1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
4 *
5 * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
6 * Jason ported to M54418TWR and MVFA5 (VF610).
7 * Authors: Stefan Agner <stefan.agner@toradex.com>
8 * Bill Pringlemeir <bpringlemeir@nbsps.com>
9 * Shaohui Xie <b21989@freescale.com>
10 * Jason Jin <Jason.jin@freescale.com>
11 *
12 * Based on original driver mpc5121_nfc.c.
13 *
14 * Limitations:
15 * - Untested on MPC5125 and M54418.
16 * - DMA and pipelining not used.
17 * - 2K pages or less.
18 * - HW ECC: Only 2K page with 64+ OOB.
19 * - HW ECC: Only 24 and 32-bit error correction implemented.
20 */
21
22 #include <linux/module.h>
23 #include <linux/bitops.h>
24 #include <linux/clk.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/rawnand.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/of_device.h>
33 #include <linux/platform_device.h>
34 #include <linux/slab.h>
35 #include <linux/swab.h>
36
37 #define DRV_NAME "vf610_nfc"
38
39 /* Register Offsets */
40 #define NFC_FLASH_CMD1 0x3F00
41 #define NFC_FLASH_CMD2 0x3F04
42 #define NFC_COL_ADDR 0x3F08
43 #define NFC_ROW_ADDR 0x3F0c
44 #define NFC_ROW_ADDR_INC 0x3F14
45 #define NFC_FLASH_STATUS1 0x3F18
46 #define NFC_FLASH_STATUS2 0x3F1c
47 #define NFC_CACHE_SWAP 0x3F28
48 #define NFC_SECTOR_SIZE 0x3F2c
49 #define NFC_FLASH_CONFIG 0x3F30
50 #define NFC_IRQ_STATUS 0x3F38
51
52 /* Addresses for NFC MAIN RAM BUFFER areas */
53 #define NFC_MAIN_AREA(n) ((n) * 0x1000)
54
55 #define PAGE_2K 0x0800
56 #define OOB_64 0x0040
57 #define OOB_MAX 0x0100
58
59 /* NFC_CMD2[CODE] controller cycle bit masks */
60 #define COMMAND_CMD_BYTE1 BIT(14)
61 #define COMMAND_CAR_BYTE1 BIT(13)
62 #define COMMAND_CAR_BYTE2 BIT(12)
63 #define COMMAND_RAR_BYTE1 BIT(11)
64 #define COMMAND_RAR_BYTE2 BIT(10)
65 #define COMMAND_RAR_BYTE3 BIT(9)
66 #define COMMAND_NADDR_BYTES(x) GENMASK(13, 13 - (x) + 1)
67 #define COMMAND_WRITE_DATA BIT(8)
68 #define COMMAND_CMD_BYTE2 BIT(7)
69 #define COMMAND_RB_HANDSHAKE BIT(6)
70 #define COMMAND_READ_DATA BIT(5)
71 #define COMMAND_CMD_BYTE3 BIT(4)
72 #define COMMAND_READ_STATUS BIT(3)
73 #define COMMAND_READ_ID BIT(2)
74
75 /* NFC ECC mode define */
76 #define ECC_BYPASS 0
77 #define ECC_45_BYTE 6
78 #define ECC_60_BYTE 7
79
80 /*** Register Mask and bit definitions */
81
82 /* NFC_FLASH_CMD1 Field */
83 #define CMD_BYTE2_MASK 0xFF000000
84 #define CMD_BYTE2_SHIFT 24
85
86 /* NFC_FLASH_CM2 Field */
87 #define CMD_BYTE1_MASK 0xFF000000
88 #define CMD_BYTE1_SHIFT 24
89 #define CMD_CODE_MASK 0x00FFFF00
90 #define CMD_CODE_SHIFT 8
91 #define BUFNO_MASK 0x00000006
92 #define BUFNO_SHIFT 1
93 #define START_BIT BIT(0)
94
95 /* NFC_COL_ADDR Field */
96 #define COL_ADDR_MASK 0x0000FFFF
97 #define COL_ADDR_SHIFT 0
98 #define COL_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos)))
99
100 /* NFC_ROW_ADDR Field */
101 #define ROW_ADDR_MASK 0x00FFFFFF
102 #define ROW_ADDR_SHIFT 0
103 #define ROW_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos)))
104
105 #define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000
106 #define ROW_ADDR_CHIP_SEL_RB_SHIFT 28
107 #define ROW_ADDR_CHIP_SEL_MASK 0x0F000000
108 #define ROW_ADDR_CHIP_SEL_SHIFT 24
109
110 /* NFC_FLASH_STATUS2 Field */
111 #define STATUS_BYTE1_MASK 0x000000FF
112
113 /* NFC_FLASH_CONFIG Field */
114 #define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000
115 #define CONFIG_ECC_SRAM_ADDR_SHIFT 22
116 #define CONFIG_ECC_SRAM_REQ_BIT BIT(21)
