1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Stefan Agner <stefan@agner.ch>
4  * Copyright (C) 2014-2015 Lucas Stach <dev@lynxeye.de>
5  * Copyright (C) 2012 Avionic Design GmbH
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/completion.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/err.h>
12 #include <linux/gpio/consumer.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/mtd/partitions.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/of.h>
19 #include <linux/platform_device.h>
20 #include <linux/reset.h>
21 
22 #define COMMAND					0x00
23 #define   COMMAND_GO				BIT(31)
24 #define   COMMAND_CLE				BIT(30)
25 #define   COMMAND_ALE				BIT(29)
26 #define   COMMAND_PIO				BIT(28)
27 #define   COMMAND_TX				BIT(27)
28 #define   COMMAND_RX				BIT(26)
29 #define   COMMAND_SEC_CMD			BIT(25)
30 #define   COMMAND_AFT_DAT			BIT(24)
31 #define   COMMAND_TRANS_SIZE(size)		((((size) - 1) & 0xf) << 20)
32 #define   COMMAND_A_VALID			BIT(19)
33 #define   COMMAND_B_VALID			BIT(18)
34 #define   COMMAND_RD_STATUS_CHK			BIT(17)
35 #define   COMMAND_RBSY_CHK			BIT(16)
36 #define   COMMAND_CE(x)				BIT(8 + ((x) & 0x7))
37 #define   COMMAND_CLE_SIZE(size)		((((size) - 1) & 0x3) << 4)
38 #define   COMMAND_ALE_SIZE(size)		((((size) - 1) & 0xf) << 0)
39 
40 #define STATUS					0x04
41 
42 #define ISR					0x08
43 #define   ISR_CORRFAIL_ERR			BIT(24)
44 #define   ISR_UND				BIT(7)
45 #define   ISR_OVR				BIT(6)
46 #define   ISR_CMD_DONE				BIT(5)
47 #define   ISR_ECC_ERR				BIT(4)
48 
49 #define IER					0x0c
50 #define   IER_ERR_TRIG_VAL(x)			(((x) & 0xf) << 16)
51 #define   IER_UND				BIT(7)
52 #define   IER_OVR				BIT(6)
53 #define   IER_CMD_DONE				BIT(5)
54 #define   IER_ECC_ERR				BIT(4)
55 #define   IER_GIE				BIT(0)
56 
57 #define CONFIG					0x10
58 #define   CONFIG_HW_ECC				BIT(31)
59 #define   CONFIG_ECC_SEL			BIT(30)
60 #define   CONFIG_ERR_COR			BIT(29)
61 #define   CONFIG_PIPE_EN			BIT(28)
62 #define   CONFIG_TVAL_4				(0 << 24)
63 #define   CONFIG_TVAL_6				(1 << 24)
64 #define   CONFIG_TVAL_8				(2 << 24)
65 #define   CONFIG_SKIP_SPARE			BIT(23)
66 #define   CONFIG_BUS_WIDTH_16			BIT(21)
67 #define   CONFIG_COM_BSY			BIT(20)
68 #define   CONFIG_PS_256				(0 << 16)
69 #define   CONFIG_PS_512				(1 << 16)
70 #define   CONFIG_PS_1024			(2 << 16)
71 #define   CONFIG_PS_2048			(3 << 16)
72 #define   CONFIG_PS_4096			(4 << 16)
73 #define   CONFIG_SKIP_SPARE_SIZE_4		(0 << 14)
74 #define   CONFIG_SKIP_SPARE_SIZE_8		(1 << 14)
75 #define   CONFIG_SKIP_SPARE_SIZE_12		(2 << 14)
76 #define   CONFIG_SKIP_SPARE_SIZE_16		(3 << 14)
77 #define   CONFIG_TAG_BYTE_SIZE(x)			((x) & 0xff)
78 
79 #define TIMING_1				0x14
80 #define   TIMING_TRP_RESP(x)			(((x) & 0xf) << 28)
81 #define   TIMING_TWB(x)				(((x) & 0xf) << 24)
82 #define   TIMING_TCR_TAR_TRR(x)			(((x) & 0xf) << 20)
83 #define   TIMING_TWHR(x)			(((x) & 0xf) << 16)
84 #define   TIMING_TCS(x)				(((x) & 0x3) << 14)
85 #define   TIMING_TWH(x)				(((x) & 0x3) << 12)
86 #define   TIMING_TWP(x)				(((x) & 0xf) <<  8)
87 #define   TIMING_TRH(x)				(((x) & 0x3) <<  4)
88 #define   TIMING_TRP(x)				(((x) & 0xf) <<  0)
89 
90 #define RESP					0x18
91 
92 #define TIMING_2				0x1c
93 #define   TIMING_TADL(x)			((x) & 0xf)
94 
95 #define CMD_REG1				0x20
96 #define CMD_REG2				0x24
97 #define ADDR_REG1				0x28
98 #define ADDR_REG2				0x2c
99 
100 #define DMA_MST_CTRL				0x30
101 #define   DMA_MST_CTRL_GO			BIT(31)
102 #define   DMA_MST_CTRL_IN			(0 << 30)
103 #define   DMA_MST_CTRL_OUT			BIT(30)
104 #define   DMA_MST_CTRL_PERF_EN			BIT(29)
105 #define   DMA_MST_CTRL_IE_DONE			BIT(28)
106 #define   DMA_MST_CTRL_REUSE			BIT(27)
107 #define   DMA_MST_CTRL_BURST_1			(2 << 24)
108 #define   DMA_MST_CTRL_BURST_4			(3 << 24)
109 #define   DMA_MST_CTRL_BURST_8			(4 << 24)
110 #define   DMA_MST_CTRL_BURST_16			(5 << 24)
111 #define   DMA_MST_CTRL_IS_DONE			BIT(20)
112 #define   DMA_MST_CTRL_EN_A			BIT(2)
113 #define   DMA_MST_CTRL_EN_B			BIT(1)
114 
115 #define DMA_CFG_A				0x34
116 #define DMA_CFG_B				0x38
117 
118 #define FIFO_CTRL				0x3c
119 #define   FIFO_CTRL_CLR_ALL			BIT(3)
120 
121 #define DATA_PTR				0x40
122 #define TAG_PTR					0x44
123 #define ECC_PTR					0x48
124 
125 #define DEC_STATUS				0x4c
126 #define   DEC_STATUS_A_ECC_FAIL			BIT(1)
127 #define   DEC_STATUS_ERR_COUNT_MASK		0x00ff0000
128 #define   DEC_STATUS_ERR_COUNT_SHIFT		16
129 
130 #define HWSTATUS_CMD				0x50
131 #define HWSTATUS_MASK				0x54
132 #define   HWSTATUS_RDSTATUS_MASK(x)		(((x) & 0xff) << 24)
133 #define   HWSTATUS_RDSTATUS_VALUE(x)		(((x) & 0xff) << 16)
