
mvneta_ethtool_get_strings(struct net_device * netdev,u32 sset,u8 * data)4007 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4008 u8 *data)
4009 {
4010 if (sset == ETH_SS_STATS) {
4011 int i;
4012
4013 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4014 memcpy(data + i * ETH_GSTRING_LEN,
4015 mvneta_statistics[i].name, ETH_GSTRING_LEN);
4016 }
4017 }
4018
mvneta_ethtool_update_stats(struct mvneta_port * pp)4019 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4020 {
4021 const struct mvneta_statistic *s;
4022 void __iomem *base = pp->base;
4023 u32 high, low;
4024 u64 val;
4025 int i;
4026
4027 for (i = 0, s = mvneta_statistics;
4028 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4029 s++, i++) {
4030 val = 0;
4031
4032 switch (s->type) {
4033 case T_REG_32:
4034 val = readl_relaxed(base + s->offset);
4035 break;
4036 case T_REG_64:
4037 /* Docs say to read low 32-bit then high */
4038 low = readl_relaxed(base + s->offset);
4039 high = readl_relaxed(base + s->offset + 4);
4040 val = (u64)high << 32 | low;
4041 break;
4042 case T_SW:
4043 switch (s->offset) {
4044 case ETHTOOL_STAT_EEE_WAKEUP:
4045 val = phylink_get_eee_err(pp->phylink);
4046 break;
4047 case ETHTOOL_STAT_SKB_ALLOC_ERR:
4048 val = pp->rxqs[0].skb_alloc_err;
4049 break;
4050 case ETHTOOL_STAT_REFILL_ERR:
4051 val = pp->rxqs[0].refill_err;
4052 break;
4053 }
4054 break;
4055 }
4056
4057 pp->ethtool_stats[i] += val;
4058 }
4059 }
4060
mvneta_ethtool_get_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)4061 static void mvneta_ethtool_get_stats(struct net_device *dev,
4062 struct ethtool_stats *stats, u64 *data)
4063 {
4064 struct mvneta_port *pp = netdev_priv(dev);
4065 int i;
4066
4067 mvneta_ethtool_update_stats(pp);
4068
4069 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4070 *data++ = pp->ethtool_stats[i];
4071 }
4072
mvneta_ethtool_get_sset_count(struct net_device * dev,int sset)4073 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4074 {
4075 if (sset == ETH_SS_STATS)
4076 return ARRAY_SIZE(mvneta_statistics);
4077 return -EOPNOTSUPP;
4078 }
4079
mvneta_ethtool_get_rxfh_indir_size(struct net_device * dev)4080 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4081 {
4082 return MVNETA_RSS_LU_TABLE_SIZE;
4083 }
4084
mvneta_ethtool_get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * info,u32 * rules __always_unused)4085 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4086 struct ethtool_rxnfc *info,
4087 u32 *rules __always_unused)
4088 {
4089 switch (info->cmd) {
4090 case ETHTOOL_GRXRINGS:
4091 info->data = rxq_number;
4092 return 0;
4093 case ETHTOOL_GRXFH:
4094 return -EOPNOTSUPP;
4095 default:
4096 return -EOPNOTSUPP;
4097 }
4098 }
4099
mvneta_config_rss(struct mvneta_port * pp)4100 static int mvneta_config_rss(struct mvneta_port *pp)
4101 {
4102 int cpu;
4103 u32 val;
4104
4105 netif_tx_stop_all_queues(pp->dev);
4106
4107 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4108
4109 if (!pp->neta_armada3700) {
4110 /* We have to synchronise on the napi of each CPU */
4111 for_each_online_cpu(cpu) {
4112 struct mvneta_pcpu_port *pcpu_port =
4113 per_cpu_ptr(pp->ports, cpu);
4114
4115 napi_synchronize(&pcpu_port->napi);
4116 napi_disable(&pcpu_port->napi);
4117 }
4118 } else {
4119 napi_synchronize(&pp->napi);
4120 napi_disable(&pp->napi);
4121 }
4122
4123 pp->rxq_def = pp->indir[0];
4124
4125 /* Update unicast mapping */
4126 mvneta_set_rx_mode(pp->dev);
4127
4128 /* Update val of portCfg register accordingly with all RxQueue types */
4129 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4130 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4131
4132 /* Update the elected CPU matching the new rxq_def */
4133 spin_lock(&pp->lock);
4134 mvneta_percpu_elect(pp);
4135 spin_unlock(&pp->lock);
4136
4137 if (!pp->neta_armada3700) {
4138 /* We have to synchronise on the napi of each CPU */
