1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 *
6 * Right now, I am very wasteful with the buffers. I allocate memory
7 * pages and then divide them into 2K frame buffers. This way I know I
8 * have buffers large enough to hold one frame within one buffer descriptor.
9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10 * will be much more memory efficient and will easily handle lots of
11 * small packets.
12 *
13 * Much better multiple PHY support by Magnus Damm.
14 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 *
16 * Support for FEC controller of ColdFire processors.
17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 *
19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20 * Copyright (c) 2004-2006 Macq Electronique SA.
21 *
22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23 */
24
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/selftests.h>
42 #include <net/tso.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/icmp.h>
46 #include <linux/spinlock.h>
47 #include <linux/workqueue.h>
48 #include <linux/bitops.h>
49 #include <linux/io.h>
50 #include <linux/irq.h>
51 #include <linux/clk.h>
52 #include <linux/crc32.h>
53 #include <linux/platform_device.h>
54 #include <linux/mdio.h>
55 #include <linux/phy.h>
56 #include <linux/fec.h>
57 #include <linux/of.h>
58 #include <linux/of_device.h>
59 #include <linux/of_gpio.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/prefetch.h>
66 #include <linux/mfd/syscon.h>
67 #include <linux/regmap.h>
68 #include <soc/imx/cpuidle.h>
69
70 #include <asm/cacheflush.h>
71
72 #include "fec.h"
73
74 static void set_multicast_list(struct net_device *ndev);
75 static void fec_enet_itr_coal_init(struct net_device *ndev);
76
77 #define DRIVER_NAME "fec"
78
79 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
80
81 /* Pause frame feild and FIFO threshold */
82 #define FEC_ENET_FCE (1 << 5)
83 #define FEC_ENET_RSEM_V 0x84
84 #define FEC_ENET_RSFL_V 16
85 #define FEC_ENET_RAEM_V 0x8
86 #define FEC_ENET_RAFL_V 0x8
87 #define FEC_ENET_OPD_V 0xFFF0
88 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
89
90 struct fec_devinfo {
91 u32 quirks;
92 };
93
94 static const struct fec_devinfo fec_imx25_info = {
95 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
96 FEC_QUIRK_HAS_FRREG,
97 };
98
99 static const struct fec_devinfo fec_imx27_info = {
100 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
101 };
102
103 static const struct fec_devinfo fec_imx28_info = {
104 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
105 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
106 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
107 FEC_QUIRK_NO_HARD_RESET,
108 };
109
110 static const struct fec_devinfo fec_imx6q_info = {
111 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
114 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII,
115 };
116
117 static const struct fec_devinfo fec_mvf600_info = {
118 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
119 };
120
121 static const struct fec_devinfo fec_imx6x_info = {
122 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
123 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
124 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
125 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
126 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
127 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES,
128 };
129
130 static const struct fec_devinfo fec_imx6ul_info = {
131 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
132 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
133 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
134 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
135 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII,
136 };
137
138 static const struct fec_devinfo fec_imx8mq_info = {
139 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
140 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
141 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
142 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
143 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
144 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
145 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2,
146 };
147
148 static const struct fec_devinfo fec_imx8qm_info = {
149 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
150 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
151 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
152 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
153 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
154 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
155 FEC_QUIRK_DELAYED_CLKS_SUPPORT,
156 };
157
158 static struct platform_device_id fec_devtype[] = {
159 {
160 /* keep it for coldfire */
161 .name = DRIVER_NAME,
162 .driver_data = 0,
163 }, {
164 .name = "imx25-fec",
165 .driver_data = (kernel_ulong_t)&fec_imx25_info,
166 }, {
167 .name = "imx27-fec",
168 .driver_data = (kernel_ulong_t)&fec_imx27_info,
169 }, {
170 .name = "imx28-fec",
171 .driver_data = (kernel_ulong_t)&fec_imx28_info,
172 }, {
173 .name = "imx6q-fec",
174 .driver_data = (kernel_ulong_t)&fec_imx6q_info,
175 }, {
176 .name = "mvf600-fec",
177 .driver_data = (kernel_ulong_t)&fec_mvf600_info,
178 }, {
179 .name = "imx6sx-fec",
180 .driver_data = (kernel_ulong_t)&fec_imx6x_info,
181 }, {
182 .name = "imx6ul-fec",
183 .driver_data = (kernel_ulong_t)&fec_imx6ul_info,
184 }, {
185 .name = "imx8mq-fec",
186 .driver_data = (kernel_ulong_t)&fec_imx8mq_info,
187 }, {
188 .name = "imx8qm-fec",
189 .driver_data = (kernel_ulong_t)&fec_imx8qm_info,
190 }, {
191 /* sentinel */
192 }
193 };
194 MODULE_DEVICE_TABLE(platform, fec_devtype);
195
196 enum imx_fec_type {
197 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
198 IMX27_FEC, /* runs on i.mx27/35/51 */
199 IMX28_FEC,
200 IMX6Q_FEC,
201 MVF600_FEC,
202 IMX6SX_FEC,
203 IMX6UL_FEC,
204 IMX8MQ_FEC,
205 IMX8QM_FEC,
206 };
207
208 static const struct of_device_id fec_dt_ids[] = {
209 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
210 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
211 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
212 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
213 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
214 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
215 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
216 { .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
217 { .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
218 { /* sentinel */ }
219 };
220 MODULE_DEVICE_TABLE(of, fec_dt_ids);
221
222 static unsigned char macaddr[ETH_ALEN];
223 module_param_array(macaddr, byte, NULL, 0);
224 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
225
226 #if defined(CONFIG_M5272)
227 /*
228 * Some hardware gets it MAC address out of local flash memory.
229 * if this is non-zero then assume it is the address to get MAC from.
230 */
231 #if defined(CONFIG_NETtel)
232 #define FEC_FLASHMAC 0xf0006006
233 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
234 #define FEC_FLASHMAC 0xf0006000
235 #elif defined(CONFIG_CANCam)
236 #define FEC_FLASHMAC 0xf0020000
237 #elif defined (CONFIG_M5272C3)
238 #define FEC_FLASHMAC (0xffe04000 + 4)
239 #elif defined(CONFIG_MOD5272)
240 #define FEC_FLASHMAC 0xffc0406b
241 #else
242 #define FEC_FLASHMAC 0
243 #endif
244 #endif /* CONFIG_M5272 */
245
246 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
247 *
248 * 2048 byte skbufs are allocated. However, alignment requirements
249 * varies between FEC variants. Worst case is 64, so round down by 64.
250 */
251 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
252 #define PKT_MINBUF_SIZE 64
253
254 /* FEC receive acceleration */
255 #define FEC_RACC_IPDIS (1 << 1)
256 #define FEC_RACC_PRODIS (1 << 2)
257 #define FEC_RACC_SHIFT16 BIT(7)
258 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
259
260 /* MIB Control Register */
261 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
262
263 /*
264 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
265 * size bits. Other FEC hardware does not, so we need to take that into
266 * account when setting it.
267 */
268 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
269 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
270 defined(CONFIG_ARM64)
271 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
272 #else
273 #define OPT_FRAME_SIZE 0
274 #endif
275
276 /* FEC MII MMFR bits definition */
277 #define FEC_MMFR_ST (1 << 30)
278 #define FEC_MMFR_ST_C45 (0)
279 #define FEC_MMFR_OP_READ (2 << 28)
280 #define FEC_MMFR_OP_READ_C45 (3 << 28)
281 #define FEC_MMFR_OP_WRITE (1 << 28)
282 #define FEC_MMFR_OP_ADDR_WRITE (0)
283 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
284 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
285 #define FEC_MMFR_TA (2 << 16)
286 #define FEC_MMFR_DATA(v) (v & 0xffff)
287 /* FEC ECR bits definition */
288 #define FEC_ECR_MAGICEN (1 << 2)
289 #define FEC_ECR_SLEEP (1 << 3)
290
291 #define FEC_MII_TIMEOUT 30000 /* us */
292
293 /* Transmitter timeout */
294 #define TX_TIMEOUT (2 * HZ)
295
296 #define FEC_PAUSE_FLAG_AUTONEG 0x1
297 #define FEC_PAUSE_FLAG_ENABLE 0x2
298 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
299 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
300 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
301
302 #define COPYBREAK_DEFAULT 256
303
304 /* Max number of allowed TCP segments for software TSO */
305 #define FEC_MAX_TSO_SEGS 100
306 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
307
308 #define IS_TSO_HEADER(txq, addr) \
309 ((addr >= txq->tso_hdrs_dma) && \
310 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
311
312 static int mii_cnt;
313
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)314 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
315 struct bufdesc_prop *bd)
316 {
317 return (bdp >= bd->last) ? bd->base
318 : (struct bufdesc *)(((void *)bdp) + bd->dsize);
319 }
320
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)321 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
322 struct bufdesc_prop *bd)
323 {
324 return (bdp <= bd->base) ? bd->last
325 : (struct bufdesc *)(((void *)bdp) - bd->dsize);
326 }
327
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)328 static int fec_enet_get_bd_index(struct bufdesc *bdp,
329 struct bufdesc_prop *bd)
330 {
331 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
332 }
333
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)334 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
335 {
336 int entries;
337
338 entries = (((const char *)txq->dirty_tx -
339 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
340
341 return entries >= 0 ? entries : entries + txq->bd.ring_size;
342 }
343
swap_buffer(void * bufaddr,int len)344 static void swap_buffer(void *bufaddr, int len)
345 {
346 int i;
347 unsigned int *buf = bufaddr;
348
349 for (i = 0; i < len; i += 4, buf++)
350 swab32s(buf);
351 }
352
swap_buffer2(void * dst_buf,void * src_buf,int len)353 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
354 {
355 int i;
356 unsigned int *src = src_buf;
357 unsigned int *dst = dst_buf;
358
359 for (i = 0; i < len; i += 4, src++, dst++)
360 *dst = swab32p(src);
361 }
362
fec_dump(struct net_device * ndev)363 static void fec_dump(struct net_device *ndev)
364 {
365 struct fec_enet_private *fep = netdev_priv(ndev);
366 struct bufdesc *bdp;
367 struct fec_enet_priv_tx_q *txq;
368 int index = 0;
369
370 netdev_info(ndev, "TX ring dump\n");
371 pr_info("Nr SC addr len SKB\n");
372
373 txq = fep->tx_queue[0];
374 bdp = txq->bd.base;
375
376 do {
377 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
378 index,
379 bdp == txq->bd.cur ? 'S' : ' ',
380 bdp == txq->dirty_tx ? 'H' : ' ',
381 fec16_to_cpu(bdp->cbd_sc),
382 fec32_to_cpu(bdp->cbd_bufaddr),
383 fec16_to_cpu(bdp->cbd_datlen),
384 txq->tx_skbuff[index]);
385 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
386 index++;
387 } while (bdp != txq->bd.base);
388 }
389
is_ipv4_pkt(struct sk_buff * skb)390 static inline bool is_ipv4_pkt(struct sk_buff *skb)
391 {
392 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
393 }
394
395 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)396 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
397 {
398 /* Only run for packets requiring a checksum. */
399 if (skb->ip_summed != CHECKSUM_PARTIAL)
400 return 0;
401
402 if (unlikely(skb_cow_head(skb, 0)))
403 return -1;
404
405 if (is_ipv4_pkt(skb))
406 ip_hdr(skb)->check = 0;
407 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
408
409 return 0;
410 }
411
412 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)413 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
414 struct sk_buff *skb,
415 struct net_device *ndev)
416 {
417 struct fec_enet_private *fep = netdev_priv(ndev);
418 struct bufdesc *bdp = txq->bd.cur;
419 struct bufdesc_ex *ebdp;
420 int nr_frags = skb_shinfo(skb)->nr_frags;
421 int frag, frag_len;
422 unsigned short status;
423 unsigned int estatus = 0;
424 skb_frag_t *this_frag;
425 unsigned int index;
426 void *bufaddr;
427 dma_addr_t addr;
428 int i;
429
430 for (frag = 0; frag < nr_frags; frag++) {
431 this_frag = &skb_shinfo(skb)->frags[frag];
432 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
433 ebdp = (struct bufdesc_ex *)bdp;
434
435 status = fec16_to_cpu(bdp->cbd_sc);
436 status &= ~BD_ENET_TX_STATS;
437 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
438 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
439
440 /* Handle the last BD specially */
441 if (frag == nr_frags - 1) {
442 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
443 if (fep->bufdesc_ex) {
444 estatus |= BD_ENET_TX_INT;
445 if (unlikely(skb_shinfo(skb)->tx_flags &
446 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
447 estatus |= BD_ENET_TX_TS;
448 }
449 }
450
451 if (fep->bufdesc_ex) {
452 if (fep->quirks & FEC_QUIRK_HAS_AVB)
453 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
454 if (skb->ip_summed == CHECKSUM_PARTIAL)
455 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
456
457 ebdp->cbd_bdu = 0;
458 ebdp->cbd_esc = cpu_to_fec32(estatus);
459 }
460
461 bufaddr = skb_frag_address(this_frag);
462
463 index = fec_enet_get_bd_index(bdp, &txq->bd);
464 if (((unsigned long) bufaddr) & fep->tx_align ||
465 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
466 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
467 bufaddr = txq->tx_bounce[index];
468
469 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
470 swap_buffer(bufaddr, frag_len);
471 }
472
473 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
474 DMA_TO_DEVICE);
475 if (dma_mapping_error(&fep->pdev->dev, addr)) {
476 if (net_ratelimit())
477 netdev_err(ndev, "Tx DMA memory map failed\n");
478 goto dma_mapping_error;
479 }
480
481 bdp->cbd_bufaddr = cpu_to_fec32(addr);
482 bdp->cbd_datlen = cpu_to_fec16(frag_len);
483 /* Make sure the updates to rest of the descriptor are
484 * performed before transferring ownership.
485 */
486 wmb();
487 bdp->cbd_sc = cpu_to_fec16(status);
488 }
489
490 return bdp;
491 dma_mapping_error:
492 bdp = txq->bd.cur;
493 for (i = 0; i < frag; i++) {
494 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
495 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
496 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
497 }
498 return ERR_PTR(-ENOMEM);
499 }
500
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)501 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
502 struct sk_buff *skb, struct net_device *ndev)
503 {
504 struct fec_enet_private *fep = netdev_priv(ndev);
505 int nr_frags = skb_shinfo(skb)->nr_frags;
506 struct bufdesc *bdp, *last_bdp;
507 void *bufaddr;
508 dma_addr_t addr;
509 unsigned short status;
510 unsigned short buflen;
511 unsigned int estatus = 0;
512 unsigned int index;
513 int entries_free;
514
515 entries_free = fec_enet_get_free_txdesc_num(txq);
516 if (entries_free < MAX_SKB_FRAGS + 1) {
517 dev_kfree_skb_any(skb);
518 if (net_ratelimit())
519 netdev_err(ndev, "NOT enough BD for SG!\n");
520 return NETDEV_TX_OK;
521 }
522
523 /* Protocol checksum off-load for TCP and UDP. */
524 if (fec_enet_clear_csum(skb, ndev)) {
525 dev_kfree_skb_any(skb);
526 return NETDEV_TX_OK;
527 }
528
529 /* Fill in a Tx ring entry */
530 bdp = txq->bd.cur;
531 last_bdp = bdp;
532 status = fec16_to_cpu(bdp->cbd_sc);
533 status &= ~BD_ENET_TX_STATS;
534
535 /* Set buffer length and buffer pointer */
536 bufaddr = skb->data;
537 buflen = skb_headlen(skb);
538
539 index = fec_enet_get_bd_index(bdp, &txq->bd);
540 if (((unsigned long) bufaddr) & fep->tx_align ||
541 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
542 memcpy(txq->tx_bounce[index], skb->data, buflen);
543 bufaddr = txq->tx_bounce[index];
544
545 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
546 swap_buffer(bufaddr, buflen);
547 }
548
549 /* Push the data cache so the CPM does not get stale memory data. */
550 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
551 if (dma_mapping_error(&fep->pdev->dev, addr)) {
552 dev_kfree_skb_any(skb);
553 if (net_ratelimit())
554 netdev_err(ndev, "Tx DMA memory map failed\n");
555 return NETDEV_TX_OK;
556 }
557
558 if (nr_frags) {
559 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
560 if (IS_ERR(last_bdp)) {
561 dma_unmap_single(&fep->pdev->dev, addr,
562 buflen, DMA_TO_DEVICE);
563 dev_kfree_skb_any(skb);
564 return NETDEV_TX_OK;
565 }
566 } else {
567 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
568 if (fep->bufdesc_ex) {
569 estatus = BD_ENET_TX_INT;
570 if (unlikely(skb_shinfo(skb)->tx_flags &
571 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
572 estatus |= BD_ENET_TX_TS;
573 }
574 }
575 bdp->cbd_bufaddr = cpu_to_fec32(addr);
576 bdp->cbd_datlen = cpu_to_fec16(buflen);
577
578 if (fep->bufdesc_ex) {
579
580 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
581
582 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
583 fep->hwts_tx_en))
584 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
585
586 if (fep->quirks & FEC_QUIRK_HAS_AVB)
587 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
588
589 if (skb->ip_summed == CHECKSUM_PARTIAL)
590 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
591
592 ebdp->cbd_bdu = 0;
593 ebdp->cbd_esc = cpu_to_fec32(estatus);
594 }
595
596 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
597 /* Save skb pointer */
598 txq->tx_skbuff[index] = skb;
599
600 /* Make sure the updates to rest of the descriptor are performed before
601 * transferring ownership.