117 #define CONFIG_DMA_REQ_BIT BIT(20)
118 #define CONFIG_ECC_MODE_MASK 0x000E0000
119 #define CONFIG_ECC_MODE_SHIFT 17
120 #define CONFIG_FAST_FLASH_BIT BIT(16)
121 #define CONFIG_16BIT BIT(7)
122 #define CONFIG_BOOT_MODE_BIT BIT(6)
123 #define CONFIG_ADDR_AUTO_INCR_BIT BIT(5)
124 #define CONFIG_BUFNO_AUTO_INCR_BIT BIT(4)
125 #define CONFIG_PAGE_CNT_MASK 0xF
126 #define CONFIG_PAGE_CNT_SHIFT 0
127
128 /* NFC_IRQ_STATUS Field */
129 #define IDLE_IRQ_BIT BIT(29)
130 #define IDLE_EN_BIT BIT(20)
131 #define CMD_DONE_CLEAR_BIT BIT(18)
132 #define IDLE_CLEAR_BIT BIT(17)
133
134 /*
135 * ECC status - seems to consume 8 bytes (double word). The documented
136 * status byte is located in the lowest byte of the second word (which is
137 * the 4th or 7th byte depending on endianness).
138 * Calculate an offset to store the ECC status at the end of the buffer.
139 */
140 #define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8)
141
142 #define ECC_STATUS 0x4
143 #define ECC_STATUS_MASK 0x80
144 #define ECC_STATUS_ERR_COUNT 0x3F
145
146 enum vf610_nfc_variant {
147 NFC_VFC610 = 1,
148 };
149
150 struct vf610_nfc {
151 struct nand_controller base;
152 struct nand_chip chip;
153 struct device *dev;
154 void __iomem *regs;
155 struct completion cmd_done;
156 /* Status and ID are in alternate locations. */
157 enum vf610_nfc_variant variant;
158 struct clk *clk;
159 /*
160 * Indicate that user data is accessed (full page/oob). This is
161 * useful to indicate the driver whether to swap byte endianness.
162 * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram.
163 */
164 bool data_access;
165 u32 ecc_mode;
166 };
167
chip_to_nfc(struct nand_chip * chip)168 static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
169 {
170 return container_of(chip, struct vf610_nfc, chip);
171 }
172
vf610_nfc_read(struct vf610_nfc * nfc,uint reg)173 static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
174 {
175 return readl(nfc->regs + reg);
176 }
177
vf610_nfc_write(struct vf610_nfc * nfc,uint reg,u32 val)178 static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
179 {
180 writel(val, nfc->regs + reg);
181 }
182
vf610_nfc_set(struct vf610_nfc * nfc,uint reg,u32 bits)183 static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
184 {
185 vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
186 }
187
vf610_nfc_clear(struct vf610_nfc * nfc,uint reg,u32 bits)188 static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
189 {
190 vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
191 }
192
vf610_nfc_set_field(struct vf610_nfc * nfc,u32 reg,u32 mask,u32 shift,u32 val)193 static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
194 u32 mask, u32 shift, u32 val)
195 {
196 vf610_nfc_write(nfc, reg,
197 (vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
198 }
199
vf610_nfc_kernel_is_little_endian(void)200 static inline bool vf610_nfc_kernel_is_little_endian(void)
201 {
202 #ifdef __LITTLE_ENDIAN
203 return true;
204 #else
205 return false;
206 #endif
207 }
208
209 /**
210 * Read accessor for internal SRAM buffer
211 * @dst: destination address in regular memory
212 * @src: source address in SRAM buffer
213 * @len: bytes to copy
214 * @fix_endian: Fix endianness if required
215 *
216 * Use this accessor for the internal SRAM buffers. On the ARM
217 * Freescale Vybrid SoC it's known that the driver can treat
218 * the SRAM buffer as if it's memory. Other platform might need
219 * to treat the buffers differently.
