1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * EP93xx ethernet network device driver
4 * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
5 * Dedicated to Marija Kulikova.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ":%s: " fmt, __func__
9
10 #include <linux/dma-mapping.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/netdevice.h>
14 #include <linux/mii.h>
15 #include <linux/etherdevice.h>
16 #include <linux/ethtool.h>
17 #include <linux/interrupt.h>
18 #include <linux/moduleparam.h>
19 #include <linux/platform_device.h>
20 #include <linux/delay.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23
24 #include <linux/platform_data/eth-ep93xx.h>
25
26 #define DRV_MODULE_NAME "ep93xx-eth"
27 #define DRV_MODULE_VERSION "0.1"
28
29 #define RX_QUEUE_ENTRIES 64
30 #define TX_QUEUE_ENTRIES 8
31
32 #define MAX_PKT_SIZE 2044
33 #define PKT_BUF_SIZE 2048
34
35 #define REG_RXCTL 0x0000
36 #define REG_RXCTL_DEFAULT 0x00073800
37 #define REG_TXCTL 0x0004
38 #define REG_TXCTL_ENABLE 0x00000001
39 #define REG_MIICMD 0x0010
40 #define REG_MIICMD_READ 0x00008000
41 #define REG_MIICMD_WRITE 0x00004000
42 #define REG_MIIDATA 0x0014
43 #define REG_MIISTS 0x0018
44 #define REG_MIISTS_BUSY 0x00000001
45 #define REG_SELFCTL 0x0020
46 #define REG_SELFCTL_RESET 0x00000001
47 #define REG_INTEN 0x0024
48 #define REG_INTEN_TX 0x00000008
49 #define REG_INTEN_RX 0x00000007
50 #define REG_INTSTSP 0x0028
51 #define REG_INTSTS_TX 0x00000008
52 #define REG_INTSTS_RX 0x00000004
53 #define REG_INTSTSC 0x002c
54 #define REG_AFP 0x004c
55 #define REG_INDAD0 0x0050
56 #define REG_INDAD1 0x0051
57 #define REG_INDAD2 0x0052
58 #define REG_INDAD3 0x0053
59 #define REG_INDAD4 0x0054
60 #define REG_INDAD5 0x0055
61 #define REG_GIINTMSK 0x0064
62 #define REG_GIINTMSK_ENABLE 0x00008000
63 #define REG_BMCTL 0x0080
64 #define REG_BMCTL_ENABLE_TX 0x00000100
65 #define REG_BMCTL_ENABLE_RX 0x00000001
66 #define REG_BMSTS 0x0084
67 #define REG_BMSTS_RX_ACTIVE 0x00000008
68 #define REG_RXDQBADD 0x0090
69 #define REG_RXDQBLEN 0x0094
70 #define REG_RXDCURADD 0x0098
71 #define REG_RXDENQ 0x009c
72 #define REG_RXSTSQBADD 0x00a0
73 #define REG_RXSTSQBLEN 0x00a4
74 #define REG_RXSTSQCURADD 0x00a8
75 #define REG_RXSTSENQ 0x00ac
76 #define REG_TXDQBADD 0x00b0
77 #define REG_TXDQBLEN 0x00b4
78 #define REG_TXDQCURADD 0x00b8
79 #define REG_TXDENQ 0x00bc
80 #define REG_TXSTSQBADD 0x00c0
81 #define REG_TXSTSQBLEN 0x00c4
82 #define REG_TXSTSQCURADD 0x00c8
83 #define REG_MAXFRMLEN 0x00e8
84
85 struct ep93xx_rdesc
86 {
87 u32 buf_addr;
88 u32 rdesc1;
89 };
90
91 #define RDESC1_NSOF 0x80000000
92 #define RDESC1_BUFFER_INDEX 0x7fff0000
93 #define RDESC1_BUFFER_LENGTH 0x0000ffff
94
95 struct ep93xx_rstat
96 {
97 u32 rstat0;
98 u32 rstat1;
99 };
100
101 #define RSTAT0_RFP 0x80000000
102 #define RSTAT0_RWE 0x40000000
103 #define RSTAT0_EOF 0x20000000
104 #define RSTAT0_EOB 0x10000000
105 #define RSTAT0_AM 0x00c00000
106 #define RSTAT0_RX_ERR 0x00200000