134 #define   HWSTATUS_RBSY_MASK(x)			(((x) & 0xff) << 8)
135 #define   HWSTATUS_RBSY_VALUE(x)		(((x) & 0xff) << 0)
136 
137 #define BCH_CONFIG				0xcc
138 #define   BCH_ENABLE				BIT(0)
139 #define   BCH_TVAL_4				(0 << 4)
140 #define   BCH_TVAL_8				(1 << 4)
141 #define   BCH_TVAL_14				(2 << 4)
142 #define   BCH_TVAL_16				(3 << 4)
143 
144 #define DEC_STAT_RESULT				0xd0
145 #define DEC_STAT_BUF				0xd4
146 #define   DEC_STAT_BUF_FAIL_SEC_FLAG_MASK	0xff000000
147 #define   DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT	24
148 #define   DEC_STAT_BUF_CORR_SEC_FLAG_MASK	0x00ff0000
149 #define   DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT	16
150 #define   DEC_STAT_BUF_MAX_CORR_CNT_MASK	0x00001f00
151 #define   DEC_STAT_BUF_MAX_CORR_CNT_SHIFT	8
152 
153 #define OFFSET(val, off)	((val) < (off) ? 0 : (val) - (off))
154 
155 #define SKIP_SPARE_BYTES	4
156 #define BITS_PER_STEP_RS	18
157 #define BITS_PER_STEP_BCH	13
158 
159 #define INT_MASK		(IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE)
160 #define HWSTATUS_CMD_DEFAULT	NAND_STATUS_READY
161 #define HWSTATUS_MASK_DEFAULT	(HWSTATUS_RDSTATUS_MASK(1) | \
162 				HWSTATUS_RDSTATUS_VALUE(0) | \
163 				HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \
164 				HWSTATUS_RBSY_VALUE(NAND_STATUS_READY))
165 
166 struct tegra_nand_controller {
167 	struct nand_controller controller;
168 	struct device *dev;
169 	void __iomem *regs;
170 	int irq;
171 	struct clk *clk;
172 	struct completion command_complete;
173 	struct completion dma_complete;
174 	bool last_read_error;
175 	int cur_cs;
176 	struct nand_chip *chip;
177 };
178 
179 struct tegra_nand_chip {
180 	struct nand_chip chip;
181 	struct gpio_desc *wp_gpio;
182 	struct mtd_oob_region ecc;
183 	u32 config;
184 	u32 config_ecc;
185 	u32 bch_config;
186 	int cs[1];
187 };
188 
189 static inline struct tegra_nand_controller *
to_tegra_ctrl(struct nand_controller * hw_ctrl)190 			to_tegra_ctrl(struct nand_controller *hw_ctrl)
191 {
192 	return container_of(hw_ctrl, struct tegra_nand_controller, controller);
193 }
194 
to_tegra_chip(struct nand_chip * chip)195 static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip *chip)
196 {
197 	return container_of(chip, struct tegra_nand_chip, chip);
198 }
199 
tegra_nand_ooblayout_rs_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)200 static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section,
201 				       struct mtd_oob_region *oobregion)
202 {
203 	struct nand_chip *chip = mtd_to_nand(mtd);
204 	int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength,
205 					  BITS_PER_BYTE);
206 
207 	if (section > 0)
208 		return -ERANGE;
209 
210 	oobregion->offset = SKIP_SPARE_BYTES;
211 	oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
212 
213 	return 0;
214 }
215 
tegra_nand_ooblayout_no_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)216 static int tegra_nand_ooblayout_no_free(struct mtd_info *mtd, int section,
217 					struct mtd_oob_region *oobregion)
218 {
219 	return -ERANGE;
220 }
221 
222 static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = {
223 	.ecc = tegra_nand_ooblayout_rs_ecc,
224 	.free = tegra_nand_ooblayout_no_free,
225 };
226 
tegra_nand_ooblayout_bch_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)227 static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section,
228 					struct mtd_oob_region *oobregion)
229 {
230 	struct nand_chip *chip = mtd_to_nand(mtd);
231 	int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength,
232 					  BITS_PER_BYTE);
233 
234 	if (section > 0)
235 		return -ERANGE;
236 
237 	oobregion->offset = SKIP_SPARE_BYTES;
238 	oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
239 
240 	return 0;
241 }
242 
243 static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = {
244 	.ecc = tegra_nand_ooblayout_bch_ecc,
245 	.free = tegra_nand_ooblayout_no_free,
246 };
247 
tegra_nand_irq(int irq,void * data)248 static irqreturn_t tegra_nand_irq(int irq, void *data)
249 {
250 	struct tegra_nand_controller *ctrl = data;
251 	u32 isr, dma;
252 
253 	isr = readl_relaxed(ctrl->regs + ISR);
254 	dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
255 	dev_dbg(ctrl->dev, "isr %08x\n", isr);
256 
257 	if (!isr && !(dma & DMA_MST_CTRL_IS_DONE))
258 		return IRQ_NONE;
259 
260 	/*
261 	 * The bit name is somewhat missleading: This is also set when
262 	 * HW ECC was successful. The data sheet states:
263 	 * Correctable OR Un-correctable errors occurred in the DMA transfer...
