1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Evatronix/Renesas R-Car Gen3, RZ/N1D, RZ/N1S, RZ/N1L NAND controller driver
4 *
5 * Copyright (C) 2021 Schneider Electric
6 * Author: Miquel RAYNAL <miquel.raynal@bootlin.com>
7 */
8
9 #include <linux/bitfield.h>
10 #include <linux/clk.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/rawnand.h>
17 #include <linux/of.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/slab.h>
21
22 #define COMMAND_REG 0x00
23 #define COMMAND_SEQ(x) FIELD_PREP(GENMASK(5, 0), (x))
24 #define COMMAND_SEQ_10 COMMAND_SEQ(0x2A)
25 #define COMMAND_SEQ_12 COMMAND_SEQ(0x0C)
26 #define COMMAND_SEQ_18 COMMAND_SEQ(0x32)
27 #define COMMAND_SEQ_19 COMMAND_SEQ(0x13)
28 #define COMMAND_SEQ_GEN_IN COMMAND_SEQ_18
29 #define COMMAND_SEQ_GEN_OUT COMMAND_SEQ_19
30 #define COMMAND_SEQ_READ_PAGE COMMAND_SEQ_10
31 #define COMMAND_SEQ_WRITE_PAGE COMMAND_SEQ_12
32 #define COMMAND_INPUT_SEL_AHBS 0
33 #define COMMAND_INPUT_SEL_DMA BIT(6)
34 #define COMMAND_FIFO_SEL 0
35 #define COMMAND_DATA_SEL BIT(7)
36 #define COMMAND_0(x) FIELD_PREP(GENMASK(15, 8), (x))
37 #define COMMAND_1(x) FIELD_PREP(GENMASK(23, 16), (x))
38 #define COMMAND_2(x) FIELD_PREP(GENMASK(31, 24), (x))
39
40 #define CONTROL_REG 0x04
41 #define CONTROL_CHECK_RB_LINE 0
42 #define CONTROL_ECC_BLOCK_SIZE(x) FIELD_PREP(GENMASK(2, 1), (x))
43 #define CONTROL_ECC_BLOCK_SIZE_256 CONTROL_ECC_BLOCK_SIZE(0)
44 #define CONTROL_ECC_BLOCK_SIZE_512 CONTROL_ECC_BLOCK_SIZE(1)
45 #define CONTROL_ECC_BLOCK_SIZE_1024 CONTROL_ECC_BLOCK_SIZE(2)
46 #define CONTROL_INT_EN BIT(4)
47 #define CONTROL_ECC_EN BIT(5)
48 #define CONTROL_BLOCK_SIZE(x) FIELD_PREP(GENMASK(7, 6), (x))
49 #define CONTROL_BLOCK_SIZE_32P CONTROL_BLOCK_SIZE(0)
50 #define CONTROL_BLOCK_SIZE_64P CONTROL_BLOCK_SIZE(1)
51 #define CONTROL_BLOCK_SIZE_128P CONTROL_BLOCK_SIZE(2)
52 #define CONTROL_BLOCK_SIZE_256P CONTROL_BLOCK_SIZE(3)
53
54 #define STATUS_REG 0x8
55 #define MEM_RDY(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs))
56 #define CTRL_RDY(reg) (FIELD_GET(BIT(8), (reg)) == 0)
57
58 #define ECC_CTRL_REG 0x18
59 #define ECC_CTRL_CAP(x) FIELD_PREP(GENMASK(2, 0), (x))
60 #define ECC_CTRL_CAP_2B ECC_CTRL_CAP(0)
61 #define ECC_CTRL_CAP_4B ECC_CTRL_CAP(1)
62 #define ECC_CTRL_CAP_8B ECC_CTRL_CAP(2)
63 #define ECC_CTRL_CAP_16B ECC_CTRL_CAP(3)
64 #define ECC_CTRL_CAP_24B ECC_CTRL_CAP(4)
65 #define ECC_CTRL_CAP_32B ECC_CTRL_CAP(5)
66 #define ECC_CTRL_ERR_THRESHOLD(x) FIELD_PREP(GENMASK(13, 8), (x))
67
68 #define INT_MASK_REG 0x10
69 #define INT_STATUS_REG 0x14
70 #define INT_CMD_END BIT(1)
71 #define INT_DMA_END BIT(3)
72 #define INT_MEM_RDY(cs) FIELD_PREP(GENMASK(11, 8), BIT(cs))
73 #define INT_DMA_ENDED BIT(3)
74 #define MEM_IS_RDY(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs))
75 #define DMA_HAS_ENDED(reg) FIELD_GET(BIT(3), (reg))
76
77 #define ECC_OFFSET_REG 0x1C
78 #define ECC_OFFSET(x) FIELD_PREP(GENMASK(15, 0), (x))
79
80 #define ECC_STAT_REG 0x20
81 #define ECC_STAT_CORRECTABLE(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs))
82 #define ECC_STAT_UNCORRECTABLE(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs))
83
84 #define ADDR0_COL_REG 0x24
85 #define ADDR0_COL(x) FIELD_PREP(GENMASK(15, 0), (x))
86
87 #define ADDR0_ROW_REG 0x28
88 #define ADDR0_ROW(x) FIELD_PREP(GENMASK(23, 0), (x))
89
90 #define ADDR1_COL_REG 0x2C
91 #define ADDR1_COL(x) FIELD_PREP(GENMASK(15, 0), (x))
92
93 #define ADDR1_ROW_REG 0x30
94 #define ADDR1_ROW(x) FIELD_PREP(GENMASK(23, 0), (x))
95
96 #define FIFO_DATA_REG 0x38
97
98 #define DATA_REG 0x3C
99
100 #define DATA_REG_SIZE_REG 0x40
101
102 #define DMA_ADDR_LOW_REG 0x64
103
104 #define DMA_ADDR_HIGH_REG 0x68
105
106 #define DMA_CNT_REG 0x6C
107
108 #define DMA_CTRL_REG 0x70
109 #define DMA_CTRL_INCREMENT_BURST_4 0
110 #define DMA_CTRL_REGISTER_MANAGED_MODE 0
111 #define DMA_CTRL_START BIT(7)
112
113 #define MEM_CTRL_REG 0x80
114 #define MEM_CTRL_CS(cs) FIELD_PREP(GENMASK(1, 0), (cs))
115 #define MEM_CTRL_DIS_WP(cs) FIELD_PREP(GENMASK(11, 8), BIT((cs)))
116
117 #define DATA_SIZE_REG 0x84
118 #define DATA_SIZE(x) FIELD_PREP(GENMASK(14, 0), (x))
119
120 #define TIMINGS_ASYN_REG 0x88
121 #define TIMINGS_ASYN_TRWP(x) FIELD_PREP(GENMASK(3, 0), max((x), 1U) - 1)
122 #define TIMINGS_ASYN_TRWH(x) FIELD_PREP(GENMASK(7, 4), max((x), 1U) - 1)
123
124 #define TIM_SEQ0_REG 0x90
125 #define TIM_SEQ0_TCCS(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1)
126 #define TIM_SEQ0_TADL(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1)
127 #define TIM_SEQ0_TRHW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1)
128 #define TIM_SEQ0_TWHR(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1)
129
130 #define TIM_SEQ1_REG 0x94
131 #define TIM_SEQ1_TWB(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1)
132 #define TIM_SEQ1_TRR(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1)
133 #define TIM_SEQ1_TWW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1)
134
135 #define TIM_GEN_SEQ0_REG 0x98
136 #define TIM_GEN_SEQ0_D0(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1)
137 #define TIM_GEN_SEQ0_D1(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1)
138 #define TIM_GEN_SEQ0_D2(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1)
139 #define TIM_GEN_SEQ0_D3(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1)
140
141 #define TIM_GEN_SEQ1_REG 0x9c
142 #define TIM_GEN_SEQ1_D4(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1)
143 #define TIM_GEN_SEQ1_D5(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1)
144 #define TIM_GEN_SEQ1_D6(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1)
145 #define TIM_GEN_SEQ1_D7(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1)
146
147 #define TIM_GEN_SEQ2_REG 0xA0