220 *
221 * The controller stores bytes from the NAND chip internally in big
222 * endianness. On little endian platforms such as Vybrid this leads
223 * to reversed byte order.
224 * For performance reason (and earlier probably due to unawareness)
225 * the driver avoids correcting endianness where it has control over
226 * write and read side (e.g. page wise data access).
227 */
vf610_nfc_rd_from_sram(void * dst,const void __iomem * src,size_t len,bool fix_endian)228 static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src,
229 size_t len, bool fix_endian)
230 {
231 if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
232 unsigned int i;
233
234 for (i = 0; i < len; i += 4) {
235 u32 val = swab32(__raw_readl(src + i));
236
237 memcpy(dst + i, &val, min(sizeof(val), len - i));
238 }
239 } else {
240 memcpy_fromio(dst, src, len);
241 }
242 }
243
244 /**
245 * Write accessor for internal SRAM buffer
246 * @dst: destination address in SRAM buffer
247 * @src: source address in regular memory
248 * @len: bytes to copy
249 * @fix_endian: Fix endianness if required
250 *
251 * Use this accessor for the internal SRAM buffers. On the ARM
252 * Freescale Vybrid SoC it's known that the driver can treat
253 * the SRAM buffer as if it's memory. Other platform might need
254 * to treat the buffers differently.
255 *
256 * The controller stores bytes from the NAND chip internally in big
257 * endianness. On little endian platforms such as Vybrid this leads
258 * to reversed byte order.
259 * For performance reason (and earlier probably due to unawareness)
260 * the driver avoids correcting endianness where it has control over
261 * write and read side (e.g. page wise data access).
262 */
vf610_nfc_wr_to_sram(void __iomem * dst,const void * src,size_t len,bool fix_endian)263 static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src,
264 size_t len, bool fix_endian)
265 {
266 if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
267 unsigned int i;
268
269 for (i = 0; i < len; i += 4) {
270 u32 val;
271
272 memcpy(&val, src + i, min(sizeof(val), len - i));
273 __raw_writel(swab32(val), dst + i);
274 }
275 } else {
276 memcpy_toio(dst, src, len);
277 }
278 }
279
280 /* Clear flags for upcoming command */
vf610_nfc_clear_status(struct vf610_nfc * nfc)281 static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
282 {
283 u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
284
285 tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
286 vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
287 }
288
vf610_nfc_done(struct vf610_nfc * nfc)289 static void vf610_nfc_done(struct vf610_nfc *nfc)
290 {
291 unsigned long timeout = msecs_to_jiffies(100);
292
293 /*
294 * Barrier is needed after this write. This write need
295 * to be done before reading the next register the first
296 * time.
297 * vf610_nfc_set implicates such a barrier by using writel
298 * to write to the register.