107 #define RSTAT0_OE 0x00100000
108 #define RSTAT0_FE 0x00080000
109 #define RSTAT0_RUNT 0x00040000
110 #define RSTAT0_EDATA 0x00020000
111 #define RSTAT0_CRCE 0x00010000
112 #define RSTAT0_CRCI 0x00008000
113 #define RSTAT0_HTI 0x00003f00
114 #define RSTAT1_RFP 0x80000000
115 #define RSTAT1_BUFFER_INDEX 0x7fff0000
116 #define RSTAT1_FRAME_LENGTH 0x0000ffff
117
118 struct ep93xx_tdesc
119 {
120 u32 buf_addr;
121 u32 tdesc1;
122 };
123
124 #define TDESC1_EOF 0x80000000
125 #define TDESC1_BUFFER_INDEX 0x7fff0000
126 #define TDESC1_BUFFER_ABORT 0x00008000
127 #define TDESC1_BUFFER_LENGTH 0x00000fff
128
129 struct ep93xx_tstat
130 {
131 u32 tstat0;
132 };
133
134 #define TSTAT0_TXFP 0x80000000
135 #define TSTAT0_TXWE 0x40000000
136 #define TSTAT0_FA 0x20000000
137 #define TSTAT0_LCRS 0x10000000
138 #define TSTAT0_OW 0x04000000
139 #define TSTAT0_TXU 0x02000000
140 #define TSTAT0_ECOLL 0x01000000
141 #define TSTAT0_NCOLL 0x001f0000
142 #define TSTAT0_BUFFER_INDEX 0x00007fff
143
144 struct ep93xx_descs
145 {
146 struct ep93xx_rdesc rdesc[RX_QUEUE_ENTRIES];
147 struct ep93xx_tdesc tdesc[TX_QUEUE_ENTRIES];
148 struct ep93xx_rstat rstat[RX_QUEUE_ENTRIES];
149 struct ep93xx_tstat tstat[TX_QUEUE_ENTRIES];
150 };
151
152 struct ep93xx_priv
153 {
154 struct resource *res;
155 void __iomem *base_addr;
156 int irq;
157
158 struct ep93xx_descs *descs;
159 dma_addr_t descs_dma_addr;
160
161 void *rx_buf[RX_QUEUE_ENTRIES];
162 void *tx_buf[TX_QUEUE_ENTRIES];
163
164 spinlock_t rx_lock;
165 unsigned int rx_pointer;
166 unsigned int tx_clean_pointer;
167 unsigned int tx_pointer;
168 spinlock_t tx_pending_lock;
169 unsigned int tx_pending;
170
171 struct net_device *dev;
172 struct napi_struct napi;
173
174 struct mii_if_info mii;
175 u8 mdc_divisor;
176 };
177
178 #define rdb(ep, off) __raw_readb((ep)->base_addr + (off))
179 #define rdw(ep, off) __raw_readw((ep)->base_addr + (off))
180 #define rdl(ep, off) __raw_readl((ep)->base_addr + (off))
181 #define wrb(ep, off, val) __raw_writeb((val), (ep)->base_addr + (off))
182 #define wrw(ep, off, val) __raw_writew((val), (ep)->base_addr + (off))
183 #define wrl(ep, off, val) __raw_writel((val), (ep)->base_addr + (off))
184
ep93xx_mdio_read(struct net_device * dev,int phy_id,int reg)185 static int ep93xx_mdio_read(struct net_device *dev, int phy_id, int reg)
186 {
187 struct ep93xx_priv *ep = netdev_priv(dev);
188 int data;
189 int i;
190
191 wrl(ep, REG_MIICMD, REG_MIICMD_READ | (phy_id << 5) | reg);
192
193 for (i = 0; i < 10; i++) {
194 if ((rdl(ep, REG_MIISTS) & REG_MIISTS_BUSY) == 0)
195 break;
196 msleep(1);
197 }
198
199 if (i == 10) {
200 pr_info("mdio read timed out\n");
201 data = 0xffff;
202 } else {
203 data = rdl(ep, REG_MIIDATA);
204 }
205
206 return data;
207 }
208
ep93xx_mdio_write(struct net_device * dev,int phy_id,int reg,int data)209 static void ep93xx_mdio_write(struct net_device *dev, int phy_id, int reg, int data)
210 {
211 struct ep93xx_priv *ep = netdev_priv(dev);
212 int i;
213