4139 for_each_online_cpu(cpu) {
4140 struct mvneta_pcpu_port *pcpu_port =
4141 per_cpu_ptr(pp->ports, cpu);
4142
4143 napi_enable(&pcpu_port->napi);
4144 }
4145 } else {
4146 napi_enable(&pp->napi);
4147 }
4148
4149 netif_tx_start_all_queues(pp->dev);
4150
4151 return 0;
4152 }
4153
mvneta_ethtool_set_rxfh(struct net_device * dev,const u32 * indir,const u8 * key,const u8 hfunc)4154 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4155 const u8 *key, const u8 hfunc)
4156 {
4157 struct mvneta_port *pp = netdev_priv(dev);
4158
4159 /* Current code for Armada 3700 doesn't support RSS features yet */
4160 if (pp->neta_armada3700)
4161 return -EOPNOTSUPP;
4162
4163 /* We require at least one supported parameter to be changed
4164 * and no change in any of the unsupported parameters
4165 */
4166 if (key ||
4167 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4168 return -EOPNOTSUPP;
4169
4170 if (!indir)
4171 return 0;
4172
4173 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4174
4175 return mvneta_config_rss(pp);
4176 }
4177
mvneta_ethtool_get_rxfh(struct net_device * dev,u32 * indir,u8 * key,u8 * hfunc)4178 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4179 u8 *hfunc)
4180 {
4181 struct mvneta_port *pp = netdev_priv(dev);
4182
4183 /* Current code for Armada 3700 doesn't support RSS features yet */
4184 if (pp->neta_armada3700)
4185 return -EOPNOTSUPP;
4186
4187 if (hfunc)
4188 *hfunc = ETH_RSS_HASH_TOP;
4189
4190 if (!indir)
4191 return 0;
4192
4193 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4194
4195 return 0;
4196 }
4197
mvneta_ethtool_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)4198 static void mvneta_ethtool_get_wol(struct net_device *dev,
4199 struct ethtool_wolinfo *wol)
4200 {
4201 struct mvneta_port *pp = netdev_priv(dev);
4202
4203 phylink_ethtool_get_wol(pp->phylink, wol);
4204 }
4205
mvneta_ethtool_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)4206 static int mvneta_ethtool_set_wol(struct net_device *dev,
4207 struct ethtool_wolinfo *wol)
4208 {
4209 struct mvneta_port *pp = netdev_priv(dev);
4210 int ret;
4211
4212 ret = phylink_ethtool_set_wol(pp->phylink, wol);
4213 if (!ret)
4214 device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4215
4216 return ret;
4217 }
4218
mvneta_ethtool_get_eee(struct net_device * dev,struct ethtool_eee * eee)4219 static int mvneta_ethtool_get_eee(struct net_device *dev,
4220 struct ethtool_eee *eee)
4221 {
4222 struct mvneta_port *pp = netdev_priv(dev);
4223 u32 lpi_ctl0;
4224
4225 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4226
4227 eee->eee_enabled = pp->eee_enabled;
4228 eee->eee_active = pp->eee_active;
4229 eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4230 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4231
4232 return phylink_ethtool_get_eee(pp->phylink, eee);
4233 }
4234
mvneta_ethtool_set_eee(struct net_device * dev,struct ethtool_eee * eee)4235 static int mvneta_ethtool_set_eee(struct net_device *dev,
4236 struct ethtool_eee *eee)
4237 {
4238 struct mvneta_port *pp = netdev_priv(dev);
4239 u32 lpi_ctl0;
4240
4241 /* The Armada 37x documents do not give limits for this other than
4242 * it being an 8-bit register. */
4243 if (eee->tx_lpi_enabled &&
4244 (eee->tx_lpi_timer < 0 || eee->tx_lpi_timer > 255))
4245 return -EINVAL;
4246
4247 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4248 lpi_ctl0 &= ~(0xff << 8);
4249 lpi_ctl0 |= eee->tx_lpi_timer << 8;
4250 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4251
4252 pp->eee_enabled = eee->eee_enabled;
4253 pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4254
4255 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4256
4257 return phylink_ethtool_set_eee(pp->phylink, eee);
4258 }
4259
4260 static const struct net_device_ops mvneta_netdev_ops = {
4261 .ndo_open = mvneta_open,
4262 .ndo_stop = mvneta_stop,
4263 .ndo_start_xmit = mvneta_tx,