602 */
603 wmb();
604
605 /* Send it on its way. Tell FEC it's ready, interrupt when done,
606 * it's the last BD of the frame, and to put the CRC on the end.
607 */
608 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
609 bdp->cbd_sc = cpu_to_fec16(status);
610
611 /* If this was the last BD in the ring, start at the beginning again. */
612 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
613
614 skb_tx_timestamp(skb);
615
616 /* Make sure the update to bdp and tx_skbuff are performed before
617 * txq->bd.cur.
618 */
619 wmb();
620 txq->bd.cur = bdp;
621
622 /* Trigger transmission start */
623 writel(0, txq->bd.reg_desc_active);
624
625 return 0;
626 }
627
628 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)629 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
630 struct net_device *ndev,
631 struct bufdesc *bdp, int index, char *data,
632 int size, bool last_tcp, bool is_last)
633 {
634 struct fec_enet_private *fep = netdev_priv(ndev);
635 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
636 unsigned short status;
637 unsigned int estatus = 0;
638 dma_addr_t addr;
639
640 status = fec16_to_cpu(bdp->cbd_sc);
641 status &= ~BD_ENET_TX_STATS;
642
643 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
644
645 if (((unsigned long) data) & fep->tx_align ||
646 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
647 memcpy(txq->tx_bounce[index], data, size);
648 data = txq->tx_bounce[index];
649
650 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
651 swap_buffer(data, size);
652 }
653
654 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
655 if (dma_mapping_error(&fep->pdev->dev, addr)) {
656 dev_kfree_skb_any(skb);
657 if (net_ratelimit())
658 netdev_err(ndev, "Tx DMA memory map failed\n");
659 return NETDEV_TX_BUSY;
660 }
661
662 bdp->cbd_datlen = cpu_to_fec16(size);
663 bdp->cbd_bufaddr = cpu_to_fec32(addr);
664
665 if (fep->bufdesc_ex) {
666 if (fep->quirks & FEC_QUIRK_HAS_AVB)
667 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
668 if (skb->ip_summed == CHECKSUM_PARTIAL)
669 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
670 ebdp->cbd_bdu = 0;
671 ebdp->cbd_esc = cpu_to_fec32(estatus);
672 }
673
674 /* Handle the last BD specially */
675 if (last_tcp)
676 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
677 if (is_last) {
678 status |= BD_ENET_TX_INTR;
679 if (fep->bufdesc_ex)
680 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
681 }
682
683 bdp->cbd_sc = cpu_to_fec16(status);
684
685 return 0;
686 }
687
688 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)689 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
690 struct sk_buff *skb, struct net_device *ndev,
691 struct bufdesc *bdp, int index)
692 {
693 struct fec_enet_private *fep = netdev_priv(ndev);
694 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
695 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
696 void *bufaddr;
697 unsigned long dmabuf;
698 unsigned short status;
699 unsigned int estatus = 0;
700
701 status = fec16_to_cpu(bdp->cbd_sc);
702 status &= ~BD_ENET_TX_STATS;
703 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
704
705 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
706 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
707 if (((unsigned long)bufaddr) & fep->tx_align ||
708 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
709 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
710 bufaddr = txq->tx_bounce[index];
711
712 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
713 swap_buffer(bufaddr, hdr_len);
714
715 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
716 hdr_len, DMA_TO_DEVICE);
717 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
718 dev_kfree_skb_any(skb);
719 if (net_ratelimit())
720 netdev_err(ndev, "Tx DMA memory map failed\n");
721 return NETDEV_TX_BUSY;
722 }
723 }
724
725 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
726 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
727
728 if (fep->bufdesc_ex) {
729 if (fep->quirks & FEC_QUIRK_HAS_AVB)
730 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
731 if (skb->ip_summed == CHECKSUM_PARTIAL)
732 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
733 ebdp->cbd_bdu = 0;
734 ebdp->cbd_esc = cpu_to_fec32(estatus);
735 }
736
737 bdp->cbd_sc = cpu_to_fec16(status);
738
739 return 0;
740 }
741
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)742 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
743 struct sk_buff *skb,
744 struct net_device *ndev)
745 {
746 struct fec_enet_private *fep = netdev_priv(ndev);
747 int hdr_len, total_len, data_left;
748 struct bufdesc *bdp = txq->bd.cur;
749 struct tso_t tso;
750 unsigned int index = 0;
751 int ret;
752
753 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
754 dev_kfree_skb_any(skb);
755 if (net_ratelimit())
756 netdev_err(ndev, "NOT enough BD for TSO!\n");
757 return NETDEV_TX_OK;
758 }
759
760 /* Protocol checksum off-load for TCP and UDP. */
761 if (fec_enet_clear_csum(skb, ndev)) {
762 dev_kfree_skb_any(skb);
763 return NETDEV_TX_OK;
764 }
765
766 /* Initialize the TSO handler, and prepare the first payload */
767 hdr_len = tso_start(skb, &tso);
768
769 total_len = skb->len - hdr_len;
770 while (total_len > 0) {
771 char *hdr;
772
773 index = fec_enet_get_bd_index(bdp, &txq->bd);
774 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
775 total_len -= data_left;
776
777 /* prepare packet headers: MAC + IP + TCP */
778 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
779 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
780 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
781 if (ret)
782 goto err_release;
783
784 while (data_left > 0) {
785 int size;
786
787 size = min_t(int, tso.size, data_left);
788 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
789 index = fec_enet_get_bd_index(bdp, &txq->bd);
790 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
791 bdp, index,
792 tso.data, size,
793 size == data_left,
794 total_len == 0);
795 if (ret)
796 goto err_release;
797
798 data_left -= size;
799 tso_build_data(skb, &tso, size);
800 }
801
802 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
803 }
804
805 /* Save skb pointer */
806 txq->tx_skbuff[index] = skb;
807
808 skb_tx_timestamp(skb);
809 txq->bd.cur = bdp;
810
811 /* Trigger transmission start */
812 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
813 !readl(txq->bd.reg_desc_active) ||
814 !readl(txq->bd.reg_desc_active) ||
815 !readl(txq->bd.reg_desc_active) ||
816 !readl(txq->bd.reg_desc_active))
817 writel(0, txq->bd.reg_desc_active);
818
819 return 0;
820
821 err_release:
822 /* TODO: Release all used data descriptors for TSO */
823 return ret;
824 }
825
826 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)827 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
828 {
829 struct fec_enet_private *fep = netdev_priv(ndev);
830 int entries_free;
831 unsigned short queue;
832 struct fec_enet_priv_tx_q *txq;
833 struct netdev_queue *nq;
834 int ret;
835
836 queue = skb_get_queue_mapping(skb);
837 txq = fep->tx_queue[queue];
838 nq = netdev_get_tx_queue(ndev, queue);
839
840 if (skb_is_gso(skb))
841 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
842 else
843 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
844 if (ret)
845 return ret;
846
847 entries_free = fec_enet_get_free_txdesc_num(txq);
848 if (entries_free <= txq->tx_stop_threshold)
849 netif_tx_stop_queue(nq);
850
851 return NETDEV_TX_OK;
852 }
853
854 /* Init RX & TX buffer descriptors
855 */
fec_enet_bd_init(struct net_device * dev)856 static void fec_enet_bd_init(struct net_device *dev)
857 {
858 struct fec_enet_private *fep = netdev_priv(dev);
859 struct fec_enet_priv_tx_q *txq;
860 struct fec_enet_priv_rx_q *rxq;
861 struct bufdesc *bdp;
862 unsigned int i;
863 unsigned int q;
864
865 for (q = 0; q < fep->num_rx_queues; q++) {
866 /* Initialize the receive buffer descriptors. */
867 rxq = fep->rx_queue[q];
868 bdp = rxq->bd.base;
869
870 for (i = 0; i < rxq->bd.ring_size; i++) {
871
872 /* Initialize the BD for every fragment in the page. */
873 if (bdp->cbd_bufaddr)
874 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
875 else
876 bdp->cbd_sc = cpu_to_fec16(0);
877 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
878 }
879
880 /* Set the last buffer to wrap */
881 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
882 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
883
884 rxq->bd.cur = rxq->bd.base;
885 }
886
887 for (q = 0; q < fep->num_tx_queues; q++) {
888 /* ...and the same for transmit */
889 txq = fep->tx_queue[q];
890 bdp = txq->bd.base;
891 txq->bd.cur = bdp;
892
893 for (i = 0; i < txq->bd.ring_size; i++) {
894 /* Initialize the BD for every fragment in the page. */
895 bdp->cbd_sc = cpu_to_fec16(0);
896 if (bdp->cbd_bufaddr &&
897 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
898 dma_unmap_single(&fep->pdev->dev,
899 fec32_to_cpu(bdp->cbd_bufaddr),
900 fec16_to_cpu(bdp->cbd_datlen),
901 DMA_TO_DEVICE);
902 if (txq->tx_skbuff[i]) {
903 dev_kfree_skb_any(txq->tx_skbuff[i]);
904 txq->tx_skbuff[i] = NULL;
905 }
906 bdp->cbd_bufaddr = cpu_to_fec32(0);
907 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
908 }
909
910 /* Set the last buffer to wrap */
911 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
912 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
913 txq->dirty_tx = bdp;
914 }
915 }
916
fec_enet_active_rxring(struct net_device * ndev)917 static void fec_enet_active_rxring(struct net_device *ndev)
918 {
919 struct fec_enet_private *fep = netdev_priv(ndev);
920 int i;
921
922 for (i = 0; i < fep->num_rx_queues; i++)
923 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
924 }
925
fec_enet_enable_ring(struct net_device * ndev)926 static void fec_enet_enable_ring(struct net_device *ndev)
927 {
928 struct fec_enet_private *fep = netdev_priv(ndev);
929 struct fec_enet_priv_tx_q *txq;
930 struct fec_enet_priv_rx_q *rxq;
931 int i;
932
933 for (i = 0; i < fep->num_rx_queues; i++) {
934 rxq = fep->rx_queue[i];
935 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
936 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
937
938 /* enable DMA1/2 */
939 if (i)
940 writel(RCMR_MATCHEN | RCMR_CMP(i),
941 fep->hwp + FEC_RCMR(i));
942 }
943
944 for (i = 0; i < fep->num_tx_queues; i++) {
945 txq = fep->tx_queue[i];
946 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
947
948 /* enable DMA1/2 */
949 if (i)
950 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
951 fep->hwp + FEC_DMA_CFG(i));
952 }
953 }
954
fec_enet_reset_skb(struct net_device * ndev)955 static void fec_enet_reset_skb(struct net_device *ndev)
956 {
957 struct fec_enet_private *fep = netdev_priv(ndev);
958 struct fec_enet_priv_tx_q *txq;
959 int i, j;
960
961 for (i = 0; i < fep->num_tx_queues; i++) {
962 txq = fep->tx_queue[i];
963
964 for (j = 0; j < txq->bd.ring_size; j++) {
965 if (txq->tx_skbuff[j]) {
966 dev_kfree_skb_any(txq->tx_skbuff[j]);
967 txq->tx_skbuff[j] = NULL;
968 }
969 }
970 }
971 }
972
973 /*
974 * This function is called to start or restart the FEC during a link
975 * change, transmit timeout, or to reconfigure the FEC. The network
976 * packet processing for this device must be stopped before this call.
977 */
978 static void
fec_restart(struct net_device * ndev)979 fec_restart(struct net_device *ndev)
980 {
981 struct fec_enet_private *fep = netdev_priv(ndev);
982 u32 temp_mac[2];
983 u32 rcntl = OPT_FRAME_SIZE | 0x04;
984 u32 ecntl = 0x2; /* ETHEREN */
985
986 /* Whack a reset. We should wait for this.
987 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
988 * instead of reset MAC itself.
989 */
990 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
991 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
992 writel(0, fep->hwp + FEC_ECNTRL);
993 } else {
994 writel(1, fep->hwp + FEC_ECNTRL);
995 udelay(10);
996 }
997
998 /*
999 * enet-mac reset will reset mac address registers too,
1000 * so need to reconfigure it.
1001 */
1002 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1003 writel((__force u32)cpu_to_be32(temp_mac[0]),
1004 fep->hwp + FEC_ADDR_LOW);
1005 writel((__force u32)cpu_to_be32(temp_mac[1]),
1006 fep->hwp + FEC_ADDR_HIGH);
1007
1008 /* Clear any outstanding interrupt, except MDIO. */
1009 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1010
1011 fec_enet_bd_init(ndev);
1012
1013 fec_enet_enable_ring(ndev);
1014
1015 /* Reset tx SKB buffers. */
1016 fec_enet_reset_skb(ndev);
1017
1018 /* Enable MII mode */
1019 if (fep->full_duplex == DUPLEX_FULL) {
1020 /* FD enable */
1021 writel(0x04, fep->hwp + FEC_X_CNTRL);
1022 } else {
1023 /* No Rcv on Xmit */
1024 rcntl |= 0x02;
1025 writel(0x0, fep->hwp + FEC_X_CNTRL);
1026 }
1027
1028 /* Set MII speed */
1029 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1030
1031 #if !defined(CONFIG_M5272)
1032 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1033 u32 val = readl(fep->hwp + FEC_RACC);
1034
1035 /* align IP header */
1036 val |= FEC_RACC_SHIFT16;
1037 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1038 /* set RX checksum */
1039 val |= FEC_RACC_OPTIONS;
1040 else
1041 val &= ~FEC_RACC_OPTIONS;
1042 writel(val, fep->hwp + FEC_RACC);
1043 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1044 }
1045 #endif
1046
1047 /*
1048 * The phy interface and speed need to get configured
1049 * differently on enet-mac.
