1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 *
6 * Right now, I am very wasteful with the buffers. I allocate memory
7 * pages and then divide them into 2K frame buffers. This way I know I
8 * have buffers large enough to hold one frame within one buffer descriptor.
9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10 * will be much more memory efficient and will easily handle lots of
11 * small packets.
12 *
13 * Much better multiple PHY support by Magnus Damm.
14 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 *
16 * Support for FEC controller of ColdFire processors.
17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 *
19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20 * Copyright (c) 2004-2006 Macq Electronique SA.
21 *
22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23 */
24
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/page_pool/helpers.h>
42 #include <net/selftests.h>
43 #include <net/tso.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/icmp.h>
47 #include <linux/spinlock.h>
48 #include <linux/workqueue.h>
49 #include <linux/bitops.h>
50 #include <linux/io.h>
51 #include <linux/irq.h>
52 #include <linux/clk.h>
53 #include <linux/crc32.h>
54 #include <linux/platform_device.h>
55 #include <linux/mdio.h>
56 #include <linux/phy.h>
57 #include <linux/fec.h>
58 #include <linux/of.h>
59 #include <linux/of_device.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/gpio/consumer.h>
66 #include <linux/prefetch.h>
67 #include <linux/mfd/syscon.h>
68 #include <linux/regmap.h>
69 #include <soc/imx/cpuidle.h>
70 #include <linux/filter.h>
71 #include <linux/bpf.h>
72 #include <linux/bpf_trace.h>
73
74 #include <asm/cacheflush.h>
75
76 #include "fec.h"
77
78 static void set_multicast_list(struct net_device *ndev);
79 static void fec_enet_itr_coal_set(struct net_device *ndev);
80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 int cpu, struct xdp_buff *xdp,
82 u32 dma_sync_len);
83
84 #define DRIVER_NAME "fec"
85
86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87
88 /* Pause frame feild and FIFO threshold */
89 #define FEC_ENET_FCE (1 << 5)
90 #define FEC_ENET_RSEM_V 0x84
91 #define FEC_ENET_RSFL_V 16
92 #define FEC_ENET_RAEM_V 0x8
93 #define FEC_ENET_RAFL_V 0x8
94 #define FEC_ENET_OPD_V 0xFFF0
95 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
96
97 #define FEC_ENET_XDP_PASS 0
98 #define FEC_ENET_XDP_CONSUMED BIT(0)
99 #define FEC_ENET_XDP_TX BIT(1)
100 #define FEC_ENET_XDP_REDIR BIT(2)
101
102 struct fec_devinfo {
103 u32 quirks;
104 };
105
106 static const struct fec_devinfo fec_imx25_info = {
107 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
108 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
109 };
110
111 static const struct fec_devinfo fec_imx27_info = {
112 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
113 FEC_QUIRK_HAS_MDIO_C45,
114 };
115
116 static const struct fec_devinfo fec_imx28_info = {
117 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
118 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
119 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
120 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
121 };
122
123 static const struct fec_devinfo fec_imx6q_info = {
124 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
125 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
126 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
127 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
128 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
129 };
130
131 static const struct fec_devinfo fec_mvf600_info = {
132 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
133 FEC_QUIRK_HAS_MDIO_C45,
134 };
135
136 static const struct fec_devinfo fec_imx6x_info = {
137 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
138 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
139 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
140 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
141 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
142 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
143 FEC_QUIRK_HAS_MDIO_C45,
144 };
145
146 static const struct fec_devinfo fec_imx6ul_info = {
147 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
148 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
149 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
150 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
151 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
152 FEC_QUIRK_HAS_MDIO_C45,
153 };
154
155 static const struct fec_devinfo fec_imx8mq_info = {
156 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
157 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
158 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
159 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
160 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
161 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
162 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
163 FEC_QUIRK_HAS_MDIO_C45,
164 };
165
166 static const struct fec_devinfo fec_imx8qm_info = {
167 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
168 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
169 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
170 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
171 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
172 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
173 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
174 };
175
176 static const struct fec_devinfo fec_s32v234_info = {
177 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
178 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
179 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
180 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
181 FEC_QUIRK_HAS_MDIO_C45,
182 };
183
184 static struct platform_device_id fec_devtype[] = {
185 {
186 /* keep it for coldfire */
187 .name = DRIVER_NAME,
188 .driver_data = 0,
189 }, {
190 .name = "imx25-fec",
191 .driver_data = (kernel_ulong_t)&fec_imx25_info,
192 }, {
193 .name = "imx27-fec",
194 .driver_data = (kernel_ulong_t)&fec_imx27_info,
195 }, {
196 .name = "imx28-fec",
197 .driver_data = (kernel_ulong_t)&fec_imx28_info,
198 }, {
199 .name = "imx6q-fec",
200 .driver_data = (kernel_ulong_t)&fec_imx6q_info,
201 }, {
202 .name = "mvf600-fec",
203 .driver_data = (kernel_ulong_t)&fec_mvf600_info,
204 }, {
205 .name = "imx6sx-fec",
206 .driver_data = (kernel_ulong_t)&fec_imx6x_info,
207 }, {
208 .name = "imx6ul-fec",
209 .driver_data = (kernel_ulong_t)&fec_imx6ul_info,
210 }, {
211 .name = "imx8mq-fec",
212 .driver_data = (kernel_ulong_t)&fec_imx8mq_info,
213 }, {
214 .name = "imx8qm-fec",
215 .driver_data = (kernel_ulong_t)&fec_imx8qm_info,
216 }, {
217 .name = "s32v234-fec",
218 .driver_data = (kernel_ulong_t)&fec_s32v234_info,
219 }, {
220 /* sentinel */
221 }
222 };
223 MODULE_DEVICE_TABLE(platform, fec_devtype);
224
225 enum imx_fec_type {
226 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
227 IMX27_FEC, /* runs on i.mx27/35/51 */
228 IMX28_FEC,
229 IMX6Q_FEC,
230 MVF600_FEC,
231 IMX6SX_FEC,
232 IMX6UL_FEC,
233 IMX8MQ_FEC,
234 IMX8QM_FEC,
235 S32V234_FEC,
236 };
237
238 static const struct of_device_id fec_dt_ids[] = {
239 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
240 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
241 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
242 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
243 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
244 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
245 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
246 { .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
247 { .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
248 { .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], },
249 { /* sentinel */ }
250 };
251 MODULE_DEVICE_TABLE(of, fec_dt_ids);
252
253 static unsigned char macaddr[ETH_ALEN];
254 module_param_array(macaddr, byte, NULL, 0);
255 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
256
257 #if defined(CONFIG_M5272)
258 /*
259 * Some hardware gets it MAC address out of local flash memory.
260 * if this is non-zero then assume it is the address to get MAC from.
261 */
262 #if defined(CONFIG_NETtel)
263 #define FEC_FLASHMAC 0xf0006006
264 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
265 #define FEC_FLASHMAC 0xf0006000
266 #elif defined(CONFIG_CANCam)
267 #define FEC_FLASHMAC 0xf0020000
268 #elif defined (CONFIG_M5272C3)
269 #define FEC_FLASHMAC (0xffe04000 + 4)
270 #elif defined(CONFIG_MOD5272)
271 #define FEC_FLASHMAC 0xffc0406b
272 #else
273 #define FEC_FLASHMAC 0
274 #endif
275 #endif /* CONFIG_M5272 */
276
277 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
278 *
279 * 2048 byte skbufs are allocated. However, alignment requirements
280 * varies between FEC variants. Worst case is 64, so round down by 64.
281 */
282 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
283 #define PKT_MINBUF_SIZE 64
284
285 /* FEC receive acceleration */
286 #define FEC_RACC_IPDIS (1 << 1)
287 #define FEC_RACC_PRODIS (1 << 2)
288 #define FEC_RACC_SHIFT16 BIT(7)
289 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
290
291 /* MIB Control Register */
292 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
293
294 /*
295 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
296 * size bits. Other FEC hardware does not, so we need to take that into
297 * account when setting it.
298 */
299 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
300 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
301 defined(CONFIG_ARM64)
302 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
303 #else
304 #define OPT_FRAME_SIZE 0
305 #endif
306
307 /* FEC MII MMFR bits definition */
308 #define FEC_MMFR_ST (1 << 30)
309 #define FEC_MMFR_ST_C45 (0)
310 #define FEC_MMFR_OP_READ (2 << 28)
311 #define FEC_MMFR_OP_READ_C45 (3 << 28)
312 #define FEC_MMFR_OP_WRITE (1 << 28)
313 #define FEC_MMFR_OP_ADDR_WRITE (0)
314 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
315 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
316 #define FEC_MMFR_TA (2 << 16)
317 #define FEC_MMFR_DATA(v) (v & 0xffff)
318 /* FEC ECR bits definition */
319 #define FEC_ECR_MAGICEN (1 << 2)
320 #define FEC_ECR_SLEEP (1 << 3)
321
322 #define FEC_MII_TIMEOUT 30000 /* us */
323
324 /* Transmitter timeout */
325 #define TX_TIMEOUT (2 * HZ)
326
327 #define FEC_PAUSE_FLAG_AUTONEG 0x1
328 #define FEC_PAUSE_FLAG_ENABLE 0x2
329 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
330 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
331 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
332
333 /* Max number of allowed TCP segments for software TSO */
334 #define FEC_MAX_TSO_SEGS 100
335 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
336
337 #define IS_TSO_HEADER(txq, addr) \
338 ((addr >= txq->tso_hdrs_dma) && \
339 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
340
341 static int mii_cnt;
342
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)343 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
344 struct bufdesc_prop *bd)
345 {
346 return (bdp >= bd->last) ? bd->base
347 : (struct bufdesc *)(((void *)bdp) + bd->dsize);
348 }
349
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)350 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
351 struct bufdesc_prop *bd)
352 {
353 return (bdp <= bd->base) ? bd->last
354 : (struct bufdesc *)(((void *)bdp) - bd->dsize);
355 }
356
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)357 static int fec_enet_get_bd_index(struct bufdesc *bdp,
358 struct bufdesc_prop *bd)
359 {
360 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
361 }
362
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)363 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
364 {
365 int entries;
366
367 entries = (((const char *)txq->dirty_tx -
368 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
369
370 return entries >= 0 ? entries : entries + txq->bd.ring_size;
371 }
372
swap_buffer(void * bufaddr,int len)373 static void swap_buffer(void *bufaddr, int len)
374 {
375 int i;
376 unsigned int *buf = bufaddr;
377
378 for (i = 0; i < len; i += 4, buf++)
379 swab32s(buf);
380 }
381
fec_dump(struct net_device * ndev)382 static void fec_dump(struct net_device *ndev)
383 {
384 struct fec_enet_private *fep = netdev_priv(ndev);
385 struct bufdesc *bdp;
386 struct fec_enet_priv_tx_q *txq;
387 int index = 0;
388
389 netdev_info(ndev, "TX ring dump\n");
390 pr_info("Nr SC addr len SKB\n");
391
392 txq = fep->tx_queue[0];
393 bdp = txq->bd.base;
394
395 do {
396 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
397 index,
398 bdp == txq->bd.cur ? 'S' : ' ',
399 bdp == txq->dirty_tx ? 'H' : ' ',
400 fec16_to_cpu(bdp->cbd_sc),
401 fec32_to_cpu(bdp->cbd_bufaddr),
402 fec16_to_cpu(bdp->cbd_datlen),
403 txq->tx_buf[index].buf_p);
404 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
405 index++;
406 } while (bdp != txq->bd.base);
407 }
408
is_ipv4_pkt(struct sk_buff * skb)409 static inline bool is_ipv4_pkt(struct sk_buff *skb)
410 {
411 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
412 }
413
414 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)415 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
416 {
417 /* Only run for packets requiring a checksum. */
418 if (skb->ip_summed != CHECKSUM_PARTIAL)
419 return 0;
420
421 if (unlikely(skb_cow_head(skb, 0)))
422 return -1;
423
424 if (is_ipv4_pkt(skb))
425 ip_hdr(skb)->check = 0;
426 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
427
428 return 0;
429 }
430
431 static int
fec_enet_create_page_pool(struct fec_enet_private * fep,struct fec_enet_priv_rx_q * rxq,int size)432 fec_enet_create_page_pool(struct fec_enet_private *fep,
433 struct fec_enet_priv_rx_q *rxq, int size)
434 {
435 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
436 struct page_pool_params pp_params = {
437 .order = 0,
438 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
439 .pool_size = size,
440 .nid = dev_to_node(&fep->pdev->dev),
441 .dev = &fep->pdev->dev,
442 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
443 .offset = FEC_ENET_XDP_HEADROOM,
444 .max_len = FEC_ENET_RX_FRSIZE,
445 };
446 int err;
447
448 rxq->page_pool = page_pool_create(&pp_params);
449 if (IS_ERR(rxq->page_pool)) {
450 err = PTR_ERR(rxq->page_pool);
451 rxq->page_pool = NULL;
452 return err;
453 }
454
455 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
456 if (err < 0)
457 goto err_free_pp;
458
459 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
460 rxq->page_pool);
461 if (err)
462 goto err_unregister_rxq;
463
464 return 0;
465
466 err_unregister_rxq:
467 xdp_rxq_info_unreg(&rxq->xdp_rxq);
468 err_free_pp:
469 page_pool_destroy(rxq->page_pool);
470 rxq->page_pool = NULL;
471 return err;
472 }
473
474 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)475 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
476 struct sk_buff *skb,
477 struct net_device *ndev)
478 {
479 struct fec_enet_private *fep = netdev_priv(ndev);
480 struct bufdesc *bdp = txq->bd.cur;
481 struct bufdesc_ex *ebdp;
482 int nr_frags = skb_shinfo(skb)->nr_frags;
483 int frag, frag_len;
484 unsigned short status;
485 unsigned int estatus = 0;
486 skb_frag_t *this_frag;
487 unsigned int index;
488 void *bufaddr;
489 dma_addr_t addr;
490 int i;
491
492 for (frag = 0; frag < nr_frags; frag++) {
493 this_frag = &skb_shinfo(skb)->frags[frag];
494 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
495 ebdp = (struct bufdesc_ex *)bdp;
496
497 status = fec16_to_cpu(bdp->cbd_sc);
498 status &= ~BD_ENET_TX_STATS;
499 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
500 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
501
502 /* Handle the last BD specially */
503 if (frag == nr_frags - 1) {
504 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
505 if (fep->bufdesc_ex) {
506 estatus |= BD_ENET_TX_INT;
507 if (unlikely(skb_shinfo(skb)->tx_flags &
508 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
509 estatus |= BD_ENET_TX_TS;
510 }
511 }
512
513 if (fep->bufdesc_ex) {
514 if (fep->quirks & FEC_QUIRK_HAS_AVB)
515 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
516 if (skb->ip_summed == CHECKSUM_PARTIAL)
517 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
518
519 ebdp->cbd_bdu = 0;
520 ebdp->cbd_esc = cpu_to_fec32(estatus);
521 }
522
523 bufaddr = skb_frag_address(this_frag);
524
525 index = fec_enet_get_bd_index(bdp, &txq->bd);
526 if (((unsigned long) bufaddr) & fep->tx_align ||
527 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
528 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
529 bufaddr = txq->tx_bounce[index];
530
531 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
532 swap_buffer(bufaddr, frag_len);
533 }
534
535 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
536 DMA_TO_DEVICE);
537 if (dma_mapping_error(&fep->pdev->dev, addr)) {
538 if (net_ratelimit())
539 netdev_err(ndev, "Tx DMA memory map failed\n");
540 goto dma_mapping_error;
541 }
542
543 bdp->cbd_bufaddr = cpu_to_fec32(addr);
544 bdp->cbd_datlen = cpu_to_fec16(frag_len);
545 /* Make sure the updates to rest of the descriptor are
546 * performed before transferring ownership.
547 */
548 wmb();
549 bdp->cbd_sc = cpu_to_fec16(status);
550 }
551
552 return bdp;
553 dma_mapping_error:
554 bdp = txq->bd.cur;
555 for (i = 0; i < frag; i++) {
556 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
557 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
558 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
559 }
560 return ERR_PTR(-ENOMEM);
561 }
562
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)563 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
564 struct sk_buff *skb, struct net_device *ndev)
565 {
566 struct fec_enet_private *fep = netdev_priv(ndev);
567 int nr_frags = skb_shinfo(skb)->nr_frags;
568 struct bufdesc *bdp, *last_bdp;
569 void *bufaddr;
570 dma_addr_t addr;
571 unsigned short status;
572 unsigned short buflen;
573 unsigned int estatus = 0;
574 unsigned int index;
575 int entries_free;
576
577 entries_free = fec_enet_get_free_txdesc_num(txq);
578 if (entries_free < MAX_SKB_FRAGS + 1) {
579 dev_kfree_skb_any(skb);
580 if (net_ratelimit())
581 netdev_err(ndev, "NOT enough BD for SG!\n");
582 return NETDEV_TX_OK;
583 }
584
585 /* Protocol checksum off-load for TCP and UDP. */
586 if (fec_enet_clear_csum(skb, ndev)) {
587 dev_kfree_skb_any(skb);
588 return NETDEV_TX_OK;
589 }
590
591 /* Fill in a Tx ring entry */
592 bdp = txq->bd.cur;
593 last_bdp = bdp;
594 status = fec16_to_cpu(bdp->cbd_sc);
595 status &= ~BD_ENET_TX_STATS;
596
597 /* Set buffer length and buffer pointer */
598 bufaddr = skb->data;
599 buflen = skb_headlen(skb);
600
601 index = fec_enet_get_bd_index(bdp, &txq->bd);
602 if (((unsigned long) bufaddr) & fep->tx_align ||
603 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
604 memcpy(txq->tx_bounce[index], skb->data, buflen);
605 bufaddr = txq->tx_bounce[index];
606
607 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
608 swap_buffer(bufaddr, buflen);
609 }
610
611 /* Push the data cache so the CPM does not get stale memory data. */
612 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
613 if (dma_mapping_error(&fep->pdev->dev, addr)) {
614 dev_kfree_skb_any(skb);
615 if (net_ratelimit())
616 netdev_err(ndev, "Tx DMA memory map failed\n");
617 return NETDEV_TX_OK;
618 }
619
620 if (nr_frags) {
621 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
622 if (IS_ERR(last_bdp)) {
623 dma_unmap_single(&fep->pdev->dev, addr,
624 buflen, DMA_TO_DEVICE);
625 dev_kfree_skb_any(skb);
626 return NETDEV_TX_OK;
627 }
628 } else {
629 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
630 if (fep->bufdesc_ex) {
631 estatus = BD_ENET_TX_INT;
632 if (unlikely(skb_shinfo(skb)->tx_flags &
633 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
634 estatus |= BD_ENET_TX_TS;
635 }
636 }
637 bdp->cbd_bufaddr = cpu_to_fec32(addr);
638 bdp->cbd_datlen = cpu_to_fec16(buflen);
639
640 if (fep->bufdesc_ex) {
641
642 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
643
644 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
645 fep->hwts_tx_en))
646 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
647
648 if (fep->quirks & FEC_QUIRK_HAS_AVB)
649 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
650
651 if (skb->ip_summed == CHECKSUM_PARTIAL)
652 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
653
654 ebdp->cbd_bdu = 0;
655 ebdp->cbd_esc = cpu_to_fec32(estatus);
656 }
657
658 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
659 /* Save skb pointer */
660 txq->tx_buf[index].buf_p = skb;
661
662 /* Make sure the updates to rest of the descriptor are performed before
663 * transferring ownership.
