1 /* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
2 /*
3 Written 1999-2000 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 The author may be reached as becker@scyld.com, or C/O
13 Scyld Computing Corporation
14 410 Severn Ave., Suite 210
15 Annapolis MD 21403
16
17 Support and updates available at
18 http://www.scyld.com/network/sundance.html
19 [link no longer provides useful info -jgarzik]
20 Archives of the mailing list are still available at
21 http://www.beowulf.org/pipermail/netdrivers/
22
23 */
24
25 #define DRV_NAME "sundance"
26 #define DRV_VERSION "1.2"
27 #define DRV_RELDATE "11-Sep-2006"
28
29
30 /* The user-configurable values.
31 These may be modified when a driver module is loaded.*/
32 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
33 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
34 Typical is a 64 element hash table based on the Ethernet CRC. */
35 static const int multicast_filter_limit = 32;
36
37 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
38 Setting to > 1518 effectively disables this feature.
39 This chip can receive into offset buffers, so the Alpha does not
40 need a copy-align. */
41 static int rx_copybreak;
42 static int flowctrl=1;
43
44 /* media[] specifies the media type the NIC operates at.
45 autosense Autosensing active media.
46 10mbps_hd 10Mbps half duplex.
47 10mbps_fd 10Mbps full duplex.
48 100mbps_hd 100Mbps half duplex.
49 100mbps_fd 100Mbps full duplex.
50 0 Autosensing active media.
51 1 10Mbps half duplex.
52 2 10Mbps full duplex.
53 3 100Mbps half duplex.
54 4 100Mbps full duplex.
55 */
56 #define MAX_UNITS 8
57 static char *media[MAX_UNITS];
58
59
60 /* Operational parameters that are set at compile time. */
61
62 /* Keep the ring sizes a power of two for compile efficiency.
63 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
64 Making the Tx ring too large decreases the effectiveness of channel
65 bonding and packet priority, and more than 128 requires modifying the
66 Tx error recovery.
67 Large receive rings merely waste memory. */
68 #define TX_RING_SIZE 32
69 #define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */
70 #define RX_RING_SIZE 64
71 #define RX_BUDGET 32
72 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc)
73 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc)
74
75 /* Operational parameters that usually are not changed. */
76 /* Time in jiffies before concluding the transmitter is hung. */
77 #define TX_TIMEOUT (4*HZ)
78 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
79
80 /* Include files, designed to support most kernel versions 2.0.0 and later. */
81 #include <linux/module.h>
82 #include <linux/kernel.h>
83 #include <linux/string.h>
84 #include <linux/timer.h>
85 #include <linux/errno.h>
86 #include <linux/ioport.h>
87 #include <linux/interrupt.h>
88 #include <linux/pci.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/skbuff.h>
92 #include <linux/init.h>
93 #include <linux/bitops.h>
94 #include <linux/uaccess.h>
95 #include <asm/processor.h> /* Processor type for cache alignment. */
96 #include <asm/io.h>
97 #include <linux/delay.h>
98 #include <linux/spinlock.h>
99 #include <linux/dma-mapping.h>
100 #include <linux/crc32.h>
101 #include <linux/ethtool.h>
102 #include <linux/mii.h>
103
104 /* These identify the driver base version and may not be removed. */
105 static const char version[] =
106 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE
107 " Written by Donald Becker\n";
108
109 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
110 MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
111 MODULE_LICENSE("GPL");
112
113 module_param(debug, int, 0);
114 module_param(rx_copybreak, int, 0);
115 module_param_array(media, charp, NULL, 0);
116 module_param(flowctrl, int, 0);
117 MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)");
118 MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames");
119 MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]");
120
121 /*
122 Theory of Operation
123
124 I. Board Compatibility
125
126 This driver is designed for the Sundance Technologies "Alta" ST201 chip.
127
128 II. Board-specific settings
129
130 III. Driver operation
131
132 IIIa. Ring buffers
133
134 This driver uses two statically allocated fixed-size descriptor lists
135 formed into rings by a branch from the final descriptor to the beginning of
136 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
137 Some chips explicitly use only 2^N sized rings, while others use a
138 'next descriptor' pointer that the driver forms into rings.
139
140 IIIb/c. Transmit/Receive Structure
141
142 This driver uses a zero-copy receive and transmit scheme.
143 The driver allocates full frame size skbuffs for the Rx ring buffers at
144 open() time and passes the skb->data field to the chip as receive data
145 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
146 a fresh skbuff is allocated and the frame is copied to the new skbuff.
147 When the incoming frame is larger, the skbuff is passed directly up the
148 protocol stack. Buffers consumed this way are replaced by newly allocated
149 skbuffs in a later phase of receives.
150
151 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
152 using a full-sized skbuff for small frames vs. the copying costs of larger
153 frames. New boards are typically used in generously configured machines
154 and the underfilled buffers have negligible impact compared to the benefit of
155 a single allocation size, so the default value of zero results in never
156 copying packets. When copying is done, the cost is usually mitigated by using
157 a combined copy/checksum routine. Copying also preloads the cache, which is
158 most useful with small frames.
159
160 A subtle aspect of the operation is that the IP header at offset 14 in an
161 ethernet frame isn't longword aligned for further processing.
162 Unaligned buffers are permitted by the Sundance hardware, so
163 frames are received into the skbuff at an offset of "+2", 16-byte aligning
164 the IP header.
165
166 IIId. Synchronization
167
168 The driver runs as two independent, single-threaded flows of control. One
169 is the send-packet routine, which enforces single-threaded use by the
170 dev->tbusy flag. The other thread is the interrupt handler, which is single
171 threaded by the hardware and interrupt handling software.
172
173 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
174 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
175 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
176 the 'lp->tx_full' flag.
177
178 The interrupt handler has exclusive control over the Rx ring and records stats
179 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
180 empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
181 clears both the tx_full and tbusy flags.
182
183 IV. Notes
184
185 IVb. References
186
187 The Sundance ST201 datasheet, preliminary version.
188 The Kendin KS8723 datasheet, preliminary version.
189 The ICplus IP100 datasheet, preliminary version.
190 http://www.scyld.com/expert/100mbps.html
191 http://www.scyld.com/expert/NWay.html
192
193 IVc. Errata
194
195 */
196
197 /* Work-around for Kendin chip bugs. */
198 #ifndef CONFIG_SUNDANCE_MMIO
199 #define USE_IO_OPS 1
200 #endif
201
202 static const struct pci_device_id sundance_pci_tbl[] = {
203 { 0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0 },
204 { 0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1 },
205 { 0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2 },
206 { 0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3 },
207 { 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 },
208 { 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 },
209 { 0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 },
210 { }
211 };
212 MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);
213
214 enum {
215 netdev_io_size = 128
216 };
217
218 struct pci_id_info {
219 const char *name;
220 };
221 static const struct pci_id_info pci_id_tbl[] = {
222 {"D-Link DFE-550TX FAST Ethernet Adapter"},
223 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"},
224 {"D-Link DFE-580TX 4 port Server Adapter"},
225 {"D-Link DFE-530TXS FAST Ethernet Adapter"},
226 {"D-Link DL10050-based FAST Ethernet Adapter"},
227 {"Sundance Technology Alta"},
228 {"IC Plus Corporation IP100A FAST Ethernet Adapter"},
229 { } /* terminate list. */
230 };
231
232 /* This driver was written to use PCI memory space, however x86-oriented
233 hardware often uses I/O space accesses. */
234
235 /* Offsets to the device registers.
236 Unlike software-only systems, device drivers interact with complex hardware.
237 It's not useful to define symbolic names for every register bit in the
238 device. The name can only partially document the semantics and make
239 the driver longer and more difficult to read.
240 In general, only the important configuration values or bits changed
241 multiple times should be defined symbolically.