264 	 */
265 	if (isr & ISR_CORRFAIL_ERR)
266 		ctrl->last_read_error = true;
267 
268 	if (isr & ISR_CMD_DONE)
269 		complete(&ctrl->command_complete);
270 
271 	if (isr & ISR_UND)
272 		dev_err(ctrl->dev, "FIFO underrun\n");
273 
274 	if (isr & ISR_OVR)
275 		dev_err(ctrl->dev, "FIFO overrun\n");
276 
277 	/* handle DMA interrupts */
278 	if (dma & DMA_MST_CTRL_IS_DONE) {
279 		writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
280 		complete(&ctrl->dma_complete);
281 	}
282 
283 	/* clear interrupts */
284 	writel_relaxed(isr, ctrl->regs + ISR);
285 
286 	return IRQ_HANDLED;
287 }
288 
289 static const char * const tegra_nand_reg_names[] = {
290 	"COMMAND",
291 	"STATUS",
292 	"ISR",
293 	"IER",
294 	"CONFIG",
295 	"TIMING",
296 	NULL,
297 	"TIMING2",
298 	"CMD_REG1",
299 	"CMD_REG2",
300 	"ADDR_REG1",
301 	"ADDR_REG2",
302 	"DMA_MST_CTRL",
303 	"DMA_CFG_A",
304 	"DMA_CFG_B",
305 	"FIFO_CTRL",
306 };
307 
tegra_nand_dump_reg(struct tegra_nand_controller * ctrl)308 static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl)
309 {
310 	u32 reg;
311 	int i;
312 
313 	dev_err(ctrl->dev, "Tegra NAND controller register dump\n");
314 	for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) {
315 		const char *reg_name = tegra_nand_reg_names[i];
316 
317 		if (!reg_name)
318 			continue;
319 
320 		reg = readl_relaxed(ctrl->regs + (i * 4));
321 		dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg);
322 	}
323 }
324 
tegra_nand_controller_abort(struct tegra_nand_controller * ctrl)325 static void tegra_nand_controller_abort(struct tegra_nand_controller *ctrl)
326 {
327 	u32 isr, dma;
328 
329 	disable_irq(ctrl->irq);
330 
331 	/* Abort current command/DMA operation */
332 	writel_relaxed(0, ctrl->regs + DMA_MST_CTRL);
333 	writel_relaxed(0, ctrl->regs + COMMAND);
334 
335 	/* clear interrupts */
336 	isr = readl_relaxed(ctrl->regs + ISR);
337 	writel_relaxed(isr, ctrl->regs + ISR);
338 	dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
339 	writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
340 
341 	reinit_completion(&ctrl->command_complete);
342 	reinit_completion(&ctrl->dma_complete);
343 
344 	enable_irq(ctrl->irq);
345 }
346 
tegra_nand_cmd(struct nand_chip * chip,const struct nand_subop * subop)347 static int tegra_nand_cmd(struct nand_chip *chip,
348 			  const struct nand_subop *subop)
349 {
350 	const struct nand_op_instr *instr;
351 	const struct nand_op_instr *instr_data_in = NULL;
352 	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
353 	unsigned int op_id, size = 0, offset = 0;
354 	bool first_cmd = true;
355 	u32 reg, cmd = 0;
356 	int ret;
357 
358 	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
359 		unsigned int naddrs, i;
360 		const u8 *addrs;
361 		u32 addr1 = 0, addr2 = 0;
362 
363 		instr = &subop->instrs[op_id];
364 
365 		switch (instr->type) {
366 		case NAND_OP_CMD_INSTR:
367 			if (first_cmd) {
368 				cmd |= COMMAND_CLE;
369 				writel_relaxed(instr->ctx.cmd.opcode,
370 					       ctrl->regs + CMD_REG1);
371 			} else {
372 				cmd |= COMMAND_SEC_CMD;
373 				writel_relaxed(instr->ctx.cmd.opcode,
374 					       ctrl->regs + CMD_REG2);
375 			}
376 			first_cmd = false;
377 			break;
378 
379 		case NAND_OP_ADDR_INSTR:
380 			offset = nand_subop_get_addr_start_off(subop, op_id);
381 			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
382 			addrs = &instr->ctx.addr.addrs[offset];
383 
384 			cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(naddrs);
385 			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
386 				addr1 |= *addrs++ << (BITS_PER_BYTE * i);
387 			naddrs -= i;
388 			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
389 				addr2 |= *addrs++ << (BITS_PER_BYTE * i);
390 
391 			writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
392 			writel_relaxed(addr2, ctrl->regs + ADDR_REG2);
393 			break;
394 
395 		case NAND_OP_DATA_IN_INSTR:
396 			size = nand_subop_get_data_len(subop, op_id);
397 			offset = nand_subop_get_data_start_off(subop, op_id);
398 
399 			cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
400 				COMMAND_RX | COMMAND_A_VALID;
401 
402 			instr_data_in = instr;
403 			break;
404 
405 		case NAND_OP_DATA_OUT_INSTR:
406 			size = nand_subop_get_data_len(subop, op_id);
407 			offset = nand_subop_get_data_start_off(subop, op_id);
408 
409 			cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
410 				COMMAND_TX | COMMAND_A_VALID;
411 			memcpy(&reg, instr->ctx.data.buf.out + offset, size);
412 
413 			writel_relaxed(reg, ctrl->regs + RESP);
414 			break;
415 
416 		case NAND_OP_WAITRDY_INSTR:
417 			cmd |= COMMAND_RBSY_CHK;
418 			break;
419 		}
420 	}
421 
422 	cmd |= COMMAND_GO | COMMAND_CE(ctrl->cur_cs);
423 	writel_relaxed(cmd, ctrl->regs + COMMAND);
424 	ret = wait_for_completion_timeout(&ctrl->command_complete,
425 					  msecs_to_jiffies(500));
426 	if (!ret) {
427 		dev_err(ctrl->dev, "COMMAND timeout\n");
428 		tegra_nand_dump_reg(ctrl);
429 		tegra_nand_controller_abort(ctrl);
430 		return -ETIMEDOUT;
431 	}
432 
433 	if (instr_data_in) {
434 		reg = readl_relaxed(ctrl->regs + RESP);
435 		memcpy(instr_data_in->ctx.data.buf.in + offset, &reg, size);
436 	}
437 
438 	return 0;
439 }
440 
441 static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER(
442 	NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
443 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
444 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
445 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
446 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
447 	NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
448 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)),
449 	NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
450 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
451 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
452 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
453 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