1050 */
1051 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1052 /* Enable flow control and length check */
1053 rcntl |= 0x40000000 | 0x00000020;
1054
1055 /* RGMII, RMII or MII */
1056 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1057 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1058 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1059 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1060 rcntl |= (1 << 6);
1061 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1062 rcntl |= (1 << 8);
1063 else
1064 rcntl &= ~(1 << 8);
1065
1066 /* 1G, 100M or 10M */
1067 if (ndev->phydev) {
1068 if (ndev->phydev->speed == SPEED_1000)
1069 ecntl |= (1 << 5);
1070 else if (ndev->phydev->speed == SPEED_100)
1071 rcntl &= ~(1 << 9);
1072 else
1073 rcntl |= (1 << 9);
1074 }
1075 } else {
1076 #ifdef FEC_MIIGSK_ENR
1077 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1078 u32 cfgr;
1079 /* disable the gasket and wait */
1080 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1081 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1082 udelay(1);
1083
1084 /*
1085 * configure the gasket:
1086 * RMII, 50 MHz, no loopback, no echo
1087 * MII, 25 MHz, no loopback, no echo
1088 */
1089 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1090 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1091 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1092 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1093 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1094
1095 /* re-enable the gasket */
1096 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1097 }
1098 #endif
1099 }
1100
1101 #if !defined(CONFIG_M5272)
1102 /* enable pause frame*/
1103 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1104 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1105 ndev->phydev && ndev->phydev->pause)) {
1106 rcntl |= FEC_ENET_FCE;
1107
1108 /* set FIFO threshold parameter to reduce overrun */
1109 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1110 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1111 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1112 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1113
1114 /* OPD */
1115 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1116 } else {
1117 rcntl &= ~FEC_ENET_FCE;
1118 }
1119 #endif /* !defined(CONFIG_M5272) */
1120
1121 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1122
1123 /* Setup multicast filter. */
1124 set_multicast_list(ndev);
1125 #ifndef CONFIG_M5272
1126 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1127 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1128 #endif
1129
1130 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1131 /* enable ENET endian swap */
1132 ecntl |= (1 << 8);
1133 /* enable ENET store and forward mode */
1134 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1135 }
1136
1137 if (fep->bufdesc_ex)
1138 ecntl |= (1 << 4);
1139
1140 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1141 fep->rgmii_txc_dly)
1142 ecntl |= FEC_ENET_TXC_DLY;
1143 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1144 fep->rgmii_rxc_dly)
1145 ecntl |= FEC_ENET_RXC_DLY;
1146
1147 #ifndef CONFIG_M5272
1148 /* Enable the MIB statistic event counters */
1149 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1150 #endif
1151
1152 /* And last, enable the transmit and receive processing */
1153 writel(ecntl, fep->hwp + FEC_ECNTRL);
1154 fec_enet_active_rxring(ndev);
1155
1156 if (fep->bufdesc_ex)
1157 fec_ptp_start_cyclecounter(ndev);
1158
1159 /* Enable interrupts we wish to service */
1160 if (fep->link)
1161 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1162 else
1163 writel(0, fep->hwp + FEC_IMASK);
1164
1165 /* Init the interrupt coalescing */
1166 fec_enet_itr_coal_init(ndev);
1167
1168 }
1169
fec_enet_stop_mode(struct fec_enet_private * fep,bool enabled)1170 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1171 {
1172 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1173 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1174
1175 if (stop_gpr->gpr) {
1176 if (enabled)
1177 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1178 BIT(stop_gpr->bit),
1179 BIT(stop_gpr->bit));
1180 else
1181 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1182 BIT(stop_gpr->bit), 0);
1183 } else if (pdata && pdata->sleep_mode_enable) {
1184 pdata->sleep_mode_enable(enabled);
1185 }
1186 }
1187
1188 static void
fec_stop(struct net_device * ndev)1189 fec_stop(struct net_device *ndev)
1190 {
1191 struct fec_enet_private *fep = netdev_priv(ndev);
1192 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1193 u32 val;
1194
1195 /* We cannot expect a graceful transmit stop without link !!! */
1196 if (fep->link) {
1197 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1198 udelay(10);
1199 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1200 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1201 }
1202
1203 /* Whack a reset. We should wait for this.
1204 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1205 * instead of reset MAC itself.
1206 */
1207 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1208 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1209 writel(0, fep->hwp + FEC_ECNTRL);
1210 } else {
1211 writel(1, fep->hwp + FEC_ECNTRL);
1212 udelay(10);
1213 }
1214 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1215 } else {
1216 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1217 val = readl(fep->hwp + FEC_ECNTRL);
1218 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1219 writel(val, fep->hwp + FEC_ECNTRL);
1220 fec_enet_stop_mode(fep, true);
1221 }
1222 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1223
1224 /* We have to keep ENET enabled to have MII interrupt stay working */
1225 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1226 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1227 writel(2, fep->hwp + FEC_ECNTRL);
1228 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1229 }
1230 }
1231
1232
1233 static void
fec_timeout(struct net_device * ndev,unsigned int txqueue)1234 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1235 {
1236 struct fec_enet_private *fep = netdev_priv(ndev);
1237
1238 fec_dump(ndev);
1239
1240 ndev->stats.tx_errors++;
1241
1242 schedule_work(&fep->tx_timeout_work);
1243 }
1244
fec_enet_timeout_work(struct work_struct * work)1245 static void fec_enet_timeout_work(struct work_struct *work)
1246 {
1247 struct fec_enet_private *fep =
1248 container_of(work, struct fec_enet_private, tx_timeout_work);
1249 struct net_device *ndev = fep->netdev;
1250
1251 rtnl_lock();
1252 if (netif_device_present(ndev) || netif_running(ndev)) {
1253 napi_disable(&fep->napi);
1254 netif_tx_lock_bh(ndev);
1255 fec_restart(ndev);
1256 netif_tx_wake_all_queues(ndev);
1257 netif_tx_unlock_bh(ndev);
1258 napi_enable(&fep->napi);
1259 }
1260 rtnl_unlock();
1261 }
1262
1263 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1264 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1265 struct skb_shared_hwtstamps *hwtstamps)
1266 {
1267 unsigned long flags;
1268 u64 ns;
1269
1270 spin_lock_irqsave(&fep->tmreg_lock, flags);
1271 ns = timecounter_cyc2time(&fep->tc, ts);
1272 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1273
1274 memset(hwtstamps, 0, sizeof(*hwtstamps));
1275 hwtstamps->hwtstamp = ns_to_ktime(ns);
1276 }
1277
1278 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id)1279 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1280 {
1281 struct fec_enet_private *fep;
1282 struct bufdesc *bdp;
1283 unsigned short status;
1284 struct sk_buff *skb;
1285 struct fec_enet_priv_tx_q *txq;
1286 struct netdev_queue *nq;
1287 int index = 0;
1288 int entries_free;
1289
1290 fep = netdev_priv(ndev);
1291
1292 txq = fep->tx_queue[queue_id];
1293 /* get next bdp of dirty_tx */
1294 nq = netdev_get_tx_queue(ndev, queue_id);
1295 bdp = txq->dirty_tx;
1296
1297 /* get next bdp of dirty_tx */
1298 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1299
1300 while (bdp != READ_ONCE(txq->bd.cur)) {
1301 /* Order the load of bd.cur and cbd_sc */
1302 rmb();
1303 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1304 if (status & BD_ENET_TX_READY)
1305 break;
1306
1307 index = fec_enet_get_bd_index(bdp, &txq->bd);
1308
1309 skb = txq->tx_skbuff[index];
1310 txq->tx_skbuff[index] = NULL;
1311 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1312 dma_unmap_single(&fep->pdev->dev,
1313 fec32_to_cpu(bdp->cbd_bufaddr),
1314 fec16_to_cpu(bdp->cbd_datlen),
1315 DMA_TO_DEVICE);
1316 bdp->cbd_bufaddr = cpu_to_fec32(0);
1317 if (!skb)
1318 goto skb_done;
1319
1320 /* Check for errors. */
1321 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1322 BD_ENET_TX_RL | BD_ENET_TX_UN |
1323 BD_ENET_TX_CSL)) {
1324 ndev->stats.tx_errors++;
1325 if (status & BD_ENET_TX_HB) /* No heartbeat */
1326 ndev->stats.tx_heartbeat_errors++;
1327 if (status & BD_ENET_TX_LC) /* Late collision */
1328 ndev->stats.tx_window_errors++;
1329 if (status & BD_ENET_TX_RL) /* Retrans limit */
1330 ndev->stats.tx_aborted_errors++;
1331 if (status & BD_ENET_TX_UN) /* Underrun */
1332 ndev->stats.tx_fifo_errors++;
1333 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1334 ndev->stats.tx_carrier_errors++;
1335 } else {
1336 ndev->stats.tx_packets++;
1337 ndev->stats.tx_bytes += skb->len;
1338 }
1339
1340 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1341 * are to time stamp the packet, so we still need to check time
1342 * stamping enabled flag.
1343 */
1344 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1345 fep->hwts_tx_en) &&
1346 fep->bufdesc_ex) {
1347 struct skb_shared_hwtstamps shhwtstamps;
1348 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1349
1350 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1351 skb_tstamp_tx(skb, &shhwtstamps);
1352 }
1353
1354 /* Deferred means some collisions occurred during transmit,
1355 * but we eventually sent the packet OK.
1356 */
1357 if (status & BD_ENET_TX_DEF)
1358 ndev->stats.collisions++;
1359
1360 /* Free the sk buffer associated with this last transmit */
1361 dev_kfree_skb_any(skb);
1362 skb_done:
1363 /* Make sure the update to bdp and tx_skbuff are performed
1364 * before dirty_tx
1365 */
1366 wmb();
1367 txq->dirty_tx = bdp;
1368
1369 /* Update pointer to next buffer descriptor to be transmitted */
1370 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1371
1372 /* Since we have freed up a buffer, the ring is no longer full
1373 */
1374 if (netif_tx_queue_stopped(nq)) {
1375 entries_free = fec_enet_get_free_txdesc_num(txq);
1376 if (entries_free >= txq->tx_wake_threshold)
1377 netif_tx_wake_queue(nq);
1378 }
1379 }
1380
1381 /* ERR006358: Keep the transmitter going */
1382 if (bdp != txq->bd.cur &&
1383 readl(txq->bd.reg_desc_active) == 0)
1384 writel(0, txq->bd.reg_desc_active);
1385 }
1386
fec_enet_tx(struct net_device * ndev)1387 static void fec_enet_tx(struct net_device *ndev)
1388 {
1389 struct fec_enet_private *fep = netdev_priv(ndev);
1390 int i;
1391
1392 /* Make sure that AVB queues are processed first. */
1393 for (i = fep->num_tx_queues - 1; i >= 0; i--)
1394 fec_enet_tx_queue(ndev, i);
1395 }
1396
1397 static int
fec_enet_new_rxbdp(struct net_device * ndev,struct bufdesc * bdp,struct sk_buff * skb)1398 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1399 {
1400 struct fec_enet_private *fep = netdev_priv(ndev);
1401 int off;
1402
1403 off = ((unsigned long)skb->data) & fep->rx_align;
1404 if (off)
1405 skb_reserve(skb, fep->rx_align + 1 - off);
1406
1407 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1408 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1409 if (net_ratelimit())
1410 netdev_err(ndev, "Rx DMA memory map failed\n");
1411 return -ENOMEM;
1412 }
1413
1414 return 0;
1415 }
1416
fec_enet_copybreak(struct net_device * ndev,struct sk_buff ** skb,struct bufdesc * bdp,u32 length,bool swap)1417 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1418 struct bufdesc *bdp, u32 length, bool swap)
1419 {
1420 struct fec_enet_private *fep = netdev_priv(ndev);
1421 struct sk_buff *new_skb;
1422
1423 if (length > fep->rx_copybreak)
1424 return false;
1425
1426 new_skb = netdev_alloc_skb(ndev, length);
1427 if (!new_skb)
1428 return false;
1429
1430 dma_sync_single_for_cpu(&fep->pdev->dev,
1431 fec32_to_cpu(bdp->cbd_bufaddr),
1432 FEC_ENET_RX_FRSIZE - fep->rx_align,
1433 DMA_FROM_DEVICE);
1434 if (!swap)
1435 memcpy(new_skb->data, (*skb)->data, length);
1436 else
1437 swap_buffer2(new_skb->data, (*skb)->data, length);
1438 *skb = new_skb;
1439
1440 return true;
1441 }
1442
1443 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1444 * When we update through the ring, if the next incoming buffer has
1445 * not been given to the system, we just set the empty indicator,
1446 * effectively tossing the packet.
1447 */
1448 static int
fec_enet_rx_queue(struct net_device * ndev,int budget,u16 queue_id)1449 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1450 {
1451 struct fec_enet_private *fep = netdev_priv(ndev);
1452 struct fec_enet_priv_rx_q *rxq;
1453 struct bufdesc *bdp;
1454 unsigned short status;
1455 struct sk_buff *skb_new = NULL;
1456 struct sk_buff *skb;
1457 ushort pkt_len;
1458 __u8 *data;
1459 int pkt_received = 0;
1460 struct bufdesc_ex *ebdp = NULL;
1461 bool vlan_packet_rcvd = false;
1462 u16 vlan_tag;
1463 int index = 0;
1464 bool is_copybreak;
1465 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1466
1467 #ifdef CONFIG_M532x
1468 flush_cache_all();
1469 #endif
1470 rxq = fep->rx_queue[queue_id];
1471
1472 /* First, grab all of the stats for the incoming packet.
1473 * These get messed up if we get called due to a busy condition.
1474 */
1475 bdp = rxq->bd.cur;
1476
1477 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1478
1479 if (pkt_received >= budget)
1480 break;
1481 pkt_received++;
1482
1483 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1484
1485 /* Check for errors. */
1486 status ^= BD_ENET_RX_LAST;
1487 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1488 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1489 BD_ENET_RX_CL)) {
1490 ndev->stats.rx_errors++;
1491 if (status & BD_ENET_RX_OV) {
1492 /* FIFO overrun */
1493 ndev->stats.rx_fifo_errors++;
1494 goto rx_processing_done;
1495 }
1496 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1497 | BD_ENET_RX_LAST)) {
1498 /* Frame too long or too short. */
1499 ndev->stats.rx_length_errors++;
1500 if (status & BD_ENET_RX_LAST)
1501 netdev_err(ndev, "rcv is not +last\n");
1502 }
1503 if (status & BD_ENET_RX_CR) /* CRC Error */
1504 ndev->stats.rx_crc_errors++;
1505 /* Report late collisions as a frame error. */
1506 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1507 ndev->stats.rx_frame_errors++;
1508 goto rx_processing_done;
1509 }
1510
1511 /* Process the incoming frame. */
1512 ndev->stats.rx_packets++;
1513 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1514 ndev->stats.rx_bytes += pkt_len;
1515
1516 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1517 skb = rxq->rx_skbuff[index];
1518
1519 /* The packet length includes FCS, but we don't want to
1520 * include that when passing upstream as it messes up
1521 * bridging applications.
1522 */
1523 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1524 need_swap);
1525 if (!is_copybreak) {
1526 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1527 if (unlikely(!skb_new)) {
1528 ndev->stats.rx_dropped++;
1529 goto rx_processing_done;
1530 }
1531 dma_unmap_single(&fep->pdev->dev,
1532 fec32_to_cpu(bdp->cbd_bufaddr),
1533 FEC_ENET_RX_FRSIZE - fep->rx_align,
1534 DMA_FROM_DEVICE);
1535 }
1536
1537 prefetch(skb->data - NET_IP_ALIGN);
1538 skb_put(skb, pkt_len - 4);
1539 data = skb->data;
1540
1541 if (!is_copybreak && need_swap)
1542 swap_buffer(data, pkt_len);
1543
1544 #if !defined(CONFIG_M5272)
1545 if (fep->quirks & FEC_QUIRK_HAS_RACC)
1546 data = skb_pull_inline(skb, 2);
1547 #endif
1548
1549 /* Extract the enhanced buffer descriptor */
1550 ebdp = NULL;
1551 if (fep->bufdesc_ex)
1552 ebdp = (struct bufdesc_ex *)bdp;
1553
1554 /* If this is a VLAN packet remove the VLAN Tag */
1555 vlan_packet_rcvd = false;
1556 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1557 fep->bufdesc_ex &&
1558 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1559 /* Push and remove the vlan tag */
1560 struct vlan_hdr *vlan_header =
1561 (struct vlan_hdr *) (data + ETH_HLEN);
1562 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1563
1564 vlan_packet_rcvd = true;
1565
1566 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1567 skb_pull(skb, VLAN_HLEN);
1568 }
1569
1570 skb->protocol = eth_type_trans(skb, ndev);
1571
1572 /* Get receive timestamp from the skb */
1573 if (fep->hwts_rx_en && fep->bufdesc_ex)
1574 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1575 skb_hwtstamps(skb));
1576
1577 if (fep->bufdesc_ex &&
1578 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1579 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1580 /* don't check it */
1581 skb->ip_summed = CHECKSUM_UNNECESSARY;
1582 } else {
1583 skb_checksum_none_assert(skb);
1584 }
1585 }
1586
1587 /* Handle received VLAN packets */
1588 if (vlan_packet_rcvd)
1589 __vlan_hwaccel_put_tag(skb,
1590 htons(ETH_P_8021Q),
1591 vlan_tag);
1592
1593 skb_record_rx_queue(skb, queue_id);
1594 napi_gro_receive(&fep->napi, skb);
1595
1596 if (is_copybreak) {
1597 dma_sync_single_for_device(&fep->pdev->dev,
1598 fec32_to_cpu(bdp->cbd_bufaddr),
1599 FEC_ENET_RX_FRSIZE - fep->rx_align,
1600 DMA_FROM_DEVICE);
1601 } else {
1602 rxq->rx_skbuff[index] = skb_new;
1603 fec_enet_new_rxbdp(ndev, bdp, skb_new);
1604 }
1605
1606 rx_processing_done:
1607 /* Clear the status flags for this buffer */
1608 status &= ~BD_ENET_RX_STATS;
1609
1610 /* Mark the buffer empty */
1611 status |= BD_ENET_RX_EMPTY;
1612
1613 if (fep->bufdesc_ex) {
1614 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1615
1616 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1617 ebdp->cbd_prot = 0;
1618 ebdp->cbd_bdu = 0;
1619 }
1620 /* Make sure the updates to rest of the descriptor are
1621 * performed before transferring ownership.