4264 .ndo_set_rx_mode = mvneta_set_rx_mode,
4265 .ndo_set_mac_address = mvneta_set_mac_addr,
4266 .ndo_change_mtu = mvneta_change_mtu,
4267 .ndo_fix_features = mvneta_fix_features,
4268 .ndo_get_stats64 = mvneta_get_stats64,
4269 .ndo_do_ioctl = mvneta_ioctl,
4270 };
4271
4272 static const struct ethtool_ops mvneta_eth_tool_ops = {
4273 .nway_reset = mvneta_ethtool_nway_reset,
4274 .get_link = ethtool_op_get_link,
4275 .set_coalesce = mvneta_ethtool_set_coalesce,
4276 .get_coalesce = mvneta_ethtool_get_coalesce,
4277 .get_drvinfo = mvneta_ethtool_get_drvinfo,
4278 .get_ringparam = mvneta_ethtool_get_ringparam,
4279 .set_ringparam = mvneta_ethtool_set_ringparam,
4280 .get_pauseparam = mvneta_ethtool_get_pauseparam,
4281 .set_pauseparam = mvneta_ethtool_set_pauseparam,
4282 .get_strings = mvneta_ethtool_get_strings,
4283 .get_ethtool_stats = mvneta_ethtool_get_stats,
4284 .get_sset_count = mvneta_ethtool_get_sset_count,
4285 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4286 .get_rxnfc = mvneta_ethtool_get_rxnfc,
4287 .get_rxfh = mvneta_ethtool_get_rxfh,
4288 .set_rxfh = mvneta_ethtool_set_rxfh,
4289 .get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4290 .set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4291 .get_wol = mvneta_ethtool_get_wol,
4292 .set_wol = mvneta_ethtool_set_wol,
4293 .get_eee = mvneta_ethtool_get_eee,
4294 .set_eee = mvneta_ethtool_set_eee,
4295 };
4296
4297 /* Initialize hw */
mvneta_init(struct device * dev,struct mvneta_port * pp)4298 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4299 {
4300 int queue;
4301
4302 /* Disable port */
4303 mvneta_port_disable(pp);
4304
4305 /* Set port default values */
4306 mvneta_defaults_set(pp);
4307
4308 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4309 if (!pp->txqs)
4310 return -ENOMEM;
4311
4312 /* Initialize TX descriptor rings */
4313 for (queue = 0; queue < txq_number; queue++) {
4314 struct mvneta_tx_queue *txq = &pp->txqs[queue];
4315 txq->id = queue;
4316 txq->size = pp->tx_ring_size;
4317 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4318 }
4319
4320 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4321 if (!pp->rxqs)
4322 return -ENOMEM;
4323
4324 /* Create Rx descriptor rings */
4325 for (queue = 0; queue < rxq_number; queue++) {
4326 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4327 rxq->id = queue;
4328 rxq->size = pp->rx_ring_size;
4329 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4330 rxq->time_coal = MVNETA_RX_COAL_USEC;
4331 rxq->buf_virt_addr
4332 = devm_kmalloc_array(pp->dev->dev.parent,
4333 rxq->size,
4334 sizeof(*rxq->buf_virt_addr),
4335 GFP_KERNEL);
4336 if (!rxq->buf_virt_addr)
4337 return -ENOMEM;
4338 }
4339
4340 return 0;
4341 }
4342
4343 /* platform glue : initialize decoding windows */
mvneta_conf_mbus_windows(struct mvneta_port * pp,const struct mbus_dram_target_info * dram)4344 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4345 const struct mbus_dram_target_info *dram)
4346 {
4347 u32 win_enable;
4348 u32 win_protect;
4349 int i;
4350
4351 for (i = 0; i < 6; i++) {
4352 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4353 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4354
4355 if (i < 4)
4356 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4357 }
4358
4359 win_enable = 0x3f;
4360 win_protect = 0;
4361
4362 if (dram) {
4363 for (i = 0; i < dram->num_cs; i++) {
4364 const struct mbus_dram_window *cs = dram->cs + i;
4365
4366 mvreg_write(pp, MVNETA_WIN_BASE(i),
4367 (cs->base & 0xffff0000) |
4368 (cs->mbus_attr << 8) |
4369 dram->mbus_dram_target_id);
4370
4371 mvreg_write(pp, MVNETA_WIN_SIZE(i),
4372 (cs->size - 1) & 0xffff0000);
4373
4374 win_enable &= ~(1 << i);
4375 win_protect |= 3 << (2 * i);
4376 }
4377 } else {
4378 /* For Armada3700 open default 4GB Mbus window, leaving
4379 * arbitration of target/attribute to a different layer
4380 * of configuration.