454 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)),
455 	);
456 
tegra_nand_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)457 static int tegra_nand_exec_op(struct nand_chip *chip,
458 			      const struct nand_operation *op,
459 			      bool check_only)
460 {
461 	return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op,
462 				      check_only);
463 }
464 
tegra_nand_select_chip(struct mtd_info * mtd,int die_nr)465 static void tegra_nand_select_chip(struct mtd_info *mtd, int die_nr)
466 {
467 	struct nand_chip *chip = mtd_to_nand(mtd);
468 	struct tegra_nand_chip *nand = to_tegra_chip(chip);
469 	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
470 
471 	WARN_ON(die_nr >= (int)ARRAY_SIZE(nand->cs));
472 
473 	if (die_nr < 0 || die_nr > 0) {
474 		ctrl->cur_cs = -1;
475 		return;
476 	}
477 
478 	ctrl->cur_cs = nand->cs[die_nr];
479 }
480 
tegra_nand_hw_ecc(struct tegra_nand_controller * ctrl,struct nand_chip * chip,bool enable)481 static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl,
482 			      struct nand_chip *chip, bool enable)
483 {
484 	struct tegra_nand_chip *nand = to_tegra_chip(chip);
485 
486 	if (chip->ecc.algo == NAND_ECC_BCH && enable)
487 		writel_relaxed(nand->bch_config, ctrl->regs + BCH_CONFIG);
488 	else
489 		writel_relaxed(0, ctrl->regs + BCH_CONFIG);
490 
491 	if (enable)
492 		writel_relaxed(nand->config_ecc, ctrl->regs + CONFIG);
493 	else
494 		writel_relaxed(nand->config, ctrl->regs + CONFIG);
495 }
496 
tegra_nand_page_xfer(struct mtd_info * mtd,struct nand_chip * chip,void * buf,void * oob_buf,int oob_len,int page,bool read)497 static int tegra_nand_page_xfer(struct mtd_info *mtd, struct nand_chip *chip,
498 				void *buf, void *oob_buf, int oob_len, int page,
499 				bool read)
500 {
501 	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
502 	enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
503 	dma_addr_t dma_addr = 0, dma_addr_oob = 0;
504 	u32 addr1, cmd, dma_ctrl;
505 	int ret;
506 
507 	if (read) {
508 		writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_REG1);
509 		writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_REG2);
510 	} else {
511 		writel_relaxed(NAND_CMD_SEQIN, ctrl->regs + CMD_REG1);
512 		writel_relaxed(NAND_CMD_PAGEPROG, ctrl->regs + CMD_REG2);
513 	}
514 	cmd = COMMAND_CLE | COMMAND_SEC_CMD;
515 
516 	/* Lower 16-bits are column, by default 0 */
517 	addr1 = page << 16;
518 
519 	if (!buf)
520 		addr1 |= mtd->writesize;
521 	writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
522 
523 	if (chip->options & NAND_ROW_ADDR_3) {
524 		writel_relaxed(page >> 16, ctrl->regs + ADDR_REG2);
525 		cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(5);
526 	} else {
527 		cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(4);
528 	}
529 
530 	if (buf) {
531 		dma_addr = dma_map_single(ctrl->dev, buf, mtd->writesize, dir);
532 		ret = dma_mapping_error(ctrl->dev, dma_addr);
533 		if (ret) {
534 			dev_err(ctrl->dev, "dma mapping error\n");
535 			return -EINVAL;
536 		}
537 
538 		writel_relaxed(mtd->writesize - 1, ctrl->regs + DMA_CFG_A);
539 		writel_relaxed(dma_addr, ctrl->regs + DATA_PTR);
540 	}
541 
542 	if (oob_buf) {
543 		dma_addr_oob = dma_map_single(ctrl->dev, oob_buf, mtd->oobsize,
544 					      dir);
545 		ret = dma_mapping_error(ctrl->dev, dma_addr_oob);
546 		if (ret) {
547 			dev_err(ctrl->dev, "dma mapping error\n");
548 			ret = -EINVAL;
549 			goto err_unmap_dma_page;
550 		}
551 
552 		writel_relaxed(oob_len - 1, ctrl->regs + DMA_CFG_B);
553 		writel_relaxed(dma_addr_oob, ctrl->regs + TAG_PTR);
554 	}
555 
556 	dma_ctrl = DMA_MST_CTRL_GO | DMA_MST_CTRL_PERF_EN |
557 		   DMA_MST_CTRL_IE_DONE | DMA_MST_CTRL_IS_DONE |
558 		   DMA_MST_CTRL_BURST_16;
559 
560 	if (buf)
561 		dma_ctrl |= DMA_MST_CTRL_EN_A;
562 	if (oob_buf)
563 		dma_ctrl |= DMA_MST_CTRL_EN_B;
564 
565 	if (read)
566 		dma_ctrl |= DMA_MST_CTRL_IN | DMA_MST_CTRL_REUSE;
567 	else
568 		dma_ctrl |= DMA_MST_CTRL_OUT;
569 
570 	writel_relaxed(dma_ctrl, ctrl->regs + DMA_MST_CTRL);
571 
572 	cmd |= COMMAND_GO | COMMAND_RBSY_CHK | COMMAND_TRANS_SIZE(9) |
573 	       COMMAND_CE(ctrl->cur_cs);
574 
575 	if (buf)
576 		cmd |= COMMAND_A_VALID;
577 	if (oob_buf)
578 		cmd |= COMMAND_B_VALID;
579 
580 	if (read)
581 		cmd |= COMMAND_RX;
582 	else
583 		cmd |= COMMAND_TX | COMMAND_AFT_DAT;
584 
585 	writel_relaxed(cmd, ctrl->regs + COMMAND);
586 
587 	ret = wait_for_completion_timeout(&ctrl->command_complete,
588 					  msecs_to_jiffies(500));
589 	if (!ret) {
590 		dev_err(ctrl->dev, "COMMAND timeout\n");
591 		tegra_nand_dump_reg(ctrl);
592 		tegra_nand_controller_abort(ctrl);
593 		ret = -ETIMEDOUT;
594 		goto err_unmap_dma;
595 	}
596 
597 	ret = wait_for_completion_timeout(&ctrl->dma_complete,
598 					  msecs_to_jiffies(500));
599 	if (!ret) {
600 		dev_err(ctrl->dev, "DMA timeout\n");
601 		tegra_nand_dump_reg(ctrl);
602 		tegra_nand_controller_abort(ctrl);
603 		ret = -ETIMEDOUT;
604 		goto err_unmap_dma;
605 	}
606 	ret = 0;
607 
608 err_unmap_dma:
609 	if (oob_buf)
610 		dma_unmap_single(ctrl->dev, dma_addr_oob, mtd->oobsize, dir);
611 err_unmap_dma_page:
612 	if (buf)
613 		dma_unmap_single(ctrl->dev, dma_addr, mtd->writesize, dir);
614 
615 	return ret;
616 }
617 
tegra_nand_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,u8 * buf,int oob_required,int page)618 static int tegra_nand_read_page_raw(struct mtd_info *mtd,
619 				    struct nand_chip *chip, u8 *buf,
620 				    int oob_required, int page)
621 {
622 	void *oob_buf = oob_required ? chip->oob_poi : NULL;
623 
624 	return tegra_nand_page_xfer(mtd, chip, buf, oob_buf,
625 				    mtd->oobsize, page, true);
626 }
627 
tegra_nand_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const u8 * buf,int oob_required,int page)628 static int tegra_nand_write_page_raw(struct mtd_info *mtd,
629 				     struct nand_chip *chip, const u8 *buf,
630 				     int oob_required, int page)
631 {