148 #define TIM_GEN_SEQ2_D8(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1)
149 #define TIM_GEN_SEQ2_D9(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1)
150 #define TIM_GEN_SEQ2_D10(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1)
151 #define TIM_GEN_SEQ2_D11(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1)
152
153 #define FIFO_INIT_REG 0xB4
154 #define FIFO_INIT BIT(0)
155
156 #define FIFO_STATE_REG 0xB4
157 #define FIFO_STATE_R_EMPTY(reg) FIELD_GET(BIT(0), (reg))
158 #define FIFO_STATE_W_FULL(reg) FIELD_GET(BIT(1), (reg))
159 #define FIFO_STATE_C_EMPTY(reg) FIELD_GET(BIT(2), (reg))
160 #define FIFO_STATE_R_FULL(reg) FIELD_GET(BIT(6), (reg))
161 #define FIFO_STATE_W_EMPTY(reg) FIELD_GET(BIT(7), (reg))
162
163 #define GEN_SEQ_CTRL_REG 0xB8
164 #define GEN_SEQ_CMD0_EN BIT(0)
165 #define GEN_SEQ_CMD1_EN BIT(1)
166 #define GEN_SEQ_CMD2_EN BIT(2)
167 #define GEN_SEQ_CMD3_EN BIT(3)
168 #define GEN_SEQ_COL_A0(x) FIELD_PREP(GENMASK(5, 4), min((x), 2U))
169 #define GEN_SEQ_COL_A1(x) FIELD_PREP(GENMASK(7, 6), min((x), 2U))
170 #define GEN_SEQ_ROW_A0(x) FIELD_PREP(GENMASK(9, 8), min((x), 3U))
171 #define GEN_SEQ_ROW_A1(x) FIELD_PREP(GENMASK(11, 10), min((x), 3U))
172 #define GEN_SEQ_DATA_EN BIT(12)
173 #define GEN_SEQ_DELAY_EN(x) FIELD_PREP(GENMASK(14, 13), (x))
174 #define GEN_SEQ_DELAY0_EN GEN_SEQ_DELAY_EN(1)
175 #define GEN_SEQ_DELAY1_EN GEN_SEQ_DELAY_EN(2)
176 #define GEN_SEQ_IMD_SEQ BIT(15)
177 #define GEN_SEQ_COMMAND_3(x) FIELD_PREP(GENMASK(26, 16), (x))
178
179 #define DMA_TLVL_REG 0x114
180 #define DMA_TLVL(x) FIELD_PREP(GENMASK(7, 0), (x))
181 #define DMA_TLVL_MAX DMA_TLVL(0xFF)
182
183 #define TIM_GEN_SEQ3_REG 0x134
184 #define TIM_GEN_SEQ3_D12(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1)
185
186 #define ECC_CNT_REG 0x14C
187 #define ECC_CNT(cs, reg) FIELD_GET(GENMASK(5, 0), (reg) >> ((cs) * 8))
188
189 #define RNANDC_CS_NUM 4
190
191 #define TO_CYCLES64(ps, period_ns) ((unsigned int)DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
192 period_ns))
193
194 struct rnand_chip_sel {
195 unsigned int cs;
196 };
197
198 struct rnand_chip {
199 struct nand_chip chip;
200 struct list_head node;
201 int selected_die;
202 u32 ctrl;
203 unsigned int nsels;
204 u32 control;
205 u32 ecc_ctrl;
206 u32 timings_asyn;
207 u32 tim_seq0;
208 u32 tim_seq1;
209 u32 tim_gen_seq0;
210 u32 tim_gen_seq1;
211 u32 tim_gen_seq2;
212 u32 tim_gen_seq3;
213 struct rnand_chip_sel sels[];
214 };
215
216 struct rnandc {
217 struct nand_controller controller;
218 struct device *dev;
219 void __iomem *regs;
220 unsigned long ext_clk_rate;
221 unsigned long assigned_cs;
222 struct list_head chips;
223 struct nand_chip *selected_chip;
224 struct completion complete;
225 bool use_polling;
226 u8 *buf;
227 unsigned int buf_sz;
228 };
229
230 struct rnandc_op {
231 u32 command;
232 u32 addr0_col;
233 u32 addr0_row;
234 u32 addr1_col;
235 u32 addr1_row;
236 u32 data_size;
237 u32 ecc_offset;
238 u32 gen_seq_ctrl;
239 u8 *buf;
240 bool read;
241 unsigned int len;
242 };
243
to_rnandc(struct nand_controller * ctrl)244 static inline struct rnandc *to_rnandc(struct nand_controller *ctrl)
245 {
246 return container_of(ctrl, struct rnandc, controller);
247 }
248
to_rnand(struct nand_chip * chip)249 static inline struct rnand_chip *to_rnand(struct nand_chip *chip)
250 {
251 return container_of(chip, struct rnand_chip, chip);
252 }
253
to_rnandc_cs(struct rnand_chip * nand)254 static inline unsigned int to_rnandc_cs(struct rnand_chip *nand)
255 {
256 return nand->sels[nand->selected_die].cs;
257 }
258
rnandc_dis_correction(struct rnandc * rnandc)259 static void rnandc_dis_correction(struct rnandc *rnandc)
260 {
261 u32 control;
262
263 control = readl_relaxed(rnandc->regs + CONTROL_REG);
264 control &= ~CONTROL_ECC_EN;
265 writel_relaxed(control, rnandc->regs + CONTROL_REG);
266 }
267
rnandc_en_correction(struct rnandc * rnandc)268 static void rnandc_en_correction(struct rnandc *rnandc)
269 {
270 u32 control;
271
272 control = readl_relaxed(rnandc->regs + CONTROL_REG);
273 control |= CONTROL_ECC_EN;
274 writel_relaxed(control, rnandc->regs + CONTROL_REG);
275 }
276
rnandc_clear_status(struct rnandc * rnandc)277 static void rnandc_clear_status(struct rnandc *rnandc)
278 {
279 writel_relaxed(0, rnandc->regs + INT_STATUS_REG);
280 writel_relaxed(0, rnandc->regs + ECC_STAT_REG);
281 writel_relaxed(0, rnandc->regs + ECC_CNT_REG);
282 }
283
rnandc_dis_interrupts(struct rnandc * rnandc)284 static void rnandc_dis_interrupts(struct rnandc *rnandc)
285 {
286 writel_relaxed(0, rnandc->regs + INT_MASK_REG);
287 }
288
rnandc_en_interrupts(struct rnandc * rnandc,u32 val)289 static void rnandc_en_interrupts(struct rnandc *rnandc, u32 val)
290 {
291 if (!rnandc->use_polling)
292 writel_relaxed(val, rnandc->regs + INT_MASK_REG);
293 }
294
rnandc_clear_fifo(struct rnandc * rnandc)295 static void rnandc_clear_fifo(struct rnandc *rnandc)
296 {
297 writel_relaxed(FIFO_INIT, rnandc->regs + FIFO_INIT_REG);
298 }
299
rnandc_select_target(struct nand_chip * chip,int die_nr)300 static void rnandc_select_target(struct nand_chip *chip, int die_nr)
301 {
302 struct rnand_chip *rnand = to_rnand(chip);
303 struct rnandc *rnandc = to_rnandc(chip->controller);
304 unsigned int cs = rnand->sels[die_nr].cs;
305
306 if (chip == rnandc->selected_chip && die_nr == rnand->selected_die)
307 return;
308
309 rnandc_clear_status(rnandc);
310 writel_relaxed(MEM_CTRL_CS(cs) | MEM_CTRL_DIS_WP(cs), rnandc->regs + MEM_CTRL_REG);
311 writel_relaxed(rnand->control, rnandc->regs + CONTROL_REG);
312 writel_relaxed(rnand->ecc_ctrl, rnandc->regs + ECC_CTRL_REG);
313 writel_relaxed(rnand->timings_asyn, rnandc->regs + TIMINGS_ASYN_REG);