242 */
243 enum alta_offsets {
244 DMACtrl = 0x00,
245 TxListPtr = 0x04,
246 TxDMABurstThresh = 0x08,
247 TxDMAUrgentThresh = 0x09,
248 TxDMAPollPeriod = 0x0a,
249 RxDMAStatus = 0x0c,
250 RxListPtr = 0x10,
251 DebugCtrl0 = 0x1a,
252 DebugCtrl1 = 0x1c,
253 RxDMABurstThresh = 0x14,
254 RxDMAUrgentThresh = 0x15,
255 RxDMAPollPeriod = 0x16,
256 LEDCtrl = 0x1a,
257 ASICCtrl = 0x30,
258 EEData = 0x34,
259 EECtrl = 0x36,
260 FlashAddr = 0x40,
261 FlashData = 0x44,
262 WakeEvent = 0x45,
263 TxStatus = 0x46,
264 TxFrameId = 0x47,
265 DownCounter = 0x18,
266 IntrClear = 0x4a,
267 IntrEnable = 0x4c,
268 IntrStatus = 0x4e,
269 MACCtrl0 = 0x50,
270 MACCtrl1 = 0x52,
271 StationAddr = 0x54,
272 MaxFrameSize = 0x5A,
273 RxMode = 0x5c,
274 MIICtrl = 0x5e,
275 MulticastFilter0 = 0x60,
276 MulticastFilter1 = 0x64,
277 RxOctetsLow = 0x68,
278 RxOctetsHigh = 0x6a,
279 TxOctetsLow = 0x6c,
280 TxOctetsHigh = 0x6e,
281 TxFramesOK = 0x70,
282 RxFramesOK = 0x72,
283 StatsCarrierError = 0x74,
284 StatsLateColl = 0x75,
285 StatsMultiColl = 0x76,
286 StatsOneColl = 0x77,
287 StatsTxDefer = 0x78,
288 RxMissed = 0x79,
289 StatsTxXSDefer = 0x7a,
290 StatsTxAbort = 0x7b,
291 StatsBcastTx = 0x7c,
292 StatsBcastRx = 0x7d,
293 StatsMcastTx = 0x7e,
294 StatsMcastRx = 0x7f,
295 /* Aliased and bogus values! */
296 RxStatus = 0x0c,
297 };
298
299 #define ASIC_HI_WORD(x) ((x) + 2)
300
301 enum ASICCtrl_HiWord_bit {
302 GlobalReset = 0x0001,
303 RxReset = 0x0002,
304 TxReset = 0x0004,
305 DMAReset = 0x0008,
306 FIFOReset = 0x0010,
307 NetworkReset = 0x0020,
308 HostReset = 0x0040,
309 ResetBusy = 0x0400,
310 };
311
312 /* Bits in the interrupt status/mask registers. */
313 enum intr_status_bits {
314 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
315 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
316 IntrDrvRqst=0x0040,
317 StatsMax=0x0080, LinkChange=0x0100,
318 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
319 };
320
321 /* Bits in the RxMode register. */
322 enum rx_mode_bits {
323 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
324 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
325 };
326 /* Bits in MACCtrl. */
327 enum mac_ctrl0_bits {
328 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
329 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
330 };
331 enum mac_ctrl1_bits {
332 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080,
333 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
334 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
335 };
336
337 /* Bits in WakeEvent register. */
338 enum wake_event_bits {
339 WakePktEnable = 0x01,
340 MagicPktEnable = 0x02,
341 LinkEventEnable = 0x04,
342 WolEnable = 0x80,
343 };
344
345 /* The Rx and Tx buffer descriptors. */
346 /* Note that using only 32 bit fields simplifies conversion to big-endian
347 architectures. */
348 struct netdev_desc {
349 __le32 next_desc;
350 __le32 status;
351 struct desc_frag { __le32 addr, length; } frag[1];
352 };
353
354 /* Bits in netdev_desc.status */
355 enum desc_status_bits {
356 DescOwn=0x8000,
357 DescEndPacket=0x4000,
358 DescEndRing=0x2000,
359 LastFrag=0x80000000,
360 DescIntrOnTx=0x8000,
361 DescIntrOnDMADone=0x80000000,
362 DisableAlign = 0x00000001,
363 };
364
365 #define PRIV_ALIGN 15 /* Required alignment mask */
366 /* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment
367 within the structure. */
368 #define MII_CNT 4
369 struct netdev_private {
370 /* Descriptor rings first for alignment. */
371 struct netdev_desc *rx_ring;
372 struct netdev_desc *tx_ring;
373 struct sk_buff* rx_skbuff[RX_RING_SIZE];
374 struct sk_buff* tx_skbuff[TX_RING_SIZE];
375 dma_addr_t tx_ring_dma;
376 dma_addr_t rx_ring_dma;
377 struct timer_list timer; /* Media monitoring timer. */
378 /* ethtool extra stats */
379 struct {
380 u64 tx_multiple_collisions;
381 u64 tx_single_collisions;
382 u64 tx_late_collisions;
383 u64 tx_deferred;
384 u64 tx_deferred_excessive;
385 u64 tx_aborted;
386 u64 tx_bcasts;
387 u64 rx_bcasts;
388 u64 tx_mcasts;
389 u64 rx_mcasts;
390 } xstats;
391 /* Frequently used values: keep some adjacent for cache effect. */
392 spinlock_t lock;
393 int msg_enable;
394 int chip_id;
395 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
396 unsigned int rx_buf_sz; /* Based on MTU+slack. */
397 struct netdev_desc *last_tx; /* Last Tx descriptor used. */
398 unsigned int cur_tx, dirty_tx;
399 /* These values are keep track of the transceiver/media in use. */
400 unsigned int flowctrl:1;
401 unsigned int default_port:4; /* Last dev->if_port value. */
402 unsigned int an_enable:1;
403 unsigned int speed;
404 unsigned int wol_enabled:1; /* Wake on LAN enabled */
405 struct tasklet_struct rx_tasklet;
406 struct tasklet_struct tx_tasklet;
407 int budget;
408 int cur_task;
409 /* Multicast and receive mode. */
410 spinlock_t mcastlock; /* SMP lock multicast updates. */
411 u16 mcast_filter[4];
412 /* MII transceiver section. */
413 struct mii_if_info mii_if;
414 int mii_preamble_required;
415 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
416 struct pci_dev *pci_dev;
417 void __iomem *base;
418 spinlock_t statlock;
419 };
420
421 /* The station address location in the EEPROM. */
422 #define EEPROM_SA_OFFSET 0x10
423 #define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \
424 IntrDrvRqst | IntrTxDone | StatsMax | \
425 LinkChange)
426
427 static int change_mtu(struct net_device *dev, int new_mtu);
428 static int eeprom_read(void __iomem *ioaddr, int location);
429 static int mdio_read(struct net_device *dev, int phy_id, int location);
430 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
431 static int mdio_wait_link(struct net_device *dev, int wait);
432 static int netdev_open(struct net_device *dev);
433 static void check_duplex(struct net_device *dev);
434 static void netdev_timer(struct timer_list *t);
435 static void tx_timeout(struct net_device *dev);
436 static void init_ring(struct net_device *dev);
437 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
438 static int reset_tx (struct net_device *dev);
439 static irqreturn_t intr_handler(int irq, void *dev_instance);
440 static void rx_poll(unsigned long data);
441 static void tx_poll(unsigned long data);
442 static void refill_rx (struct net_device *dev);
443 static void netdev_error(struct net_device *dev, int intr_status);
444 static void netdev_error(struct net_device *dev, int intr_status);
445 static void set_rx_mode(struct net_device *dev);
446 static int __set_mac_addr(struct net_device *dev);
447 static int sundance_set_mac_addr(struct net_device *dev, void *data);
448 static struct net_device_stats *get_stats(struct net_device *dev);
449 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
450 static int netdev_close(struct net_device *dev);
451 static const struct ethtool_ops ethtool_ops;
452
sundance_reset(struct net_device * dev,unsigned long reset_cmd)453 static void sundance_reset(struct net_device *dev, unsigned long reset_cmd)
454 {
455 struct netdev_private *np = netdev_priv(dev);
456 void __iomem *ioaddr = np->base + ASICCtrl;
457 int countdown;
458
459 /* ST201 documentation states ASICCtrl is a 32bit register */
460 iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr);
461 /* ST201 documentation states reset can take up to 1 ms */
462 countdown = 10 + 1;
463 while (ioread32 (ioaddr) & (ResetBusy << 16)) {
464 if (--countdown == 0) {
465 printk(KERN_WARNING "%s : reset not completed !!\n", dev->name);
466 break;
467 }
468 udelay(100);
469 }
470 }
471
472 #ifdef CONFIG_NET_POLL_CONTROLLER
sundance_poll_controller(struct net_device * dev)473 static void sundance_poll_controller(struct net_device *dev)
474 {
475 struct netdev_private *np = netdev_priv(dev);
476
477 disable_irq(np->pci_dev->irq);
478 intr_handler(np->pci_dev->irq, dev);
479 enable_irq(np->pci_dev->irq);
480 }
481 #endif
482