632 	void *oob_buf = oob_required ? chip->oob_poi : NULL;
633 
634 	return tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
635 				     mtd->oobsize, page, false);
636 }
637 
tegra_nand_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)638 static int tegra_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
639 			       int page)
640 {
641 	return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
642 				    mtd->oobsize, page, true);
643 }
644 
tegra_nand_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)645 static int tegra_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
646 				int page)
647 {
648 	return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
649 				    mtd->oobsize, page, false);
650 }
651 
tegra_nand_read_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,u8 * buf,int oob_required,int page)652 static int tegra_nand_read_page_hwecc(struct mtd_info *mtd,
653 				      struct nand_chip *chip, u8 *buf,
654 				      int oob_required, int page)
655 {
656 	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
657 	struct tegra_nand_chip *nand = to_tegra_chip(chip);
658 	void *oob_buf = oob_required ? chip->oob_poi : NULL;
659 	u32 dec_stat, max_corr_cnt;
660 	unsigned long fail_sec_flag;
661 	int ret;
662 
663 	tegra_nand_hw_ecc(ctrl, chip, true);
664 	ret = tegra_nand_page_xfer(mtd, chip, buf, oob_buf, 0, page, true);
665 	tegra_nand_hw_ecc(ctrl, chip, false);
666 	if (ret)
667 		return ret;
668 
669 	/* No correctable or un-correctable errors, page must have 0 bitflips */
670 	if (!ctrl->last_read_error)
671 		return 0;
672 
673 	/*
674 	 * Correctable or un-correctable errors occurred. Use DEC_STAT_BUF
675 	 * which contains information for all ECC selections.
676 	 *
677 	 * Note that since we do not use Command Queues DEC_RESULT does not
678 	 * state the number of pages we can read from the DEC_STAT_BUF. But
679 	 * since CORRFAIL_ERR did occur during page read we do have a valid
680 	 * result in DEC_STAT_BUF.
681 	 */
682 	ctrl->last_read_error = false;
683 	dec_stat = readl_relaxed(ctrl->regs + DEC_STAT_BUF);
684 
685 	fail_sec_flag = (dec_stat & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) >>
686 			DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT;
687 
688 	max_corr_cnt = (dec_stat & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >>
689 		       DEC_STAT_BUF_MAX_CORR_CNT_SHIFT;
690 
691 	if (fail_sec_flag) {
692 		int bit, max_bitflips = 0;
693 
694 		/*
695 		 * Since we do not support subpage writes, a complete page
696 		 * is either written or not. We can take a shortcut here by
697 		 * checking wheather any of the sector has been successful
698 		 * read. If at least one sectors has been read successfully,
699 		 * the page must have been a written previously. It cannot
700 		 * be an erased page.
701 		 *
702 		 * E.g. controller might return fail_sec_flag with 0x4, which
703 		 * would mean only the third sector failed to correct. The
704 		 * page must have been written and the third sector is really
705 		 * not correctable anymore.
706 		 */
707 		if (fail_sec_flag ^ GENMASK(chip->ecc.steps - 1, 0)) {
708 			mtd->ecc_stats.failed += hweight8(fail_sec_flag);
709 			return max_corr_cnt;
710 		}
711 
712 		/*
713 		 * All sectors failed to correct, but the ECC isn't smart
714 		 * enough to figure out if a page is really just erased.
715 		 * Read OOB data and check whether data/OOB is completely
716 		 * erased or if error correction just failed for all sub-
717 		 * pages.
718 		 */
719 		ret = tegra_nand_read_oob(mtd, chip, page);
720 		if (ret < 0)
721 			return ret;
722 
723 		for_each_set_bit(bit, &fail_sec_flag, chip->ecc.steps) {
724 			u8 *data = buf + (chip->ecc.size * bit);
725 			u8 *oob = chip->oob_poi + nand->ecc.offset +
726 				  (chip->ecc.bytes * bit);
727 
728 			ret = nand_check_erased_ecc_chunk(data, chip->ecc.size,
729 							  oob, chip->ecc.bytes,
730 							  NULL, 0,
731 							  chip->ecc.strength);
732 			if (ret < 0) {
733 				mtd->ecc_stats.failed++;
734 			} else {
735 				mtd->ecc_stats.corrected += ret;
736 				max_bitflips = max(ret, max_bitflips);
737 			}
738 		}
739 
740 		return max_t(unsigned int, max_corr_cnt, max_bitflips);
741 	} else {
742 		int corr_sec_flag;
743 
744 		corr_sec_flag = (dec_stat & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >>
745 				DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT;
746 
747 		/*
748 		 * The value returned in the register is the maximum of
749 		 * bitflips encountered in any of the ECC regions. As there is
750 		 * no way to get the number of bitflips in a specific regions
751 		 * we are not able to deliver correct stats but instead
752 		 * overestimate the number of corrected bitflips by assuming
753 		 * that all regions where errors have been corrected
754 		 * encountered the maximum number of bitflips.
755 		 */
756 		mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag);
757 
758 		return max_corr_cnt;
759 	}
760 }
761 
tegra_nand_write_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,const u8 * buf,int oob_required,int page)762 static int tegra_nand_write_page_hwecc(struct mtd_info *mtd,
763 				       struct nand_chip *chip, const u8 *buf,
764 				       int oob_required, int page)
765 {
766 	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
767 	void *oob_buf = oob_required ? chip->oob_poi : NULL;
768 	int ret;
769 
770 	tegra_nand_hw_ecc(ctrl, chip, true);
771 	ret = tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
772 				   0, page, false);
773 	tegra_nand_hw_ecc(ctrl, chip, false);
774 
775 	return ret;
776 }
777 
tegra_nand_setup_timing(struct tegra_nand_controller * ctrl,const struct nand_sdr_timings * timings)778 static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl,
779 				    const struct nand_sdr_timings *timings)
780 {
781 	/*
782 	 * The period (and all other timings in this function) is in ps,
783 	 * so need to take care here to avoid integer overflows.