299 */
300 vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
301 vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
302
303 if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
304 dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
305
306 vf610_nfc_clear_status(nfc);
307 }
308
vf610_nfc_irq(int irq,void * data)309 static irqreturn_t vf610_nfc_irq(int irq, void *data)
310 {
311 struct vf610_nfc *nfc = data;
312
313 vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
314 complete(&nfc->cmd_done);
315
316 return IRQ_HANDLED;
317 }
318
vf610_nfc_ecc_mode(struct vf610_nfc * nfc,int ecc_mode)319 static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
320 {
321 vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
322 CONFIG_ECC_MODE_MASK,
323 CONFIG_ECC_MODE_SHIFT, ecc_mode);
324 }
325
vf610_nfc_transfer_size(struct vf610_nfc * nfc,int size)326 static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size)
327 {
328 vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size);
329 }
330
vf610_nfc_run(struct vf610_nfc * nfc,u32 col,u32 row,u32 cmd1,u32 cmd2,u32 trfr_sz)331 static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row,
332 u32 cmd1, u32 cmd2, u32 trfr_sz)
333 {
334 vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
335 COL_ADDR_SHIFT, col);
336
337 vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
338 ROW_ADDR_SHIFT, row);
339
340 vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz);
341 vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1);
342 vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2);
343
344 dev_dbg(nfc->dev,
345 "col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n",
346 col, row, cmd1, cmd2, trfr_sz);
347
348 vf610_nfc_done(nfc);
349 }
350
351 static inline const struct nand_op_instr *
vf610_get_next_instr(const struct nand_subop * subop,int * op_id)352 vf610_get_next_instr(const struct nand_subop *subop, int *op_id)
353 {
354 if (*op_id + 1 >= subop->ninstrs)
355 return NULL;
356
357 (*op_id)++;
358
359 return &subop->instrs[*op_id];
360 }
361
vf610_nfc_cmd(struct nand_chip * chip,const struct nand_subop * subop)362 static int vf610_nfc_cmd(struct nand_chip *chip,
363 const struct nand_subop *subop)
364 {
365 const struct nand_op_instr *instr;
366 struct vf610_nfc *nfc = chip_to_nfc(chip);
367 int op_id = -1, trfr_sz = 0, offset = 0;
368 u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
369 bool force8bit = false;
370
371 /*
372 * Some ops are optional, but the hardware requires the operations
373 * to be in this exact order.
374 * The op parser enforces the order and makes sure that there isn't
375 * a read and write element in a single operation.
376 */
377 instr = vf610_get_next_instr(subop, &op_id);
378 if (!instr)
379 return -EINVAL;
380
381 if (instr && instr->type == NAND_OP_CMD_INSTR) {
382 cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT;
383 code |= COMMAND_CMD_BYTE1;
384
385 instr = vf610_get_next_instr(subop, &op_id);
386 }
387
388 if (instr && instr->type == NAND_OP_ADDR_INSTR) {
389 int naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
390 int i = nand_subop_get_addr_start_off(subop, op_id);
391
392 for (; i < naddrs; i++) {
393 u8 val = instr->ctx.addr.addrs[i];
394
395 if (i < 2)
396 col |= COL_ADDR(i, val);
397 else
398 row |= ROW_ADDR(i - 2, val);
399 }
400 code |= COMMAND_NADDR_BYTES(naddrs);
401
402 instr = vf610_get_next_instr(subop, &op_id);
403 }
404
405 if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) {
406 trfr_sz = nand_subop_get_data_len(subop, op_id);
407 offset = nand_subop_get_data_start_off(subop, op_id);
408 force8bit = instr->ctx.data.force_8bit;
409
410 /*
411 * Don't fix endianness on page access for historical reasons.
412 * See comment in vf610_nfc_wr_to_sram
413 */
414 vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset,
415 instr->ctx.data.buf.out + offset,
416 trfr_sz, !nfc->data_access);
417 code |= COMMAND_WRITE_DATA;
418
419 instr = vf610_get_next_instr(subop, &op_id);
420 }
421
422 if (instr && instr->type == NAND_OP_CMD_INSTR) {
423 cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT;
424 code |= COMMAND_CMD_BYTE2;
425
426 instr = vf610_get_next_instr(subop, &op_id);
427 }
428
429 if (instr && instr->type == NAND_OP_WAITRDY_INSTR) {
430 code |= COMMAND_RB_HANDSHAKE;
431
432 instr = vf610_get_next_instr(subop, &op_id);
433 }
434
435 if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
436 trfr_sz = nand_subop_get_data_len(subop, op_id);
437 offset = nand_subop_get_data_start_off(subop, op_id);
438 force8bit = instr->ctx.data.force_8bit;
439
440 code |= COMMAND_READ_DATA;
441 }
442
443 if (force8bit && (chip->options & NAND_BUSWIDTH_16))
444 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
445
446 cmd2 |= code << CMD_CODE_SHIFT;
447
448 vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);
449
450 if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
451 /*
452 * Don't fix endianness on page access for historical reasons.