483 static const struct net_device_ops netdev_ops = {
484 .ndo_open = netdev_open,
485 .ndo_stop = netdev_close,
486 .ndo_start_xmit = start_tx,
487 .ndo_get_stats = get_stats,
488 .ndo_set_rx_mode = set_rx_mode,
489 .ndo_do_ioctl = netdev_ioctl,
490 .ndo_tx_timeout = tx_timeout,
491 .ndo_change_mtu = change_mtu,
492 .ndo_set_mac_address = sundance_set_mac_addr,
493 .ndo_validate_addr = eth_validate_addr,
494 #ifdef CONFIG_NET_POLL_CONTROLLER
495 .ndo_poll_controller = sundance_poll_controller,
496 #endif
497 };
498
sundance_probe1(struct pci_dev * pdev,const struct pci_device_id * ent)499 static int sundance_probe1(struct pci_dev *pdev,
500 const struct pci_device_id *ent)
501 {
502 struct net_device *dev;
503 struct netdev_private *np;
504 static int card_idx;
505 int chip_idx = ent->driver_data;
506 int irq;
507 int i;
508 void __iomem *ioaddr;
509 u16 mii_ctl;
510 void *ring_space;
511 dma_addr_t ring_dma;
512 #ifdef USE_IO_OPS
513 int bar = 0;
514 #else
515 int bar = 1;
516 #endif
517 int phy, phy_end, phy_idx = 0;
518
519 /* when built into the kernel, we only print version if device is found */
520 #ifndef MODULE
521 static int printed_version;
522 if (!printed_version++)
523 printk(version);
524 #endif
525
526 if (pci_enable_device(pdev))
527 return -EIO;
528 pci_set_master(pdev);
529
530 irq = pdev->irq;
531
532 dev = alloc_etherdev(sizeof(*np));
533 if (!dev)
534 return -ENOMEM;
535 SET_NETDEV_DEV(dev, &pdev->dev);
536
537 if (pci_request_regions(pdev, DRV_NAME))
538 goto err_out_netdev;
539
540 ioaddr = pci_iomap(pdev, bar, netdev_io_size);
541 if (!ioaddr)
542 goto err_out_res;
543
544 for (i = 0; i < 3; i++)
545 ((__le16 *)dev->dev_addr)[i] =
546 cpu_to_le16(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
547
548 np = netdev_priv(dev);
549 np->base = ioaddr;
550 np->pci_dev = pdev;
551 np->chip_id = chip_idx;
552 np->msg_enable = (1 << debug) - 1;
553 spin_lock_init(&np->lock);
554 spin_lock_init(&np->statlock);
555 tasklet_init(&np->rx_tasklet, rx_poll, (unsigned long)dev);
556 tasklet_init(&np->tx_tasklet, tx_poll, (unsigned long)dev);
557
558 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE,
559 &ring_dma, GFP_KERNEL);
560 if (!ring_space)
561 goto err_out_cleardev;
562 np->tx_ring = (struct netdev_desc *)ring_space;
563 np->tx_ring_dma = ring_dma;
564
565 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE,
566 &ring_dma, GFP_KERNEL);
567 if (!ring_space)
568 goto err_out_unmap_tx;
569 np->rx_ring = (struct netdev_desc *)ring_space;
570 np->rx_ring_dma = ring_dma;
571
572 np->mii_if.dev = dev;
573 np->mii_if.mdio_read = mdio_read;
574 np->mii_if.mdio_write = mdio_write;
575 np->mii_if.phy_id_mask = 0x1f;
576 np->mii_if.reg_num_mask = 0x1f;
577
578 /* The chip-specific entries in the device structure. */
579 dev->netdev_ops = &netdev_ops;
580 dev->ethtool_ops = ðtool_ops;
581 dev->watchdog_timeo = TX_TIMEOUT;
582
583 /* MTU range: 68 - 8191 */
584 dev->min_mtu = ETH_MIN_MTU;
585 dev->max_mtu = 8191;
586
587 pci_set_drvdata(pdev, dev);
588
589 i = register_netdev(dev);
590 if (i)
591 goto err_out_unmap_rx;
592
593 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
594 dev->name, pci_id_tbl[chip_idx].name, ioaddr,
595 dev->dev_addr, irq);
596
597 np->phys[0] = 1; /* Default setting */
598 np->mii_preamble_required++;
599
600 /*
601 * It seems some phys doesn't deal well with address 0 being accessed
602 * first
603 */
604 if (sundance_pci_tbl[np->chip_id].device == 0x0200) {
605 phy = 0;
606 phy_end = 31;
607 } else {
608 phy = 1;
609 phy_end = 32; /* wraps to zero, due to 'phy & 0x1f' */
610 }
611 for (; phy <= phy_end && phy_idx < MII_CNT; phy++) {
612 int phyx = phy & 0x1f;
613 int mii_status = mdio_read(dev, phyx, MII_BMSR);
614 if (mii_status != 0xffff && mii_status != 0x0000) {
615 np->phys[phy_idx++] = phyx;
616 np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE);
617 if ((mii_status & 0x0040) == 0)
618 np->mii_preamble_required++;
619 printk(KERN_INFO "%s: MII PHY found at address %d, status "
620 "0x%4.4x advertising %4.4x.\n",
621 dev->name, phyx, mii_status, np->mii_if.advertising);
622 }
623 }
624 np->mii_preamble_required--;
625
626 if (phy_idx == 0) {
627 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n",
628 dev->name, ioread32(ioaddr + ASICCtrl));
629 goto err_out_unregister;
630 }
631
632 np->mii_if.phy_id = np->phys[0];
633
634 /* Parse override configuration */
635 np->an_enable = 1;
636 if (card_idx < MAX_UNITS) {
637 if (media[card_idx] != NULL) {
638 np->an_enable = 0;
639 if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
640 strcmp (media[card_idx], "4") == 0) {
641 np->speed = 100;
642 np->mii_if.full_duplex = 1;
643 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
644 strcmp (media[card_idx], "3") == 0) {
645 np->speed = 100;
646 np->mii_if.full_duplex = 0;
647 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
648 strcmp (media[card_idx], "2") == 0) {
649 np->speed = 10;
650 np->mii_if.full_duplex = 1;
651 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
652 strcmp (media[card_idx], "1") == 0) {
653 np->speed = 10;
654 np->mii_if.full_duplex = 0;
655 } else {
656 np->an_enable = 1;
657 }
658 }
659 if (flowctrl == 1)
660 np->flowctrl = 1;
661 }
662
663 /* Fibre PHY? */
664 if (ioread32 (ioaddr + ASICCtrl) & 0x80) {
665 /* Default 100Mbps Full */
666 if (np->an_enable) {
667 np->speed = 100;
668 np->mii_if.full_duplex = 1;
669 np->an_enable = 0;
670 }
671 }
672 /* Reset PHY */
673 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET);
674 mdelay (300);
675 /* If flow control enabled, we need to advertise it.*/
676 if (np->flowctrl)
677 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400);
678 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
679 /* Force media type */
680 if (!np->an_enable) {
681 mii_ctl = 0;
682 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0;
683 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0;
684 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl);
685 printk (KERN_INFO "Override speed=%d, %s duplex\n",
686 np->speed, np->mii_if.full_duplex ? "Full" : "Half");
687
688 }
689
690 /* Perhaps move the reset here? */
691 /* Reset the chip to erase previous misconfiguration. */
692 if (netif_msg_hw(np))
693 printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl));
694 sundance_reset(dev, 0x00ff << 16);
695 if (netif_msg_hw(np))
696 printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl));
697
698 card_idx++;
699 return 0;
700
701 err_out_unregister:
702 unregister_netdev(dev);
703 err_out_unmap_rx:
704 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
705 np->rx_ring, np->rx_ring_dma);
706 err_out_unmap_tx:
707 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
708 np->tx_ring, np->tx_ring_dma);
709 err_out_cleardev:
710 pci_iounmap(pdev, ioaddr);
711 err_out_res:
712 pci_release_regions(pdev);
713 err_out_netdev:
714 free_netdev (dev);
715 return -ENODEV;
716 }
717
change_mtu(struct net_device * dev,int new_mtu)718 static int change_mtu(struct net_device *dev, int new_mtu)
719 {
720 if (netif_running(dev))
721 return -EBUSY;
722 dev->mtu = new_mtu;
723 return 0;
724 }
725
726 #define eeprom_delay(ee_addr) ioread32(ee_addr)
727 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
eeprom_read(void __iomem * ioaddr,int location)728 static int eeprom_read(void __iomem *ioaddr, int location)
729 {
730 int boguscnt = 10000; /* Typical 1900 ticks. */
731 iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl);
732 do {
733 eeprom_delay(ioaddr + EECtrl);
734 if (! (ioread16(ioaddr + EECtrl) & 0x8000)) {
735 return ioread16(ioaddr + EEData);
736 }
737 } while (--boguscnt > 0);
738 return 0;
739 }
740
741 /* MII transceiver control section.
742 Read and write the MII registers using software-generated serial
743 MDIO protocol. See the MII specifications or DP83840A data sheet
744 for details.