4381 */
4382 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4383 win_enable &= ~BIT(0);
4384 win_protect = 3;
4385 }
4386
4387 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4388 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4389 }
4390
4391 /* Power up the port */
mvneta_port_power_up(struct mvneta_port * pp,int phy_mode)4392 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4393 {
4394 /* MAC Cause register should be cleared */
4395 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4396
4397 if (phy_mode == PHY_INTERFACE_MODE_QSGMII)
4398 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4399 else if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
4400 phy_mode == PHY_INTERFACE_MODE_1000BASEX)
4401 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4402 else if (!phy_interface_mode_is_rgmii(phy_mode))
4403 return -EINVAL;
4404
4405 return 0;
4406 }
4407
4408 /* Device initialization routine */
mvneta_probe(struct platform_device * pdev)4409 static int mvneta_probe(struct platform_device *pdev)
4410 {
4411 struct resource *res;
4412 struct device_node *dn = pdev->dev.of_node;
4413 struct device_node *bm_node;
4414 struct mvneta_port *pp;
4415 struct net_device *dev;
4416 struct phylink *phylink;
4417 const char *dt_mac_addr;
4418 char hw_mac_addr[ETH_ALEN];
4419 const char *mac_from;
4420 int tx_csum_limit;
4421 int phy_mode;
4422 int err;
4423 int cpu;
4424
4425 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
4426 if (!dev)
4427 return -ENOMEM;
4428
4429 dev->irq = irq_of_parse_and_map(dn, 0);
4430 if (dev->irq == 0) {
4431 err = -EINVAL;
4432 goto err_free_netdev;
4433 }
4434
4435 phy_mode = of_get_phy_mode(dn);
4436 if (phy_mode < 0) {
4437 dev_err(&pdev->dev, "incorrect phy-mode\n");
4438 err = -EINVAL;
4439 goto err_free_irq;
4440 }
4441
4442 phylink = phylink_create(dev, pdev->dev.fwnode, phy_mode,
4443 &mvneta_phylink_ops);
4444 if (IS_ERR(phylink)) {
4445 err = PTR_ERR(phylink);
4446 goto err_free_irq;
4447 }
4448
4449 dev->tx_queue_len = MVNETA_MAX_TXD;
4450 dev->watchdog_timeo = 5 * HZ;
4451 dev->netdev_ops = &mvneta_netdev_ops;
4452
4453 dev->ethtool_ops = &mvneta_eth_tool_ops;
4454
4455 pp = netdev_priv(dev);
4456 spin_lock_init(&pp->lock);
4457 pp->phylink = phylink;
4458 pp->phy_interface = phy_mode;
4459 pp->dn = dn;
4460
4461 pp->rxq_def = rxq_def;
4462 pp->indir[0] = rxq_def;
4463
4464 /* Get special SoC configurations */
4465 if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
4466 pp->neta_armada3700 = true;
4467
4468 pp->clk = devm_clk_get(&pdev->dev, "core");
4469 if (IS_ERR(pp->clk))
4470 pp->clk = devm_clk_get(&pdev->dev, NULL);
4471 if (IS_ERR(pp->clk)) {
4472 err = PTR_ERR(pp->clk);
4473 goto err_free_phylink;
4474 }
4475
4476 clk_prepare_enable(pp->clk);
4477
4478 pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4479 if (!IS_ERR(pp->clk_bus))
4480 clk_prepare_enable(pp->clk_bus);
4481
4482 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4483 pp->base = devm_ioremap_resource(&pdev->dev, res);
4484 if (IS_ERR(pp->base)) {