314 writel_relaxed(rnand->tim_seq0, rnandc->regs + TIM_SEQ0_REG);
315 writel_relaxed(rnand->tim_seq1, rnandc->regs + TIM_SEQ1_REG);
316 writel_relaxed(rnand->tim_gen_seq0, rnandc->regs + TIM_GEN_SEQ0_REG);
317 writel_relaxed(rnand->tim_gen_seq1, rnandc->regs + TIM_GEN_SEQ1_REG);
318 writel_relaxed(rnand->tim_gen_seq2, rnandc->regs + TIM_GEN_SEQ2_REG);
319 writel_relaxed(rnand->tim_gen_seq3, rnandc->regs + TIM_GEN_SEQ3_REG);
320
321 rnandc->selected_chip = chip;
322 rnand->selected_die = die_nr;
323 }
324
rnandc_trigger_op(struct rnandc * rnandc,struct rnandc_op * rop)325 static void rnandc_trigger_op(struct rnandc *rnandc, struct rnandc_op *rop)
326 {
327 writel_relaxed(rop->addr0_col, rnandc->regs + ADDR0_COL_REG);
328 writel_relaxed(rop->addr0_row, rnandc->regs + ADDR0_ROW_REG);
329 writel_relaxed(rop->addr1_col, rnandc->regs + ADDR1_COL_REG);
330 writel_relaxed(rop->addr1_row, rnandc->regs + ADDR1_ROW_REG);
331 writel_relaxed(rop->ecc_offset, rnandc->regs + ECC_OFFSET_REG);
332 writel_relaxed(rop->gen_seq_ctrl, rnandc->regs + GEN_SEQ_CTRL_REG);
333 writel_relaxed(DATA_SIZE(rop->len), rnandc->regs + DATA_SIZE_REG);
334 writel_relaxed(rop->command, rnandc->regs + COMMAND_REG);
335 }
336
rnandc_trigger_dma(struct rnandc * rnandc)337 static void rnandc_trigger_dma(struct rnandc *rnandc)
338 {
339 writel_relaxed(DMA_CTRL_INCREMENT_BURST_4 |
340 DMA_CTRL_REGISTER_MANAGED_MODE |
341 DMA_CTRL_START, rnandc->regs + DMA_CTRL_REG);
342 }
343
rnandc_irq_handler(int irq,void * private)344 static irqreturn_t rnandc_irq_handler(int irq, void *private)
345 {
346 struct rnandc *rnandc = private;
347
348 rnandc_dis_interrupts(rnandc);
349 complete(&rnandc->complete);
350
351 return IRQ_HANDLED;
352 }
353
rnandc_wait_end_of_op(struct rnandc * rnandc,struct nand_chip * chip)354 static int rnandc_wait_end_of_op(struct rnandc *rnandc,
355 struct nand_chip *chip)
356 {
357 struct rnand_chip *rnand = to_rnand(chip);
358 unsigned int cs = to_rnandc_cs(rnand);
359 u32 status;
360 int ret;
361
362 ret = readl_poll_timeout(rnandc->regs + STATUS_REG, status,
363 MEM_RDY(cs, status) && CTRL_RDY(status),
364 1, 100000);
365 if (ret)
366 dev_err(rnandc->dev, "Operation timed out, status: 0x%08x\n",
367 status);
368
369 return ret;
370 }
371
rnandc_wait_end_of_io(struct rnandc * rnandc,struct nand_chip * chip)372 static int rnandc_wait_end_of_io(struct rnandc *rnandc,
373 struct nand_chip *chip)
374 {
375 int timeout_ms = 1000;
376 int ret;
377
378 if (rnandc->use_polling) {
379 struct rnand_chip *rnand = to_rnand(chip);
380 unsigned int cs = to_rnandc_cs(rnand);
381 u32 status;
382
383 ret = readl_poll_timeout(rnandc->regs + INT_STATUS_REG, status,
384 MEM_IS_RDY(cs, status) &
385 DMA_HAS_ENDED(status),
386 0, timeout_ms * 1000);
387 } else {
388 ret = wait_for_completion_timeout(&rnandc->complete,
389 msecs_to_jiffies(timeout_ms));
390 if (!ret)
391 ret = -ETIMEDOUT;
392 else
393 ret = 0;
394 }
395
396 return ret;
397 }
398
rnandc_read_page_hw_ecc(struct nand_chip * chip,u8 * buf,int oob_required,int page)399 static int rnandc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
400 int oob_required, int page)
401 {
402 struct rnandc *rnandc = to_rnandc(chip->controller);
403 struct mtd_info *mtd = nand_to_mtd(chip);
404 struct rnand_chip *rnand = to_rnand(chip);
405 unsigned int cs = to_rnandc_cs(rnand);
406 struct rnandc_op rop = {
407 .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_READ0) |
408 COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL |
409 COMMAND_SEQ_READ_PAGE,
410 .addr0_row = page,
411 .len = mtd->writesize,
412 .ecc_offset = ECC_OFFSET(mtd->writesize + 2),
413 };
414 unsigned int max_bitflips = 0;
415 dma_addr_t dma_addr;
416 u32 ecc_stat;
417 int bf, ret, i;
418
419 /* Prepare controller */
420 rnandc_select_target(chip, chip->cur_cs);
421 rnandc_clear_status(rnandc);
422 reinit_completion(&rnandc->complete);
423 rnandc_en_interrupts(rnandc, INT_DMA_ENDED);
424 rnandc_en_correction(rnandc);
425
426 /* Configure DMA */
427 dma_addr = dma_map_single(rnandc->dev, rnandc->buf, mtd->writesize,
428 DMA_FROM_DEVICE);
429 writel(dma_addr, rnandc->regs + DMA_ADDR_LOW_REG);
430 writel(mtd->writesize, rnandc->regs + DMA_CNT_REG);
431 writel(DMA_TLVL_MAX, rnandc->regs + DMA_TLVL_REG);
432
433 rnandc_trigger_op(rnandc, &rop);
434 rnandc_trigger_dma(rnandc);
435
436 ret = rnandc_wait_end_of_io(rnandc, chip);
437 dma_unmap_single(rnandc->dev, dma_addr, mtd->writesize, DMA_FROM_DEVICE);
438 rnandc_dis_correction(rnandc);
439 if (ret) {
440 dev_err(rnandc->dev, "Read page operation never ending\n");
441 return ret;
442 }
443
444 ecc_stat = readl_relaxed(rnandc->regs + ECC_STAT_REG);
445
446 if (oob_required || ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) {
447 ret = nand_change_read_column_op(chip, mtd->writesize,
448 chip->oob_poi, mtd->oobsize,
449 false);
450 if (ret)
451 return ret;
452 }
453
454 if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) {
455 for (i = 0; i < chip->ecc.steps; i++) {
456 unsigned int off = i * chip->ecc.size;
457 unsigned int eccoff = i * chip->ecc.bytes;
458
459 bf = nand_check_erased_ecc_chunk(rnandc->buf + off,
460 chip->ecc.size,
461 chip->oob_poi + 2 + eccoff,
462 chip->ecc.bytes,
463 NULL, 0,
464 chip->ecc.strength);
465 if (bf < 0) {
466 mtd->ecc_stats.failed++;
467 } else {
468 mtd->ecc_stats.corrected += bf;
469 max_bitflips = max_t(unsigned int, max_bitflips, bf);
470 }
471 }
472 } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) {
473 bf = ECC_CNT(cs, readl_relaxed(rnandc->regs + ECC_CNT_REG));
474 /*
475 * The number of bitflips is an approximation given the fact
476 * that this controller does not provide per-chunk details but
477 * only gives statistics on the entire page.