214 wrl(ep, REG_MIIDATA, data);
215 wrl(ep, REG_MIICMD, REG_MIICMD_WRITE | (phy_id << 5) | reg);
216
217 for (i = 0; i < 10; i++) {
218 if ((rdl(ep, REG_MIISTS) & REG_MIISTS_BUSY) == 0)
219 break;
220 msleep(1);
221 }
222
223 if (i == 10)
224 pr_info("mdio write timed out\n");
225 }
226
ep93xx_rx(struct net_device * dev,int budget)227 static int ep93xx_rx(struct net_device *dev, int budget)
228 {
229 struct ep93xx_priv *ep = netdev_priv(dev);
230 int processed = 0;
231
232 while (processed < budget) {
233 int entry;
234 struct ep93xx_rstat *rstat;
235 u32 rstat0;
236 u32 rstat1;
237 int length;
238 struct sk_buff *skb;
239
240 entry = ep->rx_pointer;
241 rstat = ep->descs->rstat + entry;
242
243 rstat0 = rstat->rstat0;
244 rstat1 = rstat->rstat1;
245 if (!(rstat0 & RSTAT0_RFP) || !(rstat1 & RSTAT1_RFP))
246 break;
247
248 rstat->rstat0 = 0;
249 rstat->rstat1 = 0;
250
251 if (!(rstat0 & RSTAT0_EOF))
252 pr_crit("not end-of-frame %.8x %.8x\n", rstat0, rstat1);
253 if (!(rstat0 & RSTAT0_EOB))
254 pr_crit("not end-of-buffer %.8x %.8x\n", rstat0, rstat1);
255 if ((rstat1 & RSTAT1_BUFFER_INDEX) >> 16 != entry)
256 pr_crit("entry mismatch %.8x %.8x\n", rstat0, rstat1);
257
258 if (!(rstat0 & RSTAT0_RWE)) {
259 dev->stats.rx_errors++;
260 if (rstat0 & RSTAT0_OE)
261 dev->stats.rx_fifo_errors++;
262 if (rstat0 & RSTAT0_FE)
263 dev->stats.rx_frame_errors++;
264 if (rstat0 & (RSTAT0_RUNT | RSTAT0_EDATA))
265 dev->stats.rx_length_errors++;
266 if (rstat0 & RSTAT0_CRCE)
267 dev->stats.rx_crc_errors++;
268 goto err;
269 }
270
271 length = rstat1 & RSTAT1_FRAME_LENGTH;
272 if (length > MAX_PKT_SIZE) {
273 pr_notice("invalid length %.8x %.8x\n", rstat0, rstat1);
274 goto err;
275 }
276
277 /* Strip FCS. */
278 if (rstat0 & RSTAT0_CRCI)
279 length -= 4;
280
281 skb = netdev_alloc_skb(dev, length + 2);
282 if (likely(skb != NULL)) {
283 struct ep93xx_rdesc *rxd = &ep->descs->rdesc[entry];
284 skb_reserve(skb, 2);
285 dma_sync_single_for_cpu(dev->dev.parent, rxd->buf_addr,
286 length, DMA_FROM_DEVICE);
287 skb_copy_to_linear_data(skb, ep->rx_buf[entry], length);
288 dma_sync_single_for_device(dev->dev.parent,
289 rxd->buf_addr, length,
290 DMA_FROM_DEVICE);
291 skb_put(skb, length);
292 skb->protocol = eth_type_trans(skb, dev);
293
294 napi_gro_receive(&ep->napi, skb);
295
296 dev->stats.rx_packets++;
297 dev->stats.rx_bytes += length;
298 } else {
299 dev->stats.rx_dropped++;
300 }
301
302 err:
303 ep->rx_pointer = (entry + 1) & (RX_QUEUE_ENTRIES - 1);
304 processed++;
305 }
306
307 return processed;
308 }
309
ep93xx_poll(struct napi_struct * napi,int budget)310 static int ep93xx_poll(struct napi_struct *napi, int budget)
311 {
312 struct ep93xx_priv *ep = container_of(napi, struct ep93xx_priv, napi);
313 struct net_device *dev = ep->dev;
314 int rx;
315
316 rx = ep93xx_rx(dev, budget);
317 if (rx < budget && napi_complete_done(napi, rx)) {
318 spin_lock_irq(&ep->rx_lock);
319 wrl(ep, REG_INTEN, REG_INTEN_TX | REG_INTEN_RX);
320 spin_unlock_irq(&ep->rx_lock);