745
746 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
747 met by back-to-back 33Mhz PCI cycles. */
748 #define mdio_delay() ioread8(mdio_addr)
749
750 enum mii_reg_bits {
751 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
752 };
753 #define MDIO_EnbIn (0)
754 #define MDIO_WRITE0 (MDIO_EnbOutput)
755 #define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)
756
757 /* Generate the preamble required for initial synchronization and
758 a few older transceivers. */
mdio_sync(void __iomem * mdio_addr)759 static void mdio_sync(void __iomem *mdio_addr)
760 {
761 int bits = 32;
762
763 /* Establish sync by sending at least 32 logic ones. */
764 while (--bits >= 0) {
765 iowrite8(MDIO_WRITE1, mdio_addr);
766 mdio_delay();
767 iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
768 mdio_delay();
769 }
770 }
771
mdio_read(struct net_device * dev,int phy_id,int location)772 static int mdio_read(struct net_device *dev, int phy_id, int location)
773 {
774 struct netdev_private *np = netdev_priv(dev);
775 void __iomem *mdio_addr = np->base + MIICtrl;
776 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
777 int i, retval = 0;
778
779 if (np->mii_preamble_required)
780 mdio_sync(mdio_addr);
781
782 /* Shift the read command bits out. */
783 for (i = 15; i >= 0; i--) {
784 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
785
786 iowrite8(dataval, mdio_addr);
787 mdio_delay();
788 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
789 mdio_delay();
790 }
791 /* Read the two transition, 16 data, and wire-idle bits. */
792 for (i = 19; i > 0; i--) {
793 iowrite8(MDIO_EnbIn, mdio_addr);
794 mdio_delay();
795 retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0);
796 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
797 mdio_delay();
798 }
799 return (retval>>1) & 0xffff;
800 }
801
mdio_write(struct net_device * dev,int phy_id,int location,int value)802 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
803 {
804 struct netdev_private *np = netdev_priv(dev);
805 void __iomem *mdio_addr = np->base + MIICtrl;
806 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
807 int i;
808
809 if (np->mii_preamble_required)
810 mdio_sync(mdio_addr);
811
812 /* Shift the command bits out. */
813 for (i = 31; i >= 0; i--) {
814 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
815
816 iowrite8(dataval, mdio_addr);
817 mdio_delay();
818 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
819 mdio_delay();
820 }
821 /* Clear out extra bits. */
822 for (i = 2; i > 0; i--) {
823 iowrite8(MDIO_EnbIn, mdio_addr);
824 mdio_delay();
825 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
826 mdio_delay();
827 }
828 }
829
mdio_wait_link(struct net_device * dev,int wait)830 static int mdio_wait_link(struct net_device *dev, int wait)
831 {
832 int bmsr;
833 int phy_id;
834 struct netdev_private *np;
835
836 np = netdev_priv(dev);
837 phy_id = np->phys[0];
838
839 do {
840 bmsr = mdio_read(dev, phy_id, MII_BMSR);
841 if (bmsr & 0x0004)
842 return 0;
843 mdelay(1);
844 } while (--wait > 0);
845 return -1;
846 }
847
netdev_open(struct net_device * dev)848 static int netdev_open(struct net_device *dev)
849 {
850 struct netdev_private *np = netdev_priv(dev);
851 void __iomem *ioaddr = np->base;
852 const int irq = np->pci_dev->irq;
853 unsigned long flags;
854 int i;
855
856 sundance_reset(dev, 0x00ff << 16);
857
858 i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
859 if (i)
860 return i;
861
862 if (netif_msg_ifup(np))
863 printk(KERN_DEBUG "%s: netdev_open() irq %d\n", dev->name, irq);
864
865 init_ring(dev);
866
867 iowrite32(np->rx_ring_dma, ioaddr + RxListPtr);
868 /* The Tx list pointer is written as packets are queued. */
869
870 /* Initialize other registers. */
871 __set_mac_addr(dev);
872 #if IS_ENABLED(CONFIG_VLAN_8021Q)
873 iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize);
874 #else
875 iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize);
876 #endif
877 if (dev->mtu > 2047)
878 iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl);
879
880 /* Configure the PCI bus bursts and FIFO thresholds. */
881
882 if (dev->if_port == 0)
883 dev->if_port = np->default_port;
884
885 spin_lock_init(&np->mcastlock);
886
887 set_rx_mode(dev);
888 iowrite16(0, ioaddr + IntrEnable);
889 iowrite16(0, ioaddr + DownCounter);
890 /* Set the chip to poll every N*320nsec. */
891 iowrite8(100, ioaddr + RxDMAPollPeriod);
892 iowrite8(127, ioaddr + TxDMAPollPeriod);
893 /* Fix DFE-580TX packet drop issue */
894 if (np->pci_dev->revision >= 0x14)
895 iowrite8(0x01, ioaddr + DebugCtrl1);
896 netif_start_queue(dev);
897
898 spin_lock_irqsave(&np->lock, flags);
899 reset_tx(dev);
900 spin_unlock_irqrestore(&np->lock, flags);
901
902 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
903
904 /* Disable Wol */
905 iowrite8(ioread8(ioaddr + WakeEvent) | 0x00, ioaddr + WakeEvent);
906 np->wol_enabled = 0;
907
908 if (netif_msg_ifup(np))
909 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
910 "MAC Control %x, %4.4x %4.4x.\n",
911 dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus),
912 ioread32(ioaddr + MACCtrl0),
913 ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0));
914
915 /* Set the timer to check for link beat. */
916 timer_setup(&np->timer, netdev_timer, 0);
917 np->timer.expires = jiffies + 3*HZ;
918 add_timer(&np->timer);
919
920 /* Enable interrupts by setting the interrupt mask. */
921 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
922
923 return 0;
924 }
925
check_duplex(struct net_device * dev)926 static void check_duplex(struct net_device *dev)
927 {
928 struct netdev_private *np = netdev_priv(dev);
929 void __iomem *ioaddr = np->base;
930 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
931 int negotiated = mii_lpa & np->mii_if.advertising;
932 int duplex;
933
934 /* Force media */
935 if (!np->an_enable || mii_lpa == 0xffff) {
936 if (np->mii_if.full_duplex)
937 iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex,
938 ioaddr + MACCtrl0);
939 return;
940 }
941
942 /* Autonegotiation */
943 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
944 if (np->mii_if.full_duplex != duplex) {
945 np->mii_if.full_duplex = duplex;
946 if (netif_msg_link(np))
947 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
948 "negotiated capability %4.4x.\n", dev->name,
949 duplex ? "full" : "half", np->phys[0], negotiated);
950 iowrite16(ioread16(ioaddr + MACCtrl0) | (duplex ? 0x20 : 0), ioaddr + MACCtrl0);
951 }
952 }
953
netdev_timer(struct timer_list * t)954 static void netdev_timer(struct timer_list *t)
955 {
956 struct netdev_private *np = from_timer(np, t, timer);
957 struct net_device *dev = np->mii_if.dev;
958 void __iomem *ioaddr = np->base;
959 int next_tick = 10*HZ;
960
961 if (netif_msg_timer(np)) {
962 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
963 "Tx %x Rx %x.\n",
964 dev->name, ioread16(ioaddr + IntrEnable),
965 ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
966 }
967 check_duplex(dev);
968 np->timer.expires = jiffies + next_tick;
969 add_timer(&np->timer);
970 }
971
tx_timeout(struct net_device * dev)972 static void tx_timeout(struct net_device *dev)
973 {
974 struct netdev_private *np = netdev_priv(dev);
975 void __iomem *ioaddr = np->base;
976 unsigned long flag;
977
978 netif_stop_queue(dev);
979 tasklet_disable(&np->tx_tasklet);
980 iowrite16(0, ioaddr + IntrEnable);
981 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x "
982 "TxFrameId %2.2x,"
983 " resetting...\n", dev->name, ioread8(ioaddr + TxStatus),
984 ioread8(ioaddr + TxFrameId));
985
986 {
987 int i;
988 for (i=0; i<TX_RING_SIZE; i++) {
989 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
990 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
991 le32_to_cpu(np->tx_ring[i].next_desc),
992 le32_to_cpu(np->tx_ring[i].status),
993 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff,
994 le32_to_cpu(np->tx_ring[i].frag[0].addr),