478 */
479 mtd->ecc_stats.corrected += bf;
480 }
481
482 memcpy(buf, rnandc->buf, mtd->writesize);
483
484 return 0;
485 }
486
rnandc_read_subpage_hw_ecc(struct nand_chip * chip,u32 req_offset,u32 req_len,u8 * bufpoi,int page)487 static int rnandc_read_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset,
488 u32 req_len, u8 *bufpoi, int page)
489 {
490 struct rnandc *rnandc = to_rnandc(chip->controller);
491 struct mtd_info *mtd = nand_to_mtd(chip);
492 struct rnand_chip *rnand = to_rnand(chip);
493 unsigned int cs = to_rnandc_cs(rnand);
494 unsigned int page_off = round_down(req_offset, chip->ecc.size);
495 unsigned int real_len = round_up(req_offset + req_len - page_off,
496 chip->ecc.size);
497 unsigned int start_chunk = page_off / chip->ecc.size;
498 unsigned int nchunks = real_len / chip->ecc.size;
499 unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes);
500 struct rnandc_op rop = {
501 .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_READ0) |
502 COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL |
503 COMMAND_SEQ_READ_PAGE,
504 .addr0_row = page,
505 .addr0_col = page_off,
506 .len = real_len,
507 .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off),
508 };
509 unsigned int max_bitflips = 0, i;
510 u32 ecc_stat;
511 int bf, ret;
512
513 /* Prepare controller */
514 rnandc_select_target(chip, chip->cur_cs);
515 rnandc_clear_status(rnandc);
516 rnandc_en_correction(rnandc);
517 rnandc_trigger_op(rnandc, &rop);
518
519 while (!FIFO_STATE_C_EMPTY(readl(rnandc->regs + FIFO_STATE_REG)))
520 cpu_relax();
521
522 while (FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG)))
523 cpu_relax();
524
525 ioread32_rep(rnandc->regs + FIFO_DATA_REG, bufpoi + page_off,
526 real_len / 4);
527
528 if (!FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) {
529 dev_err(rnandc->dev, "Clearing residual data in the read FIFO\n");
530 rnandc_clear_fifo(rnandc);
531 }
532
533 ret = rnandc_wait_end_of_op(rnandc, chip);
534 rnandc_dis_correction(rnandc);
535 if (ret) {
536 dev_err(rnandc->dev, "Read subpage operation never ending\n");
537 return ret;
538 }
539
540 ecc_stat = readl_relaxed(rnandc->regs + ECC_STAT_REG);
541
542 if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) {
543 ret = nand_change_read_column_op(chip, mtd->writesize,
544 chip->oob_poi, mtd->oobsize,
545 false);
546 if (ret)
547 return ret;
548
549 for (i = start_chunk; i < nchunks; i++) {
550 unsigned int dataoff = i * chip->ecc.size;
551 unsigned int eccoff = 2 + (i * chip->ecc.bytes);
552
553 bf = nand_check_erased_ecc_chunk(bufpoi + dataoff,
554 chip->ecc.size,
555 chip->oob_poi + eccoff,
556 chip->ecc.bytes,
557 NULL, 0,
558 chip->ecc.strength);
559 if (bf < 0) {
560 mtd->ecc_stats.failed++;
561 } else {
562 mtd->ecc_stats.corrected += bf;
563 max_bitflips = max_t(unsigned int, max_bitflips, bf);
564 }
565 }
566 } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) {
567 bf = ECC_CNT(cs, readl_relaxed(rnandc->regs + ECC_CNT_REG));
568 /*
569 * The number of bitflips is an approximation given the fact
570 * that this controller does not provide per-chunk details but
571 * only gives statistics on the entire page.
572 */
573 mtd->ecc_stats.corrected += bf;
574 }
575
576 return 0;
577 }
578
rnandc_write_page_hw_ecc(struct nand_chip * chip,const u8 * buf,int oob_required,int page)579 static int rnandc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
580 int oob_required, int page)
581 {
582 struct rnandc *rnandc = to_rnandc(chip->controller);
583 struct mtd_info *mtd = nand_to_mtd(chip);
584 struct rnand_chip *rnand = to_rnand(chip);
585 unsigned int cs = to_rnandc_cs(rnand);
586 struct rnandc_op rop = {
587 .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_SEQIN) |
588 COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL |
589 COMMAND_SEQ_WRITE_PAGE,
590 .addr0_row = page,
591 .len = mtd->writesize,
592 .ecc_offset = ECC_OFFSET(mtd->writesize + 2),
593 };
594 dma_addr_t dma_addr;
595 int ret;
596
597 memcpy(rnandc->buf, buf, mtd->writesize);
598
599 /* Prepare controller */
600 rnandc_select_target(chip, chip->cur_cs);
601 rnandc_clear_status(rnandc);
602 reinit_completion(&rnandc->complete);
603 rnandc_en_interrupts(rnandc, INT_MEM_RDY(cs));
604 rnandc_en_correction(rnandc);
605
606 /* Configure DMA */
607 dma_addr = dma_map_single(rnandc->dev, (void *)rnandc->buf, mtd->writesize,
608 DMA_TO_DEVICE);
609 writel(dma_addr, rnandc->regs + DMA_ADDR_LOW_REG);
610 writel(mtd->writesize, rnandc->regs + DMA_CNT_REG);
611 writel(DMA_TLVL_MAX, rnandc->regs + DMA_TLVL_REG);
612
613 rnandc_trigger_op(rnandc, &rop);
614 rnandc_trigger_dma(rnandc);
615
616 ret = rnandc_wait_end_of_io(rnandc, chip);
617 dma_unmap_single(rnandc->dev, dma_addr, mtd->writesize, DMA_TO_DEVICE);
618 rnandc_dis_correction(rnandc);
619 if (ret) {
620 dev_err(rnandc->dev, "Write page operation never ending\n");
621 return ret;
622 }
623
624 if (!oob_required)
625 return 0;
626
627 return nand_change_write_column_op(chip, mtd->writesize, chip->oob_poi,
628 mtd->oobsize, false);
629 }
630
rnandc_write_subpage_hw_ecc(struct nand_chip * chip,u32 req_offset,u32 req_len,const u8 * bufpoi,int oob_required,int page)631 static int rnandc_write_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset,
632 u32 req_len, const u8 *bufpoi,
633 int oob_required, int page)
634 {
635 struct rnandc *rnandc = to_rnandc(chip->controller);
636 struct mtd_info *mtd = nand_to_mtd(chip);
637 unsigned int page_off = round_down(req_offset, chip->ecc.size);
638 unsigned int real_len = round_up(req_offset + req_len - page_off,
639 chip->ecc.size);
640 unsigned int start_chunk = page_off / chip->ecc.size;
641 unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes);
642 struct rnandc_op rop = {
643 .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_SEQIN) |
644 COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL |
645 COMMAND_SEQ_WRITE_PAGE,
646 .addr0_row = page,
647 .addr0_col = page_off,
648 .len = real_len,
649 .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off),
650 };
651 int ret;
652
653 /* Prepare controller */
654 rnandc_select_target(chip, chip->cur_cs);
655 rnandc_clear_status(rnandc);
656 rnandc_en_correction(rnandc);
657 rnandc_trigger_op(rnandc, &rop);
658
659 while (FIFO_STATE_W_FULL(readl(rnandc->regs + FIFO_STATE_REG)))
660 cpu_relax();
661
662 iowrite32_rep(rnandc->regs + FIFO_DATA_REG, bufpoi + page_off,
663 real_len / 4);
664
665 while (!FIFO_STATE_W_EMPTY(readl(rnandc->regs + FIFO_STATE_REG)))
666 cpu_relax();
667
668 ret = rnandc_wait_end_of_op(rnandc, chip);
669 rnandc_dis_correction(rnandc);
670 if (ret) {
671 dev_err(rnandc->dev, "Write subpage operation never ending\n");
672 return ret;
673 }
674
675 return 0;
676 }
677
678 /*
679 * This controller is simple enough and thus does not need to use the parser
680 * provided by the core, instead, handle every situation here.