321 }
322
323 if (rx) {
324 wrw(ep, REG_RXDENQ, rx);
325 wrw(ep, REG_RXSTSENQ, rx);
326 }
327
328 return rx;
329 }
330
ep93xx_xmit(struct sk_buff * skb,struct net_device * dev)331 static netdev_tx_t ep93xx_xmit(struct sk_buff *skb, struct net_device *dev)
332 {
333 struct ep93xx_priv *ep = netdev_priv(dev);
334 struct ep93xx_tdesc *txd;
335 int entry;
336
337 if (unlikely(skb->len > MAX_PKT_SIZE)) {
338 dev->stats.tx_dropped++;
339 dev_kfree_skb(skb);
340 return NETDEV_TX_OK;
341 }
342
343 entry = ep->tx_pointer;
344 ep->tx_pointer = (ep->tx_pointer + 1) & (TX_QUEUE_ENTRIES - 1);
345
346 txd = &ep->descs->tdesc[entry];
347
348 txd->tdesc1 = TDESC1_EOF | (entry << 16) | (skb->len & 0xfff);
349 dma_sync_single_for_cpu(dev->dev.parent, txd->buf_addr, skb->len,
350 DMA_TO_DEVICE);
351 skb_copy_and_csum_dev(skb, ep->tx_buf[entry]);
352 dma_sync_single_for_device(dev->dev.parent, txd->buf_addr, skb->len,
353 DMA_TO_DEVICE);
354 dev_kfree_skb(skb);
355
356 spin_lock_irq(&ep->tx_pending_lock);
357 ep->tx_pending++;
358 if (ep->tx_pending == TX_QUEUE_ENTRIES)
359 netif_stop_queue(dev);
360 spin_unlock_irq(&ep->tx_pending_lock);
361
362 wrl(ep, REG_TXDENQ, 1);
363
364 return NETDEV_TX_OK;
365 }
366
ep93xx_tx_complete(struct net_device * dev)367 static void ep93xx_tx_complete(struct net_device *dev)
368 {
369 struct ep93xx_priv *ep = netdev_priv(dev);
370 int wake;
371
372 wake = 0;
373
374 spin_lock(&ep->tx_pending_lock);
375 while (1) {
376 int entry;
377 struct ep93xx_tstat *tstat;
378 u32 tstat0;
379
380 entry = ep->tx_clean_pointer;
381 tstat = ep->descs->tstat + entry;
382
383 tstat0 = tstat->tstat0;
384 if (!(tstat0 & TSTAT0_TXFP))
385 break;
386
387 tstat->tstat0 = 0;
388
389 if (tstat0 & TSTAT0_FA)
390 pr_crit("frame aborted %.8x\n", tstat0);
391 if ((tstat0 & TSTAT0_BUFFER_INDEX) != entry)
392 pr_crit("entry mismatch %.8x\n", tstat0);
393
394 if (tstat0 & TSTAT0_TXWE) {
395 int length = ep->descs->tdesc[entry].tdesc1 & 0xfff;
396
397 dev->stats.tx_packets++;
398 dev->stats.tx_bytes += length;
399 } else {
400 dev->stats.tx_errors++;
401 }
402
403 if (tstat0 & TSTAT0_OW)
404 dev->stats.tx_window_errors++;
405 if (tstat0 & TSTAT0_TXU)
406 dev->stats.tx_fifo_errors++;
407 dev->stats.collisions += (tstat0 >> 16) & 0x1f;
408
409 ep->tx_clean_pointer = (entry + 1) & (TX_QUEUE_ENTRIES - 1);
410 if (ep->tx_pending == TX_QUEUE_ENTRIES)
411 wake = 1;
412 ep->tx_pending--;
413 }
414 spin_unlock(&ep->tx_pending_lock);
415
416 if (wake)
417 netif_wake_queue(dev);
418 }
419
ep93xx_irq(int irq,void * dev_id)420 static irqreturn_t ep93xx_irq(int irq, void *dev_id)
421 {
422 struct net_device *dev = dev_id;
423 struct ep93xx_priv *ep = netdev_priv(dev);
424 u32 status;
425
426 status = rdl(ep, REG_INTSTSC);
427 if (status == 0)
428 return IRQ_NONE;
429
430 if (status & REG_INTSTS_RX) {
431 spin_lock(&ep->rx_lock);
432 if (likely(napi_schedule_prep(&ep->napi))) {
433 wrl(ep, REG_INTEN, REG_INTEN_TX);
434 __napi_schedule(&ep->napi);