4485 err = PTR_ERR(pp->base);
4486 goto err_clk;
4487 }
4488
4489 /* Alloc per-cpu port structure */
4490 pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4491 if (!pp->ports) {
4492 err = -ENOMEM;
4493 goto err_clk;
4494 }
4495
4496 /* Alloc per-cpu stats */
4497 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4498 if (!pp->stats) {
4499 err = -ENOMEM;
4500 goto err_free_ports;
4501 }
4502
4503 dt_mac_addr = of_get_mac_address(dn);
4504 if (dt_mac_addr) {
4505 mac_from = "device tree";
4506 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4507 } else {
4508 mvneta_get_mac_addr(pp, hw_mac_addr);
4509 if (is_valid_ether_addr(hw_mac_addr)) {
4510 mac_from = "hardware";
4511 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4512 } else {
4513 mac_from = "random";
4514 eth_hw_addr_random(dev);
4515 }
4516 }
4517
4518 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4519 if (tx_csum_limit < 0 ||
4520 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4521 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4522 dev_info(&pdev->dev,
4523 "Wrong TX csum limit in DT, set to %dB\n",
4524 MVNETA_TX_CSUM_DEF_SIZE);
4525 }
4526 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4527 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4528 } else {
4529 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4530 }
4531
4532 pp->tx_csum_limit = tx_csum_limit;
4533
4534 pp->dram_target_info = mv_mbus_dram_info();
4535 /* Armada3700 requires setting default configuration of Mbus
4536 * windows, however without using filled mbus_dram_target_info
4537 * structure.
4538 */
4539 if (pp->dram_target_info || pp->neta_armada3700)
4540 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4541
4542 pp->tx_ring_size = MVNETA_MAX_TXD;
4543 pp->rx_ring_size = MVNETA_MAX_RXD;
4544
4545 pp->dev = dev;
4546 SET_NETDEV_DEV(dev, &pdev->dev);
4547
4548 pp->id = global_port_id++;
4549 pp->rx_offset_correction = 0; /* not relevant for SW BM */
4550
4551 /* Obtain access to BM resources if enabled and already initialized */
4552 bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4553 if (bm_node) {
4554 pp->bm_priv = mvneta_bm_get(bm_node);
4555 if (pp->bm_priv) {
4556 err = mvneta_bm_port_init(pdev, pp);
4557 if (err < 0) {
4558 dev_info(&pdev->dev,
4559 "use SW buffer management\n");
4560 mvneta_bm_put(pp->bm_priv);
4561 pp->bm_priv = NULL;
4562 }
4563 }
4564 /* Set RX packet offset correction for platforms, whose
4565 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4566 * platforms and 0B for 32-bit ones.
4567 */
4568 pp->rx_offset_correction = max(0,
4569 NET_SKB_PAD -
4570 MVNETA_RX_PKT_OFFSET_CORRECTION);
4571 }
4572 of_node_put(bm_node);
4573
4574 err = mvneta_init(&pdev->dev, pp);
4575 if (err < 0)
4576 goto err_netdev;
4577
4578 err = mvneta_port_power_up(pp, phy_mode);
4579 if (err < 0) {
4580 dev_err(&pdev->dev, "can't power up port\n");
4581 goto err_netdev;
4582 }
4583
4584 /* Armada3700 network controller does not support per-cpu
4585 * operation, so only single NAPI should be initialized.