664 */
665 wmb();
666
667 /* Send it on its way. Tell FEC it's ready, interrupt when done,
668 * it's the last BD of the frame, and to put the CRC on the end.
669 */
670 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
671 bdp->cbd_sc = cpu_to_fec16(status);
672
673 /* If this was the last BD in the ring, start at the beginning again. */
674 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
675
676 skb_tx_timestamp(skb);
677
678 /* Make sure the update to bdp is performed before txq->bd.cur. */
679 wmb();
680 txq->bd.cur = bdp;
681
682 /* Trigger transmission start */
683 writel(0, txq->bd.reg_desc_active);
684
685 return 0;
686 }
687
688 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)689 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
690 struct net_device *ndev,
691 struct bufdesc *bdp, int index, char *data,
692 int size, bool last_tcp, bool is_last)
693 {
694 struct fec_enet_private *fep = netdev_priv(ndev);
695 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
696 unsigned short status;
697 unsigned int estatus = 0;
698 dma_addr_t addr;
699
700 status = fec16_to_cpu(bdp->cbd_sc);
701 status &= ~BD_ENET_TX_STATS;
702
703 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
704
705 if (((unsigned long) data) & fep->tx_align ||
706 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
707 memcpy(txq->tx_bounce[index], data, size);
708 data = txq->tx_bounce[index];
709
710 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
711 swap_buffer(data, size);
712 }
713
714 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
715 if (dma_mapping_error(&fep->pdev->dev, addr)) {
716 dev_kfree_skb_any(skb);
717 if (net_ratelimit())
718 netdev_err(ndev, "Tx DMA memory map failed\n");
719 return NETDEV_TX_OK;
720 }
721
722 bdp->cbd_datlen = cpu_to_fec16(size);
723 bdp->cbd_bufaddr = cpu_to_fec32(addr);
724
725 if (fep->bufdesc_ex) {
726 if (fep->quirks & FEC_QUIRK_HAS_AVB)
727 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
728 if (skb->ip_summed == CHECKSUM_PARTIAL)
729 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
730 ebdp->cbd_bdu = 0;
731 ebdp->cbd_esc = cpu_to_fec32(estatus);
732 }
733
734 /* Handle the last BD specially */
735 if (last_tcp)
736 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
737 if (is_last) {
738 status |= BD_ENET_TX_INTR;
739 if (fep->bufdesc_ex)
740 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
741 }
742
743 bdp->cbd_sc = cpu_to_fec16(status);
744
745 return 0;
746 }
747
748 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)749 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
750 struct sk_buff *skb, struct net_device *ndev,
751 struct bufdesc *bdp, int index)
752 {
753 struct fec_enet_private *fep = netdev_priv(ndev);
754 int hdr_len = skb_tcp_all_headers(skb);
755 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
756 void *bufaddr;
757 unsigned long dmabuf;
758 unsigned short status;
759 unsigned int estatus = 0;
760
761 status = fec16_to_cpu(bdp->cbd_sc);
762 status &= ~BD_ENET_TX_STATS;
763 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
764
765 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
766 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
767 if (((unsigned long)bufaddr) & fep->tx_align ||
768 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
769 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
770 bufaddr = txq->tx_bounce[index];
771
772 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
773 swap_buffer(bufaddr, hdr_len);
774
775 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
776 hdr_len, DMA_TO_DEVICE);
777 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
778 dev_kfree_skb_any(skb);
779 if (net_ratelimit())
780 netdev_err(ndev, "Tx DMA memory map failed\n");
781 return NETDEV_TX_OK;
782 }
783 }
784
785 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
786 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
787
788 if (fep->bufdesc_ex) {
789 if (fep->quirks & FEC_QUIRK_HAS_AVB)
790 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
791 if (skb->ip_summed == CHECKSUM_PARTIAL)
792 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
793 ebdp->cbd_bdu = 0;
794 ebdp->cbd_esc = cpu_to_fec32(estatus);
795 }
796
797 bdp->cbd_sc = cpu_to_fec16(status);
798
799 return 0;
800 }
801
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)802 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
803 struct sk_buff *skb,
804 struct net_device *ndev)
805 {
806 struct fec_enet_private *fep = netdev_priv(ndev);
807 int hdr_len, total_len, data_left;
808 struct bufdesc *bdp = txq->bd.cur;
809 struct tso_t tso;
810 unsigned int index = 0;
811 int ret;
812
813 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
814 dev_kfree_skb_any(skb);
815 if (net_ratelimit())
816 netdev_err(ndev, "NOT enough BD for TSO!\n");
817 return NETDEV_TX_OK;
818 }
819
820 /* Protocol checksum off-load for TCP and UDP. */
821 if (fec_enet_clear_csum(skb, ndev)) {
822 dev_kfree_skb_any(skb);
823 return NETDEV_TX_OK;
824 }
825
826 /* Initialize the TSO handler, and prepare the first payload */
827 hdr_len = tso_start(skb, &tso);
828
829 total_len = skb->len - hdr_len;
830 while (total_len > 0) {
831 char *hdr;
832
833 index = fec_enet_get_bd_index(bdp, &txq->bd);
834 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
835 total_len -= data_left;
836
837 /* prepare packet headers: MAC + IP + TCP */
838 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
839 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
840 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
841 if (ret)
842 goto err_release;
843
844 while (data_left > 0) {
845 int size;
846
847 size = min_t(int, tso.size, data_left);
848 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
849 index = fec_enet_get_bd_index(bdp, &txq->bd);
850 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
851 bdp, index,
852 tso.data, size,
853 size == data_left,
854 total_len == 0);
855 if (ret)
856 goto err_release;
857
858 data_left -= size;
859 tso_build_data(skb, &tso, size);
860 }
861
862 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
863 }
864
865 /* Save skb pointer */
866 txq->tx_buf[index].buf_p = skb;
867
868 skb_tx_timestamp(skb);
869 txq->bd.cur = bdp;
870
871 /* Trigger transmission start */
872 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
873 !readl(txq->bd.reg_desc_active) ||
874 !readl(txq->bd.reg_desc_active) ||
875 !readl(txq->bd.reg_desc_active) ||
876 !readl(txq->bd.reg_desc_active))
877 writel(0, txq->bd.reg_desc_active);
878
879 return 0;
880
881 err_release:
882 /* TODO: Release all used data descriptors for TSO */
883 return ret;
884 }
885
886 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)887 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
888 {
889 struct fec_enet_private *fep = netdev_priv(ndev);
890 int entries_free;
891 unsigned short queue;
892 struct fec_enet_priv_tx_q *txq;
893 struct netdev_queue *nq;
894 int ret;
895
896 queue = skb_get_queue_mapping(skb);
897 txq = fep->tx_queue[queue];
898 nq = netdev_get_tx_queue(ndev, queue);
899
900 if (skb_is_gso(skb))
901 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
902 else
903 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
904 if (ret)
905 return ret;
906
907 entries_free = fec_enet_get_free_txdesc_num(txq);
908 if (entries_free <= txq->tx_stop_threshold)
909 netif_tx_stop_queue(nq);
910
911 return NETDEV_TX_OK;
912 }
913
914 /* Init RX & TX buffer descriptors
915 */
fec_enet_bd_init(struct net_device * dev)916 static void fec_enet_bd_init(struct net_device *dev)
917 {
918 struct fec_enet_private *fep = netdev_priv(dev);
919 struct fec_enet_priv_tx_q *txq;
920 struct fec_enet_priv_rx_q *rxq;
921 struct bufdesc *bdp;
922 unsigned int i;
923 unsigned int q;
924
925 for (q = 0; q < fep->num_rx_queues; q++) {
926 /* Initialize the receive buffer descriptors. */
927 rxq = fep->rx_queue[q];
928 bdp = rxq->bd.base;
929
930 for (i = 0; i < rxq->bd.ring_size; i++) {
931
932 /* Initialize the BD for every fragment in the page. */
933 if (bdp->cbd_bufaddr)
934 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
935 else
936 bdp->cbd_sc = cpu_to_fec16(0);
937 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
938 }
939
940 /* Set the last buffer to wrap */
941 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
942 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
943
944 rxq->bd.cur = rxq->bd.base;
945 }
946
947 for (q = 0; q < fep->num_tx_queues; q++) {
948 /* ...and the same for transmit */
949 txq = fep->tx_queue[q];
950 bdp = txq->bd.base;
951 txq->bd.cur = bdp;
952
953 for (i = 0; i < txq->bd.ring_size; i++) {
954 /* Initialize the BD for every fragment in the page. */
955 bdp->cbd_sc = cpu_to_fec16(0);
956 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
957 if (bdp->cbd_bufaddr &&
958 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
959 dma_unmap_single(&fep->pdev->dev,
960 fec32_to_cpu(bdp->cbd_bufaddr),
961 fec16_to_cpu(bdp->cbd_datlen),
962 DMA_TO_DEVICE);
963 if (txq->tx_buf[i].buf_p)
964 dev_kfree_skb_any(txq->tx_buf[i].buf_p);
965 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
966 if (bdp->cbd_bufaddr)
967 dma_unmap_single(&fep->pdev->dev,
968 fec32_to_cpu(bdp->cbd_bufaddr),
969 fec16_to_cpu(bdp->cbd_datlen),
970 DMA_TO_DEVICE);
971
972 if (txq->tx_buf[i].buf_p)
973 xdp_return_frame(txq->tx_buf[i].buf_p);
974 } else {
975 struct page *page = txq->tx_buf[i].buf_p;
976
977 if (page)
978 page_pool_put_page(page->pp, page, 0, false);
979 }
980
981 txq->tx_buf[i].buf_p = NULL;
982 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
983 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
984 bdp->cbd_bufaddr = cpu_to_fec32(0);
985 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
986 }
987
988 /* Set the last buffer to wrap */
989 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
990 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
991 txq->dirty_tx = bdp;
992 }
993 }
994
fec_enet_active_rxring(struct net_device * ndev)995 static void fec_enet_active_rxring(struct net_device *ndev)
996 {
997 struct fec_enet_private *fep = netdev_priv(ndev);
998 int i;
999
1000 for (i = 0; i < fep->num_rx_queues; i++)
1001 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1002 }
1003
fec_enet_enable_ring(struct net_device * ndev)1004 static void fec_enet_enable_ring(struct net_device *ndev)
1005 {
1006 struct fec_enet_private *fep = netdev_priv(ndev);
1007 struct fec_enet_priv_tx_q *txq;
1008 struct fec_enet_priv_rx_q *rxq;
1009 int i;
1010
1011 for (i = 0; i < fep->num_rx_queues; i++) {
1012 rxq = fep->rx_queue[i];
1013 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1014 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1015
1016 /* enable DMA1/2 */
1017 if (i)
1018 writel(RCMR_MATCHEN | RCMR_CMP(i),
1019 fep->hwp + FEC_RCMR(i));
1020 }
1021
1022 for (i = 0; i < fep->num_tx_queues; i++) {
1023 txq = fep->tx_queue[i];
1024 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1025
1026 /* enable DMA1/2 */
1027 if (i)
1028 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1029 fep->hwp + FEC_DMA_CFG(i));
1030 }
1031 }
1032
1033 /*
1034 * This function is called to start or restart the FEC during a link
1035 * change, transmit timeout, or to reconfigure the FEC. The network
1036 * packet processing for this device must be stopped before this call.
1037 */
1038 static void
fec_restart(struct net_device * ndev)1039 fec_restart(struct net_device *ndev)
1040 {
1041 struct fec_enet_private *fep = netdev_priv(ndev);
1042 u32 temp_mac[2];
1043 u32 rcntl = OPT_FRAME_SIZE | 0x04;
1044 u32 ecntl = 0x2; /* ETHEREN */
1045
1046 /* Whack a reset. We should wait for this.
1047 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1048 * instead of reset MAC itself.
1049 */
1050 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1051 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1052 writel(0, fep->hwp + FEC_ECNTRL);
1053 } else {
1054 writel(1, fep->hwp + FEC_ECNTRL);
1055 udelay(10);
1056 }
1057
1058 /*
1059 * enet-mac reset will reset mac address registers too,
1060 * so need to reconfigure it.
1061 */
1062 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1063 writel((__force u32)cpu_to_be32(temp_mac[0]),
1064 fep->hwp + FEC_ADDR_LOW);
1065 writel((__force u32)cpu_to_be32(temp_mac[1]),
1066 fep->hwp + FEC_ADDR_HIGH);
1067
1068 /* Clear any outstanding interrupt, except MDIO. */
1069 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1070
1071 fec_enet_bd_init(ndev);
1072
1073 fec_enet_enable_ring(ndev);
1074
1075 /* Enable MII mode */
1076 if (fep->full_duplex == DUPLEX_FULL) {
1077 /* FD enable */
1078 writel(0x04, fep->hwp + FEC_X_CNTRL);
1079 } else {
1080 /* No Rcv on Xmit */
1081 rcntl |= 0x02;
1082 writel(0x0, fep->hwp + FEC_X_CNTRL);
1083 }
1084
1085 /* Set MII speed */
1086 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1087
1088 #if !defined(CONFIG_M5272)
1089 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1090 u32 val = readl(fep->hwp + FEC_RACC);
1091
1092 /* align IP header */
1093 val |= FEC_RACC_SHIFT16;
1094 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1095 /* set RX checksum */
1096 val |= FEC_RACC_OPTIONS;
1097 else
1098 val &= ~FEC_RACC_OPTIONS;
1099 writel(val, fep->hwp + FEC_RACC);
1100 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1101 }
1102 #endif
1103
1104 /*
1105 * The phy interface and speed need to get configured
1106 * differently on enet-mac.
1107 */
1108 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1109 /* Enable flow control and length check */
1110 rcntl |= 0x40000000 | 0x00000020;
1111
1112 /* RGMII, RMII or MII */
1113 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1114 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1115 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1116 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1117 rcntl |= (1 << 6);
1118 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1119 rcntl |= (1 << 8);
1120 else
1121 rcntl &= ~(1 << 8);
1122
1123 /* 1G, 100M or 10M */
1124 if (ndev->phydev) {
1125 if (ndev->phydev->speed == SPEED_1000)
1126 ecntl |= (1 << 5);
1127 else if (ndev->phydev->speed == SPEED_100)
1128 rcntl &= ~(1 << 9);
1129 else
1130 rcntl |= (1 << 9);
1131 }
1132 } else {
1133 #ifdef FEC_MIIGSK_ENR
1134 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1135 u32 cfgr;
1136 /* disable the gasket and wait */
1137 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1138 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1139 udelay(1);
1140
1141 /*
1142 * configure the gasket:
1143 * RMII, 50 MHz, no loopback, no echo
1144 * MII, 25 MHz, no loopback, no echo
1145 */
1146 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1147 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1148 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1149 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1150 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1151
1152 /* re-enable the gasket */
1153 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1154 }
1155 #endif
1156 }
1157
1158 #if !defined(CONFIG_M5272)
1159 /* enable pause frame*/
1160 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1161 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1162 ndev->phydev && ndev->phydev->pause)) {
1163 rcntl |= FEC_ENET_FCE;
1164
1165 /* set FIFO threshold parameter to reduce overrun */
1166 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1167 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1168 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1169 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1170
1171 /* OPD */
1172 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1173 } else {
1174 rcntl &= ~FEC_ENET_FCE;
1175 }
1176 #endif /* !defined(CONFIG_M5272) */
1177
1178 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1179
1180 /* Setup multicast filter. */
1181 set_multicast_list(ndev);
1182 #ifndef CONFIG_M5272
1183 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1184 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1185 #endif
1186
1187 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1188 /* enable ENET endian swap */
1189 ecntl |= (1 << 8);
1190 /* enable ENET store and forward mode */
1191 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1192 }
1193
1194 if (fep->bufdesc_ex)
1195 ecntl |= (1 << 4);
1196
1197 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1198 fep->rgmii_txc_dly)
1199 ecntl |= FEC_ENET_TXC_DLY;
1200 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1201 fep->rgmii_rxc_dly)
1202 ecntl |= FEC_ENET_RXC_DLY;
1203
1204 #ifndef CONFIG_M5272
1205 /* Enable the MIB statistic event counters */
1206 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1207 #endif
1208
1209 /* And last, enable the transmit and receive processing */
1210 writel(ecntl, fep->hwp + FEC_ECNTRL);
1211 fec_enet_active_rxring(ndev);
1212
1213 if (fep->bufdesc_ex)
1214 fec_ptp_start_cyclecounter(ndev);
1215
1216 /* Enable interrupts we wish to service */
1217 if (fep->link)
1218 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1219 else
1220 writel(0, fep->hwp + FEC_IMASK);
1221
1222 /* Init the interrupt coalescing */
1223 if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1224 fec_enet_itr_coal_set(ndev);
1225 }
1226
fec_enet_ipc_handle_init(struct fec_enet_private * fep)1227 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1228 {
1229 if (!(of_machine_is_compatible("fsl,imx8qm") ||
1230 of_machine_is_compatible("fsl,imx8qxp") ||
1231 of_machine_is_compatible("fsl,imx8dxl")))
1232 return 0;
1233
1234 return imx_scu_get_handle(&fep->ipc_handle);
1235 }
1236
fec_enet_ipg_stop_set(struct fec_enet_private * fep,bool enabled)1237 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1238 {
1239 struct device_node *np = fep->pdev->dev.of_node;
1240 u32 rsrc_id, val;
1241 int idx;
1242
1243 if (!np || !fep->ipc_handle)
1244 return;
1245
1246 idx = of_alias_get_id(np, "ethernet");
1247 if (idx < 0)
1248 idx = 0;
1249 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1250
1251 val = enabled ? 1 : 0;
1252 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1253 }
1254
fec_enet_stop_mode(struct fec_enet_private * fep,bool enabled)1255 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1256 {
1257 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1258 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1259
1260 if (stop_gpr->gpr) {
1261 if (enabled)
1262 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1263 BIT(stop_gpr->bit),
1264 BIT(stop_gpr->bit));
1265 else
1266 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1267 BIT(stop_gpr->bit), 0);
1268 } else if (pdata && pdata->sleep_mode_enable) {
1269 pdata->sleep_mode_enable(enabled);
1270 } else {
1271 fec_enet_ipg_stop_set(fep, enabled);
1272 }
1273 }
1274
fec_irqs_disable(struct net_device * ndev)1275 static void fec_irqs_disable(struct net_device *ndev)
1276 {
1277 struct fec_enet_private *fep = netdev_priv(ndev);
1278
1279 writel(0, fep->hwp + FEC_IMASK);
1280 }
1281
fec_irqs_disable_except_wakeup(struct net_device * ndev)1282 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1283 {
1284 struct fec_enet_private *fep = netdev_priv(ndev);
1285
1286 writel(0, fep->hwp + FEC_IMASK);
1287 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1288 }
1289
1290 static void
fec_stop(struct net_device * ndev)1291 fec_stop(struct net_device *ndev)
1292 {
1293 struct fec_enet_private *fep = netdev_priv(ndev);
1294 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1295 u32 val;
1296
1297 /* We cannot expect a graceful transmit stop without link !!! */
1298 if (fep->link) {
1299 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1300 udelay(10);
1301 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1302 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1303 }
1304
1305 /* Whack a reset. We should wait for this.