453 * See comment in vf610_nfc_rd_from_sram
454 */
455 vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset,
456 nfc->regs + NFC_MAIN_AREA(0) + offset,
457 trfr_sz, !nfc->data_access);
458 }
459
460 if (force8bit && (chip->options & NAND_BUSWIDTH_16))
461 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
462
463 return 0;
464 }
465
466 static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER(
467 NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
468 NAND_OP_PARSER_PAT_CMD_ELEM(true),
469 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
470 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX),
471 NAND_OP_PARSER_PAT_CMD_ELEM(true),
472 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
473 NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
474 NAND_OP_PARSER_PAT_CMD_ELEM(true),
475 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
476 NAND_OP_PARSER_PAT_CMD_ELEM(true),
477 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
478 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
479 );
480
481 /*
482 * This function supports Vybrid only (MPC5125 would have full RB and four CS)
483 */
vf610_nfc_select_target(struct nand_chip * chip,unsigned int cs)484 static void vf610_nfc_select_target(struct nand_chip *chip, unsigned int cs)
485 {
486 struct vf610_nfc *nfc = chip_to_nfc(chip);
487 u32 tmp;
488
489 /* Vybrid only (MPC5125 would have full RB and four CS) */
490 if (nfc->variant != NFC_VFC610)
491 return;
492
493 tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
494 tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
495 tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
496 tmp |= BIT(cs) << ROW_ADDR_CHIP_SEL_SHIFT;
497
498 vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
499 }
500
vf610_nfc_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)501 static int vf610_nfc_exec_op(struct nand_chip *chip,
502 const struct nand_operation *op,
503 bool check_only)
504 {
505 vf610_nfc_select_target(chip, op->cs);
506 return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
507 check_only);
508 }
509
vf610_nfc_correct_data(struct nand_chip * chip,uint8_t * dat,uint8_t * oob,int page)510 static inline int vf610_nfc_correct_data(struct nand_chip *chip, uint8_t *dat,
511 uint8_t *oob, int page)
512 {
513 struct vf610_nfc *nfc = chip_to_nfc(chip);
514 struct mtd_info *mtd = nand_to_mtd(chip);
515 u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
516 u8 ecc_status;
517 u8 ecc_count;
518 int flips_threshold = nfc->chip.ecc.strength / 2;
519
520 ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
521 ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
522
523 if (!(ecc_status & ECC_STATUS_MASK))
524 return ecc_count;
525
526 nfc->data_access = true;
527 nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize);
528 nfc->data_access = false;
529
530 /*
531 * On an erased page, bit count (including OOB) should be zero or
532 * at least less then half of the ECC strength.
533 */
534 return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
535 mtd->oobsize, NULL, 0,
536 flips_threshold);
537 }
538
vf610_nfc_fill_row(struct nand_chip * chip,int page,u32 * code,u32 * row)539 static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code,
540 u32 *row)
541 {
542 *row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8);
543 *code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2;
544
545 if (chip->options & NAND_ROW_ADDR_3) {
546 *row |= ROW_ADDR(2, page >> 16);
547 *code |= COMMAND_RAR_BYTE3;
548 }
549 }
550
vf610_nfc_read_page(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)551 static int vf610_nfc_read_page(struct nand_chip *chip, uint8_t *buf,
552 int oob_required, int page)
553 {
554 struct vf610_nfc *nfc = chip_to_nfc(chip);
555 struct mtd_info *mtd = nand_to_mtd(chip);
556 int trfr_sz = mtd->writesize + mtd->oobsize;
557 u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
558 int stat;
559
560 vf610_nfc_select_target(chip, chip->cur_cs);
561
562 cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
563 code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
564
565 vf610_nfc_fill_row(chip, page, &code, &row);
566
567 cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT;
568 code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA;
569
570 cmd2 |= code << CMD_CODE_SHIFT;
571
572 vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
573 vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
574 vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
575
576 /*
577 * Don't fix endianness on page access for historical reasons.