681 */
rnandc_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)682 static int rnandc_exec_op(struct nand_chip *chip,
683 const struct nand_operation *op, bool check_only)
684 {
685 struct rnandc *rnandc = to_rnandc(chip->controller);
686 const struct nand_op_instr *instr = NULL;
687 struct rnandc_op rop = {
688 .command = COMMAND_INPUT_SEL_AHBS,
689 .gen_seq_ctrl = GEN_SEQ_IMD_SEQ,
690 };
691 unsigned int cmd_phase = 0, addr_phase = 0, data_phase = 0,
692 delay_phase = 0, delays = 0;
693 unsigned int op_id, col_addrs, row_addrs, naddrs, remainder, words, i;
694 const u8 *addrs;
695 u32 last_bytes;
696 int ret;
697
698 if (!check_only)
699 rnandc_select_target(chip, op->cs);
700
701 for (op_id = 0; op_id < op->ninstrs; op_id++) {
702 instr = &op->instrs[op_id];
703
704 nand_op_trace(" ", instr);
705
706 switch (instr->type) {
707 case NAND_OP_CMD_INSTR:
708 switch (cmd_phase++) {
709 case 0:
710 rop.command |= COMMAND_0(instr->ctx.cmd.opcode);
711 rop.gen_seq_ctrl |= GEN_SEQ_CMD0_EN;
712 break;
713 case 1:
714 rop.gen_seq_ctrl |= GEN_SEQ_COMMAND_3(instr->ctx.cmd.opcode);
715 rop.gen_seq_ctrl |= GEN_SEQ_CMD3_EN;
716 if (addr_phase == 0)
717 addr_phase = 1;
718 break;
719 case 2:
720 rop.command |= COMMAND_2(instr->ctx.cmd.opcode);
721 rop.gen_seq_ctrl |= GEN_SEQ_CMD2_EN;
722 if (addr_phase <= 1)
723 addr_phase = 2;
724 break;
725 case 3:
726 rop.command |= COMMAND_1(instr->ctx.cmd.opcode);
727 rop.gen_seq_ctrl |= GEN_SEQ_CMD1_EN;
728 if (addr_phase <= 1)
729 addr_phase = 2;
730 if (delay_phase == 0)
731 delay_phase = 1;
732 if (data_phase == 0)
733 data_phase = 1;
734 break;
735 default:
736 return -EOPNOTSUPP;
737 }
738 break;
739
740 case NAND_OP_ADDR_INSTR:
741 addrs = instr->ctx.addr.addrs;
742 naddrs = instr->ctx.addr.naddrs;
743 if (naddrs > 5)
744 return -EOPNOTSUPP;
745
746 col_addrs = min(2U, naddrs);
747 row_addrs = naddrs > 2 ? naddrs - col_addrs : 0;
748
749 switch (addr_phase++) {
750 case 0:
751 for (i = 0; i < col_addrs; i++)
752 rop.addr0_col |= addrs[i] << (i * 8);
753 rop.gen_seq_ctrl |= GEN_SEQ_COL_A0(col_addrs);
754
755 for (i = 0; i < row_addrs; i++)
756 rop.addr0_row |= addrs[2 + i] << (i * 8);
757 rop.gen_seq_ctrl |= GEN_SEQ_ROW_A0(row_addrs);
758
759 if (cmd_phase == 0)
760 cmd_phase = 1;
761 break;
762 case 1:
763 for (i = 0; i < col_addrs; i++)
764 rop.addr1_col |= addrs[i] << (i * 8);
765 rop.gen_seq_ctrl |= GEN_SEQ_COL_A1(col_addrs);
766
767 for (i = 0; i < row_addrs; i++)
768 rop.addr1_row |= addrs[2 + i] << (i * 8);
769 rop.gen_seq_ctrl |= GEN_SEQ_ROW_A1(row_addrs);
770
771 if (cmd_phase <= 1)
772 cmd_phase = 2;
773 break;
774 default:
775 return -EOPNOTSUPP;
776 }
777 break;
778
779 case NAND_OP_DATA_IN_INSTR:
780 rop.read = true;
781 fallthrough;
782 case NAND_OP_DATA_OUT_INSTR:
783 rop.gen_seq_ctrl |= GEN_SEQ_DATA_EN;
784 rop.buf = instr->ctx.data.buf.in;
785 rop.len = instr->ctx.data.len;
786 rop.command |= COMMAND_FIFO_SEL;
787
788 switch (data_phase++) {
789 case 0:
790 if (cmd_phase <= 2)
791 cmd_phase = 3;
792 if (addr_phase <= 1)
793 addr_phase = 2;
794 if (delay_phase == 0)
795 delay_phase = 1;
796 break;
797 default:
798 return -EOPNOTSUPP;
799 }
800 break;
801
802 case NAND_OP_WAITRDY_INSTR:
803 switch (delay_phase++) {
804 case 0:
805 rop.gen_seq_ctrl |= GEN_SEQ_DELAY0_EN;
806
807 if (cmd_phase <= 2)
808 cmd_phase = 3;
809 break;
810 case 1:
811 rop.gen_seq_ctrl |= GEN_SEQ_DELAY1_EN;
812
813 if (cmd_phase <= 3)
814 cmd_phase = 4;
815 if (data_phase == 0)
816 data_phase = 1;
817 break;
818 default:
819 return -EOPNOTSUPP;
820 }
821 break;
822 }
823 }
824
825 /*
826 * Sequence 19 is generic and dedicated to write operations.
827 * Sequence 18 is also generic and works for all other operations.