1306 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1307 * instead of reset MAC itself.
1308 */
1309 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1310 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1311 writel(0, fep->hwp + FEC_ECNTRL);
1312 } else {
1313 writel(1, fep->hwp + FEC_ECNTRL);
1314 udelay(10);
1315 }
1316 } else {
1317 val = readl(fep->hwp + FEC_ECNTRL);
1318 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1319 writel(val, fep->hwp + FEC_ECNTRL);
1320 }
1321 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1322 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1323
1324 /* We have to keep ENET enabled to have MII interrupt stay working */
1325 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1326 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1327 writel(2, fep->hwp + FEC_ECNTRL);
1328 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1329 }
1330 }
1331
1332
1333 static void
fec_timeout(struct net_device * ndev,unsigned int txqueue)1334 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1335 {
1336 struct fec_enet_private *fep = netdev_priv(ndev);
1337
1338 fec_dump(ndev);
1339
1340 ndev->stats.tx_errors++;
1341
1342 schedule_work(&fep->tx_timeout_work);
1343 }
1344
fec_enet_timeout_work(struct work_struct * work)1345 static void fec_enet_timeout_work(struct work_struct *work)
1346 {
1347 struct fec_enet_private *fep =
1348 container_of(work, struct fec_enet_private, tx_timeout_work);
1349 struct net_device *ndev = fep->netdev;
1350
1351 rtnl_lock();
1352 if (netif_device_present(ndev) || netif_running(ndev)) {
1353 napi_disable(&fep->napi);
1354 netif_tx_lock_bh(ndev);
1355 fec_restart(ndev);
1356 netif_tx_wake_all_queues(ndev);
1357 netif_tx_unlock_bh(ndev);
1358 napi_enable(&fep->napi);
1359 }
1360 rtnl_unlock();
1361 }
1362
1363 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1364 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1365 struct skb_shared_hwtstamps *hwtstamps)
1366 {
1367 unsigned long flags;
1368 u64 ns;
1369
1370 spin_lock_irqsave(&fep->tmreg_lock, flags);
1371 ns = timecounter_cyc2time(&fep->tc, ts);
1372 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1373
1374 memset(hwtstamps, 0, sizeof(*hwtstamps));
1375 hwtstamps->hwtstamp = ns_to_ktime(ns);
1376 }
1377
1378 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id,int budget)1379 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1380 {
1381 struct fec_enet_private *fep;
1382 struct xdp_frame *xdpf;
1383 struct bufdesc *bdp;
1384 unsigned short status;
1385 struct sk_buff *skb;
1386 struct fec_enet_priv_tx_q *txq;
1387 struct netdev_queue *nq;
1388 int index = 0;
1389 int entries_free;
1390 struct page *page;
1391 int frame_len;
1392
1393 fep = netdev_priv(ndev);
1394
1395 txq = fep->tx_queue[queue_id];
1396 /* get next bdp of dirty_tx */
1397 nq = netdev_get_tx_queue(ndev, queue_id);
1398 bdp = txq->dirty_tx;
1399
1400 /* get next bdp of dirty_tx */
1401 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1402
1403 while (bdp != READ_ONCE(txq->bd.cur)) {
1404 /* Order the load of bd.cur and cbd_sc */
1405 rmb();
1406 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1407 if (status & BD_ENET_TX_READY)
1408 break;
1409
1410 index = fec_enet_get_bd_index(bdp, &txq->bd);
1411
1412 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1413 skb = txq->tx_buf[index].buf_p;
1414 if (bdp->cbd_bufaddr &&
1415 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1416 dma_unmap_single(&fep->pdev->dev,
1417 fec32_to_cpu(bdp->cbd_bufaddr),
1418 fec16_to_cpu(bdp->cbd_datlen),
1419 DMA_TO_DEVICE);
1420 bdp->cbd_bufaddr = cpu_to_fec32(0);
1421 if (!skb)
1422 goto tx_buf_done;
1423 } else {
1424 /* Tx processing cannot call any XDP (or page pool) APIs if
1425 * the "budget" is 0. Because NAPI is called with budget of
1426 * 0 (such as netpoll) indicates we may be in an IRQ context,
1427 * however, we can't use the page pool from IRQ context.
1428 */
1429 if (unlikely(!budget))
1430 break;
1431
1432 if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1433 xdpf = txq->tx_buf[index].buf_p;
1434 if (bdp->cbd_bufaddr)
1435 dma_unmap_single(&fep->pdev->dev,
1436 fec32_to_cpu(bdp->cbd_bufaddr),
1437 fec16_to_cpu(bdp->cbd_datlen),
1438 DMA_TO_DEVICE);
1439 } else {
1440 page = txq->tx_buf[index].buf_p;
1441 }
1442
1443 bdp->cbd_bufaddr = cpu_to_fec32(0);
1444 if (unlikely(!txq->tx_buf[index].buf_p)) {
1445 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1446 goto tx_buf_done;
1447 }
1448
1449 frame_len = fec16_to_cpu(bdp->cbd_datlen);
1450 }
1451
1452 /* Check for errors. */
1453 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1454 BD_ENET_TX_RL | BD_ENET_TX_UN |
1455 BD_ENET_TX_CSL)) {
1456 ndev->stats.tx_errors++;
1457 if (status & BD_ENET_TX_HB) /* No heartbeat */
1458 ndev->stats.tx_heartbeat_errors++;
1459 if (status & BD_ENET_TX_LC) /* Late collision */
1460 ndev->stats.tx_window_errors++;
1461 if (status & BD_ENET_TX_RL) /* Retrans limit */
1462 ndev->stats.tx_aborted_errors++;
1463 if (status & BD_ENET_TX_UN) /* Underrun */
1464 ndev->stats.tx_fifo_errors++;
1465 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1466 ndev->stats.tx_carrier_errors++;
1467 } else {
1468 ndev->stats.tx_packets++;
1469
1470 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1471 ndev->stats.tx_bytes += skb->len;
1472 else
1473 ndev->stats.tx_bytes += frame_len;
1474 }
1475
1476 /* Deferred means some collisions occurred during transmit,
1477 * but we eventually sent the packet OK.
1478 */
1479 if (status & BD_ENET_TX_DEF)
1480 ndev->stats.collisions++;
1481
1482 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1483 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1484 * are to time stamp the packet, so we still need to check time
1485 * stamping enabled flag.
1486 */
1487 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1488 fep->hwts_tx_en) && fep->bufdesc_ex) {
1489 struct skb_shared_hwtstamps shhwtstamps;
1490 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1491
1492 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1493 skb_tstamp_tx(skb, &shhwtstamps);
1494 }
1495
1496 /* Free the sk buffer associated with this last transmit */
1497 napi_consume_skb(skb, budget);
1498 } else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1499 xdp_return_frame_rx_napi(xdpf);
1500 } else { /* recycle pages of XDP_TX frames */
1501 /* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1502 page_pool_put_page(page->pp, page, 0, true);
1503 }
1504
1505 txq->tx_buf[index].buf_p = NULL;
1506 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
1507 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1508
1509 tx_buf_done:
1510 /* Make sure the update to bdp and tx_buf are performed
1511 * before dirty_tx
1512 */
1513 wmb();
1514 txq->dirty_tx = bdp;
1515
1516 /* Update pointer to next buffer descriptor to be transmitted */
1517 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1518
1519 /* Since we have freed up a buffer, the ring is no longer full
1520 */
1521 if (netif_tx_queue_stopped(nq)) {
1522 entries_free = fec_enet_get_free_txdesc_num(txq);
1523 if (entries_free >= txq->tx_wake_threshold)
1524 netif_tx_wake_queue(nq);
1525 }
1526 }
1527
1528 /* ERR006358: Keep the transmitter going */
1529 if (bdp != txq->bd.cur &&
1530 readl(txq->bd.reg_desc_active) == 0)
1531 writel(0, txq->bd.reg_desc_active);
1532 }
1533
fec_enet_tx(struct net_device * ndev,int budget)1534 static void fec_enet_tx(struct net_device *ndev, int budget)
1535 {
1536 struct fec_enet_private *fep = netdev_priv(ndev);
1537 int i;
1538
1539 /* Make sure that AVB queues are processed first. */
1540 for (i = fep->num_tx_queues - 1; i >= 0; i--)
1541 fec_enet_tx_queue(ndev, i, budget);
1542 }
1543
fec_enet_update_cbd(struct fec_enet_priv_rx_q * rxq,struct bufdesc * bdp,int index)1544 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1545 struct bufdesc *bdp, int index)
1546 {
1547 struct page *new_page;
1548 dma_addr_t phys_addr;
1549
1550 new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1551 WARN_ON(!new_page);
1552 rxq->rx_skb_info[index].page = new_page;
1553
1554 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1555 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1556 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1557 }
1558
1559 static u32
fec_enet_run_xdp(struct fec_enet_private * fep,struct bpf_prog * prog,struct xdp_buff * xdp,struct fec_enet_priv_rx_q * rxq,int cpu)1560 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1561 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1562 {
1563 unsigned int sync, len = xdp->data_end - xdp->data;
1564 u32 ret = FEC_ENET_XDP_PASS;
1565 struct page *page;
1566 int err;
1567 u32 act;
1568
1569 act = bpf_prog_run_xdp(prog, xdp);
1570
1571 /* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1572 * max len CPU touch
1573 */
1574 sync = xdp->data_end - xdp->data;
1575 sync = max(sync, len);
1576
1577 switch (act) {
1578 case XDP_PASS:
1579 rxq->stats[RX_XDP_PASS]++;
1580 ret = FEC_ENET_XDP_PASS;
1581 break;
1582
1583 case XDP_REDIRECT:
1584 rxq->stats[RX_XDP_REDIRECT]++;
1585 err = xdp_do_redirect(fep->netdev, xdp, prog);
1586 if (unlikely(err))
1587 goto xdp_err;
1588
1589 ret = FEC_ENET_XDP_REDIR;
1590 break;
1591
1592 case XDP_TX:
1593 rxq->stats[RX_XDP_TX]++;
1594 err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1595 if (unlikely(err)) {
1596 rxq->stats[RX_XDP_TX_ERRORS]++;
1597 goto xdp_err;
1598 }
1599
1600 ret = FEC_ENET_XDP_TX;
1601 break;
1602
1603 default:
1604 bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1605 fallthrough;
1606
1607 case XDP_ABORTED:
1608 fallthrough; /* handle aborts by dropping packet */
1609
1610 case XDP_DROP:
1611 rxq->stats[RX_XDP_DROP]++;
1612 xdp_err:
1613 ret = FEC_ENET_XDP_CONSUMED;
1614 page = virt_to_head_page(xdp->data);
1615 page_pool_put_page(rxq->page_pool, page, sync, true);
1616 if (act != XDP_DROP)
1617 trace_xdp_exception(fep->netdev, prog, act);
1618 break;
1619 }
1620
1621 return ret;
1622 }
1623
1624 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1625 * When we update through the ring, if the next incoming buffer has
1626 * not been given to the system, we just set the empty indicator,
1627 * effectively tossing the packet.
1628 */
1629 static int
fec_enet_rx_queue(struct net_device * ndev,int budget,u16 queue_id)1630 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1631 {
1632 struct fec_enet_private *fep = netdev_priv(ndev);
1633 struct fec_enet_priv_rx_q *rxq;
1634 struct bufdesc *bdp;
1635 unsigned short status;
1636 struct sk_buff *skb;
1637 ushort pkt_len;
1638 __u8 *data;
1639 int pkt_received = 0;
1640 struct bufdesc_ex *ebdp = NULL;
1641 bool vlan_packet_rcvd = false;
1642 u16 vlan_tag;
1643 int index = 0;
1644 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1645 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1646 u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1647 u32 data_start = FEC_ENET_XDP_HEADROOM;
1648 int cpu = smp_processor_id();
1649 struct xdp_buff xdp;
1650 struct page *page;
1651 u32 sub_len = 4;
1652
1653 #if !defined(CONFIG_M5272)
1654 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1655 * FEC_RACC_SHIFT16 is set by default in the probe function.
1656 */
1657 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1658 data_start += 2;
1659 sub_len += 2;
1660 }
1661 #endif
1662
1663 #ifdef CONFIG_M532x
1664 flush_cache_all();
1665 #endif
1666 rxq = fep->rx_queue[queue_id];
1667
1668 /* First, grab all of the stats for the incoming packet.
1669 * These get messed up if we get called due to a busy condition.
1670 */
1671 bdp = rxq->bd.cur;
1672 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1673
1674 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1675
1676 if (pkt_received >= budget)
1677 break;
1678 pkt_received++;
1679
1680 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1681
1682 /* Check for errors. */
1683 status ^= BD_ENET_RX_LAST;
1684 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1685 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1686 BD_ENET_RX_CL)) {
1687 ndev->stats.rx_errors++;
1688 if (status & BD_ENET_RX_OV) {
1689 /* FIFO overrun */
1690 ndev->stats.rx_fifo_errors++;
1691 goto rx_processing_done;
1692 }
1693 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1694 | BD_ENET_RX_LAST)) {
1695 /* Frame too long or too short. */
1696 ndev->stats.rx_length_errors++;
1697 if (status & BD_ENET_RX_LAST)
1698 netdev_err(ndev, "rcv is not +last\n");
1699 }
1700 if (status & BD_ENET_RX_CR) /* CRC Error */
1701 ndev->stats.rx_crc_errors++;
1702 /* Report late collisions as a frame error. */
1703 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1704 ndev->stats.rx_frame_errors++;
1705 goto rx_processing_done;
1706 }
1707
1708 /* Process the incoming frame. */
1709 ndev->stats.rx_packets++;
1710 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1711 ndev->stats.rx_bytes += pkt_len;
1712
1713 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1714 page = rxq->rx_skb_info[index].page;
1715 dma_sync_single_for_cpu(&fep->pdev->dev,
1716 fec32_to_cpu(bdp->cbd_bufaddr),
1717 pkt_len,
1718 DMA_FROM_DEVICE);
1719 prefetch(page_address(page));
1720 fec_enet_update_cbd(rxq, bdp, index);
1721
1722 if (xdp_prog) {
1723 xdp_buff_clear_frags_flag(&xdp);
1724 /* subtract 16bit shift and FCS */
1725 xdp_prepare_buff(&xdp, page_address(page),
1726 data_start, pkt_len - sub_len, false);
1727 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1728 xdp_result |= ret;
1729 if (ret != FEC_ENET_XDP_PASS)
1730 goto rx_processing_done;
1731 }
1732
1733 /* The packet length includes FCS, but we don't want to
1734 * include that when passing upstream as it messes up
1735 * bridging applications.
1736 */
1737 skb = build_skb(page_address(page), PAGE_SIZE);
1738 if (unlikely(!skb)) {
1739 page_pool_recycle_direct(rxq->page_pool, page);
1740 ndev->stats.rx_dropped++;
1741
1742 netdev_err_once(ndev, "build_skb failed!\n");
1743 goto rx_processing_done;
1744 }
1745
1746 skb_reserve(skb, data_start);
1747 skb_put(skb, pkt_len - sub_len);
1748 skb_mark_for_recycle(skb);
1749
1750 if (unlikely(need_swap)) {
1751 data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1752 swap_buffer(data, pkt_len);
1753 }
1754 data = skb->data;
1755
1756 /* Extract the enhanced buffer descriptor */
1757 ebdp = NULL;
1758 if (fep->bufdesc_ex)
1759 ebdp = (struct bufdesc_ex *)bdp;
1760
1761 /* If this is a VLAN packet remove the VLAN Tag */
1762 vlan_packet_rcvd = false;
1763 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1764 fep->bufdesc_ex &&
1765 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1766 /* Push and remove the vlan tag */
1767 struct vlan_hdr *vlan_header =
1768 (struct vlan_hdr *) (data + ETH_HLEN);
1769 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1770
1771 vlan_packet_rcvd = true;
1772
1773 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1774 skb_pull(skb, VLAN_HLEN);
1775 }
1776
1777 skb->protocol = eth_type_trans(skb, ndev);
1778
1779 /* Get receive timestamp from the skb */
1780 if (fep->hwts_rx_en && fep->bufdesc_ex)
1781 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1782 skb_hwtstamps(skb));
1783
1784 if (fep->bufdesc_ex &&
1785 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1786 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1787 /* don't check it */
1788 skb->ip_summed = CHECKSUM_UNNECESSARY;
1789 } else {
1790 skb_checksum_none_assert(skb);
1791 }
1792 }
1793
1794 /* Handle received VLAN packets */
1795 if (vlan_packet_rcvd)
1796 __vlan_hwaccel_put_tag(skb,
1797 htons(ETH_P_8021Q),
1798 vlan_tag);
1799
1800 skb_record_rx_queue(skb, queue_id);
1801 napi_gro_receive(&fep->napi, skb);
1802
1803 rx_processing_done:
1804 /* Clear the status flags for this buffer */
1805 status &= ~BD_ENET_RX_STATS;
1806
1807 /* Mark the buffer empty */
1808 status |= BD_ENET_RX_EMPTY;
1809
1810 if (fep->bufdesc_ex) {
1811 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1812
1813 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1814 ebdp->cbd_prot = 0;
1815 ebdp->cbd_bdu = 0;
1816 }
1817 /* Make sure the updates to rest of the descriptor are
1818 * performed before transferring ownership.