578 * See comment in vf610_nfc_rd_from_sram
579 */
580 vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0),
581 mtd->writesize, false);
582 if (oob_required)
583 vf610_nfc_rd_from_sram(chip->oob_poi,
584 nfc->regs + NFC_MAIN_AREA(0) +
585 mtd->writesize,
586 mtd->oobsize, false);
587
588 stat = vf610_nfc_correct_data(chip, buf, chip->oob_poi, page);
589
590 if (stat < 0) {
591 mtd->ecc_stats.failed++;
592 return 0;
593 } else {
594 mtd->ecc_stats.corrected += stat;
595 return stat;
596 }
597 }
598
vf610_nfc_write_page(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)599 static int vf610_nfc_write_page(struct nand_chip *chip, const uint8_t *buf,
600 int oob_required, int page)
601 {
602 struct vf610_nfc *nfc = chip_to_nfc(chip);
603 struct mtd_info *mtd = nand_to_mtd(chip);
604 int trfr_sz = mtd->writesize + mtd->oobsize;
605 u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
606 u8 status;
607 int ret;
608
609 vf610_nfc_select_target(chip, chip->cur_cs);
610
611 cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
612 code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
613
614 vf610_nfc_fill_row(chip, page, &code, &row);
615
616 cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT;
617 code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA;
618
619 /*
620 * Don't fix endianness on page access for historical reasons.
621 * See comment in vf610_nfc_wr_to_sram
622 */
623 vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf,
624 mtd->writesize, false);
625
626 code |= COMMAND_RB_HANDSHAKE;
627 cmd2 |= code << CMD_CODE_SHIFT;
628
629 vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
630 vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
631 vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
632
633 ret = nand_status_op(chip, &status);
634 if (ret)
635 return ret;
636
637 if (status & NAND_STATUS_FAIL)
638 return -EIO;
639
640 return 0;
641 }
642
vf610_nfc_read_page_raw(struct nand_chip * chip,u8 * buf,int oob_required,int page)643 static int vf610_nfc_read_page_raw(struct nand_chip *chip, u8 *buf,
644 int oob_required, int page)
645 {
646 struct vf610_nfc *nfc = chip_to_nfc(chip);
647 int ret;
648
649 nfc->data_access = true;
650 ret = nand_read_page_raw(chip, buf, oob_required, page);
651 nfc->data_access = false;
652
653 return ret;
654 }
655
vf610_nfc_write_page_raw(struct nand_chip * chip,const u8 * buf,int oob_required,int page)656 static int vf610_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
657 int oob_required, int page)
658 {
659 struct vf610_nfc *nfc = chip_to_nfc(chip);
660 struct mtd_info *mtd = nand_to_mtd(chip);
661 int ret;
662
663 nfc->data_access = true;
664 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
665 if (!ret && oob_required)
666 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
667 false);
668 nfc->data_access = false;
669
670 if (ret)
671 return ret;
672
673 return nand_prog_page_end_op(chip);
674 }
675
vf610_nfc_read_oob(struct nand_chip * chip,int page)676 static int vf610_nfc_read_oob(struct nand_chip *chip, int page)
677 {
678 struct vf610_nfc *nfc = chip_to_nfc(chip);
679 int ret;
680
681 nfc->data_access = true;
682 ret = nand_read_oob_std(chip, page);
683 nfc->data_access = false;
684
685 return ret;
686 }
687
vf610_nfc_write_oob(struct nand_chip * chip,int page)688 static int vf610_nfc_write_oob(struct nand_chip *chip, int page)
689 {
690 struct mtd_info *mtd = nand_to_mtd(chip);
691 struct vf610_nfc *nfc = chip_to_nfc(chip);
692 int ret;
693
694 nfc->data_access = true;
695 ret = nand_prog_page_begin_op(chip, page, mtd->writesize,
696 chip->oob_poi, mtd->oobsize);
697 nfc->data_access = false;
698
699 if (ret)
700 return ret;
701
702 return nand_prog_page_end_op(chip);