1622 */
1623 wmb();
1624 bdp->cbd_sc = cpu_to_fec16(status);
1625
1626 /* Update BD pointer to next entry */
1627 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1628
1629 /* Doing this here will keep the FEC running while we process
1630 * incoming frames. On a heavily loaded network, we should be
1631 * able to keep up at the expense of system resources.
1632 */
1633 writel(0, rxq->bd.reg_desc_active);
1634 }
1635 rxq->bd.cur = bdp;
1636 return pkt_received;
1637 }
1638
fec_enet_rx(struct net_device * ndev,int budget)1639 static int fec_enet_rx(struct net_device *ndev, int budget)
1640 {
1641 struct fec_enet_private *fep = netdev_priv(ndev);
1642 int i, done = 0;
1643
1644 /* Make sure that AVB queues are processed first. */
1645 for (i = fep->num_rx_queues - 1; i >= 0; i--)
1646 done += fec_enet_rx_queue(ndev, budget - done, i);
1647
1648 return done;
1649 }
1650
fec_enet_collect_events(struct fec_enet_private * fep)1651 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1652 {
1653 uint int_events;
1654
1655 int_events = readl(fep->hwp + FEC_IEVENT);
1656
1657 /* Don't clear MDIO events, we poll for those */
1658 int_events &= ~FEC_ENET_MII;
1659
1660 writel(int_events, fep->hwp + FEC_IEVENT);
1661
1662 return int_events != 0;
1663 }
1664
1665 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1666 fec_enet_interrupt(int irq, void *dev_id)
1667 {
1668 struct net_device *ndev = dev_id;
1669 struct fec_enet_private *fep = netdev_priv(ndev);
1670 irqreturn_t ret = IRQ_NONE;
1671
1672 if (fec_enet_collect_events(fep) && fep->link) {
1673 ret = IRQ_HANDLED;
1674
1675 if (napi_schedule_prep(&fep->napi)) {
1676 /* Disable interrupts */
1677 writel(0, fep->hwp + FEC_IMASK);
1678 __napi_schedule(&fep->napi);
1679 }
1680 }
1681
1682 return ret;
1683 }
1684
fec_enet_rx_napi(struct napi_struct * napi,int budget)1685 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1686 {
1687 struct net_device *ndev = napi->dev;
1688 struct fec_enet_private *fep = netdev_priv(ndev);
1689 int done = 0;
1690
1691 do {
1692 done += fec_enet_rx(ndev, budget - done);
1693 fec_enet_tx(ndev);
1694 } while ((done < budget) && fec_enet_collect_events(fep));
1695
1696 if (done < budget) {
1697 napi_complete_done(napi, done);
1698 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1699 }
1700
1701 return done;
1702 }
1703
1704 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)1705 static int fec_get_mac(struct net_device *ndev)
1706 {
1707 struct fec_enet_private *fep = netdev_priv(ndev);
1708 unsigned char *iap, tmpaddr[ETH_ALEN];
1709 int ret;
1710
1711 /*
1712 * try to get mac address in following order:
1713 *
1714 * 1) module parameter via kernel command line in form
1715 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1716 */
1717 iap = macaddr;
1718
1719 /*
1720 * 2) from device tree data
1721 */
1722 if (!is_valid_ether_addr(iap)) {
1723 struct device_node *np = fep->pdev->dev.of_node;
1724 if (np) {
1725 ret = of_get_mac_address(np, tmpaddr);
1726 if (!ret)
1727 iap = tmpaddr;
1728 else if (ret == -EPROBE_DEFER)
1729 return ret;
1730 }
1731 }
1732
1733 /*
1734 * 3) from flash or fuse (via platform data)
1735 */
1736 if (!is_valid_ether_addr(iap)) {
1737 #ifdef CONFIG_M5272
1738 if (FEC_FLASHMAC)
1739 iap = (unsigned char *)FEC_FLASHMAC;
1740 #else
1741 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1742
1743 if (pdata)
1744 iap = (unsigned char *)&pdata->mac;
1745 #endif
1746 }
1747
1748 /*
1749 * 4) FEC mac registers set by bootloader
1750 */
1751 if (!is_valid_ether_addr(iap)) {
1752 *((__be32 *) &tmpaddr[0]) =
1753 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1754 *((__be16 *) &tmpaddr[4]) =
1755 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1756 iap = &tmpaddr[0];
1757 }
1758
1759 /*
1760 * 5) random mac address
1761 */
1762 if (!is_valid_ether_addr(iap)) {
1763 /* Report it and use a random ethernet address instead */
1764 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1765 eth_hw_addr_random(ndev);
1766 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1767 ndev->dev_addr);
1768 return 0;
1769 }
1770
1771 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1772
1773 /* Adjust MAC if using macaddr */
1774 if (iap == macaddr)
1775 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1776
1777 return 0;
1778 }
1779
1780 /* ------------------------------------------------------------------------- */
1781
1782 /*
1783 * Phy section
1784 */
fec_enet_adjust_link(struct net_device * ndev)1785 static void fec_enet_adjust_link(struct net_device *ndev)
1786 {
1787 struct fec_enet_private *fep = netdev_priv(ndev);
1788 struct phy_device *phy_dev = ndev->phydev;
1789 int status_change = 0;
1790
1791 /*
1792 * If the netdev is down, or is going down, we're not interested
1793 * in link state events, so just mark our idea of the link as down
1794 * and ignore the event.
1795 */
1796 if (!netif_running(ndev) || !netif_device_present(ndev)) {
1797 fep->link = 0;
1798 } else if (phy_dev->link) {
1799 if (!fep->link) {
1800 fep->link = phy_dev->link;
1801 status_change = 1;
1802 }
1803
1804 if (fep->full_duplex != phy_dev->duplex) {
1805 fep->full_duplex = phy_dev->duplex;
1806 status_change = 1;
1807 }
1808
1809 if (phy_dev->speed != fep->speed) {
1810 fep->speed = phy_dev->speed;
1811 status_change = 1;
1812 }
1813
1814 /* if any of the above changed restart the FEC */
1815 if (status_change) {
1816 napi_disable(&fep->napi);
1817 netif_tx_lock_bh(ndev);
1818 fec_restart(ndev);
1819 netif_tx_wake_all_queues(ndev);
1820 netif_tx_unlock_bh(ndev);
1821 napi_enable(&fep->napi);
1822 }
1823 } else {
1824 if (fep->link) {
1825 napi_disable(&fep->napi);
1826 netif_tx_lock_bh(ndev);
1827 fec_stop(ndev);
1828 netif_tx_unlock_bh(ndev);
1829 napi_enable(&fep->napi);
1830 fep->link = phy_dev->link;
1831 status_change = 1;
1832 }
1833 }
1834
1835 if (status_change)
1836 phy_print_status(phy_dev);
1837 }
1838
fec_enet_mdio_wait(struct fec_enet_private * fep)1839 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1840 {
1841 uint ievent;
1842 int ret;
1843
1844 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1845 ievent & FEC_ENET_MII, 2, 30000);
1846
1847 if (!ret)
1848 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1849
1850 return ret;
1851 }
1852
fec_enet_mdio_read(struct mii_bus * bus,int mii_id,int regnum)1853 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1854 {
1855 struct fec_enet_private *fep = bus->priv;
1856 struct device *dev = &fep->pdev->dev;
1857 int ret = 0, frame_start, frame_addr, frame_op;
1858 bool is_c45 = !!(regnum & MII_ADDR_C45);
1859
1860 ret = pm_runtime_resume_and_get(dev);
1861 if (ret < 0)
1862 return ret;
1863
1864 if (is_c45) {
1865 frame_start = FEC_MMFR_ST_C45;
1866
1867 /* write address */
1868 frame_addr = (regnum >> 16);
1869 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1870 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1871 FEC_MMFR_TA | (regnum & 0xFFFF),
1872 fep->hwp + FEC_MII_DATA);
1873
1874 /* wait for end of transfer */
1875 ret = fec_enet_mdio_wait(fep);
1876 if (ret) {
1877 netdev_err(fep->netdev, "MDIO address write timeout\n");
1878 goto out;
1879 }
1880
1881 frame_op = FEC_MMFR_OP_READ_C45;
1882
1883 } else {
1884 /* C22 read */
1885 frame_op = FEC_MMFR_OP_READ;
1886 frame_start = FEC_MMFR_ST;
1887 frame_addr = regnum;
1888 }
1889
1890 /* start a read op */
1891 writel(frame_start | frame_op |
1892 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1893 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1894
1895 /* wait for end of transfer */
1896 ret = fec_enet_mdio_wait(fep);
1897 if (ret) {
1898 netdev_err(fep->netdev, "MDIO read timeout\n");
1899 goto out;
1900 }
1901
1902 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1903
1904 out:
1905 pm_runtime_mark_last_busy(dev);
1906 pm_runtime_put_autosuspend(dev);
1907
1908 return ret;
1909 }
1910
fec_enet_mdio_write(struct mii_bus * bus,int mii_id,int regnum,u16 value)1911 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1912 u16 value)
1913 {
1914 struct fec_enet_private *fep = bus->priv;
1915 struct device *dev = &fep->pdev->dev;
1916 int ret, frame_start, frame_addr;
1917 bool is_c45 = !!(regnum & MII_ADDR_C45);
1918
1919 ret = pm_runtime_resume_and_get(dev);
1920 if (ret < 0)
1921 return ret;
1922
1923 if (is_c45) {
1924 frame_start = FEC_MMFR_ST_C45;
1925
1926 /* write address */
1927 frame_addr = (regnum >> 16);
1928 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1929 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1930 FEC_MMFR_TA | (regnum & 0xFFFF),
1931 fep->hwp + FEC_MII_DATA);
1932
1933 /* wait for end of transfer */
1934 ret = fec_enet_mdio_wait(fep);
1935 if (ret) {
1936 netdev_err(fep->netdev, "MDIO address write timeout\n");
1937 goto out;
1938 }
1939 } else {
1940 /* C22 write */
1941 frame_start = FEC_MMFR_ST;
1942 frame_addr = regnum;
1943 }
1944
1945 /* start a write op */
1946 writel(frame_start | FEC_MMFR_OP_WRITE |
1947 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1948 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1949 fep->hwp + FEC_MII_DATA);
1950
1951 /* wait for end of transfer */
1952 ret = fec_enet_mdio_wait(fep);
1953 if (ret)
1954 netdev_err(fep->netdev, "MDIO write timeout\n");
1955
1956 out:
1957 pm_runtime_mark_last_busy(dev);
1958 pm_runtime_put_autosuspend(dev);
1959
1960 return ret;
1961 }
1962
fec_enet_phy_reset_after_clk_enable(struct net_device * ndev)1963 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
1964 {
1965 struct fec_enet_private *fep = netdev_priv(ndev);
1966 struct phy_device *phy_dev = ndev->phydev;
1967
1968 if (phy_dev) {
1969 phy_reset_after_clk_enable(phy_dev);
1970 } else if (fep->phy_node) {
1971 /*
1972 * If the PHY still is not bound to the MAC, but there is
1973 * OF PHY node and a matching PHY device instance already,
1974 * use the OF PHY node to obtain the PHY device instance,
1975 * and then use that PHY device instance when triggering
1976 * the PHY reset.
1977 */
1978 phy_dev = of_phy_find_device(fep->phy_node);
1979 phy_reset_after_clk_enable(phy_dev);
1980 put_device(&phy_dev->mdio.dev);
1981 }
1982 }
1983
fec_enet_clk_enable(struct net_device * ndev,bool enable)1984 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1985 {
1986 struct fec_enet_private *fep = netdev_priv(ndev);
1987 int ret;
1988
1989 if (enable) {
1990 ret = clk_prepare_enable(fep->clk_enet_out);
1991 if (ret)
1992 return ret;
1993
1994 if (fep->clk_ptp) {
1995 mutex_lock(&fep->ptp_clk_mutex);
1996 ret = clk_prepare_enable(fep->clk_ptp);
1997 if (ret) {
1998 mutex_unlock(&fep->ptp_clk_mutex);
1999 goto failed_clk_ptp;
2000 } else {
2001 fep->ptp_clk_on = true;
2002 }
2003 mutex_unlock(&fep->ptp_clk_mutex);
2004 }
2005
2006 ret = clk_prepare_enable(fep->clk_ref);
2007 if (ret)
2008 goto failed_clk_ref;
2009
2010 ret = clk_prepare_enable(fep->clk_2x_txclk);
2011 if (ret)
2012 goto failed_clk_2x_txclk;
2013
2014 fec_enet_phy_reset_after_clk_enable(ndev);
2015 } else {
2016 clk_disable_unprepare(fep->clk_enet_out);
2017 if (fep->clk_ptp) {
2018 mutex_lock(&fep->ptp_clk_mutex);
2019 clk_disable_unprepare(fep->clk_ptp);
2020 fep->ptp_clk_on = false;
2021 mutex_unlock(&fep->ptp_clk_mutex);
2022 }
2023 clk_disable_unprepare(fep->clk_ref);
2024 clk_disable_unprepare(fep->clk_2x_txclk);
2025 }
2026
2027 return 0;
2028
2029 failed_clk_2x_txclk:
2030 if (fep->clk_ref)
2031 clk_disable_unprepare(fep->clk_ref);
2032 failed_clk_ref:
2033 if (fep->clk_ptp) {
2034 mutex_lock(&fep->ptp_clk_mutex);
2035 clk_disable_unprepare(fep->clk_ptp);
2036 fep->ptp_clk_on = false;
2037 mutex_unlock(&fep->ptp_clk_mutex);
2038 }
2039 failed_clk_ptp:
2040 clk_disable_unprepare(fep->clk_enet_out);
2041
2042 return ret;
2043 }
2044
fec_enet_parse_rgmii_delay(struct fec_enet_private * fep,struct device_node * np)2045 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2046 struct device_node *np)
2047 {
2048 u32 rgmii_tx_delay, rgmii_rx_delay;
2049
2050 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2051 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2052 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2053 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2054 return -EINVAL;
2055 } else if (rgmii_tx_delay == 2000) {
2056 fep->rgmii_txc_dly = true;
2057 }
2058 }
2059
2060 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2061 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2062 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2063 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2064 return -EINVAL;
2065 } else if (rgmii_rx_delay == 2000) {
2066 fep->rgmii_rxc_dly = true;
2067 }
2068 }
2069
2070 return 0;
2071 }
2072
fec_enet_mii_probe(struct net_device * ndev)2073 static int fec_enet_mii_probe(struct net_device *ndev)
2074 {
2075 struct fec_enet_private *fep = netdev_priv(ndev);
2076 struct phy_device *phy_dev = NULL;
2077 char mdio_bus_id[MII_BUS_ID_SIZE];
2078 char phy_name[MII_BUS_ID_SIZE + 3];
2079 int phy_id;
2080 int dev_id = fep->dev_id;
2081
2082 if (fep->phy_node) {
2083 phy_dev = of_phy_connect(ndev, fep->phy_node,
2084 &fec_enet_adjust_link, 0,
2085 fep->phy_interface);
2086 if (!phy_dev) {
2087 netdev_err(ndev, "Unable to connect to phy\n");
2088 return -ENODEV;
2089 }
2090 } else {
2091 /* check for attached phy */
2092 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2093 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2094 continue;
2095 if (dev_id--)
2096 continue;
2097 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2098 break;
2099 }
2100
2101 if (phy_id >= PHY_MAX_ADDR) {
2102 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2103 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2104 phy_id = 0;
2105 }
2106
2107 snprintf(phy_name, sizeof(phy_name),
2108 PHY_ID_FMT, mdio_bus_id, phy_id);
2109 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2110 fep->phy_interface);
2111 }
2112
2113 if (IS_ERR(phy_dev)) {
2114 netdev_err(ndev, "could not attach to PHY\n");
2115 return PTR_ERR(phy_dev);
2116 }
2117
2118 /* mask with MAC supported features */
2119 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2120 phy_set_max_speed(phy_dev, 1000);
2121 phy_remove_link_mode(phy_dev,
2122 ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2123 #if !defined(CONFIG_M5272)
2124 phy_support_sym_pause(phy_dev);
2125 #endif
2126 }
2127 else
2128 phy_set_max_speed(phy_dev, 100);
2129
2130 fep->link = 0;
2131 fep->full_duplex = 0;
2132
2133 phy_dev->mac_managed_pm = 1;
2134
2135 phy_attached_info(phy_dev);
2136
2137 return 0;
2138 }
2139
fec_enet_mii_init(struct platform_device * pdev)2140 static int fec_enet_mii_init(struct platform_device *pdev)
2141 {
2142 static struct mii_bus *fec0_mii_bus;
2143 struct net_device *ndev = platform_get_drvdata(pdev);
2144 struct fec_enet_private *fep = netdev_priv(ndev);
2145 bool suppress_preamble = false;
2146 struct device_node *node;
2147 int err = -ENXIO;
2148 u32 mii_speed, holdtime;
2149 u32 bus_freq;
2150
2151 /*
2152 * The i.MX28 dual fec interfaces are not equal.