1819 */
1820 wmb();
1821 bdp->cbd_sc = cpu_to_fec16(status);
1822
1823 /* Update BD pointer to next entry */
1824 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1825
1826 /* Doing this here will keep the FEC running while we process
1827 * incoming frames. On a heavily loaded network, we should be
1828 * able to keep up at the expense of system resources.
1829 */
1830 writel(0, rxq->bd.reg_desc_active);
1831 }
1832 rxq->bd.cur = bdp;
1833
1834 if (xdp_result & FEC_ENET_XDP_REDIR)
1835 xdp_do_flush_map();
1836
1837 return pkt_received;
1838 }
1839
fec_enet_rx(struct net_device * ndev,int budget)1840 static int fec_enet_rx(struct net_device *ndev, int budget)
1841 {
1842 struct fec_enet_private *fep = netdev_priv(ndev);
1843 int i, done = 0;
1844
1845 /* Make sure that AVB queues are processed first. */
1846 for (i = fep->num_rx_queues - 1; i >= 0; i--)
1847 done += fec_enet_rx_queue(ndev, budget - done, i);
1848
1849 return done;
1850 }
1851
fec_enet_collect_events(struct fec_enet_private * fep)1852 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1853 {
1854 uint int_events;
1855
1856 int_events = readl(fep->hwp + FEC_IEVENT);
1857
1858 /* Don't clear MDIO events, we poll for those */
1859 int_events &= ~FEC_ENET_MII;
1860
1861 writel(int_events, fep->hwp + FEC_IEVENT);
1862
1863 return int_events != 0;
1864 }
1865
1866 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1867 fec_enet_interrupt(int irq, void *dev_id)
1868 {
1869 struct net_device *ndev = dev_id;
1870 struct fec_enet_private *fep = netdev_priv(ndev);
1871 irqreturn_t ret = IRQ_NONE;
1872
1873 if (fec_enet_collect_events(fep) && fep->link) {
1874 ret = IRQ_HANDLED;
1875
1876 if (napi_schedule_prep(&fep->napi)) {
1877 /* Disable interrupts */
1878 writel(0, fep->hwp + FEC_IMASK);
1879 __napi_schedule(&fep->napi);
1880 }
1881 }
1882
1883 return ret;
1884 }
1885
fec_enet_rx_napi(struct napi_struct * napi,int budget)1886 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1887 {
1888 struct net_device *ndev = napi->dev;
1889 struct fec_enet_private *fep = netdev_priv(ndev);
1890 int done = 0;
1891
1892 do {
1893 done += fec_enet_rx(ndev, budget - done);
1894 fec_enet_tx(ndev, budget);
1895 } while ((done < budget) && fec_enet_collect_events(fep));
1896
1897 if (done < budget) {
1898 napi_complete_done(napi, done);
1899 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1900 }
1901
1902 return done;
1903 }
1904
1905 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)1906 static int fec_get_mac(struct net_device *ndev)
1907 {
1908 struct fec_enet_private *fep = netdev_priv(ndev);
1909 unsigned char *iap, tmpaddr[ETH_ALEN];
1910 int ret;
1911
1912 /*
1913 * try to get mac address in following order:
1914 *
1915 * 1) module parameter via kernel command line in form
1916 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1917 */
1918 iap = macaddr;
1919
1920 /*
1921 * 2) from device tree data
1922 */
1923 if (!is_valid_ether_addr(iap)) {
1924 struct device_node *np = fep->pdev->dev.of_node;
1925 if (np) {
1926 ret = of_get_mac_address(np, tmpaddr);
1927 if (!ret)
1928 iap = tmpaddr;
1929 else if (ret == -EPROBE_DEFER)
1930 return ret;
1931 }
1932 }
1933
1934 /*
1935 * 3) from flash or fuse (via platform data)
1936 */
1937 if (!is_valid_ether_addr(iap)) {
1938 #ifdef CONFIG_M5272
1939 if (FEC_FLASHMAC)
1940 iap = (unsigned char *)FEC_FLASHMAC;
1941 #else
1942 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1943
1944 if (pdata)
1945 iap = (unsigned char *)&pdata->mac;
1946 #endif
1947 }
1948
1949 /*
1950 * 4) FEC mac registers set by bootloader
1951 */
1952 if (!is_valid_ether_addr(iap)) {
1953 *((__be32 *) &tmpaddr[0]) =
1954 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1955 *((__be16 *) &tmpaddr[4]) =
1956 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1957 iap = &tmpaddr[0];
1958 }
1959
1960 /*
1961 * 5) random mac address
1962 */
1963 if (!is_valid_ether_addr(iap)) {
1964 /* Report it and use a random ethernet address instead */
1965 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1966 eth_hw_addr_random(ndev);
1967 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1968 ndev->dev_addr);
1969 return 0;
1970 }
1971
1972 /* Adjust MAC if using macaddr */
1973 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
1974
1975 return 0;
1976 }
1977
1978 /* ------------------------------------------------------------------------- */
1979
1980 /*
1981 * Phy section
1982 */
fec_enet_adjust_link(struct net_device * ndev)1983 static void fec_enet_adjust_link(struct net_device *ndev)
1984 {
1985 struct fec_enet_private *fep = netdev_priv(ndev);
1986 struct phy_device *phy_dev = ndev->phydev;
1987 int status_change = 0;
1988
1989 /*
1990 * If the netdev is down, or is going down, we're not interested
1991 * in link state events, so just mark our idea of the link as down
1992 * and ignore the event.
1993 */
1994 if (!netif_running(ndev) || !netif_device_present(ndev)) {
1995 fep->link = 0;
1996 } else if (phy_dev->link) {
1997 if (!fep->link) {
1998 fep->link = phy_dev->link;
1999 status_change = 1;
2000 }
2001
2002 if (fep->full_duplex != phy_dev->duplex) {
2003 fep->full_duplex = phy_dev->duplex;
2004 status_change = 1;
2005 }
2006
2007 if (phy_dev->speed != fep->speed) {
2008 fep->speed = phy_dev->speed;
2009 status_change = 1;
2010 }
2011
2012 /* if any of the above changed restart the FEC */
2013 if (status_change) {
2014 napi_disable(&fep->napi);
2015 netif_tx_lock_bh(ndev);
2016 fec_restart(ndev);
2017 netif_tx_wake_all_queues(ndev);
2018 netif_tx_unlock_bh(ndev);
2019 napi_enable(&fep->napi);
2020 }
2021 } else {
2022 if (fep->link) {
2023 napi_disable(&fep->napi);
2024 netif_tx_lock_bh(ndev);
2025 fec_stop(ndev);
2026 netif_tx_unlock_bh(ndev);
2027 napi_enable(&fep->napi);
2028 fep->link = phy_dev->link;
2029 status_change = 1;
2030 }
2031 }
2032
2033 if (status_change)
2034 phy_print_status(phy_dev);
2035 }
2036
fec_enet_mdio_wait(struct fec_enet_private * fep)2037 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2038 {
2039 uint ievent;
2040 int ret;
2041
2042 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2043 ievent & FEC_ENET_MII, 2, 30000);
2044
2045 if (!ret)
2046 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2047
2048 return ret;
2049 }
2050
fec_enet_mdio_read_c22(struct mii_bus * bus,int mii_id,int regnum)2051 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2052 {
2053 struct fec_enet_private *fep = bus->priv;
2054 struct device *dev = &fep->pdev->dev;
2055 int ret = 0, frame_start, frame_addr, frame_op;
2056
2057 ret = pm_runtime_resume_and_get(dev);
2058 if (ret < 0)
2059 return ret;
2060
2061 /* C22 read */
2062 frame_op = FEC_MMFR_OP_READ;
2063 frame_start = FEC_MMFR_ST;
2064 frame_addr = regnum;
2065
2066 /* start a read op */
2067 writel(frame_start | frame_op |
2068 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2069 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2070
2071 /* wait for end of transfer */
2072 ret = fec_enet_mdio_wait(fep);
2073 if (ret) {
2074 netdev_err(fep->netdev, "MDIO read timeout\n");
2075 goto out;
2076 }
2077
2078 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2079
2080 out:
2081 pm_runtime_mark_last_busy(dev);
2082 pm_runtime_put_autosuspend(dev);
2083
2084 return ret;
2085 }
2086
fec_enet_mdio_read_c45(struct mii_bus * bus,int mii_id,int devad,int regnum)2087 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2088 int devad, int regnum)
2089 {
2090 struct fec_enet_private *fep = bus->priv;
2091 struct device *dev = &fep->pdev->dev;
2092 int ret = 0, frame_start, frame_op;
2093
2094 ret = pm_runtime_resume_and_get(dev);
2095 if (ret < 0)
2096 return ret;
2097
2098 frame_start = FEC_MMFR_ST_C45;
2099
2100 /* write address */
2101 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2102 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2103 FEC_MMFR_TA | (regnum & 0xFFFF),
2104 fep->hwp + FEC_MII_DATA);
2105
2106 /* wait for end of transfer */
2107 ret = fec_enet_mdio_wait(fep);
2108 if (ret) {
2109 netdev_err(fep->netdev, "MDIO address write timeout\n");
2110 goto out;
2111 }
2112
2113 frame_op = FEC_MMFR_OP_READ_C45;
2114
2115 /* start a read op */
2116 writel(frame_start | frame_op |
2117 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2118 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2119
2120 /* wait for end of transfer */
2121 ret = fec_enet_mdio_wait(fep);
2122 if (ret) {
2123 netdev_err(fep->netdev, "MDIO read timeout\n");
2124 goto out;
2125 }
2126
2127 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2128
2129 out:
2130 pm_runtime_mark_last_busy(dev);
2131 pm_runtime_put_autosuspend(dev);
2132
2133 return ret;
2134 }
2135
fec_enet_mdio_write_c22(struct mii_bus * bus,int mii_id,int regnum,u16 value)2136 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2137 u16 value)
2138 {
2139 struct fec_enet_private *fep = bus->priv;
2140 struct device *dev = &fep->pdev->dev;
2141 int ret, frame_start, frame_addr;
2142
2143 ret = pm_runtime_resume_and_get(dev);
2144 if (ret < 0)
2145 return ret;
2146
2147 /* C22 write */
2148 frame_start = FEC_MMFR_ST;
2149 frame_addr = regnum;
2150
2151 /* start a write op */
2152 writel(frame_start | FEC_MMFR_OP_WRITE |
2153 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2154 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2155 fep->hwp + FEC_MII_DATA);
2156
2157 /* wait for end of transfer */
2158 ret = fec_enet_mdio_wait(fep);
2159 if (ret)
2160 netdev_err(fep->netdev, "MDIO write timeout\n");
2161
2162 pm_runtime_mark_last_busy(dev);
2163 pm_runtime_put_autosuspend(dev);
2164
2165 return ret;
2166 }
2167
fec_enet_mdio_write_c45(struct mii_bus * bus,int mii_id,int devad,int regnum,u16 value)2168 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2169 int devad, int regnum, u16 value)
2170 {
2171 struct fec_enet_private *fep = bus->priv;
2172 struct device *dev = &fep->pdev->dev;
2173 int ret, frame_start;
2174
2175 ret = pm_runtime_resume_and_get(dev);
2176 if (ret < 0)
2177 return ret;
2178
2179 frame_start = FEC_MMFR_ST_C45;
2180
2181 /* write address */
2182 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2183 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2184 FEC_MMFR_TA | (regnum & 0xFFFF),
2185 fep->hwp + FEC_MII_DATA);
2186
2187 /* wait for end of transfer */
2188 ret = fec_enet_mdio_wait(fep);
2189 if (ret) {
2190 netdev_err(fep->netdev, "MDIO address write timeout\n");
2191 goto out;
2192 }
2193
2194 /* start a write op */
2195 writel(frame_start | FEC_MMFR_OP_WRITE |
2196 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2197 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2198 fep->hwp + FEC_MII_DATA);
2199
2200 /* wait for end of transfer */
2201 ret = fec_enet_mdio_wait(fep);
2202 if (ret)
2203 netdev_err(fep->netdev, "MDIO write timeout\n");
2204
2205 out:
2206 pm_runtime_mark_last_busy(dev);
2207 pm_runtime_put_autosuspend(dev);
2208
2209 return ret;
2210 }
2211
fec_enet_phy_reset_after_clk_enable(struct net_device * ndev)2212 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2213 {
2214 struct fec_enet_private *fep = netdev_priv(ndev);
2215 struct phy_device *phy_dev = ndev->phydev;
2216
2217 if (phy_dev) {
2218 phy_reset_after_clk_enable(phy_dev);
2219 } else if (fep->phy_node) {
2220 /*
2221 * If the PHY still is not bound to the MAC, but there is
2222 * OF PHY node and a matching PHY device instance already,
2223 * use the OF PHY node to obtain the PHY device instance,
2224 * and then use that PHY device instance when triggering
2225 * the PHY reset.
2226 */
2227 phy_dev = of_phy_find_device(fep->phy_node);
2228 phy_reset_after_clk_enable(phy_dev);
2229 put_device(&phy_dev->mdio.dev);
2230 }
2231 }
2232
fec_enet_clk_enable(struct net_device * ndev,bool enable)2233 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2234 {
2235 struct fec_enet_private *fep = netdev_priv(ndev);
2236 int ret;
2237
2238 if (enable) {
2239 ret = clk_prepare_enable(fep->clk_enet_out);
2240 if (ret)
2241 return ret;
2242
2243 if (fep->clk_ptp) {
2244 mutex_lock(&fep->ptp_clk_mutex);
2245 ret = clk_prepare_enable(fep->clk_ptp);
2246 if (ret) {
2247 mutex_unlock(&fep->ptp_clk_mutex);
2248 goto failed_clk_ptp;
2249 } else {
2250 fep->ptp_clk_on = true;
2251 }
2252 mutex_unlock(&fep->ptp_clk_mutex);
2253 }
2254
2255 ret = clk_prepare_enable(fep->clk_ref);
2256 if (ret)
2257 goto failed_clk_ref;
2258
2259 ret = clk_prepare_enable(fep->clk_2x_txclk);
2260 if (ret)
2261 goto failed_clk_2x_txclk;
2262
2263 fec_enet_phy_reset_after_clk_enable(ndev);
2264 } else {
2265 clk_disable_unprepare(fep->clk_enet_out);
2266 if (fep->clk_ptp) {
2267 mutex_lock(&fep->ptp_clk_mutex);
2268 clk_disable_unprepare(fep->clk_ptp);
2269 fep->ptp_clk_on = false;
2270 mutex_unlock(&fep->ptp_clk_mutex);
2271 }
2272 clk_disable_unprepare(fep->clk_ref);
2273 clk_disable_unprepare(fep->clk_2x_txclk);
2274 }
2275
2276 return 0;
2277
2278 failed_clk_2x_txclk:
2279 if (fep->clk_ref)
2280 clk_disable_unprepare(fep->clk_ref);
2281 failed_clk_ref:
2282 if (fep->clk_ptp) {
2283 mutex_lock(&fep->ptp_clk_mutex);
2284 clk_disable_unprepare(fep->clk_ptp);
2285 fep->ptp_clk_on = false;
2286 mutex_unlock(&fep->ptp_clk_mutex);
2287 }
2288 failed_clk_ptp:
2289 clk_disable_unprepare(fep->clk_enet_out);
2290
2291 return ret;
2292 }
2293
fec_enet_parse_rgmii_delay(struct fec_enet_private * fep,struct device_node * np)2294 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2295 struct device_node *np)
2296 {
2297 u32 rgmii_tx_delay, rgmii_rx_delay;
2298
2299 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2300 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2301 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2302 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2303 return -EINVAL;
2304 } else if (rgmii_tx_delay == 2000) {
2305 fep->rgmii_txc_dly = true;
2306 }
2307 }
2308
2309 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2310 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2311 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2312 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2313 return -EINVAL;
2314 } else if (rgmii_rx_delay == 2000) {
2315 fep->rgmii_rxc_dly = true;
2316 }
2317 }
2318
2319 return 0;
2320 }
2321
fec_enet_mii_probe(struct net_device * ndev)2322 static int fec_enet_mii_probe(struct net_device *ndev)
2323 {
2324 struct fec_enet_private *fep = netdev_priv(ndev);
2325 struct phy_device *phy_dev = NULL;
2326 char mdio_bus_id[MII_BUS_ID_SIZE];
2327 char phy_name[MII_BUS_ID_SIZE + 3];
2328 int phy_id;
2329 int dev_id = fep->dev_id;
2330
2331 if (fep->phy_node) {
2332 phy_dev = of_phy_connect(ndev, fep->phy_node,
2333 &fec_enet_adjust_link, 0,
2334 fep->phy_interface);
2335 if (!phy_dev) {
2336 netdev_err(ndev, "Unable to connect to phy\n");
2337 return -ENODEV;
2338 }
2339 } else {
2340 /* check for attached phy */
2341 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2342 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2343 continue;
2344 if (dev_id--)
2345 continue;
2346 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2347 break;
2348 }
2349
2350 if (phy_id >= PHY_MAX_ADDR) {
2351 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2352 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2353 phy_id = 0;
2354 }
2355
2356 snprintf(phy_name, sizeof(phy_name),
2357 PHY_ID_FMT, mdio_bus_id, phy_id);
2358 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2359 fep->phy_interface);
2360 }
2361
2362 if (IS_ERR(phy_dev)) {
2363 netdev_err(ndev, "could not attach to PHY\n");
2364 return PTR_ERR(phy_dev);
2365 }
2366
2367 /* mask with MAC supported features */
2368 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2369 phy_set_max_speed(phy_dev, 1000);
2370 phy_remove_link_mode(phy_dev,
2371 ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2372 #if !defined(CONFIG_M5272)
2373 phy_support_sym_pause(phy_dev);
2374 #endif
2375 }
2376 else
2377 phy_set_max_speed(phy_dev, 100);
2378
2379 fep->link = 0;
2380 fep->full_duplex = 0;
2381
2382 phy_dev->mac_managed_pm = true;
2383
2384 phy_attached_info(phy_dev);
2385
2386 return 0;
2387 }
2388
fec_enet_mii_init(struct platform_device * pdev)2389 static int fec_enet_mii_init(struct platform_device *pdev)
2390 {
2391 static struct mii_bus *fec0_mii_bus;
2392 struct net_device *ndev = platform_get_drvdata(pdev);
2393 struct fec_enet_private *fep = netdev_priv(ndev);
2394 bool suppress_preamble = false;
2395 struct device_node *node;
2396 int err = -ENXIO;
2397 u32 mii_speed, holdtime;
2398 u32 bus_freq;
2399
2400 /*
2401 * The i.MX28 dual fec interfaces are not equal.