435 }
436 spin_unlock(&ep->rx_lock);
437 }
438
439 if (status & REG_INTSTS_TX)
440 ep93xx_tx_complete(dev);
441
442 return IRQ_HANDLED;
443 }
444
ep93xx_free_buffers(struct ep93xx_priv * ep)445 static void ep93xx_free_buffers(struct ep93xx_priv *ep)
446 {
447 struct device *dev = ep->dev->dev.parent;
448 int i;
449
450 if (!ep->descs)
451 return;
452
453 for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
454 dma_addr_t d;
455
456 d = ep->descs->rdesc[i].buf_addr;
457 if (d)
458 dma_unmap_single(dev, d, PKT_BUF_SIZE, DMA_FROM_DEVICE);
459
460 kfree(ep->rx_buf[i]);
461 }
462
463 for (i = 0; i < TX_QUEUE_ENTRIES; i++) {
464 dma_addr_t d;
465
466 d = ep->descs->tdesc[i].buf_addr;
467 if (d)
468 dma_unmap_single(dev, d, PKT_BUF_SIZE, DMA_TO_DEVICE);
469
470 kfree(ep->tx_buf[i]);
471 }
472
473 dma_free_coherent(dev, sizeof(struct ep93xx_descs), ep->descs,
474 ep->descs_dma_addr);
475 ep->descs = NULL;
476 }
477
ep93xx_alloc_buffers(struct ep93xx_priv * ep)478 static int ep93xx_alloc_buffers(struct ep93xx_priv *ep)
479 {
480 struct device *dev = ep->dev->dev.parent;
481 int i;
482
483 ep->descs = dma_alloc_coherent(dev, sizeof(struct ep93xx_descs),
484 &ep->descs_dma_addr, GFP_KERNEL);
485 if (ep->descs == NULL)
486 return 1;
487
488 for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
489 void *buf;
490 dma_addr_t d;
491
492 buf = kmalloc(PKT_BUF_SIZE, GFP_KERNEL);
493 if (buf == NULL)
494 goto err;
495
496 d = dma_map_single(dev, buf, PKT_BUF_SIZE, DMA_FROM_DEVICE);
497 if (dma_mapping_error(dev, d)) {
498 kfree(buf);
499 goto err;
500 }
501
502 ep->rx_buf[i] = buf;
503 ep->descs->rdesc[i].buf_addr = d;
504 ep->descs->rdesc[i].rdesc1 = (i << 16) | PKT_BUF_SIZE;
505 }
506
507 for (i = 0; i < TX_QUEUE_ENTRIES; i++) {
508 void *buf;
509 dma_addr_t d;
510
511 buf = kmalloc(PKT_BUF_SIZE, GFP_KERNEL);
512 if (buf == NULL)
513 goto err;
514
515 d = dma_map_single(dev, buf, PKT_BUF_SIZE, DMA_TO_DEVICE);
516 if (dma_mapping_error(dev, d)) {
517 kfree(buf);
518 goto err;
519 }
520
521 ep->tx_buf[i] = buf;
522 ep->descs->tdesc[i].buf_addr = d;
523 }
524
525 return 0;
526
527 err:
528 ep93xx_free_buffers(ep);
529 return 1;
530 }
531
ep93xx_start_hw(struct net_device * dev)532 static int ep93xx_start_hw(struct net_device *dev)
533 {
534 struct ep93xx_priv *ep = netdev_priv(dev);
535 unsigned long addr;
536 int i;
537
538 wrl(ep, REG_SELFCTL, REG_SELFCTL_RESET);
539 for (i = 0; i < 10; i++) {
540 if ((rdl(ep, REG_SELFCTL) & REG_SELFCTL_RESET) == 0)
541 break;
542 msleep(1);
543 }
544
545 if (i == 10) {
546 pr_crit("hw failed to reset\n");
547 return 1;
548 }
549
550 wrl(ep, REG_SELFCTL, ((ep->mdc_divisor - 1) << 9));
551
552 /* Does the PHY support preamble suppress? */
553 if ((ep93xx_mdio_read(dev, ep->mii.phy_id, MII_BMSR) & 0x0040) != 0)
554 wrl(ep, REG_SELFCTL, ((ep->mdc_divisor - 1) << 9) | (1 << 8));
555
556 /* Receive descriptor ring. */
557 addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, rdesc);