2153 * Here are the differences:
2154 *
2155 * - fec0 supports MII & RMII modes while fec1 only supports RMII
2156 * - fec0 acts as the 1588 time master while fec1 is slave
2157 * - external phys can only be configured by fec0
2158 *
2159 * That is to say fec1 can not work independently. It only works
2160 * when fec0 is working. The reason behind this design is that the
2161 * second interface is added primarily for Switch mode.
2162 *
2163 * Because of the last point above, both phys are attached on fec0
2164 * mdio interface in board design, and need to be configured by
2165 * fec0 mii_bus.
2166 */
2167 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2168 /* fec1 uses fec0 mii_bus */
2169 if (mii_cnt && fec0_mii_bus) {
2170 fep->mii_bus = fec0_mii_bus;
2171 mii_cnt++;
2172 return 0;
2173 }
2174 return -ENOENT;
2175 }
2176
2177 bus_freq = 2500000; /* 2.5MHz by default */
2178 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2179 if (node) {
2180 of_property_read_u32(node, "clock-frequency", &bus_freq);
2181 suppress_preamble = of_property_read_bool(node,
2182 "suppress-preamble");
2183 }
2184
2185 /*
2186 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2187 *
2188 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2189 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2190 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2191 * document.
2192 */
2193 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2194 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2195 mii_speed--;
2196 if (mii_speed > 63) {
2197 dev_err(&pdev->dev,
2198 "fec clock (%lu) too fast to get right mii speed\n",
2199 clk_get_rate(fep->clk_ipg));
2200 err = -EINVAL;
2201 goto err_out;
2202 }
2203
2204 /*
2205 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2206 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2207 * versions are RAZ there, so just ignore the difference and write the
2208 * register always.
2209 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2210 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2211 * output.
2212 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2213 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2214 * holdtime cannot result in a value greater than 3.
2215 */
2216 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2217
2218 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2219
2220 if (suppress_preamble)
2221 fep->phy_speed |= BIT(7);
2222
2223 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2224 /* Clear MMFR to avoid to generate MII event by writing MSCR.
2225 * MII event generation condition:
2226 * - writing MSCR:
2227 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2228 * mscr_reg_data_in[7:0] != 0
2229 * - writing MMFR:
2230 * - mscr[7:0]_not_zero
2231 */
2232 writel(0, fep->hwp + FEC_MII_DATA);
2233 }
2234
2235 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2236
2237 /* Clear any pending transaction complete indication */
2238 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2239
2240 fep->mii_bus = mdiobus_alloc();
2241 if (fep->mii_bus == NULL) {
2242 err = -ENOMEM;
2243 goto err_out;
2244 }
2245
2246 fep->mii_bus->name = "fec_enet_mii_bus";
2247 fep->mii_bus->read = fec_enet_mdio_read;
2248 fep->mii_bus->write = fec_enet_mdio_write;
2249 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2250 pdev->name, fep->dev_id + 1);
2251 fep->mii_bus->priv = fep;
2252 fep->mii_bus->parent = &pdev->dev;
2253
2254 err = of_mdiobus_register(fep->mii_bus, node);
2255 if (err)
2256 goto err_out_free_mdiobus;
2257 of_node_put(node);
2258
2259 mii_cnt++;
2260
2261 /* save fec0 mii_bus */
2262 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2263 fec0_mii_bus = fep->mii_bus;
2264
2265 return 0;
2266
2267 err_out_free_mdiobus:
2268 mdiobus_free(fep->mii_bus);
2269 err_out:
2270 of_node_put(node);
2271 return err;
2272 }
2273
fec_enet_mii_remove(struct fec_enet_private * fep)2274 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2275 {
2276 if (--mii_cnt == 0) {
2277 mdiobus_unregister(fep->mii_bus);
2278 mdiobus_free(fep->mii_bus);
2279 }
2280 }
2281
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2282 static void fec_enet_get_drvinfo(struct net_device *ndev,
2283 struct ethtool_drvinfo *info)
2284 {
2285 struct fec_enet_private *fep = netdev_priv(ndev);
2286
2287 strlcpy(info->driver, fep->pdev->dev.driver->name,
2288 sizeof(info->driver));
2289 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2290 }
2291
fec_enet_get_regs_len(struct net_device * ndev)2292 static int fec_enet_get_regs_len(struct net_device *ndev)
2293 {
2294 struct fec_enet_private *fep = netdev_priv(ndev);
2295 struct resource *r;
2296 int s = 0;
2297
2298 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2299 if (r)
2300 s = resource_size(r);
2301
2302 return s;
2303 }
2304
2305 /* List of registers that can be safety be read to dump them with ethtool */
2306 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2307 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2308 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2309 static __u32 fec_enet_register_version = 2;
2310 static u32 fec_enet_register_offset[] = {
2311 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2312 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2313 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2314 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2315 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2316 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2317 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2318 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2319 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2320 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2321 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2322 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2323 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2324 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2325 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2326 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2327 RMON_T_P_GTE2048, RMON_T_OCTETS,
2328 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2329 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2330 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2331 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2332 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2333 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2334 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2335 RMON_R_P_GTE2048, RMON_R_OCTETS,
2336 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2337 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2338 };
2339 #else
2340 static __u32 fec_enet_register_version = 1;
2341 static u32 fec_enet_register_offset[] = {
2342 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2343 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2344 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2345 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2346 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2347 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2348 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2349 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2350 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2351 };
2352 #endif
2353
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2354 static void fec_enet_get_regs(struct net_device *ndev,
2355 struct ethtool_regs *regs, void *regbuf)
2356 {
2357 struct fec_enet_private *fep = netdev_priv(ndev);
2358 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2359 struct device *dev = &fep->pdev->dev;
2360 u32 *buf = (u32 *)regbuf;
2361 u32 i, off;
2362 int ret;
2363
2364 ret = pm_runtime_resume_and_get(dev);
2365 if (ret < 0)
2366 return;
2367
2368 regs->version = fec_enet_register_version;
2369
2370 memset(buf, 0, regs->len);
2371
2372 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2373 off = fec_enet_register_offset[i];
2374
2375 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2376 !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2377 continue;
2378
2379 off >>= 2;
2380 buf[off] = readl(&theregs[off]);
2381 }
2382
2383 pm_runtime_mark_last_busy(dev);
2384 pm_runtime_put_autosuspend(dev);
2385 }
2386
fec_enet_get_ts_info(struct net_device * ndev,struct ethtool_ts_info * info)2387 static int fec_enet_get_ts_info(struct net_device *ndev,
2388 struct ethtool_ts_info *info)
2389 {
2390 struct fec_enet_private *fep = netdev_priv(ndev);
2391
2392 if (fep->bufdesc_ex) {
2393
2394 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2395 SOF_TIMESTAMPING_RX_SOFTWARE |
2396 SOF_TIMESTAMPING_SOFTWARE |
2397 SOF_TIMESTAMPING_TX_HARDWARE |
2398 SOF_TIMESTAMPING_RX_HARDWARE |
2399 SOF_TIMESTAMPING_RAW_HARDWARE;
2400 if (fep->ptp_clock)
2401 info->phc_index = ptp_clock_index(fep->ptp_clock);
2402 else
2403 info->phc_index = -1;
2404
2405 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2406 (1 << HWTSTAMP_TX_ON);
2407
2408 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2409 (1 << HWTSTAMP_FILTER_ALL);
2410 return 0;
2411 } else {
2412 return ethtool_op_get_ts_info(ndev, info);
2413 }
2414 }
2415
2416 #if !defined(CONFIG_M5272)
2417
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2418 static void fec_enet_get_pauseparam(struct net_device *ndev,
2419 struct ethtool_pauseparam *pause)
2420 {
2421 struct fec_enet_private *fep = netdev_priv(ndev);
2422
2423 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2424 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2425 pause->rx_pause = pause->tx_pause;
2426 }
2427
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2428 static int fec_enet_set_pauseparam(struct net_device *ndev,
2429 struct ethtool_pauseparam *pause)
2430 {
2431 struct fec_enet_private *fep = netdev_priv(ndev);
2432
2433 if (!ndev->phydev)
2434 return -ENODEV;
2435
2436 if (pause->tx_pause != pause->rx_pause) {
2437 netdev_info(ndev,
2438 "hardware only support enable/disable both tx and rx");
2439 return -EINVAL;
2440 }
2441
2442 fep->pause_flag = 0;
2443
2444 /* tx pause must be same as rx pause */
2445 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2446 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2447
2448 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2449 pause->autoneg);
2450
2451 if (pause->autoneg) {
2452 if (netif_running(ndev))
2453 fec_stop(ndev);
2454 phy_start_aneg(ndev->phydev);
2455 }
2456 if (netif_running(ndev)) {
2457 napi_disable(&fep->napi);
2458 netif_tx_lock_bh(ndev);
2459 fec_restart(ndev);
2460 netif_tx_wake_all_queues(ndev);
2461 netif_tx_unlock_bh(ndev);
2462 napi_enable(&fep->napi);
2463 }
2464
2465 return 0;
2466 }
2467
2468 static const struct fec_stat {
2469 char name[ETH_GSTRING_LEN];
2470 u16 offset;
2471 } fec_stats[] = {
2472 /* RMON TX */
2473 { "tx_dropped", RMON_T_DROP },
2474 { "tx_packets", RMON_T_PACKETS },
2475 { "tx_broadcast", RMON_T_BC_PKT },
2476 { "tx_multicast", RMON_T_MC_PKT },
2477 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2478 { "tx_undersize", RMON_T_UNDERSIZE },
2479 { "tx_oversize", RMON_T_OVERSIZE },
2480 { "tx_fragment", RMON_T_FRAG },
2481 { "tx_jabber", RMON_T_JAB },
2482 { "tx_collision", RMON_T_COL },
2483 { "tx_64byte", RMON_T_P64 },
2484 { "tx_65to127byte", RMON_T_P65TO127 },
2485 { "tx_128to255byte", RMON_T_P128TO255 },
2486 { "tx_256to511byte", RMON_T_P256TO511 },
2487 { "tx_512to1023byte", RMON_T_P512TO1023 },
2488 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2489 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2490 { "tx_octets", RMON_T_OCTETS },
2491
2492 /* IEEE TX */
2493 { "IEEE_tx_drop", IEEE_T_DROP },
2494 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2495 { "IEEE_tx_1col", IEEE_T_1COL },
2496 { "IEEE_tx_mcol", IEEE_T_MCOL },
2497 { "IEEE_tx_def", IEEE_T_DEF },
2498 { "IEEE_tx_lcol", IEEE_T_LCOL },
2499 { "IEEE_tx_excol", IEEE_T_EXCOL },
2500 { "IEEE_tx_macerr", IEEE_T_MACERR },
2501 { "IEEE_tx_cserr", IEEE_T_CSERR },
2502 { "IEEE_tx_sqe", IEEE_T_SQE },
2503 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2504 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2505
2506 /* RMON RX */
2507 { "rx_packets", RMON_R_PACKETS },
2508 { "rx_broadcast", RMON_R_BC_PKT },
2509 { "rx_multicast", RMON_R_MC_PKT },
2510 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2511 { "rx_undersize", RMON_R_UNDERSIZE },
2512 { "rx_oversize", RMON_R_OVERSIZE },
2513 { "rx_fragment", RMON_R_FRAG },
2514 { "rx_jabber", RMON_R_JAB },
2515 { "rx_64byte", RMON_R_P64 },
2516 { "rx_65to127byte", RMON_R_P65TO127 },
2517 { "rx_128to255byte", RMON_R_P128TO255 },
2518 { "rx_256to511byte", RMON_R_P256TO511 },
2519 { "rx_512to1023byte", RMON_R_P512TO1023 },
2520 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2521 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2522 { "rx_octets", RMON_R_OCTETS },
2523
2524 /* IEEE RX */
2525 { "IEEE_rx_drop", IEEE_R_DROP },
2526 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2527 { "IEEE_rx_crc", IEEE_R_CRC },
2528 { "IEEE_rx_align", IEEE_R_ALIGN },
2529 { "IEEE_rx_macerr", IEEE_R_MACERR },
2530 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2531 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2532 };
2533
2534 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2535
fec_enet_update_ethtool_stats(struct net_device * dev)2536 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2537 {
2538 struct fec_enet_private *fep = netdev_priv(dev);
2539 int i;
2540
2541 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2542 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2543 }
2544
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)2545 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2546 struct ethtool_stats *stats, u64 *data)
2547 {
2548 struct fec_enet_private *fep = netdev_priv(dev);
2549
2550 if (netif_running(dev))
2551 fec_enet_update_ethtool_stats(dev);
2552
2553 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2554 }
2555
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2556 static void fec_enet_get_strings(struct net_device *netdev,
2557 u32 stringset, u8 *data)
2558 {
2559 int i;
2560 switch (stringset) {
2561 case ETH_SS_STATS:
2562 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2563 memcpy(data + i * ETH_GSTRING_LEN,
2564 fec_stats[i].name, ETH_GSTRING_LEN);
2565 break;
2566 case ETH_SS_TEST:
2567 net_selftest_get_strings(data);
2568 break;
2569 }
2570 }
2571
fec_enet_get_sset_count(struct net_device * dev,int sset)2572 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2573 {
2574 switch (sset) {
2575 case ETH_SS_STATS:
2576 return ARRAY_SIZE(fec_stats);
2577 case ETH_SS_TEST:
2578 return net_selftest_get_count();
2579 default:
2580 return -EOPNOTSUPP;
2581 }
2582 }
2583
fec_enet_clear_ethtool_stats(struct net_device * dev)2584 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2585 {
2586 struct fec_enet_private *fep = netdev_priv(dev);
2587 int i;
2588
2589 /* Disable MIB statistics counters */
2590 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2591
2592 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2593 writel(0, fep->hwp + fec_stats[i].offset);
2594
2595 /* Don't disable MIB statistics counters */
2596 writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2597 }
2598
2599 #else /* !defined(CONFIG_M5272) */
2600 #define FEC_STATS_SIZE 0
fec_enet_update_ethtool_stats(struct net_device * dev)2601 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2602 {
2603 }
2604
fec_enet_clear_ethtool_stats(struct net_device * dev)2605 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2606 {
2607 }
2608 #endif /* !defined(CONFIG_M5272) */
2609
2610 /* ITR clock source is enet system clock (clk_ahb).