4586 */
4587 if (pp->neta_armada3700) {
4588 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4589 } else {
4590 for_each_present_cpu(cpu) {
4591 struct mvneta_pcpu_port *port =
4592 per_cpu_ptr(pp->ports, cpu);
4593
4594 netif_napi_add(dev, &port->napi, mvneta_poll,
4595 NAPI_POLL_WEIGHT);
4596 port->pp = pp;
4597 }
4598 }
4599
4600 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_TSO;
4601 dev->hw_features |= dev->features;
4602 dev->vlan_features |= dev->features;
4603 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4604 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4605
4606 /* MTU range: 68 - 9676 */
4607 dev->min_mtu = ETH_MIN_MTU;
4608 /* 9676 == 9700 - 20 and rounding to 8 */
4609 dev->max_mtu = 9676;
4610
4611 err = register_netdev(dev);
4612 if (err < 0) {
4613 dev_err(&pdev->dev, "failed to register\n");
4614 goto err_free_stats;
4615 }
4616
4617 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4618 dev->dev_addr);
4619
4620 platform_set_drvdata(pdev, pp->dev);
4621
4622 return 0;
4623
4624 err_netdev:
4625 unregister_netdev(dev);
4626 if (pp->bm_priv) {
4627 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4628 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4629 1 << pp->id);
4630 mvneta_bm_put(pp->bm_priv);
4631 }
4632 err_free_stats:
4633 free_percpu(pp->stats);
4634 err_free_ports:
4635 free_percpu(pp->ports);
4636 err_clk:
4637 clk_disable_unprepare(pp->clk_bus);
4638 clk_disable_unprepare(pp->clk);
4639 err_free_phylink:
4640 if (pp->phylink)
4641 phylink_destroy(pp->phylink);
4642 err_free_irq:
4643 irq_dispose_mapping(dev->irq);
4644 err_free_netdev:
4645 free_netdev(dev);
4646 return err;
4647 }
4648
4649 /* Device removal routine */
mvneta_remove(struct platform_device * pdev)4650 static int mvneta_remove(struct platform_device *pdev)
4651 {
4652 struct net_device *dev = platform_get_drvdata(pdev);
4653 struct mvneta_port *pp = netdev_priv(dev);
4654
4655 unregister_netdev(dev);
4656 clk_disable_unprepare(pp->clk_bus);
4657 clk_disable_unprepare(pp->clk);
4658 free_percpu(pp->ports);
4659 free_percpu(pp->stats);
4660 irq_dispose_mapping(dev->irq);
4661 phylink_destroy(pp->phylink);
4662 free_netdev(dev);
4663
4664 if (pp->bm_priv) {
4665 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4666 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4667 1 << pp->id);
4668 mvneta_bm_put(pp->bm_priv);
4669 }
4670
4671 return 0;
4672 }
4673
4674 #ifdef CONFIG_PM_SLEEP
mvneta_suspend(struct device * device)4675 static int mvneta_suspend(struct device *device)
4676 {
4677 int queue;
4678 struct net_device *dev = dev_get_drvdata(device);
4679 struct mvneta_port *pp = netdev_priv(dev);
4680
4681 if (!netif_running(dev))
4682 goto clean_exit;
4683
4684 if (!pp->neta_armada3700) {
4685 spin_lock(&pp->lock);
4686 pp->is_stopped = true;
4687 spin_unlock(&pp->lock);
4688
4689 cpuhp_state_remove_instance_nocalls(online_hpstate,
4690 &pp->node_online);
4691 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4692 &pp->node_dead);
4693 }
4694
4695 rtnl_lock();
4696 mvneta_stop_dev(pp);
4697 rtnl_unlock();
4698
4699 for (queue = 0; queue < rxq_number; queue++) {
4700 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4701
4702 mvneta_rxq_drop_pkts(pp, rxq);
4703 }
4704
4705 for (queue = 0; queue < txq_number; queue++) {
4706 struct mvneta_tx_queue *txq = &pp->txqs[queue];
4707
4708 mvneta_txq_hw_deinit(pp, txq);
4709 }
4710
4711 clean_exit:
4712 netif_device_detach(dev);
4713 clk_disable_unprepare(pp->clk_bus);
4714 clk_disable_unprepare(pp->clk);
4715
4716 return 0;
4717 }
4718