828 */
829 if (rop.buf && !rop.read)
830 rop.command |= COMMAND_SEQ_GEN_OUT;
831 else
832 rop.command |= COMMAND_SEQ_GEN_IN;
833
834 if (delays > 1) {
835 dev_err(rnandc->dev, "Cannot handle more than one wait delay\n");
836 return -EOPNOTSUPP;
837 }
838
839 if (check_only)
840 return 0;
841
842 rnandc_trigger_op(rnandc, &rop);
843
844 words = rop.len / sizeof(u32);
845 remainder = rop.len % sizeof(u32);
846 if (rop.buf && rop.read) {
847 while (!FIFO_STATE_C_EMPTY(readl(rnandc->regs + FIFO_STATE_REG)))
848 cpu_relax();
849
850 while (FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG)))
851 cpu_relax();
852
853 ioread32_rep(rnandc->regs + FIFO_DATA_REG, rop.buf, words);
854 if (remainder) {
855 last_bytes = readl_relaxed(rnandc->regs + FIFO_DATA_REG);
856 memcpy(rop.buf + (words * sizeof(u32)), &last_bytes,
857 remainder);
858 }
859
860 if (!FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) {
861 dev_warn(rnandc->dev,
862 "Clearing residual data in the read FIFO\n");
863 rnandc_clear_fifo(rnandc);
864 }
865 } else if (rop.len && !rop.read) {
866 while (FIFO_STATE_W_FULL(readl(rnandc->regs + FIFO_STATE_REG)))
867 cpu_relax();
868
869 iowrite32_rep(rnandc->regs + FIFO_DATA_REG, rop.buf,
870 DIV_ROUND_UP(rop.len, 4));
871
872 if (remainder) {
873 last_bytes = 0;
874 memcpy(&last_bytes, rop.buf + (words * sizeof(u32)), remainder);
875 writel_relaxed(last_bytes, rnandc->regs + FIFO_DATA_REG);
876 }
877
878 while (!FIFO_STATE_W_EMPTY(readl(rnandc->regs + FIFO_STATE_REG)))
879 cpu_relax();
880 }
881
882 ret = rnandc_wait_end_of_op(rnandc, chip);
883 if (ret)
884 return ret;
885
886 return 0;
887 }
888
rnandc_setup_interface(struct nand_chip * chip,int chipnr,const struct nand_interface_config * conf)889 static int rnandc_setup_interface(struct nand_chip *chip, int chipnr,
890 const struct nand_interface_config *conf)
891 {
892 struct rnand_chip *rnand = to_rnand(chip);
893 struct rnandc *rnandc = to_rnandc(chip->controller);
894 unsigned int period_ns = 1000000000 / rnandc->ext_clk_rate;
895 const struct nand_sdr_timings *sdr;
896 unsigned int cyc, cle, ale, bef_dly, ca_to_data;
897
898 sdr = nand_get_sdr_timings(conf);
899 if (IS_ERR(sdr))
900 return PTR_ERR(sdr);
901
902 if (sdr->tRP_min != sdr->tWP_min || sdr->tREH_min != sdr->tWH_min) {
903 dev_err(rnandc->dev, "Read and write hold times must be identical\n");
904 return -EINVAL;
905 }
906
907 if (chipnr < 0)
908 return 0;
909
910 rnand->timings_asyn =
911 TIMINGS_ASYN_TRWP(TO_CYCLES64(sdr->tRP_min, period_ns)) |
912 TIMINGS_ASYN_TRWH(TO_CYCLES64(sdr->tREH_min, period_ns));
913 rnand->tim_seq0 =
914 TIM_SEQ0_TCCS(TO_CYCLES64(sdr->tCCS_min, period_ns)) |
915 TIM_SEQ0_TADL(TO_CYCLES64(sdr->tADL_min, period_ns)) |
916 TIM_SEQ0_TRHW(TO_CYCLES64(sdr->tRHW_min, period_ns)) |
917 TIM_SEQ0_TWHR(TO_CYCLES64(sdr->tWHR_min, period_ns));
918 rnand->tim_seq1 =
919 TIM_SEQ1_TWB(TO_CYCLES64(sdr->tWB_max, period_ns)) |
920 TIM_SEQ1_TRR(TO_CYCLES64(sdr->tRR_min, period_ns)) |
921 TIM_SEQ1_TWW(TO_CYCLES64(sdr->tWW_min, period_ns));
922
923 cyc = sdr->tDS_min + sdr->tDH_min;
924 cle = sdr->tCLH_min + sdr->tCLS_min;
925 ale = sdr->tALH_min + sdr->tALS_min;
926 bef_dly = sdr->tWB_max - sdr->tDH_min;
927 ca_to_data = sdr->tWHR_min + sdr->tREA_max - sdr->tDH_min;
928
929 /*
930 * D0 = CMD -> ADDR = tCLH + tCLS - 1 cycle
931 * D1 = CMD -> CMD = tCLH + tCLS - 1 cycle
932 * D2 = CMD -> DLY = tWB - tDH
933 * D3 = CMD -> DATA = tWHR + tREA - tDH
934 */
935 rnand->tim_gen_seq0 =
936 TIM_GEN_SEQ0_D0(TO_CYCLES64(cle - cyc, period_ns)) |
937 TIM_GEN_SEQ0_D1(TO_CYCLES64(cle - cyc, period_ns)) |
938 TIM_GEN_SEQ0_D2(TO_CYCLES64(bef_dly, period_ns)) |
939 TIM_GEN_SEQ0_D3(TO_CYCLES64(ca_to_data, period_ns));
940
941 /*
942 * D4 = ADDR -> CMD = tALH + tALS - 1 cyle
943 * D5 = ADDR -> ADDR = tALH + tALS - 1 cyle
944 * D6 = ADDR -> DLY = tWB - tDH
945 * D7 = ADDR -> DATA = tWHR + tREA - tDH
946 */
947 rnand->tim_gen_seq1 =
948 TIM_GEN_SEQ1_D4(TO_CYCLES64(ale - cyc, period_ns)) |
949 TIM_GEN_SEQ1_D5(TO_CYCLES64(ale - cyc, period_ns)) |
950 TIM_GEN_SEQ1_D6(TO_CYCLES64(bef_dly, period_ns)) |
951 TIM_GEN_SEQ1_D7(TO_CYCLES64(ca_to_data, period_ns));
952
953 /*
954 * D8 = DLY -> DATA = tRR + tREA
955 * D9 = DLY -> CMD = tRR
956 * D10 = DATA -> CMD = tCLH + tCLS - 1 cycle
957 * D11 = DATA -> DLY = tWB - tDH
958 */
959 rnand->tim_gen_seq2 =
960 TIM_GEN_SEQ2_D8(TO_CYCLES64(sdr->tRR_min + sdr->tREA_max, period_ns)) |
961 TIM_GEN_SEQ2_D9(TO_CYCLES64(sdr->tRR_min, period_ns)) |
962 TIM_GEN_SEQ2_D10(TO_CYCLES64(cle - cyc, period_ns)) |
963 TIM_GEN_SEQ2_D11(TO_CYCLES64(bef_dly, period_ns));
964
965 /* D12 = DATA -> END = tCLH - tDH */
966 rnand->tim_gen_seq3 =
967 TIM_GEN_SEQ3_D12(TO_CYCLES64(sdr->tCLH_min - sdr->tDH_min, period_ns));
968
969 return 0;
970 }
971
rnandc_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)972 static int rnandc_ooblayout_ecc(struct mtd_info *mtd, int section,
973 struct mtd_oob_region *oobregion)
974 {
975 struct nand_chip *chip = mtd_to_nand(mtd);
976 unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps;
977
978 if (section)
979 return -ERANGE;
980
981 oobregion->offset = 2;
982 oobregion->length = eccbytes;
983
984 return 0;
985 }
986
rnandc_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)987 static int rnandc_ooblayout_free(struct mtd_info *mtd, int section,
988 struct mtd_oob_region *oobregion)
989 {
990 struct nand_chip *chip = mtd_to_nand(mtd);