558 wrl(ep, REG_RXDQBADD, addr);
559 wrl(ep, REG_RXDCURADD, addr);
560 wrw(ep, REG_RXDQBLEN, RX_QUEUE_ENTRIES * sizeof(struct ep93xx_rdesc));
561
562 /* Receive status ring. */
563 addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, rstat);
564 wrl(ep, REG_RXSTSQBADD, addr);
565 wrl(ep, REG_RXSTSQCURADD, addr);
566 wrw(ep, REG_RXSTSQBLEN, RX_QUEUE_ENTRIES * sizeof(struct ep93xx_rstat));
567
568 /* Transmit descriptor ring. */
569 addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, tdesc);
570 wrl(ep, REG_TXDQBADD, addr);
571 wrl(ep, REG_TXDQCURADD, addr);
572 wrw(ep, REG_TXDQBLEN, TX_QUEUE_ENTRIES * sizeof(struct ep93xx_tdesc));
573
574 /* Transmit status ring. */
575 addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, tstat);
576 wrl(ep, REG_TXSTSQBADD, addr);
577 wrl(ep, REG_TXSTSQCURADD, addr);
578 wrw(ep, REG_TXSTSQBLEN, TX_QUEUE_ENTRIES * sizeof(struct ep93xx_tstat));
579
580 wrl(ep, REG_BMCTL, REG_BMCTL_ENABLE_TX | REG_BMCTL_ENABLE_RX);
581 wrl(ep, REG_INTEN, REG_INTEN_TX | REG_INTEN_RX);
582 wrl(ep, REG_GIINTMSK, 0);
583
584 for (i = 0; i < 10; i++) {
585 if ((rdl(ep, REG_BMSTS) & REG_BMSTS_RX_ACTIVE) != 0)
586 break;
587 msleep(1);
588 }
589
590 if (i == 10) {
591 pr_crit("hw failed to start\n");
592 return 1;
593 }
594
595 wrl(ep, REG_RXDENQ, RX_QUEUE_ENTRIES);
596 wrl(ep, REG_RXSTSENQ, RX_QUEUE_ENTRIES);
597
598 wrb(ep, REG_INDAD0, dev->dev_addr[0]);
599 wrb(ep, REG_INDAD1, dev->dev_addr[1]);
600 wrb(ep, REG_INDAD2, dev->dev_addr[2]);
601 wrb(ep, REG_INDAD3, dev->dev_addr[3]);
602 wrb(ep, REG_INDAD4, dev->dev_addr[4]);
603 wrb(ep, REG_INDAD5, dev->dev_addr[5]);
604 wrl(ep, REG_AFP, 0);
605
606 wrl(ep, REG_MAXFRMLEN, (MAX_PKT_SIZE << 16) | MAX_PKT_SIZE);
607
608 wrl(ep, REG_RXCTL, REG_RXCTL_DEFAULT);
609 wrl(ep, REG_TXCTL, REG_TXCTL_ENABLE);
610
611 return 0;
612 }
613
ep93xx_stop_hw(struct net_device * dev)614 static void ep93xx_stop_hw(struct net_device *dev)
615 {
616 struct ep93xx_priv *ep = netdev_priv(dev);
617 int i;
618
619 wrl(ep, REG_SELFCTL, REG_SELFCTL_RESET);
620 for (i = 0; i < 10; i++) {
621 if ((rdl(ep, REG_SELFCTL) & REG_SELFCTL_RESET) == 0)
622 break;
623 msleep(1);
624 }
625
626 if (i == 10)
627 pr_crit("hw failed to reset\n");
628 }
629
ep93xx_open(struct net_device * dev)630 static int ep93xx_open(struct net_device *dev)
631 {
632 struct ep93xx_priv *ep = netdev_priv(dev);
633 int err;
634
635 if (ep93xx_alloc_buffers(ep))
636 return -ENOMEM;
637
638 napi_enable(&ep->napi);
639
640 if (ep93xx_start_hw(dev)) {
641 napi_disable(&ep->napi);
642 ep93xx_free_buffers(ep);
643 return -EIO;
644 }
645
646 spin_lock_init(&ep->rx_lock);
647 ep->rx_pointer = 0;
648 ep->tx_clean_pointer = 0;
649 ep->tx_pointer = 0;
650 spin_lock_init(&ep->tx_pending_lock);
651 ep->tx_pending = 0;
652
653 err = request_irq(ep->irq, ep93xx_irq, IRQF_SHARED, dev->name, dev);
654 if (err) {
655 napi_disable(&ep->napi);
656 ep93xx_stop_hw(dev);
657 ep93xx_free_buffers(ep);
658 return err;
659 }
660