2611 * TCTT unit is cycle_ns * 64 cycle
2612 * So, the ICTT value = X us / (cycle_ns * 64)
2613 */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)2614 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2615 {
2616 struct fec_enet_private *fep = netdev_priv(ndev);
2617
2618 return us * (fep->itr_clk_rate / 64000) / 1000;
2619 }
2620
2621 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)2622 static void fec_enet_itr_coal_set(struct net_device *ndev)
2623 {
2624 struct fec_enet_private *fep = netdev_priv(ndev);
2625 int rx_itr, tx_itr;
2626
2627 /* Must be greater than zero to avoid unpredictable behavior */
2628 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2629 !fep->tx_time_itr || !fep->tx_pkts_itr)
2630 return;
2631
2632 /* Select enet system clock as Interrupt Coalescing
2633 * timer Clock Source
2634 */
2635 rx_itr = FEC_ITR_CLK_SEL;
2636 tx_itr = FEC_ITR_CLK_SEL;
2637
2638 /* set ICFT and ICTT */
2639 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2640 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2641 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2642 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2643
2644 rx_itr |= FEC_ITR_EN;
2645 tx_itr |= FEC_ITR_EN;
2646
2647 writel(tx_itr, fep->hwp + FEC_TXIC0);
2648 writel(rx_itr, fep->hwp + FEC_RXIC0);
2649 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
2650 writel(tx_itr, fep->hwp + FEC_TXIC1);
2651 writel(rx_itr, fep->hwp + FEC_RXIC1);
2652 writel(tx_itr, fep->hwp + FEC_TXIC2);
2653 writel(rx_itr, fep->hwp + FEC_RXIC2);
2654 }
2655 }
2656
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)2657 static int fec_enet_get_coalesce(struct net_device *ndev,
2658 struct ethtool_coalesce *ec,
2659 struct kernel_ethtool_coalesce *kernel_coal,
2660 struct netlink_ext_ack *extack)
2661 {
2662 struct fec_enet_private *fep = netdev_priv(ndev);
2663
2664 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2665 return -EOPNOTSUPP;
2666
2667 ec->rx_coalesce_usecs = fep->rx_time_itr;
2668 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2669
2670 ec->tx_coalesce_usecs = fep->tx_time_itr;
2671 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2672
2673 return 0;
2674 }
2675
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)2676 static int fec_enet_set_coalesce(struct net_device *ndev,
2677 struct ethtool_coalesce *ec,
2678 struct kernel_ethtool_coalesce *kernel_coal,
2679 struct netlink_ext_ack *extack)
2680 {
2681 struct fec_enet_private *fep = netdev_priv(ndev);
2682 struct device *dev = &fep->pdev->dev;
2683 unsigned int cycle;
2684
2685 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2686 return -EOPNOTSUPP;
2687
2688 if (ec->rx_max_coalesced_frames > 255) {
2689 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2690 return -EINVAL;
2691 }
2692
2693 if (ec->tx_max_coalesced_frames > 255) {
2694 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2695 return -EINVAL;
2696 }
2697
2698 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2699 if (cycle > 0xFFFF) {
2700 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2701 return -EINVAL;
2702 }
2703
2704 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2705 if (cycle > 0xFFFF) {
2706 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2707 return -EINVAL;
2708 }
2709
2710 fep->rx_time_itr = ec->rx_coalesce_usecs;
2711 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2712
2713 fep->tx_time_itr = ec->tx_coalesce_usecs;
2714 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2715
2716 fec_enet_itr_coal_set(ndev);
2717
2718 return 0;
2719 }
2720
fec_enet_itr_coal_init(struct net_device * ndev)2721 static void fec_enet_itr_coal_init(struct net_device *ndev)
2722 {
2723 struct ethtool_coalesce ec;
2724
2725 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2726 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2727
2728 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2729 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2730
2731 fec_enet_set_coalesce(ndev, &ec, NULL, NULL);
2732 }
2733
fec_enet_get_tunable(struct net_device * netdev,const struct ethtool_tunable * tuna,void * data)2734 static int fec_enet_get_tunable(struct net_device *netdev,
2735 const struct ethtool_tunable *tuna,
2736 void *data)
2737 {
2738 struct fec_enet_private *fep = netdev_priv(netdev);
2739 int ret = 0;
2740
2741 switch (tuna->id) {
2742 case ETHTOOL_RX_COPYBREAK:
2743 *(u32 *)data = fep->rx_copybreak;
2744 break;
2745 default:
2746 ret = -EINVAL;
2747 break;
2748 }
2749
2750 return ret;
2751 }
2752
fec_enet_set_tunable(struct net_device * netdev,const struct ethtool_tunable * tuna,const void * data)2753 static int fec_enet_set_tunable(struct net_device *netdev,
2754 const struct ethtool_tunable *tuna,
2755 const void *data)
2756 {
2757 struct fec_enet_private *fep = netdev_priv(netdev);
2758 int ret = 0;
2759
2760 switch (tuna->id) {
2761 case ETHTOOL_RX_COPYBREAK:
2762 fep->rx_copybreak = *(u32 *)data;
2763 break;
2764 default:
2765 ret = -EINVAL;
2766 break;
2767 }
2768
2769 return ret;
2770 }
2771
2772 /* LPI Sleep Ts count base on tx clk (clk_ref).
2773 * The lpi sleep cnt value = X us / (cycle_ns).
2774 */
fec_enet_us_to_tx_cycle(struct net_device * ndev,int us)2775 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2776 {
2777 struct fec_enet_private *fep = netdev_priv(ndev);
2778
2779 return us * (fep->clk_ref_rate / 1000) / 1000;
2780 }
2781
fec_enet_eee_mode_set(struct net_device * ndev,bool enable)2782 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
2783 {
2784 struct fec_enet_private *fep = netdev_priv(ndev);
2785 struct ethtool_eee *p = &fep->eee;
2786 unsigned int sleep_cycle, wake_cycle;
2787 int ret = 0;
2788
2789 if (enable) {
2790 ret = phy_init_eee(ndev->phydev, 0);
2791 if (ret)
2792 return ret;
2793
2794 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
2795 wake_cycle = sleep_cycle;
2796 } else {
2797 sleep_cycle = 0;
2798 wake_cycle = 0;
2799 }
2800
2801 p->tx_lpi_enabled = enable;
2802 p->eee_enabled = enable;
2803 p->eee_active = enable;
2804
2805 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2806 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2807
2808 return 0;
2809 }
2810
2811 static int
fec_enet_get_eee(struct net_device * ndev,struct ethtool_eee * edata)2812 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2813 {
2814 struct fec_enet_private *fep = netdev_priv(ndev);
2815 struct ethtool_eee *p = &fep->eee;
2816
2817 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
2818 return -EOPNOTSUPP;
2819
2820 if (!netif_running(ndev))
2821 return -ENETDOWN;
2822
2823 edata->eee_enabled = p->eee_enabled;
2824 edata->eee_active = p->eee_active;
2825 edata->tx_lpi_timer = p->tx_lpi_timer;
2826 edata->tx_lpi_enabled = p->tx_lpi_enabled;
2827
2828 return phy_ethtool_get_eee(ndev->phydev, edata);
2829 }
2830
2831 static int
fec_enet_set_eee(struct net_device * ndev,struct ethtool_eee * edata)2832 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2833 {
2834 struct fec_enet_private *fep = netdev_priv(ndev);
2835 struct ethtool_eee *p = &fep->eee;
2836 int ret = 0;
2837
2838 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
2839 return -EOPNOTSUPP;
2840
2841 if (!netif_running(ndev))
2842 return -ENETDOWN;
2843
2844 p->tx_lpi_timer = edata->tx_lpi_timer;
2845
2846 if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
2847 !edata->tx_lpi_timer)
2848 ret = fec_enet_eee_mode_set(ndev, false);
2849 else
2850 ret = fec_enet_eee_mode_set(ndev, true);
2851
2852 if (ret)
2853 return ret;
2854
2855 return phy_ethtool_set_eee(ndev->phydev, edata);
2856 }
2857
2858 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)2859 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2860 {
2861 struct fec_enet_private *fep = netdev_priv(ndev);
2862
2863 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2864 wol->supported = WAKE_MAGIC;
2865 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2866 } else {
2867 wol->supported = wol->wolopts = 0;
2868 }
2869 }
2870
2871 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)2872 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2873 {
2874 struct fec_enet_private *fep = netdev_priv(ndev);
2875
2876 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2877 return -EINVAL;
2878
2879 if (wol->wolopts & ~WAKE_MAGIC)
2880 return -EINVAL;
2881
2882 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2883 if (device_may_wakeup(&ndev->dev)) {
2884 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2885 if (fep->wake_irq > 0)
2886 enable_irq_wake(fep->wake_irq);
2887 } else {
2888 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2889 if (fep->wake_irq > 0)
2890 disable_irq_wake(fep->wake_irq);
2891 }
2892
2893 return 0;
2894 }
2895
2896 static const struct ethtool_ops fec_enet_ethtool_ops = {
2897 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2898 ETHTOOL_COALESCE_MAX_FRAMES,
2899 .get_drvinfo = fec_enet_get_drvinfo,
2900 .get_regs_len = fec_enet_get_regs_len,
2901 .get_regs = fec_enet_get_regs,
2902 .nway_reset = phy_ethtool_nway_reset,
2903 .get_link = ethtool_op_get_link,
2904 .get_coalesce = fec_enet_get_coalesce,
2905 .set_coalesce = fec_enet_set_coalesce,
2906 #ifndef CONFIG_M5272
2907 .get_pauseparam = fec_enet_get_pauseparam,
2908 .set_pauseparam = fec_enet_set_pauseparam,
2909 .get_strings = fec_enet_get_strings,
2910 .get_ethtool_stats = fec_enet_get_ethtool_stats,
2911 .get_sset_count = fec_enet_get_sset_count,
2912 #endif
2913 .get_ts_info = fec_enet_get_ts_info,
2914 .get_tunable = fec_enet_get_tunable,
2915 .set_tunable = fec_enet_set_tunable,
2916 .get_wol = fec_enet_get_wol,
2917 .set_wol = fec_enet_set_wol,
2918 .get_eee = fec_enet_get_eee,
2919 .set_eee = fec_enet_set_eee,
2920 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2921 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2922 .self_test = net_selftest,
2923 };
2924
fec_enet_ioctl(struct net_device * ndev,struct ifreq * rq,int cmd)2925 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2926 {
2927 struct fec_enet_private *fep = netdev_priv(ndev);
2928 struct phy_device *phydev = ndev->phydev;
2929
2930 if (!netif_running(ndev))
2931 return -EINVAL;
2932
2933 if (!phydev)
2934 return -ENODEV;
2935
2936 if (fep->bufdesc_ex) {
2937 bool use_fec_hwts = !phy_has_hwtstamp(phydev);
2938
2939 if (cmd == SIOCSHWTSTAMP) {
2940 if (use_fec_hwts)
2941 return fec_ptp_set(ndev, rq);
2942 fec_ptp_disable_hwts(ndev);
2943 } else if (cmd == SIOCGHWTSTAMP) {
2944 if (use_fec_hwts)
2945 return fec_ptp_get(ndev, rq);
2946 }
2947 }
2948
2949 return phy_mii_ioctl(phydev, rq, cmd);
2950 }
2951
fec_enet_free_buffers(struct net_device * ndev)2952 static void fec_enet_free_buffers(struct net_device *ndev)
2953 {
2954 struct fec_enet_private *fep = netdev_priv(ndev);
2955 unsigned int i;
2956 struct sk_buff *skb;
2957 struct bufdesc *bdp;
2958 struct fec_enet_priv_tx_q *txq;
2959 struct fec_enet_priv_rx_q *rxq;
2960 unsigned int q;
2961
2962 for (q = 0; q < fep->num_rx_queues; q++) {
2963 rxq = fep->rx_queue[q];
2964 bdp = rxq->bd.base;
2965 for (i = 0; i < rxq->bd.ring_size; i++) {
2966 skb = rxq->rx_skbuff[i];
2967 rxq->rx_skbuff[i] = NULL;
2968 if (skb) {
2969 dma_unmap_single(&fep->pdev->dev,
2970 fec32_to_cpu(bdp->cbd_bufaddr),
2971 FEC_ENET_RX_FRSIZE - fep->rx_align,
2972 DMA_FROM_DEVICE);
2973 dev_kfree_skb(skb);
2974 }
2975 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2976 }
2977 }
2978
2979 for (q = 0; q < fep->num_tx_queues; q++) {
2980 txq = fep->tx_queue[q];
2981 for (i = 0; i < txq->bd.ring_size; i++) {
2982 kfree(txq->tx_bounce[i]);
2983 txq->tx_bounce[i] = NULL;
2984 skb = txq->tx_skbuff[i];
2985 txq->tx_skbuff[i] = NULL;
2986 dev_kfree_skb(skb);
2987 }
2988 }
2989 }
2990
fec_enet_free_queue(struct net_device * ndev)2991 static void fec_enet_free_queue(struct net_device *ndev)
2992 {
2993 struct fec_enet_private *fep = netdev_priv(ndev);
2994 int i;
2995 struct fec_enet_priv_tx_q *txq;
2996
2997 for (i = 0; i < fep->num_tx_queues; i++)
2998 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2999 txq = fep->tx_queue[i];
3000 dma_free_coherent(&fep->pdev->dev,
3001 txq->bd.ring_size * TSO_HEADER_SIZE,
3002 txq->tso_hdrs,
3003 txq->tso_hdrs_dma);
3004 }
3005
3006 for (i = 0; i < fep->num_rx_queues; i++)
3007 kfree(fep->rx_queue[i]);
3008 for (i = 0; i < fep->num_tx_queues; i++)
3009 kfree(fep->tx_queue[i]);
3010 }
3011
fec_enet_alloc_queue(struct net_device * ndev)3012 static int fec_enet_alloc_queue(struct net_device *ndev)
3013 {
3014 struct fec_enet_private *fep = netdev_priv(ndev);
3015 int i;
3016 int ret = 0;
3017 struct fec_enet_priv_tx_q *txq;
3018
3019 for (i = 0; i < fep->num_tx_queues; i++) {
3020 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3021 if (!txq) {
3022 ret = -ENOMEM;
3023 goto alloc_failed;
3024 }
3025
3026 fep->tx_queue[i] = txq;
3027 txq->bd.ring_size = TX_RING_SIZE;
3028 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3029
3030 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3031 txq->tx_wake_threshold =
3032 (txq->bd.ring_size - txq->tx_stop_threshold) / 2;
3033
3034 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
3035 txq->bd.ring_size * TSO_HEADER_SIZE,
3036 &txq->tso_hdrs_dma,
3037 GFP_KERNEL);
3038 if (!txq->tso_hdrs) {
3039 ret = -ENOMEM;
3040 goto alloc_failed;
3041 }
3042 }
3043
3044 for (i = 0; i < fep->num_rx_queues; i++) {
3045 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3046 GFP_KERNEL);
3047 if (!fep->rx_queue[i]) {
3048 ret = -ENOMEM;
3049 goto alloc_failed;
3050 }
3051
3052 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3053 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3054 }
3055 return ret;
3056
3057 alloc_failed:
3058 fec_enet_free_queue(ndev);
3059 return ret;
3060 }
3061
3062 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)3063 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3064 {
3065 struct fec_enet_private *fep = netdev_priv(ndev);
3066 unsigned int i;
3067 struct sk_buff *skb;
3068 struct bufdesc *bdp;
3069 struct fec_enet_priv_rx_q *rxq;
3070
3071 rxq = fep->rx_queue[queue];
3072 bdp = rxq->bd.base;
3073 for (i = 0; i < rxq->bd.ring_size; i++) {
3074 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
3075 if (!skb)
3076 goto err_alloc;
3077
3078 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
3079 dev_kfree_skb(skb);
3080 goto err_alloc;
3081 }
3082
3083 rxq->rx_skbuff[i] = skb;
3084 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3085
3086 if (fep->bufdesc_ex) {
3087 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3088 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3089 }
3090
3091 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3092 }
3093
3094 /* Set the last buffer to wrap. */
3095 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3096 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3097 return 0;
3098
3099 err_alloc:
3100 fec_enet_free_buffers(ndev);
3101 return -ENOMEM;
3102 }
3103
3104 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)3105 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3106 {
3107 struct fec_enet_private *fep = netdev_priv(ndev);
3108 unsigned int i;
3109 struct bufdesc *bdp;
3110 struct fec_enet_priv_tx_q *txq;
3111
3112 txq = fep->tx_queue[queue];
3113 bdp = txq->bd.base;
3114 for (i = 0; i < txq->bd.ring_size; i++) {
3115 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3116 if (!txq->tx_bounce[i])
3117 goto err_alloc;
3118
3119 bdp->cbd_sc = cpu_to_fec16(0);
3120 bdp->cbd_bufaddr = cpu_to_fec32(0);
3121
3122 if (fep->bufdesc_ex) {
3123 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3124 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3125 }
3126
3127 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3128 }
3129
3130 /* Set the last buffer to wrap. */
3131 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3132 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3133
3134 return 0;
3135
3136 err_alloc:
3137 fec_enet_free_buffers(ndev);
3138 return -ENOMEM;
3139 }
3140
fec_enet_alloc_buffers(struct net_device * ndev)3141 static int fec_enet_alloc_buffers(struct net_device *ndev)
3142 {
3143 struct fec_enet_private *fep = netdev_priv(ndev);
3144 unsigned int i;
3145
3146 for (i = 0; i < fep->num_rx_queues; i++)
3147 if (fec_enet_alloc_rxq_buffers(ndev, i))
3148 return -ENOMEM;
3149
3150 for (i = 0; i < fep->num_tx_queues; i++)
3151 if (fec_enet_alloc_txq_buffers(ndev, i))
3152 return -ENOMEM;
3153 return 0;
3154 }
3155
3156 static int
fec_enet_open(struct net_device * ndev)3157 fec_enet_open(struct net_device *ndev)
3158 {
3159 struct fec_enet_private *fep = netdev_priv(ndev);
3160 int ret;
3161 bool reset_again;
3162
3163 ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3164 if (ret < 0)
3165 return ret;
3166
3167 pinctrl_pm_select_default_state(&fep->pdev->dev);
3168 ret = fec_enet_clk_enable(ndev, true);
3169 if (ret)
3170 goto clk_enable;
3171
3172 /* During the first fec_enet_open call the PHY isn't probed at this
3173 * point. Therefore the phy_reset_after_clk_enable() call within
3174 * fec_enet_clk_enable() fails. As we need this reset in order to be
3175 * sure the PHY is working correctly we check if we need to reset again
3176 * later when the PHY is probed
3177 */
3178 if (ndev->phydev && ndev->phydev->drv)
3179 reset_again = false;
3180 else
3181 reset_again = true;
3182
3183 /* I should reset the ring buffers here, but I don't yet know
3184 * a simple way to do that.