991 unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps;
992
993 if (section)
994 return -ERANGE;
995
996 oobregion->offset = 2 + eccbytes;
997 oobregion->length = mtd->oobsize - oobregion->offset;
998
999 return 0;
1000 }
1001
1002 static const struct mtd_ooblayout_ops rnandc_ooblayout_ops = {
1003 .ecc = rnandc_ooblayout_ecc,
1004 .free = rnandc_ooblayout_free,
1005 };
1006
rnandc_hw_ecc_controller_init(struct nand_chip * chip)1007 static int rnandc_hw_ecc_controller_init(struct nand_chip *chip)
1008 {
1009 struct rnand_chip *rnand = to_rnand(chip);
1010 struct mtd_info *mtd = nand_to_mtd(chip);
1011 struct rnandc *rnandc = to_rnandc(chip->controller);
1012
1013 if (mtd->writesize > SZ_16K) {
1014 dev_err(rnandc->dev, "Unsupported page size\n");
1015 return -EINVAL;
1016 }
1017
1018 switch (chip->ecc.size) {
1019 case SZ_256:
1020 rnand->control |= CONTROL_ECC_BLOCK_SIZE_256;
1021 break;
1022 case SZ_512:
1023 rnand->control |= CONTROL_ECC_BLOCK_SIZE_512;
1024 break;
1025 case SZ_1K:
1026 rnand->control |= CONTROL_ECC_BLOCK_SIZE_1024;
1027 break;
1028 default:
1029 dev_err(rnandc->dev, "Unsupported ECC chunk size\n");
1030 return -EINVAL;
1031 }
1032
1033 switch (chip->ecc.strength) {
1034 case 2:
1035 chip->ecc.bytes = 4;
1036 rnand->ecc_ctrl |= ECC_CTRL_CAP_2B;
1037 break;
1038 case 4:
1039 chip->ecc.bytes = 7;
1040 rnand->ecc_ctrl |= ECC_CTRL_CAP_4B;
1041 break;
1042 case 8:
1043 chip->ecc.bytes = 14;
1044 rnand->ecc_ctrl |= ECC_CTRL_CAP_8B;
1045 break;
1046 case 16:
1047 chip->ecc.bytes = 28;
1048 rnand->ecc_ctrl |= ECC_CTRL_CAP_16B;
1049 break;
1050 case 24:
1051 chip->ecc.bytes = 42;
1052 rnand->ecc_ctrl |= ECC_CTRL_CAP_24B;
1053 break;
1054 case 32:
1055 chip->ecc.bytes = 56;
1056 rnand->ecc_ctrl |= ECC_CTRL_CAP_32B;
1057 break;
1058 default:
1059 dev_err(rnandc->dev, "Unsupported ECC strength\n");
1060 return -EINVAL;
1061 }
1062
1063 rnand->ecc_ctrl |= ECC_CTRL_ERR_THRESHOLD(chip->ecc.strength);
1064
1065 mtd_set_ooblayout(mtd, &rnandc_ooblayout_ops);
1066 chip->ecc.steps = mtd->writesize / chip->ecc.size;
1067 chip->ecc.read_page = rnandc_read_page_hw_ecc;
1068 chip->ecc.read_subpage = rnandc_read_subpage_hw_ecc;
1069 chip->ecc.write_page = rnandc_write_page_hw_ecc;
1070 chip->ecc.write_subpage = rnandc_write_subpage_hw_ecc;
1071
1072 return 0;
1073 }
1074
rnandc_ecc_init(struct nand_chip * chip)1075 static int rnandc_ecc_init(struct nand_chip *chip)
1076 {
1077 struct nand_ecc_ctrl *ecc = &chip->ecc;
1078 const struct nand_ecc_props *requirements =
1079 nanddev_get_ecc_requirements(&chip->base);
1080 struct rnandc *rnandc = to_rnandc(chip->controller);
1081 int ret;
1082
1083 if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
1084 (!ecc->size || !ecc->strength)) {
1085 if (requirements->step_size && requirements->strength) {
1086 ecc->size = requirements->step_size;
1087 ecc->strength = requirements->strength;
1088 } else {
1089 dev_err(rnandc->dev, "No minimum ECC strength\n");
1090 return -EINVAL;
1091 }
1092 }
1093
1094 switch (ecc->engine_type) {
1095 case NAND_ECC_ENGINE_TYPE_ON_HOST:
1096 ret = rnandc_hw_ecc_controller_init(chip);
1097 if (ret)
1098 return ret;
1099 break;
1100 case NAND_ECC_ENGINE_TYPE_NONE:
1101 case NAND_ECC_ENGINE_TYPE_SOFT:
1102 case NAND_ECC_ENGINE_TYPE_ON_DIE:
1103 break;
1104 default:
1105 return -EINVAL;
1106 }
1107
1108 return 0;
1109 }
1110
rnandc_attach_chip(struct nand_chip * chip)1111 static int rnandc_attach_chip(struct nand_chip *chip)
1112 {
1113 struct rnand_chip *rnand = to_rnand(chip);
1114 struct rnandc *rnandc = to_rnandc(chip->controller);
1115 struct mtd_info *mtd = nand_to_mtd(chip);
1116 struct nand_memory_organization *memorg = nanddev_get_memorg(&chip->base);
1117 int ret;
1118
1119 /* Do not store BBT bits in the OOB section as it is not protected */
1120 if (chip->bbt_options & NAND_BBT_USE_FLASH)
1121 chip->bbt_options |= NAND_BBT_NO_OOB;
1122
1123 if (mtd->writesize <= 512) {
1124 dev_err(rnandc->dev, "Small page devices not supported\n");
1125 return -EINVAL;
1126 }
1127
1128 rnand->control |= CONTROL_CHECK_RB_LINE | CONTROL_INT_EN;
1129
1130 switch (memorg->pages_per_eraseblock) {
1131 case 32:
1132 rnand->control |= CONTROL_BLOCK_SIZE_32P;
1133 break;
1134 case 64:
1135 rnand->control |= CONTROL_BLOCK_SIZE_64P;
1136 break;
1137 case 128:
1138 rnand->control |= CONTROL_BLOCK_SIZE_128P;
1139 break;
1140 case 256:
1141 rnand->control |= CONTROL_BLOCK_SIZE_256P;
1142 break;
1143 default:
1144 dev_err(rnandc->dev, "Unsupported memory organization\n");
1145 return -EINVAL;
1146 }
1147
1148 chip->options |= NAND_SUBPAGE_READ;
1149
1150 ret = rnandc_ecc_init(chip);
1151 if (ret) {
1152 dev_err(rnandc->dev, "ECC initialization failed (%d)\n", ret);
1153 return ret;
1154 }
1155
1156 /* Force an update of the configuration registers */
1157 rnand->selected_die = -1;
1158
1159 return 0;
1160 }
1161
1162 static const struct nand_controller_ops rnandc_ops = {
1163 .attach_chip = rnandc_attach_chip,
1164 .exec_op = rnandc_exec_op,
1165 .setup_interface = rnandc_setup_interface,
1166 };
1167
rnandc_alloc_dma_buf(struct rnandc * rnandc,struct mtd_info * new_mtd)1168 static int rnandc_alloc_dma_buf(struct rnandc *rnandc,
1169 struct mtd_info *new_mtd)
1170 {
1171 unsigned int max_len = new_mtd->writesize + new_mtd->oobsize;
1172 struct rnand_chip *entry, *temp;
1173 struct nand_chip *chip;
1174 struct mtd_info *mtd;
1175
1176 list_for_each_entry_safe(entry, temp, &rnandc->chips, node) {