2402 * Here are the differences:
2403 *
2404 * - fec0 supports MII & RMII modes while fec1 only supports RMII
2405 * - fec0 acts as the 1588 time master while fec1 is slave
2406 * - external phys can only be configured by fec0
2407 *
2408 * That is to say fec1 can not work independently. It only works
2409 * when fec0 is working. The reason behind this design is that the
2410 * second interface is added primarily for Switch mode.
2411 *
2412 * Because of the last point above, both phys are attached on fec0
2413 * mdio interface in board design, and need to be configured by
2414 * fec0 mii_bus.
2415 */
2416 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2417 /* fec1 uses fec0 mii_bus */
2418 if (mii_cnt && fec0_mii_bus) {
2419 fep->mii_bus = fec0_mii_bus;
2420 mii_cnt++;
2421 return 0;
2422 }
2423 return -ENOENT;
2424 }
2425
2426 bus_freq = 2500000; /* 2.5MHz by default */
2427 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2428 if (node) {
2429 of_property_read_u32(node, "clock-frequency", &bus_freq);
2430 suppress_preamble = of_property_read_bool(node,
2431 "suppress-preamble");
2432 }
2433
2434 /*
2435 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2436 *
2437 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2438 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2439 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2440 * document.
2441 */
2442 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2443 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2444 mii_speed--;
2445 if (mii_speed > 63) {
2446 dev_err(&pdev->dev,
2447 "fec clock (%lu) too fast to get right mii speed\n",
2448 clk_get_rate(fep->clk_ipg));
2449 err = -EINVAL;
2450 goto err_out;
2451 }
2452
2453 /*
2454 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2455 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2456 * versions are RAZ there, so just ignore the difference and write the
2457 * register always.
2458 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2459 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2460 * output.
2461 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2462 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2463 * holdtime cannot result in a value greater than 3.
2464 */
2465 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2466
2467 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2468
2469 if (suppress_preamble)
2470 fep->phy_speed |= BIT(7);
2471
2472 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2473 /* Clear MMFR to avoid to generate MII event by writing MSCR.
2474 * MII event generation condition:
2475 * - writing MSCR:
2476 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2477 * mscr_reg_data_in[7:0] != 0
2478 * - writing MMFR:
2479 * - mscr[7:0]_not_zero
2480 */
2481 writel(0, fep->hwp + FEC_MII_DATA);
2482 }
2483
2484 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2485
2486 /* Clear any pending transaction complete indication */
2487 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2488
2489 fep->mii_bus = mdiobus_alloc();
2490 if (fep->mii_bus == NULL) {
2491 err = -ENOMEM;
2492 goto err_out;
2493 }
2494
2495 fep->mii_bus->name = "fec_enet_mii_bus";
2496 fep->mii_bus->read = fec_enet_mdio_read_c22;
2497 fep->mii_bus->write = fec_enet_mdio_write_c22;
2498 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2499 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2500 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2501 }
2502 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2503 pdev->name, fep->dev_id + 1);
2504 fep->mii_bus->priv = fep;
2505 fep->mii_bus->parent = &pdev->dev;
2506
2507 err = of_mdiobus_register(fep->mii_bus, node);
2508 if (err)
2509 goto err_out_free_mdiobus;
2510 of_node_put(node);
2511
2512 mii_cnt++;
2513
2514 /* save fec0 mii_bus */
2515 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2516 fec0_mii_bus = fep->mii_bus;
2517
2518 return 0;
2519
2520 err_out_free_mdiobus:
2521 mdiobus_free(fep->mii_bus);
2522 err_out:
2523 of_node_put(node);
2524 return err;
2525 }
2526
fec_enet_mii_remove(struct fec_enet_private * fep)2527 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2528 {
2529 if (--mii_cnt == 0) {
2530 mdiobus_unregister(fep->mii_bus);
2531 mdiobus_free(fep->mii_bus);
2532 }
2533 }
2534
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2535 static void fec_enet_get_drvinfo(struct net_device *ndev,
2536 struct ethtool_drvinfo *info)
2537 {
2538 struct fec_enet_private *fep = netdev_priv(ndev);
2539
2540 strscpy(info->driver, fep->pdev->dev.driver->name,
2541 sizeof(info->driver));
2542 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2543 }
2544
fec_enet_get_regs_len(struct net_device * ndev)2545 static int fec_enet_get_regs_len(struct net_device *ndev)
2546 {
2547 struct fec_enet_private *fep = netdev_priv(ndev);
2548 struct resource *r;
2549 int s = 0;
2550
2551 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2552 if (r)
2553 s = resource_size(r);
2554
2555 return s;
2556 }
2557
2558 /* List of registers that can be safety be read to dump them with ethtool */
2559 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2560 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2561 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2562 static __u32 fec_enet_register_version = 2;
2563 static u32 fec_enet_register_offset[] = {
2564 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2565 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2566 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2567 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2568 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2569 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2570 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2571 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2572 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2573 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2574 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2575 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2576 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2577 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2578 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2579 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2580 RMON_T_P_GTE2048, RMON_T_OCTETS,
2581 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2582 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2583 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2584 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2585 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2586 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2587 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2588 RMON_R_P_GTE2048, RMON_R_OCTETS,
2589 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2590 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2591 };
2592 /* for i.MX6ul */
2593 static u32 fec_enet_register_offset_6ul[] = {
2594 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2595 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2596 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2597 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2598 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2599 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2600 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2601 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2602 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2603 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2604 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2605 RMON_T_P_GTE2048, RMON_T_OCTETS,
2606 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2607 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2608 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2609 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2610 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2611 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2612 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2613 RMON_R_P_GTE2048, RMON_R_OCTETS,
2614 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2615 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2616 };
2617 #else
2618 static __u32 fec_enet_register_version = 1;
2619 static u32 fec_enet_register_offset[] = {
2620 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2621 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2622 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2623 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2624 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2625 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2626 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2627 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2628 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2629 };
2630 #endif
2631
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2632 static void fec_enet_get_regs(struct net_device *ndev,
2633 struct ethtool_regs *regs, void *regbuf)
2634 {
2635 struct fec_enet_private *fep = netdev_priv(ndev);
2636 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2637 struct device *dev = &fep->pdev->dev;
2638 u32 *buf = (u32 *)regbuf;
2639 u32 i, off;
2640 int ret;
2641 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2642 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2643 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2644 u32 *reg_list;
2645 u32 reg_cnt;
2646
2647 if (!of_machine_is_compatible("fsl,imx6ul")) {
2648 reg_list = fec_enet_register_offset;
2649 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2650 } else {
2651 reg_list = fec_enet_register_offset_6ul;
2652 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2653 }
2654 #else
2655 /* coldfire */
2656 static u32 *reg_list = fec_enet_register_offset;
2657 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2658 #endif
2659 ret = pm_runtime_resume_and_get(dev);
2660 if (ret < 0)
2661 return;
2662
2663 regs->version = fec_enet_register_version;
2664
2665 memset(buf, 0, regs->len);
2666
2667 for (i = 0; i < reg_cnt; i++) {
2668 off = reg_list[i];
2669
2670 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2671 !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2672 continue;
2673
2674 off >>= 2;
2675 buf[off] = readl(&theregs[off]);
2676 }
2677
2678 pm_runtime_mark_last_busy(dev);
2679 pm_runtime_put_autosuspend(dev);
2680 }
2681
fec_enet_get_ts_info(struct net_device * ndev,struct ethtool_ts_info * info)2682 static int fec_enet_get_ts_info(struct net_device *ndev,
2683 struct ethtool_ts_info *info)
2684 {
2685 struct fec_enet_private *fep = netdev_priv(ndev);
2686
2687 if (fep->bufdesc_ex) {
2688
2689 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2690 SOF_TIMESTAMPING_RX_SOFTWARE |
2691 SOF_TIMESTAMPING_SOFTWARE |
2692 SOF_TIMESTAMPING_TX_HARDWARE |
2693 SOF_TIMESTAMPING_RX_HARDWARE |
2694 SOF_TIMESTAMPING_RAW_HARDWARE;
2695 if (fep->ptp_clock)
2696 info->phc_index = ptp_clock_index(fep->ptp_clock);
2697 else
2698 info->phc_index = -1;
2699
2700 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2701 (1 << HWTSTAMP_TX_ON);
2702
2703 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2704 (1 << HWTSTAMP_FILTER_ALL);
2705 return 0;
2706 } else {
2707 return ethtool_op_get_ts_info(ndev, info);
2708 }
2709 }
2710
2711 #if !defined(CONFIG_M5272)
2712
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2713 static void fec_enet_get_pauseparam(struct net_device *ndev,
2714 struct ethtool_pauseparam *pause)
2715 {
2716 struct fec_enet_private *fep = netdev_priv(ndev);
2717
2718 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2719 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2720 pause->rx_pause = pause->tx_pause;
2721 }
2722
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2723 static int fec_enet_set_pauseparam(struct net_device *ndev,
2724 struct ethtool_pauseparam *pause)
2725 {
2726 struct fec_enet_private *fep = netdev_priv(ndev);
2727
2728 if (!ndev->phydev)
2729 return -ENODEV;
2730
2731 if (pause->tx_pause != pause->rx_pause) {
2732 netdev_info(ndev,
2733 "hardware only support enable/disable both tx and rx");
2734 return -EINVAL;
2735 }
2736
2737 fep->pause_flag = 0;
2738
2739 /* tx pause must be same as rx pause */
2740 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2741 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2742
2743 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2744 pause->autoneg);
2745
2746 if (pause->autoneg) {
2747 if (netif_running(ndev))
2748 fec_stop(ndev);
2749 phy_start_aneg(ndev->phydev);
2750 }
2751 if (netif_running(ndev)) {
2752 napi_disable(&fep->napi);
2753 netif_tx_lock_bh(ndev);
2754 fec_restart(ndev);
2755 netif_tx_wake_all_queues(ndev);
2756 netif_tx_unlock_bh(ndev);
2757 napi_enable(&fep->napi);
2758 }
2759
2760 return 0;
2761 }
2762
2763 static const struct fec_stat {
2764 char name[ETH_GSTRING_LEN];
2765 u16 offset;
2766 } fec_stats[] = {
2767 /* RMON TX */
2768 { "tx_dropped", RMON_T_DROP },
2769 { "tx_packets", RMON_T_PACKETS },
2770 { "tx_broadcast", RMON_T_BC_PKT },
2771 { "tx_multicast", RMON_T_MC_PKT },
2772 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2773 { "tx_undersize", RMON_T_UNDERSIZE },
2774 { "tx_oversize", RMON_T_OVERSIZE },
2775 { "tx_fragment", RMON_T_FRAG },
2776 { "tx_jabber", RMON_T_JAB },
2777 { "tx_collision", RMON_T_COL },
2778 { "tx_64byte", RMON_T_P64 },
2779 { "tx_65to127byte", RMON_T_P65TO127 },
2780 { "tx_128to255byte", RMON_T_P128TO255 },
2781 { "tx_256to511byte", RMON_T_P256TO511 },
2782 { "tx_512to1023byte", RMON_T_P512TO1023 },
2783 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2784 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2785 { "tx_octets", RMON_T_OCTETS },
2786
2787 /* IEEE TX */
2788 { "IEEE_tx_drop", IEEE_T_DROP },
2789 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2790 { "IEEE_tx_1col", IEEE_T_1COL },
2791 { "IEEE_tx_mcol", IEEE_T_MCOL },
2792 { "IEEE_tx_def", IEEE_T_DEF },
2793 { "IEEE_tx_lcol", IEEE_T_LCOL },
2794 { "IEEE_tx_excol", IEEE_T_EXCOL },
2795 { "IEEE_tx_macerr", IEEE_T_MACERR },
2796 { "IEEE_tx_cserr", IEEE_T_CSERR },
2797 { "IEEE_tx_sqe", IEEE_T_SQE },
2798 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2799 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2800
2801 /* RMON RX */
2802 { "rx_packets", RMON_R_PACKETS },
2803 { "rx_broadcast", RMON_R_BC_PKT },
2804 { "rx_multicast", RMON_R_MC_PKT },
2805 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2806 { "rx_undersize", RMON_R_UNDERSIZE },
2807 { "rx_oversize", RMON_R_OVERSIZE },
2808 { "rx_fragment", RMON_R_FRAG },
2809 { "rx_jabber", RMON_R_JAB },
2810 { "rx_64byte", RMON_R_P64 },
2811 { "rx_65to127byte", RMON_R_P65TO127 },
2812 { "rx_128to255byte", RMON_R_P128TO255 },
2813 { "rx_256to511byte", RMON_R_P256TO511 },
2814 { "rx_512to1023byte", RMON_R_P512TO1023 },
2815 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2816 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2817 { "rx_octets", RMON_R_OCTETS },
2818
2819 /* IEEE RX */
2820 { "IEEE_rx_drop", IEEE_R_DROP },
2821 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2822 { "IEEE_rx_crc", IEEE_R_CRC },
2823 { "IEEE_rx_align", IEEE_R_ALIGN },
2824 { "IEEE_rx_macerr", IEEE_R_MACERR },
2825 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2826 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2827 };
2828
2829 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2830
2831 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2832 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */
2833 "rx_xdp_pass", /* RX_XDP_PASS, */
2834 "rx_xdp_drop", /* RX_XDP_DROP, */
2835 "rx_xdp_tx", /* RX_XDP_TX, */
2836 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */
2837 "tx_xdp_xmit", /* TX_XDP_XMIT, */
2838 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */
2839 };
2840
fec_enet_update_ethtool_stats(struct net_device * dev)2841 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2842 {
2843 struct fec_enet_private *fep = netdev_priv(dev);
2844 int i;
2845
2846 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2847 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2848 }
2849
fec_enet_get_xdp_stats(struct fec_enet_private * fep,u64 * data)2850 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2851 {
2852 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2853 struct fec_enet_priv_rx_q *rxq;
2854 int i, j;
2855
2856 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2857 rxq = fep->rx_queue[i];
2858
2859 for (j = 0; j < XDP_STATS_TOTAL; j++)
2860 xdp_stats[j] += rxq->stats[j];
2861 }
2862
2863 memcpy(data, xdp_stats, sizeof(xdp_stats));
2864 }
2865
fec_enet_page_pool_stats(struct fec_enet_private * fep,u64 * data)2866 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2867 {
2868 #ifdef CONFIG_PAGE_POOL_STATS
2869 struct page_pool_stats stats = {};
2870 struct fec_enet_priv_rx_q *rxq;
2871 int i;
2872
2873 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2874 rxq = fep->rx_queue[i];
2875
2876 if (!rxq->page_pool)
2877 continue;
2878
2879 page_pool_get_stats(rxq->page_pool, &stats);
2880 }
2881
2882 page_pool_ethtool_stats_get(data, &stats);
2883 #endif
2884 }
2885
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)2886 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2887 struct ethtool_stats *stats, u64 *data)
2888 {
2889 struct fec_enet_private *fep = netdev_priv(dev);
2890
2891 if (netif_running(dev))
2892 fec_enet_update_ethtool_stats(dev);
2893
2894 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2895 data += FEC_STATS_SIZE / sizeof(u64);
2896
2897 fec_enet_get_xdp_stats(fep, data);
2898 data += XDP_STATS_TOTAL;
2899
2900 fec_enet_page_pool_stats(fep, data);
2901 }
2902
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2903 static void fec_enet_get_strings(struct net_device *netdev,
2904 u32 stringset, u8 *data)
2905 {
2906 int i;
2907 switch (stringset) {
2908 case ETH_SS_STATS:
2909 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2910 memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN);
2911 data += ETH_GSTRING_LEN;
2912 }
2913 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2914 strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN);
2915 data += ETH_GSTRING_LEN;
2916 }
2917 page_pool_ethtool_stats_get_strings(data);
2918
2919 break;
2920 case ETH_SS_TEST:
2921 net_selftest_get_strings(data);
2922 break;
2923 }
2924 }
2925
fec_enet_get_sset_count(struct net_device * dev,int sset)2926 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2927 {
2928 int count;
2929
2930 switch (sset) {
2931 case ETH_SS_STATS:
2932 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
2933 count += page_pool_ethtool_stats_get_count();
2934 return count;
2935
2936 case ETH_SS_TEST:
2937 return net_selftest_get_count();
2938 default:
2939 return -EOPNOTSUPP;
2940 }
2941 }
2942
fec_enet_clear_ethtool_stats(struct net_device * dev)2943 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2944 {
2945 struct fec_enet_private *fep = netdev_priv(dev);
2946 struct fec_enet_priv_rx_q *rxq;
2947 int i, j;
2948
2949 /* Disable MIB statistics counters */
2950 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2951
2952 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2953 writel(0, fep->hwp + fec_stats[i].offset);
2954
2955 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2956 rxq = fep->rx_queue[i];
2957 for (j = 0; j < XDP_STATS_TOTAL; j++)
2958 rxq->stats[j] = 0;
2959 }
2960
2961 /* Don't disable MIB statistics counters */
2962 writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2963 }
2964
2965 #else /* !defined(CONFIG_M5272) */
2966 #define FEC_STATS_SIZE 0
fec_enet_update_ethtool_stats(struct net_device * dev)2967 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2968 {
2969 }
2970
fec_enet_clear_ethtool_stats(struct net_device * dev)2971 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2972 {
2973 }
2974 #endif /* !defined(CONFIG_M5272) */
2975
2976 /* ITR clock source is enet system clock (clk_ahb).