661 wrl(ep, REG_GIINTMSK, REG_GIINTMSK_ENABLE);
662
663 netif_start_queue(dev);
664
665 return 0;
666 }
667
ep93xx_close(struct net_device * dev)668 static int ep93xx_close(struct net_device *dev)
669 {
670 struct ep93xx_priv *ep = netdev_priv(dev);
671
672 napi_disable(&ep->napi);
673 netif_stop_queue(dev);
674
675 wrl(ep, REG_GIINTMSK, 0);
676 free_irq(ep->irq, dev);
677 ep93xx_stop_hw(dev);
678 ep93xx_free_buffers(ep);
679
680 return 0;
681 }
682
ep93xx_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)683 static int ep93xx_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
684 {
685 struct ep93xx_priv *ep = netdev_priv(dev);
686 struct mii_ioctl_data *data = if_mii(ifr);
687
688 return generic_mii_ioctl(&ep->mii, data, cmd, NULL);
689 }
690
ep93xx_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)691 static void ep93xx_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
692 {
693 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
694 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
695 }
696
ep93xx_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)697 static int ep93xx_get_link_ksettings(struct net_device *dev,
698 struct ethtool_link_ksettings *cmd)
699 {
700 struct ep93xx_priv *ep = netdev_priv(dev);
701
702 mii_ethtool_get_link_ksettings(&ep->mii, cmd);
703
704 return 0;
705 }
706
ep93xx_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)707 static int ep93xx_set_link_ksettings(struct net_device *dev,
708 const struct ethtool_link_ksettings *cmd)
709 {
710 struct ep93xx_priv *ep = netdev_priv(dev);
711 return mii_ethtool_set_link_ksettings(&ep->mii, cmd);
712 }
713
ep93xx_nway_reset(struct net_device * dev)714 static int ep93xx_nway_reset(struct net_device *dev)
715 {
716 struct ep93xx_priv *ep = netdev_priv(dev);
717 return mii_nway_restart(&ep->mii);
718 }
719
ep93xx_get_link(struct net_device * dev)720 static u32 ep93xx_get_link(struct net_device *dev)
721 {
722 struct ep93xx_priv *ep = netdev_priv(dev);
723 return mii_link_ok(&ep->mii);
724 }
725
726 static const struct ethtool_ops ep93xx_ethtool_ops = {
727 .get_drvinfo = ep93xx_get_drvinfo,
728 .nway_reset = ep93xx_nway_reset,
729 .get_link = ep93xx_get_link,
730 .get_link_ksettings = ep93xx_get_link_ksettings,
731 .set_link_ksettings = ep93xx_set_link_ksettings,
732 };
733
734 static const struct net_device_ops ep93xx_netdev_ops = {
735 .ndo_open = ep93xx_open,
736 .ndo_stop = ep93xx_close,
737 .ndo_start_xmit = ep93xx_xmit,
738 .ndo_do_ioctl = ep93xx_ioctl,
739 .ndo_validate_addr = eth_validate_addr,
740 .ndo_set_mac_address = eth_mac_addr,
741 };
742
ep93xx_dev_alloc(struct ep93xx_eth_data * data)743 static struct net_device *ep93xx_dev_alloc(struct ep93xx_eth_data *data)
744 {
745 struct net_device *dev;
746
747 dev = alloc_etherdev(sizeof(struct ep93xx_priv));
748 if (dev == NULL)
749 return NULL;
750
751 memcpy(dev->dev_addr, data->dev_addr, ETH_ALEN);
752
753 dev->ethtool_ops = &ep93xx_ethtool_ops;
754 dev->netdev_ops = &ep93xx_netdev_ops;