784 	 */
785 	unsigned int rate = clk_get_rate(ctrl->clk) / 1000000;
786 	unsigned int period = DIV_ROUND_UP(1000000, rate);
787 	u32 val, reg = 0;
788 
789 	val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min,
790 				timings->tRC_min), period);
791 	reg |= TIMING_TCR_TAR_TRR(OFFSET(val, 3));
792 
793 	val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min),
794 			       max(timings->tALS_min, timings->tALH_min)),
795 			   period);
796 	reg |= TIMING_TCS(OFFSET(val, 2));
797 
798 	val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000,
799 			   period);
800 	reg |= TIMING_TRP(OFFSET(val, 1)) | TIMING_TRP_RESP(OFFSET(val, 1));
801 
802 	reg |= TIMING_TWB(OFFSET(DIV_ROUND_UP(timings->tWB_max, period), 1));
803 	reg |= TIMING_TWHR(OFFSET(DIV_ROUND_UP(timings->tWHR_min, period), 1));
804 	reg |= TIMING_TWH(OFFSET(DIV_ROUND_UP(timings->tWH_min, period), 1));
805 	reg |= TIMING_TWP(OFFSET(DIV_ROUND_UP(timings->tWP_min, period), 1));
806 	reg |= TIMING_TRH(OFFSET(DIV_ROUND_UP(timings->tREH_min, period), 1));
807 
808 	writel_relaxed(reg, ctrl->regs + TIMING_1);
809 
810 	val = DIV_ROUND_UP(timings->tADL_min, period);
811 	reg = TIMING_TADL(OFFSET(val, 3));
812 
813 	writel_relaxed(reg, ctrl->regs + TIMING_2);
814 }
815 
tegra_nand_setup_data_interface(struct mtd_info * mtd,int csline,const struct nand_data_interface * conf)816 static int tegra_nand_setup_data_interface(struct mtd_info *mtd, int csline,
817 					const struct nand_data_interface *conf)
818 {
819 	struct nand_chip *chip = mtd_to_nand(mtd);
820 	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
821 	const struct nand_sdr_timings *timings;
822 
823 	timings = nand_get_sdr_timings(conf);
824 	if (IS_ERR(timings))
825 		return PTR_ERR(timings);
826 
827 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
828 		return 0;
829 
830 	tegra_nand_setup_timing(ctrl, timings);
831 
832 	return 0;
833 }
834 
835 static const int rs_strength_bootable[] = { 4 };
836 static const int rs_strength[] = { 4, 6, 8 };
837 static const int bch_strength_bootable[] = { 8, 16 };
838 static const int bch_strength[] = { 4, 8, 14, 16 };
839 
tegra_nand_get_strength(struct nand_chip * chip,const int * strength,int strength_len,int bits_per_step,int oobsize)840 static int tegra_nand_get_strength(struct nand_chip *chip, const int *strength,
841 				   int strength_len, int bits_per_step,
842 				   int oobsize)
843 {
844 	bool maximize = chip->ecc.options & NAND_ECC_MAXIMIZE;
845 	int i;
846 
847 	/*
848 	 * Loop through available strengths. Backwards in case we try to
849 	 * maximize the BCH strength.
850 	 */
851 	for (i = 0; i < strength_len; i++) {
852 		int strength_sel, bytes_per_step, bytes_per_page;
853 
854 		if (maximize) {
855 			strength_sel = strength[strength_len - i - 1];
856 		} else {
857 			strength_sel = strength[i];
858 
859 			if (strength_sel < chip->ecc_strength_ds)
860 				continue;
861 		}
862 
863 		bytes_per_step = DIV_ROUND_UP(bits_per_step * strength_sel,
864 					      BITS_PER_BYTE);
865 		bytes_per_page = round_up(bytes_per_step * chip->ecc.steps, 4);
866 
867 		/* Check whether strength fits OOB */
868 		if (bytes_per_page < (oobsize - SKIP_SPARE_BYTES))
869 			return strength_sel;
870 	}
871 
872 	return -EINVAL;
873 }
874 
tegra_nand_select_strength(struct nand_chip * chip,int oobsize)875 static int tegra_nand_select_strength(struct nand_chip *chip, int oobsize)
876 {
877 	const int *strength;
878 	int strength_len, bits_per_step;
879 
880 	switch (chip->ecc.algo) {
881 	case NAND_ECC_RS:
882 		bits_per_step = BITS_PER_STEP_RS;
883 		if (chip->options & NAND_IS_BOOT_MEDIUM) {
884 			strength = rs_strength_bootable;
885 			strength_len = ARRAY_SIZE(rs_strength_bootable);
886 		} else {
887 			strength = rs_strength;
888 			strength_len = ARRAY_SIZE(rs_strength);
889 		}
890 		break;
891 	case NAND_ECC_BCH:
892 		bits_per_step = BITS_PER_STEP_BCH;
893 		if (chip->options & NAND_IS_BOOT_MEDIUM) {
894 			strength = bch_strength_bootable;
895 			strength_len = ARRAY_SIZE(bch_strength_bootable);
896 		} else {
897 			strength = bch_strength;
898 			strength_len = ARRAY_SIZE(bch_strength);
899 		}
900 		break;
901 	default:
902 		return -EINVAL;
903 	}
904 
905 	return tegra_nand_get_strength(chip, strength, strength_len,
906 				       bits_per_step, oobsize);
907 }
908 
tegra_nand_attach_chip(struct nand_chip * chip)909 static int tegra_nand_attach_chip(struct nand_chip *chip)
910 {
911 	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
912 	struct tegra_nand_chip *nand = to_tegra_chip(chip);
913 	struct mtd_info *mtd = nand_to_mtd(chip);
914 	int bits_per_step;
915 	int ret;
916 
917 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
918 		chip->bbt_options |= NAND_BBT_NO_OOB;
919 
920 	chip->ecc.mode = NAND_ECC_HW;
921 	chip->ecc.size = 512;