2977 * TCTT unit is cycle_ns * 64 cycle
2978 * So, the ICTT value = X us / (cycle_ns * 64)
2979 */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)2980 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2981 {
2982 struct fec_enet_private *fep = netdev_priv(ndev);
2983
2984 return us * (fep->itr_clk_rate / 64000) / 1000;
2985 }
2986
2987 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)2988 static void fec_enet_itr_coal_set(struct net_device *ndev)
2989 {
2990 struct fec_enet_private *fep = netdev_priv(ndev);
2991 int rx_itr, tx_itr;
2992
2993 /* Must be greater than zero to avoid unpredictable behavior */
2994 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2995 !fep->tx_time_itr || !fep->tx_pkts_itr)
2996 return;
2997
2998 /* Select enet system clock as Interrupt Coalescing
2999 * timer Clock Source
3000 */
3001 rx_itr = FEC_ITR_CLK_SEL;
3002 tx_itr = FEC_ITR_CLK_SEL;
3003
3004 /* set ICFT and ICTT */
3005 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3006 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3007 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3008 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3009
3010 rx_itr |= FEC_ITR_EN;
3011 tx_itr |= FEC_ITR_EN;
3012
3013 writel(tx_itr, fep->hwp + FEC_TXIC0);
3014 writel(rx_itr, fep->hwp + FEC_RXIC0);
3015 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3016 writel(tx_itr, fep->hwp + FEC_TXIC1);
3017 writel(rx_itr, fep->hwp + FEC_RXIC1);
3018 writel(tx_itr, fep->hwp + FEC_TXIC2);
3019 writel(rx_itr, fep->hwp + FEC_RXIC2);
3020 }
3021 }
3022
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3023 static int fec_enet_get_coalesce(struct net_device *ndev,
3024 struct ethtool_coalesce *ec,
3025 struct kernel_ethtool_coalesce *kernel_coal,
3026 struct netlink_ext_ack *extack)
3027 {
3028 struct fec_enet_private *fep = netdev_priv(ndev);
3029
3030 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3031 return -EOPNOTSUPP;
3032
3033 ec->rx_coalesce_usecs = fep->rx_time_itr;
3034 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3035
3036 ec->tx_coalesce_usecs = fep->tx_time_itr;
3037 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3038
3039 return 0;
3040 }
3041
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3042 static int fec_enet_set_coalesce(struct net_device *ndev,
3043 struct ethtool_coalesce *ec,
3044 struct kernel_ethtool_coalesce *kernel_coal,
3045 struct netlink_ext_ack *extack)
3046 {
3047 struct fec_enet_private *fep = netdev_priv(ndev);
3048 struct device *dev = &fep->pdev->dev;
3049 unsigned int cycle;
3050
3051 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3052 return -EOPNOTSUPP;
3053
3054 if (ec->rx_max_coalesced_frames > 255) {
3055 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3056 return -EINVAL;
3057 }
3058
3059 if (ec->tx_max_coalesced_frames > 255) {
3060 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3061 return -EINVAL;
3062 }
3063
3064 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3065 if (cycle > 0xFFFF) {
3066 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3067 return -EINVAL;
3068 }
3069
3070 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3071 if (cycle > 0xFFFF) {
3072 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3073 return -EINVAL;
3074 }
3075
3076 fep->rx_time_itr = ec->rx_coalesce_usecs;
3077 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3078
3079 fep->tx_time_itr = ec->tx_coalesce_usecs;
3080 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3081
3082 fec_enet_itr_coal_set(ndev);
3083
3084 return 0;
3085 }
3086
3087 /* LPI Sleep Ts count base on tx clk (clk_ref).
3088 * The lpi sleep cnt value = X us / (cycle_ns).
3089 */
fec_enet_us_to_tx_cycle(struct net_device * ndev,int us)3090 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
3091 {
3092 struct fec_enet_private *fep = netdev_priv(ndev);
3093
3094 return us * (fep->clk_ref_rate / 1000) / 1000;
3095 }
3096
fec_enet_eee_mode_set(struct net_device * ndev,bool enable)3097 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
3098 {
3099 struct fec_enet_private *fep = netdev_priv(ndev);
3100 struct ethtool_eee *p = &fep->eee;
3101 unsigned int sleep_cycle, wake_cycle;
3102 int ret = 0;
3103
3104 if (enable) {
3105 ret = phy_init_eee(ndev->phydev, false);
3106 if (ret)
3107 return ret;
3108
3109 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
3110 wake_cycle = sleep_cycle;
3111 } else {
3112 sleep_cycle = 0;
3113 wake_cycle = 0;
3114 }
3115
3116 p->tx_lpi_enabled = enable;
3117 p->eee_enabled = enable;
3118 p->eee_active = enable;
3119
3120 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
3121 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
3122
3123 return 0;
3124 }
3125
3126 static int
fec_enet_get_eee(struct net_device * ndev,struct ethtool_eee * edata)3127 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
3128 {
3129 struct fec_enet_private *fep = netdev_priv(ndev);
3130 struct ethtool_eee *p = &fep->eee;
3131
3132 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3133 return -EOPNOTSUPP;
3134
3135 if (!netif_running(ndev))
3136 return -ENETDOWN;
3137
3138 edata->eee_enabled = p->eee_enabled;
3139 edata->eee_active = p->eee_active;
3140 edata->tx_lpi_timer = p->tx_lpi_timer;
3141 edata->tx_lpi_enabled = p->tx_lpi_enabled;
3142
3143 return phy_ethtool_get_eee(ndev->phydev, edata);
3144 }
3145
3146 static int
fec_enet_set_eee(struct net_device * ndev,struct ethtool_eee * edata)3147 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
3148 {
3149 struct fec_enet_private *fep = netdev_priv(ndev);
3150 struct ethtool_eee *p = &fep->eee;
3151 int ret = 0;
3152
3153 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3154 return -EOPNOTSUPP;
3155
3156 if (!netif_running(ndev))
3157 return -ENETDOWN;
3158
3159 p->tx_lpi_timer = edata->tx_lpi_timer;
3160
3161 if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
3162 !edata->tx_lpi_timer)
3163 ret = fec_enet_eee_mode_set(ndev, false);
3164 else
3165 ret = fec_enet_eee_mode_set(ndev, true);
3166
3167 if (ret)
3168 return ret;
3169
3170 return phy_ethtool_set_eee(ndev->phydev, edata);
3171 }
3172
3173 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3174 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3175 {
3176 struct fec_enet_private *fep = netdev_priv(ndev);
3177
3178 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3179 wol->supported = WAKE_MAGIC;
3180 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3181 } else {
3182 wol->supported = wol->wolopts = 0;
3183 }
3184 }
3185
3186 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3187 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3188 {
3189 struct fec_enet_private *fep = netdev_priv(ndev);
3190
3191 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3192 return -EINVAL;
3193
3194 if (wol->wolopts & ~WAKE_MAGIC)
3195 return -EINVAL;
3196
3197 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3198 if (device_may_wakeup(&ndev->dev))
3199 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3200 else
3201 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3202
3203 return 0;
3204 }
3205
3206 static const struct ethtool_ops fec_enet_ethtool_ops = {
3207 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3208 ETHTOOL_COALESCE_MAX_FRAMES,
3209 .get_drvinfo = fec_enet_get_drvinfo,
3210 .get_regs_len = fec_enet_get_regs_len,
3211 .get_regs = fec_enet_get_regs,
3212 .nway_reset = phy_ethtool_nway_reset,
3213 .get_link = ethtool_op_get_link,
3214 .get_coalesce = fec_enet_get_coalesce,
3215 .set_coalesce = fec_enet_set_coalesce,
3216 #ifndef CONFIG_M5272
3217 .get_pauseparam = fec_enet_get_pauseparam,
3218 .set_pauseparam = fec_enet_set_pauseparam,
3219 .get_strings = fec_enet_get_strings,
3220 .get_ethtool_stats = fec_enet_get_ethtool_stats,
3221 .get_sset_count = fec_enet_get_sset_count,
3222 #endif
3223 .get_ts_info = fec_enet_get_ts_info,
3224 .get_wol = fec_enet_get_wol,
3225 .set_wol = fec_enet_set_wol,
3226 .get_eee = fec_enet_get_eee,
3227 .set_eee = fec_enet_set_eee,
3228 .get_link_ksettings = phy_ethtool_get_link_ksettings,
3229 .set_link_ksettings = phy_ethtool_set_link_ksettings,
3230 .self_test = net_selftest,
3231 };
3232
fec_enet_free_buffers(struct net_device * ndev)3233 static void fec_enet_free_buffers(struct net_device *ndev)
3234 {
3235 struct fec_enet_private *fep = netdev_priv(ndev);
3236 unsigned int i;
3237 struct fec_enet_priv_tx_q *txq;
3238 struct fec_enet_priv_rx_q *rxq;
3239 unsigned int q;
3240
3241 for (q = 0; q < fep->num_rx_queues; q++) {
3242 rxq = fep->rx_queue[q];
3243 for (i = 0; i < rxq->bd.ring_size; i++)
3244 page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3245
3246 for (i = 0; i < XDP_STATS_TOTAL; i++)
3247 rxq->stats[i] = 0;
3248
3249 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3250 xdp_rxq_info_unreg(&rxq->xdp_rxq);
3251 page_pool_destroy(rxq->page_pool);
3252 rxq->page_pool = NULL;
3253 }
3254
3255 for (q = 0; q < fep->num_tx_queues; q++) {
3256 txq = fep->tx_queue[q];
3257 for (i = 0; i < txq->bd.ring_size; i++) {
3258 kfree(txq->tx_bounce[i]);
3259 txq->tx_bounce[i] = NULL;
3260
3261 if (!txq->tx_buf[i].buf_p) {
3262 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3263 continue;
3264 }
3265
3266 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3267 dev_kfree_skb(txq->tx_buf[i].buf_p);
3268 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3269 xdp_return_frame(txq->tx_buf[i].buf_p);
3270 } else {
3271 struct page *page = txq->tx_buf[i].buf_p;
3272
3273 page_pool_put_page(page->pp, page, 0, false);
3274 }
3275
3276 txq->tx_buf[i].buf_p = NULL;
3277 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3278 }
3279 }
3280 }
3281
fec_enet_free_queue(struct net_device * ndev)3282 static void fec_enet_free_queue(struct net_device *ndev)
3283 {
3284 struct fec_enet_private *fep = netdev_priv(ndev);
3285 int i;
3286 struct fec_enet_priv_tx_q *txq;
3287
3288 for (i = 0; i < fep->num_tx_queues; i++)
3289 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3290 txq = fep->tx_queue[i];
3291 dma_free_coherent(&fep->pdev->dev,
3292 txq->bd.ring_size * TSO_HEADER_SIZE,
3293 txq->tso_hdrs,
3294 txq->tso_hdrs_dma);
3295 }
3296
3297 for (i = 0; i < fep->num_rx_queues; i++)
3298 kfree(fep->rx_queue[i]);
3299 for (i = 0; i < fep->num_tx_queues; i++)
3300 kfree(fep->tx_queue[i]);
3301 }
3302
fec_enet_alloc_queue(struct net_device * ndev)3303 static int fec_enet_alloc_queue(struct net_device *ndev)
3304 {
3305 struct fec_enet_private *fep = netdev_priv(ndev);
3306 int i;
3307 int ret = 0;
3308 struct fec_enet_priv_tx_q *txq;
3309
3310 for (i = 0; i < fep->num_tx_queues; i++) {
3311 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3312 if (!txq) {
3313 ret = -ENOMEM;
3314 goto alloc_failed;
3315 }
3316
3317 fep->tx_queue[i] = txq;
3318 txq->bd.ring_size = TX_RING_SIZE;
3319 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3320
3321 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3322 txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3323
3324 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
3325 txq->bd.ring_size * TSO_HEADER_SIZE,
3326 &txq->tso_hdrs_dma,
3327 GFP_KERNEL);
3328 if (!txq->tso_hdrs) {
3329 ret = -ENOMEM;
3330 goto alloc_failed;
3331 }
3332 }
3333
3334 for (i = 0; i < fep->num_rx_queues; i++) {
3335 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3336 GFP_KERNEL);
3337 if (!fep->rx_queue[i]) {
3338 ret = -ENOMEM;
3339 goto alloc_failed;
3340 }
3341
3342 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3343 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3344 }
3345 return ret;
3346
3347 alloc_failed:
3348 fec_enet_free_queue(ndev);
3349 return ret;
3350 }
3351
3352 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)3353 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3354 {
3355 struct fec_enet_private *fep = netdev_priv(ndev);
3356 struct fec_enet_priv_rx_q *rxq;
3357 dma_addr_t phys_addr;
3358 struct bufdesc *bdp;
3359 struct page *page;
3360 int i, err;
3361
3362 rxq = fep->rx_queue[queue];
3363 bdp = rxq->bd.base;
3364
3365 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3366 if (err < 0) {
3367 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3368 return err;
3369 }
3370
3371 for (i = 0; i < rxq->bd.ring_size; i++) {
3372 page = page_pool_dev_alloc_pages(rxq->page_pool);
3373 if (!page)
3374 goto err_alloc;
3375
3376 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3377 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3378
3379 rxq->rx_skb_info[i].page = page;
3380 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3381 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3382
3383 if (fep->bufdesc_ex) {
3384 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3385 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3386 }
3387
3388 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3389 }
3390
3391 /* Set the last buffer to wrap. */
3392 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3393 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3394 return 0;
3395
3396 err_alloc:
3397 fec_enet_free_buffers(ndev);
3398 return -ENOMEM;
3399 }
3400
3401 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)3402 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3403 {
3404 struct fec_enet_private *fep = netdev_priv(ndev);
3405 unsigned int i;
3406 struct bufdesc *bdp;
3407 struct fec_enet_priv_tx_q *txq;
3408
3409 txq = fep->tx_queue[queue];
3410 bdp = txq->bd.base;
3411 for (i = 0; i < txq->bd.ring_size; i++) {
3412 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3413 if (!txq->tx_bounce[i])
3414 goto err_alloc;
3415
3416 bdp->cbd_sc = cpu_to_fec16(0);
3417 bdp->cbd_bufaddr = cpu_to_fec32(0);
3418
3419 if (fep->bufdesc_ex) {
3420 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3421 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3422 }
3423
3424 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3425 }
3426
3427 /* Set the last buffer to wrap. */
3428 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3429 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3430
3431 return 0;
3432
3433 err_alloc:
3434 fec_enet_free_buffers(ndev);
3435 return -ENOMEM;
3436 }
3437
fec_enet_alloc_buffers(struct net_device * ndev)3438 static int fec_enet_alloc_buffers(struct net_device *ndev)
3439 {
3440 struct fec_enet_private *fep = netdev_priv(ndev);
3441 unsigned int i;
3442
3443 for (i = 0; i < fep->num_rx_queues; i++)
3444 if (fec_enet_alloc_rxq_buffers(ndev, i))
3445 return -ENOMEM;
3446
3447 for (i = 0; i < fep->num_tx_queues; i++)
3448 if (fec_enet_alloc_txq_buffers(ndev, i))
3449 return -ENOMEM;
3450 return 0;
3451 }
3452
3453 static int
fec_enet_open(struct net_device * ndev)3454 fec_enet_open(struct net_device *ndev)
3455 {
3456 struct fec_enet_private *fep = netdev_priv(ndev);
3457 int ret;
3458 bool reset_again;
3459
3460 ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3461 if (ret < 0)
3462 return ret;
3463
3464 pinctrl_pm_select_default_state(&fep->pdev->dev);
3465 ret = fec_enet_clk_enable(ndev, true);
3466 if (ret)
3467 goto clk_enable;
3468
3469 /* During the first fec_enet_open call the PHY isn't probed at this
3470 * point. Therefore the phy_reset_after_clk_enable() call within
3471 * fec_enet_clk_enable() fails. As we need this reset in order to be
3472 * sure the PHY is working correctly we check if we need to reset again
3473 * later when the PHY is probed
3474 */
3475 if (ndev->phydev && ndev->phydev->drv)
3476 reset_again = false;
3477 else
3478 reset_again = true;
3479
3480 /* I should reset the ring buffers here, but I don't yet know
3481 * a simple way to do that.
3482 */
3483
3484 ret = fec_enet_alloc_buffers(ndev);
3485 if (ret)
3486 goto err_enet_alloc;
3487
3488 /* Init MAC prior to mii bus probe */
3489 fec_restart(ndev);
3490
3491 /* Call phy_reset_after_clk_enable() again if it failed during
3492 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3493 */
3494 if (reset_again)
3495 fec_enet_phy_reset_after_clk_enable(ndev);
3496
3497 /* Probe and connect to PHY when open the interface */
3498 ret = fec_enet_mii_probe(ndev);
3499 if (ret)
3500 goto err_enet_mii_probe;
3501
3502 if (fep->quirks & FEC_QUIRK_ERR006687)
3503 imx6q_cpuidle_fec_irqs_used();
3504
3505 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3506 cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3507
3508 napi_enable(&fep->napi);
3509 phy_start(ndev->phydev);
3510 netif_tx_start_all_queues(ndev);
3511
3512 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3513 FEC_WOL_FLAG_ENABLE);
3514
3515 return 0;
3516
3517 err_enet_mii_probe:
3518 fec_enet_free_buffers(ndev);
3519 err_enet_alloc:
3520 fec_enet_clk_enable(ndev, false);
3521 clk_enable:
3522 pm_runtime_mark_last_busy(&fep->pdev->dev);
3523 pm_runtime_put_autosuspend(&fep->pdev->dev);
3524 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3525 return ret;
3526 }
3527
3528 static int
fec_enet_close(struct net_device * ndev)3529 fec_enet_close(struct net_device *ndev)
3530 {
3531 struct fec_enet_private *fep = netdev_priv(ndev);
3532
3533 phy_stop(ndev->phydev);
3534
3535 if (netif_device_present(ndev)) {
3536 napi_disable(&fep->napi);
3537 netif_tx_disable(ndev);
3538 fec_stop(ndev);
3539 }
3540
3541 phy_disconnect(ndev->phydev);
3542
3543 if (fep->quirks & FEC_QUIRK_ERR006687)
3544 imx6q_cpuidle_fec_irqs_unused();
3545
3546 fec_enet_update_ethtool_stats(ndev);
3547
3548 fec_enet_clk_enable(ndev, false);
3549 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3550 cpu_latency_qos_remove_request(&fep->pm_qos_req);
3551
3552 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3553 pm_runtime_mark_last_busy(&fep->pdev->dev);
3554 pm_runtime_put_autosuspend(&fep->pdev->dev);
3555
3556 fec_enet_free_buffers(ndev);
3557
3558 return 0;
3559 }
3560
3561 /* Set or clear the multicast filter for this adaptor.
3562 * Skeleton taken from sunlance driver.
3563 * The CPM Ethernet implementation allows Multicast as well as individual
3564 * MAC address filtering. Some of the drivers check to make sure it is
3565 * a group multicast address, and discard those that are not. I guess I
3566 * will do the same for now, but just remove the test if you want
3567 * individual filtering as well (do the upper net layers want or support
3568 * this kind of feature?).