755
756 dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
757
758 return dev;
759 }
760
761
ep93xx_eth_remove(struct platform_device * pdev)762 static int ep93xx_eth_remove(struct platform_device *pdev)
763 {
764 struct net_device *dev;
765 struct ep93xx_priv *ep;
766 struct resource *mem;
767
768 dev = platform_get_drvdata(pdev);
769 if (dev == NULL)
770 return 0;
771
772 ep = netdev_priv(dev);
773
774 /* @@@ Force down. */
775 unregister_netdev(dev);
776 ep93xx_free_buffers(ep);
777
778 if (ep->base_addr != NULL)
779 iounmap(ep->base_addr);
780
781 if (ep->res != NULL) {
782 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
783 release_mem_region(mem->start, resource_size(mem));
784 }
785
786 free_netdev(dev);
787
788 return 0;
789 }
790
ep93xx_eth_probe(struct platform_device * pdev)791 static int ep93xx_eth_probe(struct platform_device *pdev)
792 {
793 struct ep93xx_eth_data *data;
794 struct net_device *dev;
795 struct ep93xx_priv *ep;
796 struct resource *mem;
797 int irq;
798 int err;
799
800 if (pdev == NULL)
801 return -ENODEV;
802 data = dev_get_platdata(&pdev->dev);
803
804 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
805 irq = platform_get_irq(pdev, 0);
806 if (!mem || irq < 0)
807 return -ENXIO;
808
809 dev = ep93xx_dev_alloc(data);
810 if (dev == NULL) {
811 err = -ENOMEM;
812 goto err_out;
813 }
814 ep = netdev_priv(dev);
815 ep->dev = dev;
816 SET_NETDEV_DEV(dev, &pdev->dev);
817 netif_napi_add(dev, &ep->napi, ep93xx_poll, 64);
818
819 platform_set_drvdata(pdev, dev);
820
821 ep->res = request_mem_region(mem->start, resource_size(mem),
822 dev_name(&pdev->dev));
823 if (ep->res == NULL) {
824 dev_err(&pdev->dev, "Could not reserve memory region\n");
825 err = -ENOMEM;
826 goto err_out;
827 }
828
829 ep->base_addr = ioremap(mem->start, resource_size(mem));
830 if (ep->base_addr == NULL) {
831 dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
832 err = -EIO;
833 goto err_out;
834 }
835 ep->irq = irq;
836
837 ep->mii.phy_id = data->phy_id;
838 ep->mii.phy_id_mask = 0x1f;
839 ep->mii.reg_num_mask = 0x1f;
840 ep->mii.dev = dev;
841 ep->mii.mdio_read = ep93xx_mdio_read;
842 ep->mii.mdio_write = ep93xx_mdio_write;
843 ep->mdc_divisor = 40; /* Max HCLK 100 MHz, min MDIO clk 2.5 MHz. */
844
845 if (is_zero_ether_addr(dev->dev_addr))
846 eth_hw_addr_random(dev);
847
848 err = register_netdev(dev);
849 if (err) {
850 dev_err(&pdev->dev, "Failed to register netdev\n");
851 goto err_out;
852 }
853
854 printk(KERN_INFO "%s: ep93xx on-chip ethernet, IRQ %d, %pM\n",
855 dev->name, ep->irq, dev->dev_addr);
856
857 return 0;
858
859 err_out:
860 ep93xx_eth_remove(pdev);
861 return err;
862 }
863
864
865 static struct platform_driver ep93xx_eth_driver = {
866 .probe = ep93xx_eth_probe,
867 .remove = ep93xx_eth_remove,
868 .driver = {
869 .name = "ep93xx-eth",
870 },
871 };
872
873 module_platform_driver(ep93xx_eth_driver);
874
875 MODULE_LICENSE("GPL");
876 MODULE_ALIAS("platform:ep93xx-eth");
877