703 }
704
705 static const struct of_device_id vf610_nfc_dt_ids[] = {
706 { .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
707 { /* sentinel */ }
708 };
709 MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
710
vf610_nfc_preinit_controller(struct vf610_nfc * nfc)711 static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
712 {
713 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
714 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
715 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
716 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
717 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
718 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
719 vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
720
721 /* Disable virtual pages, only one elementary transfer unit */
722 vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
723 CONFIG_PAGE_CNT_SHIFT, 1);
724 }
725
vf610_nfc_init_controller(struct vf610_nfc * nfc)726 static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
727 {
728 if (nfc->chip.options & NAND_BUSWIDTH_16)
729 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
730 else
731 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
732
733 if (nfc->chip.ecc.mode == NAND_ECC_HW) {
734 /* Set ECC status offset in SRAM */
735 vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
736 CONFIG_ECC_SRAM_ADDR_MASK,
737 CONFIG_ECC_SRAM_ADDR_SHIFT,
738 ECC_SRAM_ADDR >> 3);
739
740 /* Enable ECC status in SRAM */
741 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
742 }
743 }
744
vf610_nfc_attach_chip(struct nand_chip * chip)745 static int vf610_nfc_attach_chip(struct nand_chip *chip)
746 {
747 struct mtd_info *mtd = nand_to_mtd(chip);
748 struct vf610_nfc *nfc = chip_to_nfc(chip);
749
750 vf610_nfc_init_controller(nfc);
751
752 /* Bad block options. */
753 if (chip->bbt_options & NAND_BBT_USE_FLASH)
754 chip->bbt_options |= NAND_BBT_NO_OOB;
755
756 /* Single buffer only, max 256 OOB minus ECC status */
757 if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
758 dev_err(nfc->dev, "Unsupported flash page size\n");
759 return -ENXIO;
760 }
761
762 if (chip->ecc.mode != NAND_ECC_HW)
763 return 0;
764
765 if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
766 dev_err(nfc->dev, "Unsupported flash with hwecc\n");
767 return -ENXIO;
768 }
769
770 if (chip->ecc.size != mtd->writesize) {
771 dev_err(nfc->dev, "Step size needs to be page size\n");
772 return -ENXIO;
773 }
774
775 /* Only 64 byte ECC layouts known */
776 if (mtd->oobsize > 64)
777 mtd->oobsize = 64;
778
779 /* Use default large page ECC layout defined in NAND core */
780 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
781 if (chip->ecc.strength == 32) {
782 nfc->ecc_mode = ECC_60_BYTE;
783 chip->ecc.bytes = 60;
784 } else if (chip->ecc.strength == 24) {
785 nfc->ecc_mode = ECC_45_BYTE;
786 chip->ecc.bytes = 45;
787 } else {
788 dev_err(nfc->dev, "Unsupported ECC strength\n");
789 return -ENXIO;
790 }
791
792 chip->ecc.read_page = vf610_nfc_read_page;
793 chip->ecc.write_page = vf610_nfc_write_page;
794 chip->ecc.read_page_raw = vf610_nfc_read_page_raw;
795 chip->ecc.write_page_raw = vf610_nfc_write_page_raw;
796 chip->ecc.read_oob = vf610_nfc_read_oob;
797 chip->ecc.write_oob = vf610_nfc_write_oob;
798
799 chip->ecc.size = PAGE_2K;
800
801 return 0;
802 }
803
804 static const struct nand_controller_ops vf610_nfc_controller_ops = {
805 .attach_chip = vf610_nfc_attach_chip,
806 .exec_op = vf610_nfc_exec_op,
807
808 };
809
vf610_nfc_probe(struct platform_device * pdev)810 static int vf610_nfc_probe(struct platform_device *pdev)
811 {
812 struct vf610_nfc *nfc;
813 struct resource *res;
814 struct mtd_info *mtd;
815 struct nand_chip *chip;