995 le32_to_cpu(np->tx_ring[i].frag[0].length));
996 }
997 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
998 ioread32(np->base + TxListPtr),
999 netif_queue_stopped(dev));
1000 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
1001 np->cur_tx, np->cur_tx % TX_RING_SIZE,
1002 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
1003 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
1004 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
1005 }
1006 spin_lock_irqsave(&np->lock, flag);
1007
1008 /* Stop and restart the chip's Tx processes . */
1009 reset_tx(dev);
1010 spin_unlock_irqrestore(&np->lock, flag);
1011
1012 dev->if_port = 0;
1013
1014 netif_trans_update(dev); /* prevent tx timeout */
1015 dev->stats.tx_errors++;
1016 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1017 netif_wake_queue(dev);
1018 }
1019 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1020 tasklet_enable(&np->tx_tasklet);
1021 }
1022
1023
1024 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
init_ring(struct net_device * dev)1025 static void init_ring(struct net_device *dev)
1026 {
1027 struct netdev_private *np = netdev_priv(dev);
1028 int i;
1029
1030 np->cur_rx = np->cur_tx = 0;
1031 np->dirty_rx = np->dirty_tx = 0;
1032 np->cur_task = 0;
1033
1034 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16);
1035
1036 /* Initialize all Rx descriptors. */
1037 for (i = 0; i < RX_RING_SIZE; i++) {
1038 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma +
1039 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring));
1040 np->rx_ring[i].status = 0;
1041 np->rx_ring[i].frag[0].length = 0;
1042 np->rx_skbuff[i] = NULL;
1043 }
1044
1045 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1046 for (i = 0; i < RX_RING_SIZE; i++) {
1047 struct sk_buff *skb =
1048 netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1049 np->rx_skbuff[i] = skb;
1050 if (skb == NULL)
1051 break;
1052 skb_reserve(skb, 2); /* 16 byte align the IP header. */
1053 np->rx_ring[i].frag[0].addr = cpu_to_le32(
1054 dma_map_single(&np->pci_dev->dev, skb->data,
1055 np->rx_buf_sz, DMA_FROM_DEVICE));
1056 if (dma_mapping_error(&np->pci_dev->dev,
1057 np->rx_ring[i].frag[0].addr)) {
1058 dev_kfree_skb(skb);
1059 np->rx_skbuff[i] = NULL;
1060 break;
1061 }
1062 np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag);
1063 }
1064 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1065
1066 for (i = 0; i < TX_RING_SIZE; i++) {
1067 np->tx_skbuff[i] = NULL;
1068 np->tx_ring[i].status = 0;
1069 }
1070 }
1071
tx_poll(unsigned long data)1072 static void tx_poll (unsigned long data)
1073 {
1074 struct net_device *dev = (struct net_device *)data;
1075 struct netdev_private *np = netdev_priv(dev);
1076 unsigned head = np->cur_task % TX_RING_SIZE;
1077 struct netdev_desc *txdesc =
1078 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE];
1079
1080 /* Chain the next pointer */
1081 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) {
1082 int entry = np->cur_task % TX_RING_SIZE;
1083 txdesc = &np->tx_ring[entry];
1084 if (np->last_tx) {
1085 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma +
1086 entry*sizeof(struct netdev_desc));
1087 }
1088 np->last_tx = txdesc;
1089 }
1090 /* Indicate the latest descriptor of tx ring */
1091 txdesc->status |= cpu_to_le32(DescIntrOnTx);
1092
1093 if (ioread32 (np->base + TxListPtr) == 0)
1094 iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc),
1095 np->base + TxListPtr);
1096 }
1097
1098 static netdev_tx_t
start_tx(struct sk_buff * skb,struct net_device * dev)1099 start_tx (struct sk_buff *skb, struct net_device *dev)
1100 {
1101 struct netdev_private *np = netdev_priv(dev);
1102 struct netdev_desc *txdesc;
1103 unsigned entry;
1104
1105 /* Calculate the next Tx descriptor entry. */
1106 entry = np->cur_tx % TX_RING_SIZE;
1107 np->tx_skbuff[entry] = skb;
1108 txdesc = &np->tx_ring[entry];
1109
1110 txdesc->next_desc = 0;
1111 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign);
1112 txdesc->frag[0].addr = cpu_to_le32(dma_map_single(&np->pci_dev->dev,
1113 skb->data, skb->len, DMA_TO_DEVICE));
1114 if (dma_mapping_error(&np->pci_dev->dev,
1115 txdesc->frag[0].addr))
1116 goto drop_frame;
1117 txdesc->frag[0].length = cpu_to_le32 (skb->len | LastFrag);
1118
1119 /* Increment cur_tx before tasklet_schedule() */
1120 np->cur_tx++;
1121 mb();
1122 /* Schedule a tx_poll() task */
1123 tasklet_schedule(&np->tx_tasklet);
1124
1125 /* On some architectures: explicitly flush cache lines here. */
1126 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1 &&
1127 !netif_queue_stopped(dev)) {
1128 /* do nothing */
1129 } else {
1130 netif_stop_queue (dev);
1131 }
1132 if (netif_msg_tx_queued(np)) {
1133 printk (KERN_DEBUG
1134 "%s: Transmit frame #%d queued in slot %d.\n",
1135 dev->name, np->cur_tx, entry);
1136 }
1137 return NETDEV_TX_OK;
1138
1139 drop_frame:
1140 dev_kfree_skb_any(skb);
1141 np->tx_skbuff[entry] = NULL;
1142 dev->stats.tx_dropped++;
1143 return NETDEV_TX_OK;
1144 }
1145
1146 /* Reset hardware tx and free all of tx buffers */
1147 static int
reset_tx(struct net_device * dev)1148 reset_tx (struct net_device *dev)
1149 {
1150 struct netdev_private *np = netdev_priv(dev);
1151 void __iomem *ioaddr = np->base;
1152 struct sk_buff *skb;
1153 int i;
1154
1155 /* Reset tx logic, TxListPtr will be cleaned */
1156 iowrite16 (TxDisable, ioaddr + MACCtrl1);
1157 sundance_reset(dev, (NetworkReset|FIFOReset|DMAReset|TxReset) << 16);
1158
1159 /* free all tx skbuff */
1160 for (i = 0; i < TX_RING_SIZE; i++) {
1161 np->tx_ring[i].next_desc = 0;
1162
1163 skb = np->tx_skbuff[i];
1164 if (skb) {
1165 dma_unmap_single(&np->pci_dev->dev,
1166 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1167 skb->len, DMA_TO_DEVICE);
1168 dev_kfree_skb_any(skb);
1169 np->tx_skbuff[i] = NULL;
1170 dev->stats.tx_dropped++;
1171 }
1172 }
1173 np->cur_tx = np->dirty_tx = 0;
1174 np->cur_task = 0;
1175
1176 np->last_tx = NULL;
1177 iowrite8(127, ioaddr + TxDMAPollPeriod);
1178
1179 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
1180 return 0;
1181 }
1182
1183 /* The interrupt handler cleans up after the Tx thread,
1184 and schedule a Rx thread work */
intr_handler(int irq,void * dev_instance)1185 static irqreturn_t intr_handler(int irq, void *dev_instance)
1186 {
1187 struct net_device *dev = (struct net_device *)dev_instance;
1188 struct netdev_private *np = netdev_priv(dev);
1189 void __iomem *ioaddr = np->base;
1190 int hw_frame_id;
1191 int tx_cnt;
1192 int tx_status;
1193 int handled = 0;
1194 int i;
1195
1196 do {
1197 int intr_status = ioread16(ioaddr + IntrStatus);
1198 iowrite16(intr_status, ioaddr + IntrStatus);
1199
1200 if (netif_msg_intr(np))
1201 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
1202 dev->name, intr_status);
1203
1204 if (!(intr_status & DEFAULT_INTR))
1205 break;
1206
1207 handled = 1;
1208
1209 if (intr_status & (IntrRxDMADone)) {
1210 iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone),
1211 ioaddr + IntrEnable);
1212 if (np->budget < 0)
1213 np->budget = RX_BUDGET;
1214 tasklet_schedule(&np->rx_tasklet);
1215 }
1216 if (intr_status & (IntrTxDone | IntrDrvRqst)) {
1217 tx_status = ioread16 (ioaddr + TxStatus);
1218 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) {
1219 if (netif_msg_tx_done(np))
1220 printk
1221 ("%s: Transmit status is %2.2x.\n",
1222 dev->name, tx_status);
1223 if (tx_status & 0x1e) {
1224 if (netif_msg_tx_err(np))
1225 printk("%s: Transmit error status %4.4x.\n",
1226 dev->name, tx_status);
1227 dev->stats.tx_errors++;
1228 if (tx_status & 0x10)
1229 dev->stats.tx_fifo_errors++;
1230 if (tx_status & 0x08)
1231 dev->stats.collisions++;
1232 if (tx_status & 0x04)
1233 dev->stats.tx_fifo_errors++;
1234 if (tx_status & 0x02)
1235 dev->stats.tx_window_errors++;
1236
1237 /*
1238 ** This reset has been verified on
1239 ** DFE-580TX boards ! phdm@macqel.be.