922 	chip->ecc.steps = mtd->writesize / chip->ecc.size;
923 	if (chip->ecc_step_ds != 512) {
924 		dev_err(ctrl->dev, "Unsupported step size %d\n",
925 			chip->ecc_step_ds);
926 		return -EINVAL;
927 	}
928 
929 	chip->ecc.read_page = tegra_nand_read_page_hwecc;
930 	chip->ecc.write_page = tegra_nand_write_page_hwecc;
931 	chip->ecc.read_page_raw = tegra_nand_read_page_raw;
932 	chip->ecc.write_page_raw = tegra_nand_write_page_raw;
933 	chip->ecc.read_oob = tegra_nand_read_oob;
934 	chip->ecc.write_oob = tegra_nand_write_oob;
935 
936 	if (chip->options & NAND_BUSWIDTH_16)
937 		nand->config |= CONFIG_BUS_WIDTH_16;
938 
939 	if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
940 		if (mtd->writesize < 2048)
941 			chip->ecc.algo = NAND_ECC_RS;
942 		else
943 			chip->ecc.algo = NAND_ECC_BCH;
944 	}
945 
946 	if (chip->ecc.algo == NAND_ECC_BCH && mtd->writesize < 2048) {
947 		dev_err(ctrl->dev, "BCH supports 2K or 4K page size only\n");
948 		return -EINVAL;
949 	}
950 
951 	if (!chip->ecc.strength) {
952 		ret = tegra_nand_select_strength(chip, mtd->oobsize);
953 		if (ret < 0) {
954 			dev_err(ctrl->dev,
955 				"No valid strength found, minimum %d\n",
956 				chip->ecc_strength_ds);
957 			return ret;
958 		}
959 
960 		chip->ecc.strength = ret;
961 	}
962 
963 	nand->config_ecc = CONFIG_PIPE_EN | CONFIG_SKIP_SPARE |
964 			   CONFIG_SKIP_SPARE_SIZE_4;
965 
966 	switch (chip->ecc.algo) {
967 	case NAND_ECC_RS:
968 		bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength;
969 		mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops);
970 		nand->config_ecc |= CONFIG_HW_ECC | CONFIG_ECC_SEL |
971 				    CONFIG_ERR_COR;
972 		switch (chip->ecc.strength) {
973 		case 4:
974 			nand->config_ecc |= CONFIG_TVAL_4;
975 			break;
976 		case 6:
977 			nand->config_ecc |= CONFIG_TVAL_6;
978 			break;
979 		case 8:
980 			nand->config_ecc |= CONFIG_TVAL_8;
981 			break;
982 		default:
983 			dev_err(ctrl->dev, "ECC strength %d not supported\n",
984 				chip->ecc.strength);
985 			return -EINVAL;
986 		}
987 		break;
988 	case NAND_ECC_BCH:
989 		bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength;
990 		mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops);
991 		nand->bch_config = BCH_ENABLE;
992 		switch (chip->ecc.strength) {
993 		case 4:
994 			nand->bch_config |= BCH_TVAL_4;
995 			break;
996 		case 8:
997 			nand->bch_config |= BCH_TVAL_8;
998 			break;
999 		case 14:
1000 			nand->bch_config |= BCH_TVAL_14;
1001 			break;
1002 		case 16:
1003 			nand->bch_config |= BCH_TVAL_16;
1004 			break;
1005 		default:
1006 			dev_err(ctrl->dev, "ECC strength %d not supported\n",
1007 				chip->ecc.strength);
1008 			return -EINVAL;
1009 		}
1010 		break;
1011 	default:
1012 		dev_err(ctrl->dev, "ECC algorithm not supported\n");
1013 		return -EINVAL;
1014 	}
1015 
1016 	dev_info(ctrl->dev, "Using %s with strength %d per 512 byte step\n",
1017 		 chip->ecc.algo == NAND_ECC_BCH ? "BCH" : "RS",
1018 		 chip->ecc.strength);
1019 
1020 	chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, BITS_PER_BYTE);
1021 
1022 	switch (mtd->writesize) {
1023 	case 256:
1024 		nand->config |= CONFIG_PS_256;
1025 		break;
1026 	case 512:
1027 		nand->config |= CONFIG_PS_512;
1028 		break;
1029 	case 1024:
1030 		nand->config |= CONFIG_PS_1024;
1031 		break;
1032 	case 2048:
1033 		nand->config |= CONFIG_PS_2048;
1034 		break;
1035 	case 4096:
1036 		nand->config |= CONFIG_PS_4096;
1037 		break;
1038 	default:
1039 		dev_err(ctrl->dev, "Unsupported writesize %d\n",
1040 			mtd->writesize);
1041 		return -ENODEV;
1042 	}
1043 
1044 	/* Store complete configuration for HW ECC in config_ecc */
1045 	nand->config_ecc |= nand->config;
1046 
1047 	/* Non-HW ECC read/writes complete OOB */
1048 	nand->config |= CONFIG_TAG_BYTE_SIZE(mtd->oobsize - 1);
1049 	writel_relaxed(nand->config, ctrl->regs + CONFIG);
1050 
1051 	return 0;
1052 }
1053 
1054 static const struct nand_controller_ops tegra_nand_controller_ops = {
1055 	.attach_chip = &tegra_nand_attach_chip,
1056 };
1057 
tegra_nand_chips_init(struct device * dev,struct tegra_nand_controller * ctrl)1058 static int tegra_nand_chips_init(struct device *dev,
1059 				 struct tegra_nand_controller *ctrl)
1060 {
1061 	struct device_node *np = dev->of_node;
1062 	struct device_node *np_nand;
1063 	int nsels, nchips = of_get_child_count(np);
1064 	struct tegra_nand_chip *nand;
1065 	struct mtd_info *mtd;
1066 	struct nand_chip *chip;
1067 	int ret;
1068 	u32 cs;
1069 
1070 	if (nchips != 1) {
1071 		dev_err(dev, "Currently only one NAND chip supported\n");
1072 		return -EINVAL;
1073 	}
1074 
1075 	np_nand = of_get_next_child(np, NULL);
1076 
1077 	nsels = of_property_count_elems_of_size(np_nand, "reg", sizeof(u32));
1078 	if (nsels != 1) {
1079 		dev_err(dev, "Missing/invalid reg property\n");
1080 		return -EINVAL;