mvneta_resume(struct device * device)4719 static int mvneta_resume(struct device *device)
4720 {
4721 struct platform_device *pdev = to_platform_device(device);
4722 struct net_device *dev = dev_get_drvdata(device);
4723 struct mvneta_port *pp = netdev_priv(dev);
4724 int err, queue;
4725
4726 clk_prepare_enable(pp->clk);
4727 if (!IS_ERR(pp->clk_bus))
4728 clk_prepare_enable(pp->clk_bus);
4729 if (pp->dram_target_info || pp->neta_armada3700)
4730 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4731 if (pp->bm_priv) {
4732 err = mvneta_bm_port_init(pdev, pp);
4733 if (err < 0) {
4734 dev_info(&pdev->dev, "use SW buffer management\n");
4735 pp->bm_priv = NULL;
4736 }
4737 }
4738 mvneta_defaults_set(pp);
4739 err = mvneta_port_power_up(pp, pp->phy_interface);
4740 if (err < 0) {
4741 dev_err(device, "can't power up port\n");
4742 return err;
4743 }
4744
4745 netif_device_attach(dev);
4746
4747 if (!netif_running(dev))
4748 return 0;
4749
4750 for (queue = 0; queue < rxq_number; queue++) {
4751 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4752
4753 rxq->next_desc_to_proc = 0;
4754 mvneta_rxq_hw_init(pp, rxq);
4755 }
4756
4757 for (queue = 0; queue < txq_number; queue++) {
4758 struct mvneta_tx_queue *txq = &pp->txqs[queue];
4759
4760 txq->next_desc_to_proc = 0;
4761 mvneta_txq_hw_init(pp, txq);
4762 }
4763
4764 if (!pp->neta_armada3700) {
4765 spin_lock(&pp->lock);
4766 pp->is_stopped = false;
4767 spin_unlock(&pp->lock);
4768 cpuhp_state_add_instance_nocalls(online_hpstate,
4769 &pp->node_online);
4770 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4771 &pp->node_dead);
4772 }
4773
4774 rtnl_lock();
4775 mvneta_start_dev(pp);
4776 rtnl_unlock();
4777 mvneta_set_rx_mode(dev);
4778
4779 return 0;
4780 }
4781 #endif
4782
4783 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
4784
4785 static const struct of_device_id mvneta_match[] = {
4786 { .compatible = "marvell,armada-370-neta" },
4787 { .compatible = "marvell,armada-xp-neta" },
4788 { .compatible = "marvell,armada-3700-neta" },
4789 { }
4790 };
4791 MODULE_DEVICE_TABLE(of, mvneta_match);
4792
4793 static struct platform_driver mvneta_driver = {
4794 .probe = mvneta_probe,
4795 .remove = mvneta_remove,
4796 .driver = {
4797 .name = MVNETA_DRIVER_NAME,
4798 .of_match_table = mvneta_match,
4799 .pm = &mvneta_pm_ops,
4800 },
4801 };
4802
mvneta_driver_init(void)4803 static int __init mvneta_driver_init(void)
4804 {
4805 int ret;
4806
4807 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
4808 mvneta_cpu_online,
4809 mvneta_cpu_down_prepare);
4810 if (ret < 0)
4811 goto out;
4812 online_hpstate = ret;
4813 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
4814 NULL, mvneta_cpu_dead);
4815 if (ret)
4816 goto err_dead;
4817
4818 ret = platform_driver_register(&mvneta_driver);
4819 if (ret)
4820 goto err;
4821 return 0;
4822
4823 err:
4824 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4825 err_dead:
4826 cpuhp_remove_multi_state(online_hpstate);
4827 out:
4828 return ret;
4829 }
4830 module_init(mvneta_driver_init);
4831
mvneta_driver_exit(void)4832 static void __exit mvneta_driver_exit(void)
4833 {
4834 platform_driver_unregister(&mvneta_driver);
4835 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4836 cpuhp_remove_multi_state(online_hpstate);
4837 }
4838 module_exit(mvneta_driver_exit);
4839
4840 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4841 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4842 MODULE_LICENSE("GPL");
4843
4844 module_param(rxq_number, int, 0444);
4845 module_param(txq_number, int, 0444);
4846
4847 module_param(rxq_def, int, 0444);
4848 module_param(rx_copybreak, int, 0644);
4849