1240 */
1241 if (tx_status & 0x10) { /* TxUnderrun */
1242 /* Restart Tx FIFO and transmitter */
1243 sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16);
1244 /* No need to reset the Tx pointer here */
1245 }
1246 /* Restart the Tx. Need to make sure tx enabled */
1247 i = 10;
1248 do {
1249 iowrite16(ioread16(ioaddr + MACCtrl1) | TxEnable, ioaddr + MACCtrl1);
1250 if (ioread16(ioaddr + MACCtrl1) & TxEnabled)
1251 break;
1252 mdelay(1);
1253 } while (--i);
1254 }
1255 /* Yup, this is a documentation bug. It cost me *hours*. */
1256 iowrite16 (0, ioaddr + TxStatus);
1257 if (tx_cnt < 0) {
1258 iowrite32(5000, ioaddr + DownCounter);
1259 break;
1260 }
1261 tx_status = ioread16 (ioaddr + TxStatus);
1262 }
1263 hw_frame_id = (tx_status >> 8) & 0xff;
1264 } else {
1265 hw_frame_id = ioread8(ioaddr + TxFrameId);
1266 }
1267
1268 if (np->pci_dev->revision >= 0x14) {
1269 spin_lock(&np->lock);
1270 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1271 int entry = np->dirty_tx % TX_RING_SIZE;
1272 struct sk_buff *skb;
1273 int sw_frame_id;
1274 sw_frame_id = (le32_to_cpu(
1275 np->tx_ring[entry].status) >> 2) & 0xff;
1276 if (sw_frame_id == hw_frame_id &&
1277 !(le32_to_cpu(np->tx_ring[entry].status)
1278 & 0x00010000))
1279 break;
1280 if (sw_frame_id == (hw_frame_id + 1) %
1281 TX_RING_SIZE)
1282 break;
1283 skb = np->tx_skbuff[entry];
1284 /* Free the original skb. */
1285 dma_unmap_single(&np->pci_dev->dev,
1286 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
1287 skb->len, DMA_TO_DEVICE);
1288 dev_consume_skb_irq(np->tx_skbuff[entry]);
1289 np->tx_skbuff[entry] = NULL;
1290 np->tx_ring[entry].frag[0].addr = 0;
1291 np->tx_ring[entry].frag[0].length = 0;
1292 }
1293 spin_unlock(&np->lock);
1294 } else {
1295 spin_lock(&np->lock);
1296 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1297 int entry = np->dirty_tx % TX_RING_SIZE;
1298 struct sk_buff *skb;
1299 if (!(le32_to_cpu(np->tx_ring[entry].status)
1300 & 0x00010000))
1301 break;
1302 skb = np->tx_skbuff[entry];
1303 /* Free the original skb. */
1304 dma_unmap_single(&np->pci_dev->dev,
1305 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
1306 skb->len, DMA_TO_DEVICE);
1307 dev_consume_skb_irq(np->tx_skbuff[entry]);
1308 np->tx_skbuff[entry] = NULL;
1309 np->tx_ring[entry].frag[0].addr = 0;
1310 np->tx_ring[entry].frag[0].length = 0;
1311 }
1312 spin_unlock(&np->lock);
1313 }
1314
1315 if (netif_queue_stopped(dev) &&
1316 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1317 /* The ring is no longer full, clear busy flag. */
1318 netif_wake_queue (dev);
1319 }
1320 /* Abnormal error summary/uncommon events handlers. */
1321 if (intr_status & (IntrPCIErr | LinkChange | StatsMax))
1322 netdev_error(dev, intr_status);
1323 } while (0);
1324 if (netif_msg_intr(np))
1325 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1326 dev->name, ioread16(ioaddr + IntrStatus));
1327 return IRQ_RETVAL(handled);
1328 }
1329
rx_poll(unsigned long data)1330 static void rx_poll(unsigned long data)
1331 {
1332 struct net_device *dev = (struct net_device *)data;
1333 struct netdev_private *np = netdev_priv(dev);
1334 int entry = np->cur_rx % RX_RING_SIZE;
1335 int boguscnt = np->budget;
1336 void __iomem *ioaddr = np->base;
1337 int received = 0;
1338
1339 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1340 while (1) {
1341 struct netdev_desc *desc = &(np->rx_ring[entry]);
1342 u32 frame_status = le32_to_cpu(desc->status);
1343 int pkt_len;
1344
1345 if (--boguscnt < 0) {
1346 goto not_done;
1347 }
1348 if (!(frame_status & DescOwn))
1349 break;
1350 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */
1351 if (netif_msg_rx_status(np))
1352 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n",
1353 frame_status);
1354 if (frame_status & 0x001f4000) {
1355 /* There was a error. */
1356 if (netif_msg_rx_err(np))
1357 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n",
1358 frame_status);
1359 dev->stats.rx_errors++;
1360 if (frame_status & 0x00100000)
1361 dev->stats.rx_length_errors++;
1362 if (frame_status & 0x00010000)
1363 dev->stats.rx_fifo_errors++;
1364 if (frame_status & 0x00060000)
1365 dev->stats.rx_frame_errors++;
1366 if (frame_status & 0x00080000)
1367 dev->stats.rx_crc_errors++;
1368 if (frame_status & 0x00100000) {
1369 printk(KERN_WARNING "%s: Oversized Ethernet frame,"
1370 " status %8.8x.\n",
1371 dev->name, frame_status);
1372 }
1373 } else {
1374 struct sk_buff *skb;
1375 #ifndef final_version
1376 if (netif_msg_rx_status(np))
1377 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1378 ", bogus_cnt %d.\n",
1379 pkt_len, boguscnt);
1380 #endif
1381 /* Check if the packet is long enough to accept without copying
1382 to a minimally-sized skbuff. */
1383 if (pkt_len < rx_copybreak &&
1384 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1385 skb_reserve(skb, 2); /* 16 byte align the IP header */
1386 dma_sync_single_for_cpu(&np->pci_dev->dev,
1387 le32_to_cpu(desc->frag[0].addr),
1388 np->rx_buf_sz, DMA_FROM_DEVICE);
1389 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1390 dma_sync_single_for_device(&np->pci_dev->dev,
1391 le32_to_cpu(desc->frag[0].addr),
1392 np->rx_buf_sz, DMA_FROM_DEVICE);
1393 skb_put(skb, pkt_len);
1394 } else {
1395 dma_unmap_single(&np->pci_dev->dev,
1396 le32_to_cpu(desc->frag[0].addr),
1397 np->rx_buf_sz, DMA_FROM_DEVICE);
1398 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1399 np->rx_skbuff[entry] = NULL;
1400 }
1401 skb->protocol = eth_type_trans(skb, dev);
1402 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
1403 netif_rx(skb);
1404 }
1405 entry = (entry + 1) % RX_RING_SIZE;
1406 received++;
1407 }
1408 np->cur_rx = entry;
1409 refill_rx (dev);
1410 np->budget -= received;
1411 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1412 return;
1413
1414 not_done:
1415 np->cur_rx = entry;
1416 refill_rx (dev);
1417 if (!received)
1418 received = 1;
1419 np->budget -= received;
1420 if (np->budget <= 0)
1421 np->budget = RX_BUDGET;
1422 tasklet_schedule(&np->rx_tasklet);
1423 }
1424
refill_rx(struct net_device * dev)1425 static void refill_rx (struct net_device *dev)
1426 {
1427 struct netdev_private *np = netdev_priv(dev);
1428 int entry;
1429 int cnt = 0;
1430
1431 /* Refill the Rx ring buffers. */
1432 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0;
1433 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) {
1434 struct sk_buff *skb;
1435 entry = np->dirty_rx % RX_RING_SIZE;
1436 if (np->rx_skbuff[entry] == NULL) {
1437 skb = netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1438 np->rx_skbuff[entry] = skb;
1439 if (skb == NULL)
1440 break; /* Better luck next round. */
1441 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1442 np->rx_ring[entry].frag[0].addr = cpu_to_le32(
1443 dma_map_single(&np->pci_dev->dev, skb->data,
1444 np->rx_buf_sz, DMA_FROM_DEVICE));
1445 if (dma_mapping_error(&np->pci_dev->dev,
1446 np->rx_ring[entry].frag[0].addr)) {
1447 dev_kfree_skb_irq(skb);
1448 np->rx_skbuff[entry] = NULL;
1449 break;
1450 }
1451 }
1452 /* Perhaps we need not reset this field. */
1453 np->rx_ring[entry].frag[0].length =
1454 cpu_to_le32(np->rx_buf_sz | LastFrag);
1455 np->rx_ring[entry].status = 0;
1456 cnt++;
1457 }
1458 }
netdev_error(struct net_device * dev,int intr_status)1459 static void netdev_error(struct net_device *dev, int intr_status)
1460 {
1461 struct netdev_private *np = netdev_priv(dev);
1462 void __iomem *ioaddr = np->base;
1463 u16 mii_ctl, mii_advertise, mii_lpa;
1464 int speed;
1465
1466 if (intr_status & LinkChange) {
1467 if (mdio_wait_link(dev, 10) == 0) {
1468 printk(KERN_INFO "%s: Link up\n", dev->name);
1469 if (np->an_enable) {
1470 mii_advertise = mdio_read(dev, np->phys[0],
1471 MII_ADVERTISE);
1472 mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
1473 mii_advertise &= mii_lpa;
1474 printk(KERN_INFO "%s: Link changed: ",
1475 dev->name);
1476 if (mii_advertise & ADVERTISE_100FULL) {
1477 np->speed = 100;
1478 printk("100Mbps, full duplex\n");
1479 } else if (mii_advertise & ADVERTISE_100HALF) {
1480 np->speed = 100;
1481 printk("100Mbps, half duplex\n");
1482 } else if (mii_advertise & ADVERTISE_10FULL) {
1483 np->speed = 10;
1484 printk("10Mbps, full duplex\n");
1485 } else if (mii_advertise & ADVERTISE_10HALF) {
1486 np->speed = 10;
1487 printk("10Mbps, half duplex\n");
1488 } else
1489 printk("\n");
1490
1491 } else {
1492 mii_ctl = mdio_read(dev, np->phys[0], MII_BMCR);
1493 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10;
1494 np->speed = speed;
1495 printk(KERN_INFO "%s: Link changed: %dMbps ,",
1496 dev->name, speed);
1497 printk("%s duplex.\n",
1498 (mii_ctl & BMCR_FULLDPLX) ?