3569 */
3570
3571 #define FEC_HASH_BITS 6 /* #bits in hash */
3572
set_multicast_list(struct net_device * ndev)3573 static void set_multicast_list(struct net_device *ndev)
3574 {
3575 struct fec_enet_private *fep = netdev_priv(ndev);
3576 struct netdev_hw_addr *ha;
3577 unsigned int crc, tmp;
3578 unsigned char hash;
3579 unsigned int hash_high = 0, hash_low = 0;
3580
3581 if (ndev->flags & IFF_PROMISC) {
3582 tmp = readl(fep->hwp + FEC_R_CNTRL);
3583 tmp |= 0x8;
3584 writel(tmp, fep->hwp + FEC_R_CNTRL);
3585 return;
3586 }
3587
3588 tmp = readl(fep->hwp + FEC_R_CNTRL);
3589 tmp &= ~0x8;
3590 writel(tmp, fep->hwp + FEC_R_CNTRL);
3591
3592 if (ndev->flags & IFF_ALLMULTI) {
3593 /* Catch all multicast addresses, so set the
3594 * filter to all 1's
3595 */
3596 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3597 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3598
3599 return;
3600 }
3601
3602 /* Add the addresses in hash register */
3603 netdev_for_each_mc_addr(ha, ndev) {
3604 /* calculate crc32 value of mac address */
3605 crc = ether_crc_le(ndev->addr_len, ha->addr);
3606
3607 /* only upper 6 bits (FEC_HASH_BITS) are used
3608 * which point to specific bit in the hash registers
3609 */
3610 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3611
3612 if (hash > 31)
3613 hash_high |= 1 << (hash - 32);
3614 else
3615 hash_low |= 1 << hash;
3616 }
3617
3618 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3619 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3620 }
3621
3622 /* Set a MAC change in hardware. */
3623 static int
fec_set_mac_address(struct net_device * ndev,void * p)3624 fec_set_mac_address(struct net_device *ndev, void *p)
3625 {
3626 struct fec_enet_private *fep = netdev_priv(ndev);
3627 struct sockaddr *addr = p;
3628
3629 if (addr) {
3630 if (!is_valid_ether_addr(addr->sa_data))
3631 return -EADDRNOTAVAIL;
3632 eth_hw_addr_set(ndev, addr->sa_data);
3633 }
3634
3635 /* Add netif status check here to avoid system hang in below case:
3636 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3637 * After ethx down, fec all clocks are gated off and then register
3638 * access causes system hang.
3639 */
3640 if (!netif_running(ndev))
3641 return 0;
3642
3643 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3644 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3645 fep->hwp + FEC_ADDR_LOW);
3646 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3647 fep->hwp + FEC_ADDR_HIGH);
3648 return 0;
3649 }
3650
3651 #ifdef CONFIG_NET_POLL_CONTROLLER
3652 /**
3653 * fec_poll_controller - FEC Poll controller function
3654 * @dev: The FEC network adapter
3655 *
3656 * Polled functionality used by netconsole and others in non interrupt mode
3657 *
3658 */
fec_poll_controller(struct net_device * dev)3659 static void fec_poll_controller(struct net_device *dev)
3660 {
3661 int i;
3662 struct fec_enet_private *fep = netdev_priv(dev);
3663
3664 for (i = 0; i < FEC_IRQ_NUM; i++) {
3665 if (fep->irq[i] > 0) {
3666 disable_irq(fep->irq[i]);
3667 fec_enet_interrupt(fep->irq[i], dev);
3668 enable_irq(fep->irq[i]);
3669 }
3670 }
3671 }
3672 #endif
3673
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3674 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3675 netdev_features_t features)
3676 {
3677 struct fec_enet_private *fep = netdev_priv(netdev);
3678 netdev_features_t changed = features ^ netdev->features;
3679
3680 netdev->features = features;
3681
3682 /* Receive checksum has been changed */
3683 if (changed & NETIF_F_RXCSUM) {
3684 if (features & NETIF_F_RXCSUM)
3685 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3686 else
3687 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3688 }
3689 }
3690
fec_set_features(struct net_device * netdev,netdev_features_t features)3691 static int fec_set_features(struct net_device *netdev,
3692 netdev_features_t features)
3693 {
3694 struct fec_enet_private *fep = netdev_priv(netdev);
3695 netdev_features_t changed = features ^ netdev->features;
3696
3697 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3698 napi_disable(&fep->napi);
3699 netif_tx_lock_bh(netdev);
3700 fec_stop(netdev);
3701 fec_enet_set_netdev_features(netdev, features);
3702 fec_restart(netdev);
3703 netif_tx_wake_all_queues(netdev);
3704 netif_tx_unlock_bh(netdev);
3705 napi_enable(&fep->napi);
3706 } else {
3707 fec_enet_set_netdev_features(netdev, features);
3708 }
3709
3710 return 0;
3711 }
3712
fec_enet_get_raw_vlan_tci(struct sk_buff * skb)3713 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb)
3714 {
3715 struct vlan_ethhdr *vhdr;
3716 unsigned short vlan_TCI = 0;
3717
3718 if (skb->protocol == htons(ETH_P_ALL)) {
3719 vhdr = (struct vlan_ethhdr *)(skb->data);
3720 vlan_TCI = ntohs(vhdr->h_vlan_TCI);
3721 }
3722
3723 return vlan_TCI;
3724 }
3725
fec_enet_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)3726 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3727 struct net_device *sb_dev)
3728 {
3729 struct fec_enet_private *fep = netdev_priv(ndev);
3730 u16 vlan_tag;
3731
3732 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3733 return netdev_pick_tx(ndev, skb, NULL);
3734
3735 vlan_tag = fec_enet_get_raw_vlan_tci(skb);
3736 if (!vlan_tag)
3737 return vlan_tag;
3738
3739 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3740 }
3741
fec_enet_bpf(struct net_device * dev,struct netdev_bpf * bpf)3742 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3743 {
3744 struct fec_enet_private *fep = netdev_priv(dev);
3745 bool is_run = netif_running(dev);
3746 struct bpf_prog *old_prog;
3747
3748 switch (bpf->command) {
3749 case XDP_SETUP_PROG:
3750 /* No need to support the SoCs that require to
3751 * do the frame swap because the performance wouldn't be
3752 * better than the skb mode.
3753 */
3754 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3755 return -EOPNOTSUPP;
3756
3757 if (!bpf->prog)
3758 xdp_features_clear_redirect_target(dev);
3759
3760 if (is_run) {
3761 napi_disable(&fep->napi);
3762 netif_tx_disable(dev);
3763 }
3764
3765 old_prog = xchg(&fep->xdp_prog, bpf->prog);
3766 if (old_prog)
3767 bpf_prog_put(old_prog);
3768
3769 fec_restart(dev);
3770
3771 if (is_run) {
3772 napi_enable(&fep->napi);
3773 netif_tx_start_all_queues(dev);
3774 }
3775
3776 if (bpf->prog)
3777 xdp_features_set_redirect_target(dev, false);
3778
3779 return 0;
3780
3781 case XDP_SETUP_XSK_POOL:
3782 return -EOPNOTSUPP;
3783
3784 default:
3785 return -EOPNOTSUPP;
3786 }
3787 }
3788
3789 static int
fec_enet_xdp_get_tx_queue(struct fec_enet_private * fep,int index)3790 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3791 {
3792 if (unlikely(index < 0))
3793 return 0;
3794
3795 return (index % fep->num_tx_queues);
3796 }
3797
fec_enet_txq_xmit_frame(struct fec_enet_private * fep,struct fec_enet_priv_tx_q * txq,void * frame,u32 dma_sync_len,bool ndo_xmit)3798 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3799 struct fec_enet_priv_tx_q *txq,
3800 void *frame, u32 dma_sync_len,
3801 bool ndo_xmit)
3802 {
3803 unsigned int index, status, estatus;
3804 struct bufdesc *bdp;
3805 dma_addr_t dma_addr;
3806 int entries_free;
3807 u16 frame_len;
3808
3809 entries_free = fec_enet_get_free_txdesc_num(txq);
3810 if (entries_free < MAX_SKB_FRAGS + 1) {
3811 netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3812 return -EBUSY;
3813 }
3814
3815 /* Fill in a Tx ring entry */
3816 bdp = txq->bd.cur;
3817 status = fec16_to_cpu(bdp->cbd_sc);
3818 status &= ~BD_ENET_TX_STATS;
3819
3820 index = fec_enet_get_bd_index(bdp, &txq->bd);
3821
3822 if (ndo_xmit) {
3823 struct xdp_frame *xdpf = frame;
3824
3825 dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3826 xdpf->len, DMA_TO_DEVICE);
3827 if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3828 return -ENOMEM;
3829
3830 frame_len = xdpf->len;
3831 txq->tx_buf[index].buf_p = xdpf;
3832 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3833 } else {
3834 struct xdp_buff *xdpb = frame;
3835 struct page *page;
3836
3837 page = virt_to_page(xdpb->data);
3838 dma_addr = page_pool_get_dma_addr(page) +
3839 (xdpb->data - xdpb->data_hard_start);
3840 dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3841 dma_sync_len, DMA_BIDIRECTIONAL);
3842 frame_len = xdpb->data_end - xdpb->data;
3843 txq->tx_buf[index].buf_p = page;
3844 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3845 }
3846
3847 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3848 if (fep->bufdesc_ex)
3849 estatus = BD_ENET_TX_INT;
3850
3851 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3852 bdp->cbd_datlen = cpu_to_fec16(frame_len);
3853
3854 if (fep->bufdesc_ex) {
3855 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3856
3857 if (fep->quirks & FEC_QUIRK_HAS_AVB)
3858 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3859
3860 ebdp->cbd_bdu = 0;
3861 ebdp->cbd_esc = cpu_to_fec32(estatus);
3862 }
3863
3864 /* Make sure the updates to rest of the descriptor are performed before
3865 * transferring ownership.
3866 */
3867 dma_wmb();
3868
3869 /* Send it on its way. Tell FEC it's ready, interrupt when done,
3870 * it's the last BD of the frame, and to put the CRC on the end.
3871 */
3872 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3873 bdp->cbd_sc = cpu_to_fec16(status);
3874
3875 /* If this was the last BD in the ring, start at the beginning again. */
3876 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3877
3878 /* Make sure the update to bdp are performed before txq->bd.cur. */
3879 dma_wmb();
3880
3881 txq->bd.cur = bdp;
3882
3883 /* Trigger transmission start */
3884 writel(0, txq->bd.reg_desc_active);
3885
3886 return 0;
3887 }
3888
fec_enet_xdp_tx_xmit(struct fec_enet_private * fep,int cpu,struct xdp_buff * xdp,u32 dma_sync_len)3889 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3890 int cpu, struct xdp_buff *xdp,
3891 u32 dma_sync_len)
3892 {
3893 struct fec_enet_priv_tx_q *txq;
3894 struct netdev_queue *nq;
3895 int queue, ret;
3896
3897 queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3898 txq = fep->tx_queue[queue];
3899 nq = netdev_get_tx_queue(fep->netdev, queue);
3900
3901 __netif_tx_lock(nq, cpu);
3902
3903 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3904 txq_trans_cond_update(nq);
3905 ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3906
3907 __netif_tx_unlock(nq);
3908
3909 return ret;
3910 }
3911
fec_enet_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)3912 static int fec_enet_xdp_xmit(struct net_device *dev,
3913 int num_frames,
3914 struct xdp_frame **frames,
3915 u32 flags)
3916 {
3917 struct fec_enet_private *fep = netdev_priv(dev);
3918 struct fec_enet_priv_tx_q *txq;
3919 int cpu = smp_processor_id();
3920 unsigned int sent_frames = 0;
3921 struct netdev_queue *nq;
3922 unsigned int queue;
3923 int i;
3924
3925 queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3926 txq = fep->tx_queue[queue];
3927 nq = netdev_get_tx_queue(fep->netdev, queue);
3928
3929 __netif_tx_lock(nq, cpu);
3930
3931 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3932 txq_trans_cond_update(nq);
3933 for (i = 0; i < num_frames; i++) {
3934 if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3935 break;
3936 sent_frames++;
3937 }
3938
3939 __netif_tx_unlock(nq);
3940
3941 return sent_frames;
3942 }
3943
fec_hwtstamp_get(struct net_device * ndev,struct kernel_hwtstamp_config * config)3944 static int fec_hwtstamp_get(struct net_device *ndev,
3945 struct kernel_hwtstamp_config *config)
3946 {
3947 struct fec_enet_private *fep = netdev_priv(ndev);
3948
3949 if (!netif_running(ndev))
3950 return -EINVAL;
3951
3952 if (!fep->bufdesc_ex)
3953 return -EOPNOTSUPP;
3954
3955 fec_ptp_get(ndev, config);
3956
3957 return 0;
3958 }
3959
fec_hwtstamp_set(struct net_device * ndev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)3960 static int fec_hwtstamp_set(struct net_device *ndev,
3961 struct kernel_hwtstamp_config *config,
3962 struct netlink_ext_ack *extack)
3963 {
3964 struct fec_enet_private *fep = netdev_priv(ndev);
3965
3966 if (!netif_running(ndev))
3967 return -EINVAL;
3968
3969 if (!fep->bufdesc_ex)
3970 return -EOPNOTSUPP;
3971
3972 return fec_ptp_set(ndev, config, extack);
3973 }
3974
3975 static const struct net_device_ops fec_netdev_ops = {
3976 .ndo_open = fec_enet_open,
3977 .ndo_stop = fec_enet_close,
3978 .ndo_start_xmit = fec_enet_start_xmit,
3979 .ndo_select_queue = fec_enet_select_queue,
3980 .ndo_set_rx_mode = set_multicast_list,
3981 .ndo_validate_addr = eth_validate_addr,
3982 .ndo_tx_timeout = fec_timeout,
3983 .ndo_set_mac_address = fec_set_mac_address,
3984 .ndo_eth_ioctl = phy_do_ioctl_running,
3985 #ifdef CONFIG_NET_POLL_CONTROLLER
3986 .ndo_poll_controller = fec_poll_controller,
3987 #endif
3988 .ndo_set_features = fec_set_features,
3989 .ndo_bpf = fec_enet_bpf,
3990 .ndo_xdp_xmit = fec_enet_xdp_xmit,
3991 .ndo_hwtstamp_get = fec_hwtstamp_get,
3992 .ndo_hwtstamp_set = fec_hwtstamp_set,
3993 };
3994
3995 static const unsigned short offset_des_active_rxq[] = {
3996 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3997 };
3998
3999 static const unsigned short offset_des_active_txq[] = {
4000 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4001 };
4002
4003 /*
4004 * XXX: We need to clean up on failure exits here.
4005 *
4006 */
fec_enet_init(struct net_device * ndev)4007 static int fec_enet_init(struct net_device *ndev)
4008 {
4009 struct fec_enet_private *fep = netdev_priv(ndev);
4010 struct bufdesc *cbd_base;
4011 dma_addr_t bd_dma;
4012 int bd_size;
4013 unsigned int i;
4014 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4015 sizeof(struct bufdesc);
4016 unsigned dsize_log2 = __fls(dsize);
4017 int ret;
4018
4019 WARN_ON(dsize != (1 << dsize_log2));
4020 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4021 fep->rx_align = 0xf;
4022 fep->tx_align = 0xf;
4023 #else
4024 fep->rx_align = 0x3;
4025 fep->tx_align = 0x3;
4026 #endif
4027 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4028 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4029 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4030 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4031
4032 /* Check mask of the streaming and coherent API */
4033 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4034 if (ret < 0) {
4035 dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4036 return ret;
4037 }
4038
4039 ret = fec_enet_alloc_queue(ndev);
4040 if (ret)
4041 return ret;
4042
4043 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4044
4045 /* Allocate memory for buffer descriptors. */
4046 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
4047 GFP_KERNEL);
4048 if (!cbd_base) {
4049 ret = -ENOMEM;
4050 goto free_queue_mem;
4051 }
4052
4053 /* Get the Ethernet address */
4054 ret = fec_get_mac(ndev);
4055 if (ret)
4056 goto free_queue_mem;
4057
4058 /* Set receive and transmit descriptor base. */
4059 for (i = 0; i < fep->num_rx_queues; i++) {
4060 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4061 unsigned size = dsize * rxq->bd.ring_size;
4062
4063 rxq->bd.qid = i;
4064 rxq->bd.base = cbd_base;
4065 rxq->bd.cur = cbd_base;
4066 rxq->bd.dma = bd_dma;
4067 rxq->bd.dsize = dsize;
4068 rxq->bd.dsize_log2 = dsize_log2;
4069 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4070 bd_dma += size;
4071 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4072 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4073 }
4074
4075 for (i = 0; i < fep->num_tx_queues; i++) {
4076 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4077 unsigned size = dsize * txq->bd.ring_size;
4078
4079 txq->bd.qid = i;
4080 txq->bd.base = cbd_base;
4081 txq->bd.cur = cbd_base;
4082 txq->bd.dma = bd_dma;
4083 txq->bd.dsize = dsize;
4084 txq->bd.dsize_log2 = dsize_log2;
4085 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4086 bd_dma += size;
4087 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4088 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4089 }
4090
4091
4092 /* The FEC Ethernet specific entries in the device structure */
4093 ndev->watchdog_timeo = TX_TIMEOUT;
4094 ndev->netdev_ops = &fec_netdev_ops;
4095 ndev->ethtool_ops = &fec_enet_ethtool_ops;
4096
4097 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4098 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4099
4100 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4101 /* enable hw VLAN support */
4102 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4103
4104 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4105 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4106
4107 /* enable hw accelerator */
4108 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4109 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4110 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4111 }
4112
4113 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4114 fep->tx_align = 0;
4115 fep->rx_align = 0x3f;
4116 }
4117
4118 ndev->hw_features = ndev->features;
4119
4120 if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4121 ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4122 NETDEV_XDP_ACT_REDIRECT;
4123
4124 fec_restart(ndev);
4125
4126 if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4127 fec_enet_clear_ethtool_stats(ndev);
4128 else
4129 fec_enet_update_ethtool_stats(ndev);
4130
4131 return 0;
4132
4133 free_queue_mem:
4134 fec_enet_free_queue(ndev);
4135 return ret;
4136 }
4137
4138 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)4139 static int fec_reset_phy(struct platform_device *pdev)
4140 {
4141 struct gpio_desc *phy_reset;
4142 int msec = 1, phy_post_delay = 0;
4143 struct device_node *np = pdev->dev.of_node;
4144 int err;
4145
4146 if (!np)
4147 return 0;
4148
4149 err = of_property_read_u32(np, "phy-reset-duration", &msec);
4150 /* A sane reset duration should not be longer than 1s */
4151 if (!err && msec > 1000)
4152 msec = 1;
4153
4154 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4155 /* valid reset duration should be less than 1s */
4156 if (!err && phy_post_delay > 1000)
4157 return -EINVAL;
4158
4159 phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4160 GPIOD_OUT_HIGH);
4161 if (IS_ERR(phy_reset))
4162 return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4163 "failed to get phy-reset-gpios\n");
4164
4165 if (!phy_reset)
4166 return 0;
4167
4168 if (msec > 20)
4169 msleep(msec);
4170 else
4171 usleep_range(msec * 1000, msec * 1000 + 1000);
4172
4173 gpiod_set_value_cansleep(phy_reset, 0);
4174
4175 if (!phy_post_delay)
4176 return 0;
4177
4178 if (phy_post_delay > 20)
4179 msleep(phy_post_delay);
4180 else
4181 usleep_range(phy_post_delay * 1000,
4182 phy_post_delay * 1000 + 1000);
4183
4184 return 0;
4185 }
4186 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)4187 static int fec_reset_phy(struct platform_device *pdev)
4188 {
4189 /*
4190 * In case of platform probe, the reset has been done
4191 * by machine code.