3185 */
3186
3187 ret = fec_enet_alloc_buffers(ndev);
3188 if (ret)
3189 goto err_enet_alloc;
3190
3191 /* Init MAC prior to mii bus probe */
3192 fec_restart(ndev);
3193
3194 /* Call phy_reset_after_clk_enable() again if it failed during
3195 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3196 */
3197 if (reset_again)
3198 fec_enet_phy_reset_after_clk_enable(ndev);
3199
3200 /* Probe and connect to PHY when open the interface */
3201 ret = fec_enet_mii_probe(ndev);
3202 if (ret)
3203 goto err_enet_mii_probe;
3204
3205 if (fep->quirks & FEC_QUIRK_ERR006687)
3206 imx6q_cpuidle_fec_irqs_used();
3207
3208 napi_enable(&fep->napi);
3209 phy_start(ndev->phydev);
3210 netif_tx_start_all_queues(ndev);
3211
3212 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3213 FEC_WOL_FLAG_ENABLE);
3214
3215 return 0;
3216
3217 err_enet_mii_probe:
3218 fec_enet_free_buffers(ndev);
3219 err_enet_alloc:
3220 fec_enet_clk_enable(ndev, false);
3221 clk_enable:
3222 pm_runtime_mark_last_busy(&fep->pdev->dev);
3223 pm_runtime_put_autosuspend(&fep->pdev->dev);
3224 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3225 return ret;
3226 }
3227
3228 static int
fec_enet_close(struct net_device * ndev)3229 fec_enet_close(struct net_device *ndev)
3230 {
3231 struct fec_enet_private *fep = netdev_priv(ndev);
3232
3233 phy_stop(ndev->phydev);
3234
3235 if (netif_device_present(ndev)) {
3236 napi_disable(&fep->napi);
3237 netif_tx_disable(ndev);
3238 fec_stop(ndev);
3239 }
3240
3241 phy_disconnect(ndev->phydev);
3242
3243 if (fep->quirks & FEC_QUIRK_ERR006687)
3244 imx6q_cpuidle_fec_irqs_unused();
3245
3246 fec_enet_update_ethtool_stats(ndev);
3247
3248 fec_enet_clk_enable(ndev, false);
3249 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3250 pm_runtime_mark_last_busy(&fep->pdev->dev);
3251 pm_runtime_put_autosuspend(&fep->pdev->dev);
3252
3253 fec_enet_free_buffers(ndev);
3254
3255 return 0;
3256 }
3257
3258 /* Set or clear the multicast filter for this adaptor.
3259 * Skeleton taken from sunlance driver.
3260 * The CPM Ethernet implementation allows Multicast as well as individual
3261 * MAC address filtering. Some of the drivers check to make sure it is
3262 * a group multicast address, and discard those that are not. I guess I
3263 * will do the same for now, but just remove the test if you want
3264 * individual filtering as well (do the upper net layers want or support
3265 * this kind of feature?).
3266 */
3267
3268 #define FEC_HASH_BITS 6 /* #bits in hash */
3269
set_multicast_list(struct net_device * ndev)3270 static void set_multicast_list(struct net_device *ndev)
3271 {
3272 struct fec_enet_private *fep = netdev_priv(ndev);
3273 struct netdev_hw_addr *ha;
3274 unsigned int crc, tmp;
3275 unsigned char hash;
3276 unsigned int hash_high = 0, hash_low = 0;
3277
3278 if (ndev->flags & IFF_PROMISC) {
3279 tmp = readl(fep->hwp + FEC_R_CNTRL);
3280 tmp |= 0x8;
3281 writel(tmp, fep->hwp + FEC_R_CNTRL);
3282 return;
3283 }
3284
3285 tmp = readl(fep->hwp + FEC_R_CNTRL);
3286 tmp &= ~0x8;
3287 writel(tmp, fep->hwp + FEC_R_CNTRL);
3288
3289 if (ndev->flags & IFF_ALLMULTI) {
3290 /* Catch all multicast addresses, so set the
3291 * filter to all 1's
3292 */
3293 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3294 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3295
3296 return;
3297 }
3298
3299 /* Add the addresses in hash register */
3300 netdev_for_each_mc_addr(ha, ndev) {
3301 /* calculate crc32 value of mac address */
3302 crc = ether_crc_le(ndev->addr_len, ha->addr);
3303
3304 /* only upper 6 bits (FEC_HASH_BITS) are used
3305 * which point to specific bit in the hash registers
3306 */
3307 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3308
3309 if (hash > 31)
3310 hash_high |= 1 << (hash - 32);
3311 else
3312 hash_low |= 1 << hash;
3313 }
3314
3315 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3316 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3317 }
3318
3319 /* Set a MAC change in hardware. */
3320 static int
fec_set_mac_address(struct net_device * ndev,void * p)3321 fec_set_mac_address(struct net_device *ndev, void *p)
3322 {
3323 struct fec_enet_private *fep = netdev_priv(ndev);
3324 struct sockaddr *addr = p;
3325
3326 if (addr) {
3327 if (!is_valid_ether_addr(addr->sa_data))
3328 return -EADDRNOTAVAIL;
3329 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3330 }
3331
3332 /* Add netif status check here to avoid system hang in below case:
3333 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3334 * After ethx down, fec all clocks are gated off and then register
3335 * access causes system hang.
3336 */
3337 if (!netif_running(ndev))
3338 return 0;
3339
3340 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3341 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3342 fep->hwp + FEC_ADDR_LOW);
3343 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3344 fep->hwp + FEC_ADDR_HIGH);
3345 return 0;
3346 }
3347
3348 #ifdef CONFIG_NET_POLL_CONTROLLER
3349 /**
3350 * fec_poll_controller - FEC Poll controller function
3351 * @dev: The FEC network adapter
3352 *
3353 * Polled functionality used by netconsole and others in non interrupt mode
3354 *
3355 */
fec_poll_controller(struct net_device * dev)3356 static void fec_poll_controller(struct net_device *dev)
3357 {
3358 int i;
3359 struct fec_enet_private *fep = netdev_priv(dev);
3360
3361 for (i = 0; i < FEC_IRQ_NUM; i++) {
3362 if (fep->irq[i] > 0) {
3363 disable_irq(fep->irq[i]);
3364 fec_enet_interrupt(fep->irq[i], dev);
3365 enable_irq(fep->irq[i]);
3366 }
3367 }
3368 }
3369 #endif
3370
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3371 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3372 netdev_features_t features)
3373 {
3374 struct fec_enet_private *fep = netdev_priv(netdev);
3375 netdev_features_t changed = features ^ netdev->features;
3376
3377 netdev->features = features;
3378
3379 /* Receive checksum has been changed */
3380 if (changed & NETIF_F_RXCSUM) {
3381 if (features & NETIF_F_RXCSUM)
3382 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3383 else
3384 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3385 }
3386 }
3387
fec_set_features(struct net_device * netdev,netdev_features_t features)3388 static int fec_set_features(struct net_device *netdev,
3389 netdev_features_t features)
3390 {
3391 struct fec_enet_private *fep = netdev_priv(netdev);
3392 netdev_features_t changed = features ^ netdev->features;
3393
3394 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3395 napi_disable(&fep->napi);
3396 netif_tx_lock_bh(netdev);
3397 fec_stop(netdev);
3398 fec_enet_set_netdev_features(netdev, features);
3399 fec_restart(netdev);
3400 netif_tx_wake_all_queues(netdev);
3401 netif_tx_unlock_bh(netdev);
3402 napi_enable(&fep->napi);
3403 } else {
3404 fec_enet_set_netdev_features(netdev, features);
3405 }
3406
3407 return 0;
3408 }
3409
fec_enet_get_raw_vlan_tci(struct sk_buff * skb)3410 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb)
3411 {
3412 struct vlan_ethhdr *vhdr;
3413 unsigned short vlan_TCI = 0;
3414
3415 if (skb->protocol == htons(ETH_P_ALL)) {
3416 vhdr = (struct vlan_ethhdr *)(skb->data);
3417 vlan_TCI = ntohs(vhdr->h_vlan_TCI);
3418 }
3419
3420 return vlan_TCI;
3421 }
3422
fec_enet_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)3423 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3424 struct net_device *sb_dev)
3425 {
3426 struct fec_enet_private *fep = netdev_priv(ndev);
3427 u16 vlan_tag;
3428
3429 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3430 return netdev_pick_tx(ndev, skb, NULL);
3431
3432 vlan_tag = fec_enet_get_raw_vlan_tci(skb);
3433 if (!vlan_tag)
3434 return vlan_tag;
3435
3436 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3437 }
3438
3439 static const struct net_device_ops fec_netdev_ops = {
3440 .ndo_open = fec_enet_open,
3441 .ndo_stop = fec_enet_close,
3442 .ndo_start_xmit = fec_enet_start_xmit,
3443 .ndo_select_queue = fec_enet_select_queue,
3444 .ndo_set_rx_mode = set_multicast_list,
3445 .ndo_validate_addr = eth_validate_addr,
3446 .ndo_tx_timeout = fec_timeout,
3447 .ndo_set_mac_address = fec_set_mac_address,
3448 .ndo_eth_ioctl = fec_enet_ioctl,
3449 #ifdef CONFIG_NET_POLL_CONTROLLER
3450 .ndo_poll_controller = fec_poll_controller,
3451 #endif
3452 .ndo_set_features = fec_set_features,
3453 };
3454
3455 static const unsigned short offset_des_active_rxq[] = {
3456 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3457 };
3458
3459 static const unsigned short offset_des_active_txq[] = {
3460 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3461 };
3462
3463 /*
3464 * XXX: We need to clean up on failure exits here.
3465 *
3466 */
fec_enet_init(struct net_device * ndev)3467 static int fec_enet_init(struct net_device *ndev)
3468 {
3469 struct fec_enet_private *fep = netdev_priv(ndev);
3470 struct bufdesc *cbd_base;
3471 dma_addr_t bd_dma;
3472 int bd_size;
3473 unsigned int i;
3474 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3475 sizeof(struct bufdesc);
3476 unsigned dsize_log2 = __fls(dsize);
3477 int ret;
3478
3479 WARN_ON(dsize != (1 << dsize_log2));
3480 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3481 fep->rx_align = 0xf;
3482 fep->tx_align = 0xf;
3483 #else
3484 fep->rx_align = 0x3;
3485 fep->tx_align = 0x3;
3486 #endif
3487
3488 /* Check mask of the streaming and coherent API */
3489 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3490 if (ret < 0) {
3491 dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3492 return ret;
3493 }
3494
3495 ret = fec_enet_alloc_queue(ndev);
3496 if (ret)
3497 return ret;
3498
3499 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3500
3501 /* Allocate memory for buffer descriptors. */
3502 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3503 GFP_KERNEL);
3504 if (!cbd_base) {
3505 ret = -ENOMEM;
3506 goto free_queue_mem;
3507 }
3508
3509 /* Get the Ethernet address */
3510 ret = fec_get_mac(ndev);
3511 if (ret)
3512 goto free_queue_mem;
3513
3514 /* make sure MAC we just acquired is programmed into the hw */
3515 fec_set_mac_address(ndev, NULL);
3516
3517 /* Set receive and transmit descriptor base. */
3518 for (i = 0; i < fep->num_rx_queues; i++) {
3519 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3520 unsigned size = dsize * rxq->bd.ring_size;
3521
3522 rxq->bd.qid = i;
3523 rxq->bd.base = cbd_base;
3524 rxq->bd.cur = cbd_base;
3525 rxq->bd.dma = bd_dma;
3526 rxq->bd.dsize = dsize;
3527 rxq->bd.dsize_log2 = dsize_log2;
3528 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3529 bd_dma += size;
3530 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3531 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3532 }
3533
3534 for (i = 0; i < fep->num_tx_queues; i++) {
3535 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3536 unsigned size = dsize * txq->bd.ring_size;
3537
3538 txq->bd.qid = i;
3539 txq->bd.base = cbd_base;
3540 txq->bd.cur = cbd_base;
3541 txq->bd.dma = bd_dma;
3542 txq->bd.dsize = dsize;
3543 txq->bd.dsize_log2 = dsize_log2;
3544 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3545 bd_dma += size;
3546 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3547 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3548 }
3549
3550
3551 /* The FEC Ethernet specific entries in the device structure */
3552 ndev->watchdog_timeo = TX_TIMEOUT;
3553 ndev->netdev_ops = &fec_netdev_ops;
3554 ndev->ethtool_ops = &fec_enet_ethtool_ops;
3555
3556 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3557 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3558
3559 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3560 /* enable hw VLAN support */
3561 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3562
3563 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3564 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3565
3566 /* enable hw accelerator */
3567 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3568 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3569 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3570 }
3571
3572 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3573 fep->tx_align = 0;
3574 fep->rx_align = 0x3f;
3575 }
3576
3577 ndev->hw_features = ndev->features;
3578
3579 fec_restart(ndev);
3580
3581 if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3582 fec_enet_clear_ethtool_stats(ndev);
3583 else
3584 fec_enet_update_ethtool_stats(ndev);
3585
3586 return 0;
3587
3588 free_queue_mem:
3589 fec_enet_free_queue(ndev);
3590 return ret;
3591 }
3592
3593 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)3594 static int fec_reset_phy(struct platform_device *pdev)
3595 {
3596 int err, phy_reset;
3597 bool active_high = false;
3598 int msec = 1, phy_post_delay = 0;
3599 struct device_node *np = pdev->dev.of_node;
3600
3601 if (!np)
3602 return 0;
3603
3604 err = of_property_read_u32(np, "phy-reset-duration", &msec);
3605 /* A sane reset duration should not be longer than 1s */
3606 if (!err && msec > 1000)
3607 msec = 1;
3608
3609 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3610 if (phy_reset == -EPROBE_DEFER)
3611 return phy_reset;
3612 else if (!gpio_is_valid(phy_reset))
3613 return 0;
3614
3615 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3616 /* valid reset duration should be less than 1s */
3617 if (!err && phy_post_delay > 1000)
3618 return -EINVAL;
3619
3620 active_high = of_property_read_bool(np, "phy-reset-active-high");
3621
3622 err = devm_gpio_request_one(&pdev->dev, phy_reset,
3623 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3624 "phy-reset");
3625 if (err) {
3626 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3627 return err;
3628 }
3629
3630 if (msec > 20)
3631 msleep(msec);
3632 else
3633 usleep_range(msec * 1000, msec * 1000 + 1000);
3634
3635 gpio_set_value_cansleep(phy_reset, !active_high);
3636
3637 if (!phy_post_delay)
3638 return 0;
3639
3640 if (phy_post_delay > 20)
3641 msleep(phy_post_delay);
3642 else
3643 usleep_range(phy_post_delay * 1000,
3644 phy_post_delay * 1000 + 1000);
3645
3646 return 0;
3647 }
3648 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)3649 static int fec_reset_phy(struct platform_device *pdev)
3650 {
3651 /*
3652 * In case of platform probe, the reset has been done
3653 * by machine code.