1499 "full" : "half");
1500 }
1501 check_duplex(dev);
1502 if (np->flowctrl && np->mii_if.full_duplex) {
1503 iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200,
1504 ioaddr + MulticastFilter1+2);
1505 iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl,
1506 ioaddr + MACCtrl0);
1507 }
1508 netif_carrier_on(dev);
1509 } else {
1510 printk(KERN_INFO "%s: Link down\n", dev->name);
1511 netif_carrier_off(dev);
1512 }
1513 }
1514 if (intr_status & StatsMax) {
1515 get_stats(dev);
1516 }
1517 if (intr_status & IntrPCIErr) {
1518 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1519 dev->name, intr_status);
1520 /* We must do a global reset of DMA to continue. */
1521 }
1522 }
1523
get_stats(struct net_device * dev)1524 static struct net_device_stats *get_stats(struct net_device *dev)
1525 {
1526 struct netdev_private *np = netdev_priv(dev);
1527 void __iomem *ioaddr = np->base;
1528 unsigned long flags;
1529 u8 late_coll, single_coll, mult_coll;
1530
1531 spin_lock_irqsave(&np->statlock, flags);
1532 /* The chip only need report frame silently dropped. */
1533 dev->stats.rx_missed_errors += ioread8(ioaddr + RxMissed);
1534 dev->stats.tx_packets += ioread16(ioaddr + TxFramesOK);
1535 dev->stats.rx_packets += ioread16(ioaddr + RxFramesOK);
1536 dev->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError);
1537
1538 mult_coll = ioread8(ioaddr + StatsMultiColl);
1539 np->xstats.tx_multiple_collisions += mult_coll;
1540 single_coll = ioread8(ioaddr + StatsOneColl);
1541 np->xstats.tx_single_collisions += single_coll;
1542 late_coll = ioread8(ioaddr + StatsLateColl);
1543 np->xstats.tx_late_collisions += late_coll;
1544 dev->stats.collisions += mult_coll
1545 + single_coll
1546 + late_coll;
1547
1548 np->xstats.tx_deferred += ioread8(ioaddr + StatsTxDefer);
1549 np->xstats.tx_deferred_excessive += ioread8(ioaddr + StatsTxXSDefer);
1550 np->xstats.tx_aborted += ioread8(ioaddr + StatsTxAbort);
1551 np->xstats.tx_bcasts += ioread8(ioaddr + StatsBcastTx);
1552 np->xstats.rx_bcasts += ioread8(ioaddr + StatsBcastRx);
1553 np->xstats.tx_mcasts += ioread8(ioaddr + StatsMcastTx);
1554 np->xstats.rx_mcasts += ioread8(ioaddr + StatsMcastRx);
1555
1556 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow);
1557 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16;
1558 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow);
1559 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16;
1560
1561 spin_unlock_irqrestore(&np->statlock, flags);
1562
1563 return &dev->stats;
1564 }
1565
set_rx_mode(struct net_device * dev)1566 static void set_rx_mode(struct net_device *dev)
1567 {
1568 struct netdev_private *np = netdev_priv(dev);
1569 void __iomem *ioaddr = np->base;
1570 u16 mc_filter[4]; /* Multicast hash filter */
1571 u32 rx_mode;
1572 int i;
1573
1574 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1575 memset(mc_filter, 0xff, sizeof(mc_filter));
1576 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
1577 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1578 (dev->flags & IFF_ALLMULTI)) {
1579 /* Too many to match, or accept all multicasts. */
1580 memset(mc_filter, 0xff, sizeof(mc_filter));
1581 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1582 } else if (!netdev_mc_empty(dev)) {
1583 struct netdev_hw_addr *ha;
1584 int bit;
1585 int index;
1586 int crc;
1587 memset (mc_filter, 0, sizeof (mc_filter));
1588 netdev_for_each_mc_addr(ha, dev) {
1589 crc = ether_crc_le(ETH_ALEN, ha->addr);
1590 for (index=0, bit=0; bit < 6; bit++, crc <<= 1)
1591 if (crc & 0x80000000) index |= 1 << bit;
1592 mc_filter[index/16] |= (1 << (index % 16));
1593 }
1594 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
1595 } else {
1596 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1597 return;
1598 }
1599 if (np->mii_if.full_duplex && np->flowctrl)
1600 mc_filter[3] |= 0x0200;
1601
1602 for (i = 0; i < 4; i++)
1603 iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
1604 iowrite8(rx_mode, ioaddr + RxMode);
1605 }
1606
__set_mac_addr(struct net_device * dev)1607 static int __set_mac_addr(struct net_device *dev)
1608 {
1609 struct netdev_private *np = netdev_priv(dev);
1610 u16 addr16;
1611
1612 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8));
1613 iowrite16(addr16, np->base + StationAddr);
1614 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8));
1615 iowrite16(addr16, np->base + StationAddr+2);
1616 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8));
1617 iowrite16(addr16, np->base + StationAddr+4);
1618 return 0;
1619 }
1620
1621 /* Invoked with rtnl_lock held */
sundance_set_mac_addr(struct net_device * dev,void * data)1622 static int sundance_set_mac_addr(struct net_device *dev, void *data)
1623 {
1624 const struct sockaddr *addr = data;
1625
1626 if (!is_valid_ether_addr(addr->sa_data))
1627 return -EADDRNOTAVAIL;
1628 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
1629 __set_mac_addr(dev);
1630
1631 return 0;
1632 }
1633
1634 static const struct {
1635 const char name[ETH_GSTRING_LEN];
1636 } sundance_stats[] = {
1637 { "tx_multiple_collisions" },
1638 { "tx_single_collisions" },
1639 { "tx_late_collisions" },
1640 { "tx_deferred" },
1641 { "tx_deferred_excessive" },
1642 { "tx_aborted" },
1643 { "tx_bcasts" },
1644 { "rx_bcasts" },
1645 { "tx_mcasts" },
1646 { "rx_mcasts" },
1647 };
1648
check_if_running(struct net_device * dev)1649 static int check_if_running(struct net_device *dev)
1650 {
1651 if (!netif_running(dev))
1652 return -EINVAL;
1653 return 0;
1654 }
1655
get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1656 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1657 {
1658 struct netdev_private *np = netdev_priv(dev);
1659 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1660 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1661 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1662 }
1663
get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1664 static int get_link_ksettings(struct net_device *dev,
1665 struct ethtool_link_ksettings *cmd)
1666 {
1667 struct netdev_private *np = netdev_priv(dev);
1668 spin_lock_irq(&np->lock);
1669 mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1670 spin_unlock_irq(&np->lock);
1671 return 0;
1672 }
1673
set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1674 static int set_link_ksettings(struct net_device *dev,
1675 const struct ethtool_link_ksettings *cmd)
1676 {
1677 struct netdev_private *np = netdev_priv(dev);
1678 int res;
1679 spin_lock_irq(&np->lock);
1680 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1681 spin_unlock_irq(&np->lock);
1682 return res;
1683 }
1684
nway_reset(struct net_device * dev)1685 static int nway_reset(struct net_device *dev)
1686 {
1687 struct netdev_private *np = netdev_priv(dev);
1688 return mii_nway_restart(&np->mii_if);
1689 }
1690
get_link(struct net_device * dev)1691 static u32 get_link(struct net_device *dev)
1692 {
1693 struct netdev_private *np = netdev_priv(dev);
1694 return mii_link_ok(&np->mii_if);
1695 }
1696
get_msglevel(struct net_device * dev)1697 static u32 get_msglevel(struct net_device *dev)
1698 {
1699 struct netdev_private *np = netdev_priv(dev);
1700 return np->msg_enable;
1701 }
1702
set_msglevel(struct net_device * dev,u32 val)1703 static void set_msglevel(struct net_device *dev, u32 val)
1704 {
1705 struct netdev_private *np = netdev_priv(dev);
1706 np->msg_enable = val;
1707 }
1708
get_strings(struct net_device * dev,u32 stringset,u8 * data)1709 static void get_strings(struct net_device *dev, u32 stringset,
1710 u8 *data)
1711 {
1712 if (stringset == ETH_SS_STATS)
1713 memcpy(data, sundance_stats, sizeof(sundance_stats));
1714 }
1715
get_sset_count(struct net_device * dev,int sset)1716 static int get_sset_count(struct net_device *dev, int sset)
1717 {
1718 switch (sset) {
1719 case ETH_SS_STATS:
1720 return ARRAY_SIZE(sundance_stats);
1721 default:
1722 return -EOPNOTSUPP;
1723 }
1724 }
1725
get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1726 static void get_ethtool_stats(struct net_device *dev,
1727 struct ethtool_stats *stats, u64 *data)
1728 {
1729 struct netdev_private *np = netdev_priv(dev);
1730 int i = 0;
1731
1732 get_stats(dev);
1733 data[i++] = np->xstats.tx_multiple_collisions;
1734 data[i++] = np->xstats.tx_single_collisions;
1735 data[i++] = np->xstats.tx_late_collisions;
1736 data[i++] = np->xstats.tx_deferred;
1737 data[i++] = np->xstats.tx_deferred_excessive;
1738 data[i++] = np->xstats.tx_aborted;
1739 data[i++] = np->xstats.tx_bcasts;