816 struct device_node *child;
817 const struct of_device_id *of_id;
818 int err;
819 int irq;
820
821 nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
822 if (!nfc)
823 return -ENOMEM;
824
825 nfc->dev = &pdev->dev;
826 chip = &nfc->chip;
827 mtd = nand_to_mtd(chip);
828
829 mtd->owner = THIS_MODULE;
830 mtd->dev.parent = nfc->dev;
831 mtd->name = DRV_NAME;
832
833 irq = platform_get_irq(pdev, 0);
834 if (irq <= 0)
835 return -EINVAL;
836
837 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
838 nfc->regs = devm_ioremap_resource(nfc->dev, res);
839 if (IS_ERR(nfc->regs))
840 return PTR_ERR(nfc->regs);
841
842 nfc->clk = devm_clk_get(&pdev->dev, NULL);
843 if (IS_ERR(nfc->clk))
844 return PTR_ERR(nfc->clk);
845
846 err = clk_prepare_enable(nfc->clk);
847 if (err) {
848 dev_err(nfc->dev, "Unable to enable clock!\n");
849 return err;
850 }
851
852 of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
853 if (!of_id)
854 return -ENODEV;
855
856 nfc->variant = (enum vf610_nfc_variant)of_id->data;
857
858 for_each_available_child_of_node(nfc->dev->of_node, child) {
859 if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
860
861 if (nand_get_flash_node(chip)) {
862 dev_err(nfc->dev,
863 "Only one NAND chip supported!\n");
864 err = -EINVAL;
865 of_node_put(child);
866 goto err_disable_clk;
867 }
868
869 nand_set_flash_node(chip, child);
870 }
871 }
872
873 if (!nand_get_flash_node(chip)) {
874 dev_err(nfc->dev, "NAND chip sub-node missing!\n");
875 err = -ENODEV;
876 goto err_disable_clk;
877 }
878
879 chip->options |= NAND_NO_SUBPAGE_WRITE;
880
881 init_completion(&nfc->cmd_done);
882
883 err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, nfc);
884 if (err) {
885 dev_err(nfc->dev, "Error requesting IRQ!\n");
886 goto err_disable_clk;
887 }
888
889 vf610_nfc_preinit_controller(nfc);
890
891 nand_controller_init(&nfc->base);
892 nfc->base.ops = &vf610_nfc_controller_ops;
893 chip->controller = &nfc->base;
894
895 /* Scan the NAND chip */
896 err = nand_scan(chip, 1);
897 if (err)
898 goto err_disable_clk;
899
900 platform_set_drvdata(pdev, nfc);
901
902 /* Register device in MTD */
903 err = mtd_device_register(mtd, NULL, 0);
904 if (err)
905 goto err_cleanup_nand;
906 return 0;
907
908 err_cleanup_nand:
909 nand_cleanup(chip);
910 err_disable_clk:
911 clk_disable_unprepare(nfc->clk);
912 return err;
913 }
914
vf610_nfc_remove(struct platform_device * pdev)915 static int vf610_nfc_remove(struct platform_device *pdev)
916 {
917 struct vf610_nfc *nfc = platform_get_drvdata(pdev);
918
919 nand_release(&nfc->chip);
920 clk_disable_unprepare(nfc->clk);
921 return 0;
922 }
923
924 #ifdef CONFIG_PM_SLEEP
vf610_nfc_suspend(struct device * dev)925 static int vf610_nfc_suspend(struct device *dev)
926 {
927 struct vf610_nfc *nfc = dev_get_drvdata(dev);
928
929 clk_disable_unprepare(nfc->clk);
930 return 0;
931 }
932
vf610_nfc_resume(struct device * dev)933 static int vf610_nfc_resume(struct device *dev)
934 {
935 struct vf610_nfc *nfc = dev_get_drvdata(dev);
936 int err;
937
938 err = clk_prepare_enable(nfc->clk);
939 if (err)
940 return err;
941
942 vf610_nfc_preinit_controller(nfc);
943 vf610_nfc_init_controller(nfc);
944 return 0;
945 }
946 #endif
947
948 static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
949
950 static struct platform_driver vf610_nfc_driver = {
951 .driver = {
952 .name = DRV_NAME,
953 .of_match_table = vf610_nfc_dt_ids,
954 .pm = &vf610_nfc_pm_ops,
955 },
956 .probe = vf610_nfc_probe,
957 .remove = vf610_nfc_remove,
958 };
959
960 module_platform_driver(vf610_nfc_driver);
961
962 MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
963 MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
964 MODULE_LICENSE("GPL");
965