3654 */
3655 return 0;
3656 }
3657 #endif /* CONFIG_OF */
3658
3659 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)3660 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3661 {
3662 struct device_node *np = pdev->dev.of_node;
3663
3664 *num_tx = *num_rx = 1;
3665
3666 if (!np || !of_device_is_available(np))
3667 return;
3668
3669 /* parse the num of tx and rx queues */
3670 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3671
3672 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3673
3674 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3675 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3676 *num_tx);
3677 *num_tx = 1;
3678 return;
3679 }
3680
3681 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3682 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3683 *num_rx);
3684 *num_rx = 1;
3685 return;
3686 }
3687
3688 }
3689
fec_enet_get_irq_cnt(struct platform_device * pdev)3690 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3691 {
3692 int irq_cnt = platform_irq_count(pdev);
3693
3694 if (irq_cnt > FEC_IRQ_NUM)
3695 irq_cnt = FEC_IRQ_NUM; /* last for pps */
3696 else if (irq_cnt == 2)
3697 irq_cnt = 1; /* last for pps */
3698 else if (irq_cnt <= 0)
3699 irq_cnt = 1; /* At least 1 irq is needed */
3700 return irq_cnt;
3701 }
3702
fec_enet_get_wakeup_irq(struct platform_device * pdev)3703 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
3704 {
3705 struct net_device *ndev = platform_get_drvdata(pdev);
3706 struct fec_enet_private *fep = netdev_priv(ndev);
3707
3708 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
3709 fep->wake_irq = fep->irq[2];
3710 else
3711 fep->wake_irq = fep->irq[0];
3712 }
3713
fec_enet_init_stop_mode(struct fec_enet_private * fep,struct device_node * np)3714 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3715 struct device_node *np)
3716 {
3717 struct device_node *gpr_np;
3718 u32 out_val[3];
3719 int ret = 0;
3720
3721 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3722 if (!gpr_np)
3723 return 0;
3724
3725 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3726 ARRAY_SIZE(out_val));
3727 if (ret) {
3728 dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3729 return ret;
3730 }
3731
3732 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3733 if (IS_ERR(fep->stop_gpr.gpr)) {
3734 dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3735 ret = PTR_ERR(fep->stop_gpr.gpr);
3736 fep->stop_gpr.gpr = NULL;
3737 goto out;
3738 }
3739
3740 fep->stop_gpr.reg = out_val[1];
3741 fep->stop_gpr.bit = out_val[2];
3742
3743 out:
3744 of_node_put(gpr_np);
3745
3746 return ret;
3747 }
3748
3749 static int
fec_probe(struct platform_device * pdev)3750 fec_probe(struct platform_device *pdev)
3751 {
3752 struct fec_enet_private *fep;
3753 struct fec_platform_data *pdata;
3754 phy_interface_t interface;
3755 struct net_device *ndev;
3756 int i, irq, ret = 0;
3757 const struct of_device_id *of_id;
3758 static int dev_id;
3759 struct device_node *np = pdev->dev.of_node, *phy_node;
3760 int num_tx_qs;
3761 int num_rx_qs;
3762 char irq_name[8];
3763 int irq_cnt;
3764 struct fec_devinfo *dev_info;
3765
3766 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3767
3768 /* Init network device */
3769 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3770 FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3771 if (!ndev)
3772 return -ENOMEM;
3773
3774 SET_NETDEV_DEV(ndev, &pdev->dev);
3775
3776 /* setup board info structure */
3777 fep = netdev_priv(ndev);
3778
3779 of_id = of_match_device(fec_dt_ids, &pdev->dev);
3780 if (of_id)
3781 pdev->id_entry = of_id->data;
3782 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3783 if (dev_info)
3784 fep->quirks = dev_info->quirks;
3785
3786 fep->netdev = ndev;
3787 fep->num_rx_queues = num_rx_qs;
3788 fep->num_tx_queues = num_tx_qs;
3789
3790 #if !defined(CONFIG_M5272)
3791 /* default enable pause frame auto negotiation */
3792 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3793 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3794 #endif
3795
3796 /* Select default pin state */
3797 pinctrl_pm_select_default_state(&pdev->dev);
3798
3799 fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3800 if (IS_ERR(fep->hwp)) {
3801 ret = PTR_ERR(fep->hwp);
3802 goto failed_ioremap;
3803 }
3804
3805 fep->pdev = pdev;
3806 fep->dev_id = dev_id++;
3807
3808 platform_set_drvdata(pdev, ndev);
3809
3810 if ((of_machine_is_compatible("fsl,imx6q") ||
3811 of_machine_is_compatible("fsl,imx6dl")) &&
3812 !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3813 fep->quirks |= FEC_QUIRK_ERR006687;
3814
3815 if (of_get_property(np, "fsl,magic-packet", NULL))
3816 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3817
3818 ret = fec_enet_init_stop_mode(fep, np);
3819 if (ret)
3820 goto failed_stop_mode;
3821
3822 phy_node = of_parse_phandle(np, "phy-handle", 0);
3823 if (!phy_node && of_phy_is_fixed_link(np)) {
3824 ret = of_phy_register_fixed_link(np);
3825 if (ret < 0) {
3826 dev_err(&pdev->dev,
3827 "broken fixed-link specification\n");
3828 goto failed_phy;
3829 }
3830 phy_node = of_node_get(np);
3831 }
3832 fep->phy_node = phy_node;
3833
3834 ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3835 if (ret) {
3836 pdata = dev_get_platdata(&pdev->dev);
3837 if (pdata)
3838 fep->phy_interface = pdata->phy;
3839 else
3840 fep->phy_interface = PHY_INTERFACE_MODE_MII;
3841 } else {
3842 fep->phy_interface = interface;
3843 }
3844
3845 ret = fec_enet_parse_rgmii_delay(fep, np);
3846 if (ret)
3847 goto failed_rgmii_delay;
3848
3849 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3850 if (IS_ERR(fep->clk_ipg)) {
3851 ret = PTR_ERR(fep->clk_ipg);
3852 goto failed_clk;
3853 }
3854
3855 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3856 if (IS_ERR(fep->clk_ahb)) {
3857 ret = PTR_ERR(fep->clk_ahb);
3858 goto failed_clk;
3859 }
3860
3861 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3862
3863 /* enet_out is optional, depends on board */
3864 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3865 if (IS_ERR(fep->clk_enet_out))
3866 fep->clk_enet_out = NULL;
3867
3868 fep->ptp_clk_on = false;
3869 mutex_init(&fep->ptp_clk_mutex);
3870
3871 /* clk_ref is optional, depends on board */
3872 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3873 if (IS_ERR(fep->clk_ref))
3874 fep->clk_ref = NULL;
3875 fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
3876
3877 /* clk_2x_txclk is optional, depends on board */
3878 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
3879 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
3880 if (IS_ERR(fep->clk_2x_txclk))
3881 fep->clk_2x_txclk = NULL;
3882 }
3883
3884 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3885 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3886 if (IS_ERR(fep->clk_ptp)) {
3887 fep->clk_ptp = NULL;
3888 fep->bufdesc_ex = false;
3889 }
3890
3891 ret = fec_enet_clk_enable(ndev, true);
3892 if (ret)
3893 goto failed_clk;
3894
3895 ret = clk_prepare_enable(fep->clk_ipg);
3896 if (ret)
3897 goto failed_clk_ipg;
3898 ret = clk_prepare_enable(fep->clk_ahb);
3899 if (ret)
3900 goto failed_clk_ahb;
3901
3902 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3903 if (!IS_ERR(fep->reg_phy)) {
3904 ret = regulator_enable(fep->reg_phy);
3905 if (ret) {
3906 dev_err(&pdev->dev,
3907 "Failed to enable phy regulator: %d\n", ret);
3908 goto failed_regulator;
3909 }
3910 } else {
3911 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3912 ret = -EPROBE_DEFER;
3913 goto failed_regulator;
3914 }
3915 fep->reg_phy = NULL;
3916 }
3917
3918 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3919 pm_runtime_use_autosuspend(&pdev->dev);
3920 pm_runtime_get_noresume(&pdev->dev);
3921 pm_runtime_set_active(&pdev->dev);
3922 pm_runtime_enable(&pdev->dev);
3923
3924 ret = fec_reset_phy(pdev);
3925 if (ret)
3926 goto failed_reset;
3927
3928 irq_cnt = fec_enet_get_irq_cnt(pdev);
3929 if (fep->bufdesc_ex)
3930 fec_ptp_init(pdev, irq_cnt);
3931
3932 ret = fec_enet_init(ndev);
3933 if (ret)
3934 goto failed_init;
3935
3936 for (i = 0; i < irq_cnt; i++) {
3937 snprintf(irq_name, sizeof(irq_name), "int%d", i);
3938 irq = platform_get_irq_byname_optional(pdev, irq_name);
3939 if (irq < 0)
3940 irq = platform_get_irq(pdev, i);
3941 if (irq < 0) {
3942 ret = irq;
3943 goto failed_irq;
3944 }
3945 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3946 0, pdev->name, ndev);
3947 if (ret)
3948 goto failed_irq;
3949
3950 fep->irq[i] = irq;
3951 }
3952
3953 /* Decide which interrupt line is wakeup capable */
3954 fec_enet_get_wakeup_irq(pdev);
3955
3956 ret = fec_enet_mii_init(pdev);
3957 if (ret)
3958 goto failed_mii_init;
3959
3960 /* Carrier starts down, phylib will bring it up */
3961 netif_carrier_off(ndev);
3962 fec_enet_clk_enable(ndev, false);
3963 pinctrl_pm_select_sleep_state(&pdev->dev);
3964
3965 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
3966
3967 ret = register_netdev(ndev);
3968 if (ret)
3969 goto failed_register;
3970
3971 device_init_wakeup(&ndev->dev, fep->wol_flag &
3972 FEC_WOL_HAS_MAGIC_PACKET);
3973
3974 if (fep->bufdesc_ex && fep->ptp_clock)
3975 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3976
3977 fep->rx_copybreak = COPYBREAK_DEFAULT;
3978 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3979
3980 pm_runtime_mark_last_busy(&pdev->dev);
3981 pm_runtime_put_autosuspend(&pdev->dev);
3982
3983 return 0;
3984
3985 failed_register:
3986 fec_enet_mii_remove(fep);
3987 failed_mii_init:
3988 failed_irq:
3989 failed_init:
3990 fec_ptp_stop(pdev);
3991 failed_reset:
3992 pm_runtime_put_noidle(&pdev->dev);
3993 pm_runtime_disable(&pdev->dev);
3994 if (fep->reg_phy)
3995 regulator_disable(fep->reg_phy);
3996 failed_regulator:
3997 clk_disable_unprepare(fep->clk_ahb);
3998 failed_clk_ahb:
3999 clk_disable_unprepare(fep->clk_ipg);
4000 failed_clk_ipg:
4001 fec_enet_clk_enable(ndev, false);
4002 failed_clk:
4003 failed_rgmii_delay:
4004 if (of_phy_is_fixed_link(np))
4005 of_phy_deregister_fixed_link(np);
4006 of_node_put(phy_node);
4007 failed_stop_mode:
4008 failed_phy:
4009 dev_id--;
4010 failed_ioremap:
4011 free_netdev(ndev);
4012
4013 return ret;
4014 }
4015
4016 static int
fec_drv_remove(struct platform_device * pdev)4017 fec_drv_remove(struct platform_device *pdev)
4018 {
4019 struct net_device *ndev = platform_get_drvdata(pdev);
4020 struct fec_enet_private *fep = netdev_priv(ndev);
4021 struct device_node *np = pdev->dev.of_node;
4022 int ret;
4023
4024 ret = pm_runtime_resume_and_get(&pdev->dev);
4025 if (ret < 0)
4026 return ret;
4027
4028 cancel_work_sync(&fep->tx_timeout_work);
4029 fec_ptp_stop(pdev);
4030 unregister_netdev(ndev);
4031 fec_enet_mii_remove(fep);
4032 if (fep->reg_phy)
4033 regulator_disable(fep->reg_phy);
4034
4035 if (of_phy_is_fixed_link(np))
4036 of_phy_deregister_fixed_link(np);
4037 of_node_put(fep->phy_node);
4038
4039 clk_disable_unprepare(fep->clk_ahb);
4040 clk_disable_unprepare(fep->clk_ipg);
4041 pm_runtime_put_noidle(&pdev->dev);
4042 pm_runtime_disable(&pdev->dev);
4043
4044 free_netdev(ndev);
4045 return 0;
4046 }
4047
fec_suspend(struct device * dev)4048 static int __maybe_unused fec_suspend(struct device *dev)
4049 {
4050 struct net_device *ndev = dev_get_drvdata(dev);
4051 struct fec_enet_private *fep = netdev_priv(ndev);
4052
4053 rtnl_lock();
4054 if (netif_running(ndev)) {
4055 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4056 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4057 phy_stop(ndev->phydev);
4058 napi_disable(&fep->napi);
4059 netif_tx_lock_bh(ndev);
4060 netif_device_detach(ndev);
4061 netif_tx_unlock_bh(ndev);
4062 fec_stop(ndev);
4063 fec_enet_clk_enable(ndev, false);
4064 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4065 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4066 }
4067 rtnl_unlock();
4068
4069 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4070 regulator_disable(fep->reg_phy);
4071
4072 /* SOC supply clock to phy, when clock is disabled, phy link down
4073 * SOC control phy regulator, when regulator is disabled, phy link down
4074 */
4075 if (fep->clk_enet_out || fep->reg_phy)
4076 fep->link = 0;
4077
4078 return 0;
4079 }
4080
fec_resume(struct device * dev)4081 static int __maybe_unused fec_resume(struct device *dev)
4082 {
4083 struct net_device *ndev = dev_get_drvdata(dev);
4084 struct fec_enet_private *fep = netdev_priv(ndev);
4085 int ret;
4086 int val;
4087
4088 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4089 ret = regulator_enable(fep->reg_phy);
4090 if (ret)
4091 return ret;
4092 }
4093
4094 rtnl_lock();
4095 if (netif_running(ndev)) {
4096 ret = fec_enet_clk_enable(ndev, true);
4097 if (ret) {
4098 rtnl_unlock();
4099 goto failed_clk;
4100 }
4101 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4102 fec_enet_stop_mode(fep, false);
4103
4104 val = readl(fep->hwp + FEC_ECNTRL);
4105 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4106 writel(val, fep->hwp + FEC_ECNTRL);
4107 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4108 } else {
4109 pinctrl_pm_select_default_state(&fep->pdev->dev);
4110 }
4111 fec_restart(ndev);
4112 netif_tx_lock_bh(ndev);
4113 netif_device_attach(ndev);
4114 netif_tx_unlock_bh(ndev);
4115 napi_enable(&fep->napi);
4116 phy_init_hw(ndev->phydev);
4117 phy_start(ndev->phydev);
4118 }
4119 rtnl_unlock();
4120
4121 return 0;
4122
4123 failed_clk:
4124 if (fep->reg_phy)
4125 regulator_disable(fep->reg_phy);
4126 return ret;
4127 }
4128
fec_runtime_suspend(struct device * dev)4129 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4130 {
4131 struct net_device *ndev = dev_get_drvdata(dev);
4132 struct fec_enet_private *fep = netdev_priv(ndev);
4133
4134 clk_disable_unprepare(fep->clk_ahb);
4135 clk_disable_unprepare(fep->clk_ipg);
4136
4137 return 0;
4138 }
4139
fec_runtime_resume(struct device * dev)4140 static int __maybe_unused fec_runtime_resume(struct device *dev)
4141 {
4142 struct net_device *ndev = dev_get_drvdata(dev);
4143 struct fec_enet_private *fep = netdev_priv(ndev);
4144 int ret;
4145
4146 ret = clk_prepare_enable(fep->clk_ahb);
4147 if (ret)
4148 return ret;
4149 ret = clk_prepare_enable(fep->clk_ipg);
4150 if (ret)
4151 goto failed_clk_ipg;
4152
4153 return 0;
4154
4155 failed_clk_ipg:
4156 clk_disable_unprepare(fep->clk_ahb);
4157 return ret;
4158 }
4159
4160 static const struct dev_pm_ops fec_pm_ops = {
4161 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4162 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4163 };
4164
4165 static struct platform_driver fec_driver = {
4166 .driver = {
4167 .name = DRIVER_NAME,
4168 .pm = &fec_pm_ops,
4169 .of_match_table = fec_dt_ids,
4170 .suppress_bind_attrs = true,
4171 },
4172 .id_table = fec_devtype,
4173 .probe = fec_probe,
4174 .remove = fec_drv_remove,
4175 };
4176
4177 module_platform_driver(fec_driver);
4178
4179 MODULE_LICENSE("GPL");
4180