1740 data[i++] = np->xstats.rx_bcasts;
1741 data[i++] = np->xstats.tx_mcasts;
1742 data[i++] = np->xstats.rx_mcasts;
1743 }
1744
1745 #ifdef CONFIG_PM
1746
sundance_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)1747 static void sundance_get_wol(struct net_device *dev,
1748 struct ethtool_wolinfo *wol)
1749 {
1750 struct netdev_private *np = netdev_priv(dev);
1751 void __iomem *ioaddr = np->base;
1752 u8 wol_bits;
1753
1754 wol->wolopts = 0;
1755
1756 wol->supported = (WAKE_PHY | WAKE_MAGIC);
1757 if (!np->wol_enabled)
1758 return;
1759
1760 wol_bits = ioread8(ioaddr + WakeEvent);
1761 if (wol_bits & MagicPktEnable)
1762 wol->wolopts |= WAKE_MAGIC;
1763 if (wol_bits & LinkEventEnable)
1764 wol->wolopts |= WAKE_PHY;
1765 }
1766
sundance_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)1767 static int sundance_set_wol(struct net_device *dev,
1768 struct ethtool_wolinfo *wol)
1769 {
1770 struct netdev_private *np = netdev_priv(dev);
1771 void __iomem *ioaddr = np->base;
1772 u8 wol_bits;
1773
1774 if (!device_can_wakeup(&np->pci_dev->dev))
1775 return -EOPNOTSUPP;
1776
1777 np->wol_enabled = !!(wol->wolopts);
1778 wol_bits = ioread8(ioaddr + WakeEvent);
1779 wol_bits &= ~(WakePktEnable | MagicPktEnable |
1780 LinkEventEnable | WolEnable);
1781
1782 if (np->wol_enabled) {
1783 if (wol->wolopts & WAKE_MAGIC)
1784 wol_bits |= (MagicPktEnable | WolEnable);
1785 if (wol->wolopts & WAKE_PHY)
1786 wol_bits |= (LinkEventEnable | WolEnable);
1787 }
1788 iowrite8(wol_bits, ioaddr + WakeEvent);
1789
1790 device_set_wakeup_enable(&np->pci_dev->dev, np->wol_enabled);
1791
1792 return 0;
1793 }
1794 #else
1795 #define sundance_get_wol NULL
1796 #define sundance_set_wol NULL
1797 #endif /* CONFIG_PM */
1798
1799 static const struct ethtool_ops ethtool_ops = {
1800 .begin = check_if_running,
1801 .get_drvinfo = get_drvinfo,
1802 .nway_reset = nway_reset,
1803 .get_link = get_link,
1804 .get_wol = sundance_get_wol,
1805 .set_wol = sundance_set_wol,
1806 .get_msglevel = get_msglevel,
1807 .set_msglevel = set_msglevel,
1808 .get_strings = get_strings,
1809 .get_sset_count = get_sset_count,
1810 .get_ethtool_stats = get_ethtool_stats,
1811 .get_link_ksettings = get_link_ksettings,
1812 .set_link_ksettings = set_link_ksettings,
1813 };
1814
netdev_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1815 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1816 {
1817 struct netdev_private *np = netdev_priv(dev);
1818 int rc;
1819
1820 if (!netif_running(dev))
1821 return -EINVAL;
1822
1823 spin_lock_irq(&np->lock);
1824 rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL);
1825 spin_unlock_irq(&np->lock);
1826
1827 return rc;
1828 }
1829
netdev_close(struct net_device * dev)1830 static int netdev_close(struct net_device *dev)
1831 {
1832 struct netdev_private *np = netdev_priv(dev);
1833 void __iomem *ioaddr = np->base;
1834 struct sk_buff *skb;
1835 int i;
1836
1837 /* Wait and kill tasklet */
1838 tasklet_kill(&np->rx_tasklet);
1839 tasklet_kill(&np->tx_tasklet);
1840 np->cur_tx = 0;
1841 np->dirty_tx = 0;
1842 np->cur_task = 0;
1843 np->last_tx = NULL;
1844
1845 netif_stop_queue(dev);
1846
1847 if (netif_msg_ifdown(np)) {
1848 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
1849 "Rx %4.4x Int %2.2x.\n",
1850 dev->name, ioread8(ioaddr + TxStatus),
1851 ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus));
1852 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1853 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
1854 }
1855
1856 /* Disable interrupts by clearing the interrupt mask. */
1857 iowrite16(0x0000, ioaddr + IntrEnable);
1858
1859 /* Disable Rx and Tx DMA for safely release resource */
1860 iowrite32(0x500, ioaddr + DMACtrl);
1861
1862 /* Stop the chip's Tx and Rx processes. */
1863 iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);
1864
1865 for (i = 2000; i > 0; i--) {
1866 if ((ioread32(ioaddr + DMACtrl) & 0xc000) == 0)
1867 break;
1868 mdelay(1);
1869 }
1870
1871 iowrite16(GlobalReset | DMAReset | FIFOReset | NetworkReset,
1872 ioaddr + ASIC_HI_WORD(ASICCtrl));
1873
1874 for (i = 2000; i > 0; i--) {
1875 if ((ioread16(ioaddr + ASIC_HI_WORD(ASICCtrl)) & ResetBusy) == 0)
1876 break;
1877 mdelay(1);
1878 }
1879
1880 #ifdef __i386__
1881 if (netif_msg_hw(np)) {
1882 printk(KERN_DEBUG " Tx ring at %8.8x:\n",
1883 (int)(np->tx_ring_dma));
1884 for (i = 0; i < TX_RING_SIZE; i++)
1885 printk(KERN_DEBUG " #%d desc. %4.4x %8.8x %8.8x.\n",
1886 i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr,
1887 np->tx_ring[i].frag[0].length);
1888 printk(KERN_DEBUG " Rx ring %8.8x:\n",
1889 (int)(np->rx_ring_dma));
1890 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
1891 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
1892 i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr,
1893 np->rx_ring[i].frag[0].length);
1894 }
1895 }
1896 #endif /* __i386__ debugging only */
1897
1898 free_irq(np->pci_dev->irq, dev);
1899
1900 del_timer_sync(&np->timer);
1901
1902 /* Free all the skbuffs in the Rx queue. */
1903 for (i = 0; i < RX_RING_SIZE; i++) {
1904 np->rx_ring[i].status = 0;
1905 skb = np->rx_skbuff[i];
1906 if (skb) {
1907 dma_unmap_single(&np->pci_dev->dev,
1908 le32_to_cpu(np->rx_ring[i].frag[0].addr),
1909 np->rx_buf_sz, DMA_FROM_DEVICE);
1910 dev_kfree_skb(skb);
1911 np->rx_skbuff[i] = NULL;
1912 }
1913 np->rx_ring[i].frag[0].addr = cpu_to_le32(0xBADF00D0); /* poison */
1914 }
1915 for (i = 0; i < TX_RING_SIZE; i++) {
1916 np->tx_ring[i].next_desc = 0;
1917 skb = np->tx_skbuff[i];
1918 if (skb) {
1919 dma_unmap_single(&np->pci_dev->dev,
1920 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1921 skb->len, DMA_TO_DEVICE);
1922 dev_kfree_skb(skb);
1923 np->tx_skbuff[i] = NULL;
1924 }
1925 }
1926
1927 return 0;
1928 }
1929
sundance_remove1(struct pci_dev * pdev)1930 static void sundance_remove1(struct pci_dev *pdev)
1931 {
1932 struct net_device *dev = pci_get_drvdata(pdev);
1933
1934 if (dev) {
1935 struct netdev_private *np = netdev_priv(dev);
1936 unregister_netdev(dev);
1937 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
1938 np->rx_ring, np->rx_ring_dma);
1939 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
1940 np->tx_ring, np->tx_ring_dma);
1941 pci_iounmap(pdev, np->base);
1942 pci_release_regions(pdev);
1943 free_netdev(dev);
1944 }
1945 }
1946
1947 #ifdef CONFIG_PM
1948
sundance_suspend(struct pci_dev * pci_dev,pm_message_t state)1949 static int sundance_suspend(struct pci_dev *pci_dev, pm_message_t state)
1950 {
1951 struct net_device *dev = pci_get_drvdata(pci_dev);
1952 struct netdev_private *np = netdev_priv(dev);
1953 void __iomem *ioaddr = np->base;
1954
1955 if (!netif_running(dev))
1956 return 0;
1957
1958 netdev_close(dev);
1959 netif_device_detach(dev);
1960
1961 pci_save_state(pci_dev);
1962 if (np->wol_enabled) {
1963 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1964 iowrite16(RxEnable, ioaddr + MACCtrl1);
1965 }
1966 pci_enable_wake(pci_dev, pci_choose_state(pci_dev, state),
1967 np->wol_enabled);
1968 pci_set_power_state(pci_dev, pci_choose_state(pci_dev, state));
1969
1970 return 0;
1971 }
1972
sundance_resume(struct pci_dev * pci_dev)1973 static int sundance_resume(struct pci_dev *pci_dev)
1974 {
1975 struct net_device *dev = pci_get_drvdata(pci_dev);
1976 int err = 0;
1977
1978 if (!netif_running(dev))
1979 return 0;
1980
1981 pci_set_power_state(pci_dev, PCI_D0);
1982 pci_restore_state(pci_dev);
1983 pci_enable_wake(pci_dev, PCI_D0, 0);
1984
1985 err = netdev_open(dev);
1986 if (err) {
1987 printk(KERN_ERR "%s: Can't resume interface!\n",
1988 dev->name);
1989 goto out;
1990 }
1991
1992 netif_device_attach(dev);
1993
1994 out:
1995 return err;
1996 }
1997
1998 #endif /* CONFIG_PM */
1999
2000 static struct pci_driver sundance_driver = {
2001 .name = DRV_NAME,
2002 .id_table = sundance_pci_tbl,
2003 .probe = sundance_probe1,
2004 .remove = sundance_remove1,
2005 #ifdef CONFIG_PM
2006 .suspend = sundance_suspend,
2007 .resume = sundance_resume,
2008 #endif /* CONFIG_PM */
2009 };
2010
sundance_init(void)2011 static int __init sundance_init(void)
2012 {
2013 /* when a module, this is printed whether or not devices are found in probe */
2014 #ifdef MODULE
2015 printk(version);
2016 #endif
2017 return pci_register_driver(&sundance_driver);
2018 }
2019
sundance_exit(void)2020 static void __exit sundance_exit(void)
2021 {
2022 pci_unregister_driver(&sundance_driver);
2023 }
2024
2025 module_init(sundance_init);
2026 module_exit(sundance_exit);
2027
2028
2029