4192 */
4193 return 0;
4194 }
4195 #endif /* CONFIG_OF */
4196
4197 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)4198 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4199 {
4200 struct device_node *np = pdev->dev.of_node;
4201
4202 *num_tx = *num_rx = 1;
4203
4204 if (!np || !of_device_is_available(np))
4205 return;
4206
4207 /* parse the num of tx and rx queues */
4208 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4209
4210 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4211
4212 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4213 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4214 *num_tx);
4215 *num_tx = 1;
4216 return;
4217 }
4218
4219 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4220 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4221 *num_rx);
4222 *num_rx = 1;
4223 return;
4224 }
4225
4226 }
4227
fec_enet_get_irq_cnt(struct platform_device * pdev)4228 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4229 {
4230 int irq_cnt = platform_irq_count(pdev);
4231
4232 if (irq_cnt > FEC_IRQ_NUM)
4233 irq_cnt = FEC_IRQ_NUM; /* last for pps */
4234 else if (irq_cnt == 2)
4235 irq_cnt = 1; /* last for pps */
4236 else if (irq_cnt <= 0)
4237 irq_cnt = 1; /* At least 1 irq is needed */
4238 return irq_cnt;
4239 }
4240
fec_enet_get_wakeup_irq(struct platform_device * pdev)4241 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4242 {
4243 struct net_device *ndev = platform_get_drvdata(pdev);
4244 struct fec_enet_private *fep = netdev_priv(ndev);
4245
4246 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4247 fep->wake_irq = fep->irq[2];
4248 else
4249 fep->wake_irq = fep->irq[0];
4250 }
4251
fec_enet_init_stop_mode(struct fec_enet_private * fep,struct device_node * np)4252 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4253 struct device_node *np)
4254 {
4255 struct device_node *gpr_np;
4256 u32 out_val[3];
4257 int ret = 0;
4258
4259 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4260 if (!gpr_np)
4261 return 0;
4262
4263 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4264 ARRAY_SIZE(out_val));
4265 if (ret) {
4266 dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4267 goto out;
4268 }
4269
4270 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4271 if (IS_ERR(fep->stop_gpr.gpr)) {
4272 dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4273 ret = PTR_ERR(fep->stop_gpr.gpr);
4274 fep->stop_gpr.gpr = NULL;
4275 goto out;
4276 }
4277
4278 fep->stop_gpr.reg = out_val[1];
4279 fep->stop_gpr.bit = out_val[2];
4280
4281 out:
4282 of_node_put(gpr_np);
4283
4284 return ret;
4285 }
4286
4287 static int
fec_probe(struct platform_device * pdev)4288 fec_probe(struct platform_device *pdev)
4289 {
4290 struct fec_enet_private *fep;
4291 struct fec_platform_data *pdata;
4292 phy_interface_t interface;
4293 struct net_device *ndev;
4294 int i, irq, ret = 0;
4295 const struct of_device_id *of_id;
4296 static int dev_id;
4297 struct device_node *np = pdev->dev.of_node, *phy_node;
4298 int num_tx_qs;
4299 int num_rx_qs;
4300 char irq_name[8];
4301 int irq_cnt;
4302 struct fec_devinfo *dev_info;
4303
4304 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4305
4306 /* Init network device */
4307 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4308 FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4309 if (!ndev)
4310 return -ENOMEM;
4311
4312 SET_NETDEV_DEV(ndev, &pdev->dev);
4313
4314 /* setup board info structure */
4315 fep = netdev_priv(ndev);
4316
4317 of_id = of_match_device(fec_dt_ids, &pdev->dev);
4318 if (of_id)
4319 pdev->id_entry = of_id->data;
4320 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
4321 if (dev_info)
4322 fep->quirks = dev_info->quirks;
4323
4324 fep->netdev = ndev;
4325 fep->num_rx_queues = num_rx_qs;
4326 fep->num_tx_queues = num_tx_qs;
4327
4328 #if !defined(CONFIG_M5272)
4329 /* default enable pause frame auto negotiation */
4330 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4331 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4332 #endif
4333
4334 /* Select default pin state */
4335 pinctrl_pm_select_default_state(&pdev->dev);
4336
4337 fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4338 if (IS_ERR(fep->hwp)) {
4339 ret = PTR_ERR(fep->hwp);
4340 goto failed_ioremap;
4341 }
4342
4343 fep->pdev = pdev;
4344 fep->dev_id = dev_id++;
4345
4346 platform_set_drvdata(pdev, ndev);
4347
4348 if ((of_machine_is_compatible("fsl,imx6q") ||
4349 of_machine_is_compatible("fsl,imx6dl")) &&
4350 !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4351 fep->quirks |= FEC_QUIRK_ERR006687;
4352
4353 ret = fec_enet_ipc_handle_init(fep);
4354 if (ret)
4355 goto failed_ipc_init;
4356
4357 if (of_property_read_bool(np, "fsl,magic-packet"))
4358 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4359
4360 ret = fec_enet_init_stop_mode(fep, np);
4361 if (ret)
4362 goto failed_stop_mode;
4363
4364 phy_node = of_parse_phandle(np, "phy-handle", 0);
4365 if (!phy_node && of_phy_is_fixed_link(np)) {
4366 ret = of_phy_register_fixed_link(np);
4367 if (ret < 0) {
4368 dev_err(&pdev->dev,
4369 "broken fixed-link specification\n");
4370 goto failed_phy;
4371 }
4372 phy_node = of_node_get(np);
4373 }
4374 fep->phy_node = phy_node;
4375
4376 ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4377 if (ret) {
4378 pdata = dev_get_platdata(&pdev->dev);
4379 if (pdata)
4380 fep->phy_interface = pdata->phy;
4381 else
4382 fep->phy_interface = PHY_INTERFACE_MODE_MII;
4383 } else {
4384 fep->phy_interface = interface;
4385 }
4386
4387 ret = fec_enet_parse_rgmii_delay(fep, np);
4388 if (ret)
4389 goto failed_rgmii_delay;
4390
4391 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4392 if (IS_ERR(fep->clk_ipg)) {
4393 ret = PTR_ERR(fep->clk_ipg);
4394 goto failed_clk;
4395 }
4396
4397 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4398 if (IS_ERR(fep->clk_ahb)) {
4399 ret = PTR_ERR(fep->clk_ahb);
4400 goto failed_clk;
4401 }
4402
4403 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4404
4405 /* enet_out is optional, depends on board */
4406 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4407 if (IS_ERR(fep->clk_enet_out)) {
4408 ret = PTR_ERR(fep->clk_enet_out);
4409 goto failed_clk;
4410 }
4411
4412 fep->ptp_clk_on = false;
4413 mutex_init(&fep->ptp_clk_mutex);
4414
4415 /* clk_ref is optional, depends on board */
4416 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4417 if (IS_ERR(fep->clk_ref)) {
4418 ret = PTR_ERR(fep->clk_ref);
4419 goto failed_clk;
4420 }
4421 fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4422
4423 /* clk_2x_txclk is optional, depends on board */
4424 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4425 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4426 if (IS_ERR(fep->clk_2x_txclk))
4427 fep->clk_2x_txclk = NULL;
4428 }
4429
4430 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4431 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4432 if (IS_ERR(fep->clk_ptp)) {
4433 fep->clk_ptp = NULL;
4434 fep->bufdesc_ex = false;
4435 }
4436
4437 ret = fec_enet_clk_enable(ndev, true);
4438 if (ret)
4439 goto failed_clk;
4440
4441 ret = clk_prepare_enable(fep->clk_ipg);
4442 if (ret)
4443 goto failed_clk_ipg;
4444 ret = clk_prepare_enable(fep->clk_ahb);
4445 if (ret)
4446 goto failed_clk_ahb;
4447
4448 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4449 if (!IS_ERR(fep->reg_phy)) {
4450 ret = regulator_enable(fep->reg_phy);
4451 if (ret) {
4452 dev_err(&pdev->dev,
4453 "Failed to enable phy regulator: %d\n", ret);
4454 goto failed_regulator;
4455 }
4456 } else {
4457 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4458 ret = -EPROBE_DEFER;
4459 goto failed_regulator;
4460 }
4461 fep->reg_phy = NULL;
4462 }
4463
4464 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4465 pm_runtime_use_autosuspend(&pdev->dev);
4466 pm_runtime_get_noresume(&pdev->dev);
4467 pm_runtime_set_active(&pdev->dev);
4468 pm_runtime_enable(&pdev->dev);
4469
4470 ret = fec_reset_phy(pdev);
4471 if (ret)
4472 goto failed_reset;
4473
4474 irq_cnt = fec_enet_get_irq_cnt(pdev);
4475 if (fep->bufdesc_ex)
4476 fec_ptp_init(pdev, irq_cnt);
4477
4478 ret = fec_enet_init(ndev);
4479 if (ret)
4480 goto failed_init;
4481
4482 for (i = 0; i < irq_cnt; i++) {
4483 snprintf(irq_name, sizeof(irq_name), "int%d", i);
4484 irq = platform_get_irq_byname_optional(pdev, irq_name);
4485 if (irq < 0)
4486 irq = platform_get_irq(pdev, i);
4487 if (irq < 0) {
4488 ret = irq;
4489 goto failed_irq;
4490 }
4491 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4492 0, pdev->name, ndev);
4493 if (ret)
4494 goto failed_irq;
4495
4496 fep->irq[i] = irq;
4497 }
4498
4499 /* Decide which interrupt line is wakeup capable */
4500 fec_enet_get_wakeup_irq(pdev);
4501
4502 ret = fec_enet_mii_init(pdev);
4503 if (ret)
4504 goto failed_mii_init;
4505
4506 /* Carrier starts down, phylib will bring it up */
4507 netif_carrier_off(ndev);
4508 fec_enet_clk_enable(ndev, false);
4509 pinctrl_pm_select_sleep_state(&pdev->dev);
4510
4511 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4512
4513 ret = register_netdev(ndev);
4514 if (ret)
4515 goto failed_register;
4516
4517 device_init_wakeup(&ndev->dev, fep->wol_flag &
4518 FEC_WOL_HAS_MAGIC_PACKET);
4519
4520 if (fep->bufdesc_ex && fep->ptp_clock)
4521 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4522
4523 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4524
4525 pm_runtime_mark_last_busy(&pdev->dev);
4526 pm_runtime_put_autosuspend(&pdev->dev);
4527
4528 return 0;
4529
4530 failed_register:
4531 fec_enet_mii_remove(fep);
4532 failed_mii_init:
4533 failed_irq:
4534 failed_init:
4535 fec_ptp_stop(pdev);
4536 failed_reset:
4537 pm_runtime_put_noidle(&pdev->dev);
4538 pm_runtime_disable(&pdev->dev);
4539 if (fep->reg_phy)
4540 regulator_disable(fep->reg_phy);
4541 failed_regulator:
4542 clk_disable_unprepare(fep->clk_ahb);
4543 failed_clk_ahb:
4544 clk_disable_unprepare(fep->clk_ipg);
4545 failed_clk_ipg:
4546 fec_enet_clk_enable(ndev, false);
4547 failed_clk:
4548 failed_rgmii_delay:
4549 if (of_phy_is_fixed_link(np))
4550 of_phy_deregister_fixed_link(np);
4551 of_node_put(phy_node);
4552 failed_stop_mode:
4553 failed_ipc_init:
4554 failed_phy:
4555 dev_id--;
4556 failed_ioremap:
4557 free_netdev(ndev);
4558
4559 return ret;
4560 }
4561
4562 static void
fec_drv_remove(struct platform_device * pdev)4563 fec_drv_remove(struct platform_device *pdev)
4564 {
4565 struct net_device *ndev = platform_get_drvdata(pdev);
4566 struct fec_enet_private *fep = netdev_priv(ndev);
4567 struct device_node *np = pdev->dev.of_node;
4568 int ret;
4569
4570 ret = pm_runtime_get_sync(&pdev->dev);
4571 if (ret < 0)
4572 dev_err(&pdev->dev,
4573 "Failed to resume device in remove callback (%pe)\n",
4574 ERR_PTR(ret));
4575
4576 cancel_work_sync(&fep->tx_timeout_work);
4577 fec_ptp_stop(pdev);
4578 unregister_netdev(ndev);
4579 fec_enet_mii_remove(fep);
4580 if (fep->reg_phy)
4581 regulator_disable(fep->reg_phy);
4582
4583 if (of_phy_is_fixed_link(np))
4584 of_phy_deregister_fixed_link(np);
4585 of_node_put(fep->phy_node);
4586
4587 /* After pm_runtime_get_sync() failed, the clks are still off, so skip
4588 * disabling them again.
4589 */
4590 if (ret >= 0) {
4591 clk_disable_unprepare(fep->clk_ahb);
4592 clk_disable_unprepare(fep->clk_ipg);
4593 }
4594 pm_runtime_put_noidle(&pdev->dev);
4595 pm_runtime_disable(&pdev->dev);
4596
4597 free_netdev(ndev);
4598 }
4599
fec_suspend(struct device * dev)4600 static int __maybe_unused fec_suspend(struct device *dev)
4601 {
4602 struct net_device *ndev = dev_get_drvdata(dev);
4603 struct fec_enet_private *fep = netdev_priv(ndev);
4604 int ret;
4605
4606 rtnl_lock();
4607 if (netif_running(ndev)) {
4608 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4609 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4610 phy_stop(ndev->phydev);
4611 napi_disable(&fep->napi);
4612 netif_tx_lock_bh(ndev);
4613 netif_device_detach(ndev);
4614 netif_tx_unlock_bh(ndev);
4615 fec_stop(ndev);
4616 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4617 fec_irqs_disable(ndev);
4618 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4619 } else {
4620 fec_irqs_disable_except_wakeup(ndev);
4621 if (fep->wake_irq > 0) {
4622 disable_irq(fep->wake_irq);
4623 enable_irq_wake(fep->wake_irq);
4624 }
4625 fec_enet_stop_mode(fep, true);
4626 }
4627 /* It's safe to disable clocks since interrupts are masked */
4628 fec_enet_clk_enable(ndev, false);
4629
4630 fep->rpm_active = !pm_runtime_status_suspended(dev);
4631 if (fep->rpm_active) {
4632 ret = pm_runtime_force_suspend(dev);
4633 if (ret < 0) {
4634 rtnl_unlock();
4635 return ret;
4636 }
4637 }
4638 }
4639 rtnl_unlock();
4640
4641 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4642 regulator_disable(fep->reg_phy);
4643
4644 /* SOC supply clock to phy, when clock is disabled, phy link down
4645 * SOC control phy regulator, when regulator is disabled, phy link down
4646 */
4647 if (fep->clk_enet_out || fep->reg_phy)
4648 fep->link = 0;
4649
4650 return 0;
4651 }
4652
fec_resume(struct device * dev)4653 static int __maybe_unused fec_resume(struct device *dev)
4654 {
4655 struct net_device *ndev = dev_get_drvdata(dev);
4656 struct fec_enet_private *fep = netdev_priv(ndev);
4657 int ret;
4658 int val;
4659
4660 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4661 ret = regulator_enable(fep->reg_phy);
4662 if (ret)
4663 return ret;
4664 }
4665
4666 rtnl_lock();
4667 if (netif_running(ndev)) {
4668 if (fep->rpm_active)
4669 pm_runtime_force_resume(dev);
4670
4671 ret = fec_enet_clk_enable(ndev, true);
4672 if (ret) {
4673 rtnl_unlock();
4674 goto failed_clk;
4675 }
4676 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4677 fec_enet_stop_mode(fep, false);
4678 if (fep->wake_irq) {
4679 disable_irq_wake(fep->wake_irq);
4680 enable_irq(fep->wake_irq);
4681 }
4682
4683 val = readl(fep->hwp + FEC_ECNTRL);
4684 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4685 writel(val, fep->hwp + FEC_ECNTRL);
4686 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4687 } else {
4688 pinctrl_pm_select_default_state(&fep->pdev->dev);
4689 }
4690 fec_restart(ndev);
4691 netif_tx_lock_bh(ndev);
4692 netif_device_attach(ndev);
4693 netif_tx_unlock_bh(ndev);
4694 napi_enable(&fep->napi);
4695 phy_init_hw(ndev->phydev);
4696 phy_start(ndev->phydev);
4697 }
4698 rtnl_unlock();
4699
4700 return 0;
4701
4702 failed_clk:
4703 if (fep->reg_phy)
4704 regulator_disable(fep->reg_phy);
4705 return ret;
4706 }
4707
fec_runtime_suspend(struct device * dev)4708 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4709 {
4710 struct net_device *ndev = dev_get_drvdata(dev);
4711 struct fec_enet_private *fep = netdev_priv(ndev);
4712
4713 clk_disable_unprepare(fep->clk_ahb);
4714 clk_disable_unprepare(fep->clk_ipg);
4715
4716 return 0;
4717 }
4718
fec_runtime_resume(struct device * dev)4719 static int __maybe_unused fec_runtime_resume(struct device *dev)
4720 {
4721 struct net_device *ndev = dev_get_drvdata(dev);
4722 struct fec_enet_private *fep = netdev_priv(ndev);
4723 int ret;
4724
4725 ret = clk_prepare_enable(fep->clk_ahb);
4726 if (ret)
4727 return ret;
4728 ret = clk_prepare_enable(fep->clk_ipg);
4729 if (ret)
4730 goto failed_clk_ipg;
4731
4732 return 0;
4733
4734 failed_clk_ipg:
4735 clk_disable_unprepare(fep->clk_ahb);
4736 return ret;
4737 }
4738
4739 static const struct dev_pm_ops fec_pm_ops = {
4740 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4741 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4742 };
4743
4744 static struct platform_driver fec_driver = {
4745 .driver = {
4746 .name = DRIVER_NAME,
4747 .pm = &fec_pm_ops,
4748 .of_match_table = fec_dt_ids,
4749 .suppress_bind_attrs = true,
4750 },
4751 .id_table = fec_devtype,
4752 .probe = fec_probe,
4753 .remove_new = fec_drv_remove,
4754 };
4755
4756 module_platform_driver(fec_driver);
4757
4758 MODULE_LICENSE("GPL");
4759