1081 	}
1082 
1083 	/* Retrieve CS id, currently only single die NAND supported */
1084 	ret = of_property_read_u32(np_nand, "reg", &cs);
1085 	if (ret) {
1086 		dev_err(dev, "could not retrieve reg property: %d\n", ret);
1087 		return ret;
1088 	}
1089 
1090 	nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL);
1091 	if (!nand)
1092 		return -ENOMEM;
1093 
1094 	nand->cs[0] = cs;
1095 
1096 	nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW);
1097 
1098 	if (IS_ERR(nand->wp_gpio)) {
1099 		ret = PTR_ERR(nand->wp_gpio);
1100 		dev_err(dev, "Failed to request WP GPIO: %d\n", ret);
1101 		return ret;
1102 	}
1103 
1104 	chip = &nand->chip;
1105 	chip->controller = &ctrl->controller;
1106 
1107 	mtd = nand_to_mtd(chip);
1108 
1109 	mtd->dev.parent = dev;
1110 	mtd->owner = THIS_MODULE;
1111 
1112 	nand_set_flash_node(chip, np_nand);
1113 
1114 	if (!mtd->name)
1115 		mtd->name = "tegra_nand";
1116 
1117 	chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER;
1118 	chip->exec_op = tegra_nand_exec_op;
1119 	chip->select_chip = tegra_nand_select_chip;
1120 	chip->setup_data_interface = tegra_nand_setup_data_interface;
1121 
1122 	ret = nand_scan(mtd, 1);
1123 	if (ret)
1124 		return ret;
1125 
1126 	mtd_ooblayout_ecc(mtd, 0, &nand->ecc);
1127 
1128 	ret = mtd_device_register(mtd, NULL, 0);
1129 	if (ret) {
1130 		dev_err(dev, "Failed to register mtd device: %d\n", ret);
1131 		nand_cleanup(chip);
1132 		return ret;
1133 	}
1134 
1135 	ctrl->chip = chip;
1136 
1137 	return 0;
1138 }
1139 
tegra_nand_probe(struct platform_device * pdev)1140 static int tegra_nand_probe(struct platform_device *pdev)
1141 {
1142 	struct reset_control *rst;
1143 	struct tegra_nand_controller *ctrl;
1144 	struct resource *res;
1145 	int err = 0;
1146 
1147 	ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL);
1148 	if (!ctrl)
1149 		return -ENOMEM;
1150 
1151 	ctrl->dev = &pdev->dev;
1152 	nand_controller_init(&ctrl->controller);
1153 	ctrl->controller.ops = &tegra_nand_controller_ops;
1154 
1155 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1156 	ctrl->regs = devm_ioremap_resource(&pdev->dev, res);
1157 	if (IS_ERR(ctrl->regs))
1158 		return PTR_ERR(ctrl->regs);
1159 
1160 	rst = devm_reset_control_get(&pdev->dev, "nand");
1161 	if (IS_ERR(rst))
1162 		return PTR_ERR(rst);
1163 
1164 	ctrl->clk = devm_clk_get(&pdev->dev, "nand");
1165 	if (IS_ERR(ctrl->clk))
1166 		return PTR_ERR(ctrl->clk);
1167 
1168 	err = clk_prepare_enable(ctrl->clk);
1169 	if (err)
1170 		return err;
1171 
1172 	err = reset_control_reset(rst);
1173 	if (err) {
1174 		dev_err(ctrl->dev, "Failed to reset HW: %d\n", err);
1175 		goto err_disable_clk;
1176 	}
1177 
1178 	writel_relaxed(HWSTATUS_CMD_DEFAULT, ctrl->regs + HWSTATUS_CMD);
1179 	writel_relaxed(HWSTATUS_MASK_DEFAULT, ctrl->regs + HWSTATUS_MASK);
1180 	writel_relaxed(INT_MASK, ctrl->regs + IER);
1181 
1182 	init_completion(&ctrl->command_complete);
1183 	init_completion(&ctrl->dma_complete);
1184 
1185 	ctrl->irq = platform_get_irq(pdev, 0);
1186 	err = devm_request_irq(&pdev->dev, ctrl->irq, tegra_nand_irq, 0,
1187 			       dev_name(&pdev->dev), ctrl);
1188 	if (err) {
1189 		dev_err(ctrl->dev, "Failed to get IRQ: %d\n", err);
1190 		goto err_disable_clk;
1191 	}
1192 
1193 	writel_relaxed(DMA_MST_CTRL_IS_DONE, ctrl->regs + DMA_MST_CTRL);
1194 
1195 	err = tegra_nand_chips_init(ctrl->dev, ctrl);
1196 	if (err)
1197 		goto err_disable_clk;
1198 
1199 	platform_set_drvdata(pdev, ctrl);
1200 
1201 	return 0;
1202 
1203 err_disable_clk:
1204 	clk_disable_unprepare(ctrl->clk);
1205 	return err;
1206 }
1207 
tegra_nand_remove(struct platform_device * pdev)1208 static int tegra_nand_remove(struct platform_device *pdev)
1209 {
1210 	struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev);
1211 	struct nand_chip *chip = ctrl->chip;
1212 	struct mtd_info *mtd = nand_to_mtd(chip);
1213 	int ret;
1214 
1215 	ret = mtd_device_unregister(mtd);
1216 	if (ret)
1217 		return ret;
1218 
1219 	nand_cleanup(chip);
1220 
1221 	clk_disable_unprepare(ctrl->clk);
1222 
1223 	return 0;
1224 }
1225 
1226 static const struct of_device_id tegra_nand_of_match[] = {
1227 	{ .compatible = "nvidia,tegra20-nand" },
1228 	{ /* sentinel */ }
1229 };
1230 MODULE_DEVICE_TABLE(of, tegra_nand_of_match);
1231 
1232 static struct platform_driver tegra_nand_driver = {
1233 	.driver = {
1234 		.name = "tegra-nand",
1235 		.of_match_table = tegra_nand_of_match,
1236 	},
1237 	.probe = tegra_nand_probe,
1238 	.remove = tegra_nand_remove,
1239 };
1240 module_platform_driver(tegra_nand_driver);
1241 
1242 MODULE_DESCRIPTION("NVIDIA Tegra NAND driver");
1243 MODULE_AUTHOR("Thierry Reding <thierry.reding@nvidia.com>");
1244 MODULE_AUTHOR("Lucas Stach <dev@lynxeye.de>");
1245 MODULE_AUTHOR("Stefan Agner <stefan@agner.ch>");
1246 MODULE_LICENSE("GPL v2");
1247