1177 chip = &entry->chip;
1178 mtd = nand_to_mtd(chip);
1179 max_len = max(max_len, mtd->writesize + mtd->oobsize);
1180 }
1181
1182 if (rnandc->buf && rnandc->buf_sz < max_len) {
1183 devm_kfree(rnandc->dev, rnandc->buf);
1184 rnandc->buf = NULL;
1185 }
1186
1187 if (!rnandc->buf) {
1188 rnandc->buf_sz = max_len;
1189 rnandc->buf = devm_kmalloc(rnandc->dev, max_len,
1190 GFP_KERNEL | GFP_DMA);
1191 if (!rnandc->buf)
1192 return -ENOMEM;
1193 }
1194
1195 return 0;
1196 }
1197
rnandc_chip_init(struct rnandc * rnandc,struct device_node * np)1198 static int rnandc_chip_init(struct rnandc *rnandc, struct device_node *np)
1199 {
1200 struct rnand_chip *rnand;
1201 struct mtd_info *mtd;
1202 struct nand_chip *chip;
1203 int nsels, ret, i;
1204 u32 cs;
1205
1206 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
1207 if (nsels <= 0) {
1208 ret = (nsels < 0) ? nsels : -EINVAL;
1209 dev_err(rnandc->dev, "Invalid reg property (%d)\n", ret);
1210 return ret;
1211 }
1212
1213 /* Alloc the driver's NAND chip structure */
1214 rnand = devm_kzalloc(rnandc->dev, struct_size(rnand, sels, nsels),
1215 GFP_KERNEL);
1216 if (!rnand)
1217 return -ENOMEM;
1218
1219 rnand->nsels = nsels;
1220 rnand->selected_die = -1;
1221
1222 for (i = 0; i < nsels; i++) {
1223 ret = of_property_read_u32_index(np, "reg", i, &cs);
1224 if (ret) {
1225 dev_err(rnandc->dev, "Incomplete reg property (%d)\n", ret);
1226 return ret;
1227 }
1228
1229 if (cs >= RNANDC_CS_NUM) {
1230 dev_err(rnandc->dev, "Invalid reg property (%d)\n", cs);
1231 return -EINVAL;
1232 }
1233
1234 if (test_and_set_bit(cs, &rnandc->assigned_cs)) {
1235 dev_err(rnandc->dev, "CS %d already assigned\n", cs);
1236 return -EINVAL;
1237 }
1238
1239 /*
1240 * No need to check for RB or WP properties, there is a 1:1
1241 * mandatory mapping with the CS.
1242 */
1243 rnand->sels[i].cs = cs;
1244 }
1245
1246 chip = &rnand->chip;
1247 chip->controller = &rnandc->controller;
1248 nand_set_flash_node(chip, np);
1249
1250 mtd = nand_to_mtd(chip);
1251 mtd->dev.parent = rnandc->dev;
1252 if (!mtd->name) {
1253 dev_err(rnandc->dev, "Missing MTD label\n");
1254 return -EINVAL;
1255 }
1256
1257 ret = nand_scan(chip, rnand->nsels);
1258 if (ret) {
1259 dev_err(rnandc->dev, "Failed to scan the NAND chip (%d)\n", ret);
1260 return ret;
1261 }
1262
1263 ret = rnandc_alloc_dma_buf(rnandc, mtd);
1264 if (ret)
1265 goto cleanup_nand;
1266
1267 ret = mtd_device_register(mtd, NULL, 0);
1268 if (ret) {
1269 dev_err(rnandc->dev, "Failed to register MTD device (%d)\n", ret);
1270 goto cleanup_nand;
1271 }
1272
1273 list_add_tail(&rnand->node, &rnandc->chips);
1274
1275 return 0;
1276
1277 cleanup_nand:
1278 nand_cleanup(chip);
1279
1280 return ret;
1281 }
1282
rnandc_chips_cleanup(struct rnandc * rnandc)1283 static void rnandc_chips_cleanup(struct rnandc *rnandc)
1284 {
1285 struct rnand_chip *entry, *temp;
1286 struct nand_chip *chip;
1287 int ret;
1288
1289 list_for_each_entry_safe(entry, temp, &rnandc->chips, node) {
1290 chip = &entry->chip;
1291 ret = mtd_device_unregister(nand_to_mtd(chip));
1292 WARN_ON(ret);
1293 nand_cleanup(chip);
1294 list_del(&entry->node);
1295 }
1296 }
1297
rnandc_chips_init(struct rnandc * rnandc)1298 static int rnandc_chips_init(struct rnandc *rnandc)
1299 {
1300 struct device_node *np;
1301 int ret;
1302
1303 for_each_child_of_node(rnandc->dev->of_node, np) {
1304 ret = rnandc_chip_init(rnandc, np);
1305 if (ret) {
1306 of_node_put(np);
1307 goto cleanup_chips;
1308 }
1309 }
1310
1311 return 0;
1312
1313 cleanup_chips:
1314 rnandc_chips_cleanup(rnandc);
1315
1316 return ret;
1317 }
1318
rnandc_probe(struct platform_device * pdev)1319 static int rnandc_probe(struct platform_device *pdev)
1320 {
1321 struct rnandc *rnandc;
1322 struct clk *eclk;
1323 int irq, ret;
1324
1325 rnandc = devm_kzalloc(&pdev->dev, sizeof(*rnandc), GFP_KERNEL);
1326 if (!rnandc)
1327 return -ENOMEM;
1328
1329 rnandc->dev = &pdev->dev;
1330 nand_controller_init(&rnandc->controller);
1331 rnandc->controller.ops = &rnandc_ops;
1332 INIT_LIST_HEAD(&rnandc->chips);
1333 init_completion(&rnandc->complete);
1334
1335 rnandc->regs = devm_platform_ioremap_resource(pdev, 0);
1336 if (IS_ERR(rnandc->regs))
1337 return PTR_ERR(rnandc->regs);
1338
1339 devm_pm_runtime_enable(&pdev->dev);
1340 ret = pm_runtime_resume_and_get(&pdev->dev);
1341 if (ret < 0)
1342 return ret;
1343
1344 /* The external NAND bus clock rate is needed for computing timings */
1345 eclk = clk_get(&pdev->dev, "eclk");
1346 if (IS_ERR(eclk)) {
1347 ret = PTR_ERR(eclk);
1348 goto dis_runtime_pm;
1349 }
1350
1351 rnandc->ext_clk_rate = clk_get_rate(eclk);
1352 clk_put(eclk);
1353
1354 rnandc_dis_interrupts(rnandc);
1355 irq = platform_get_irq_optional(pdev, 0);
1356 if (irq == -EPROBE_DEFER) {
1357 ret = irq;
1358 goto dis_runtime_pm;
1359 } else if (irq < 0) {
1360 dev_info(&pdev->dev, "No IRQ found, fallback to polling\n");
1361 rnandc->use_polling = true;
1362 } else {
1363 ret = devm_request_irq(&pdev->dev, irq, rnandc_irq_handler, 0,
1364 "renesas-nand-controller", rnandc);
1365 if (ret < 0)
1366 goto dis_runtime_pm;
1367 }
1368
1369 ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1370 if (ret)
1371 goto dis_runtime_pm;
1372
1373 rnandc_clear_fifo(rnandc);
1374
1375 platform_set_drvdata(pdev, rnandc);
1376
1377 ret = rnandc_chips_init(rnandc);
1378 if (ret)
1379 goto dis_runtime_pm;
1380
1381 return 0;
1382
1383 dis_runtime_pm:
1384 pm_runtime_put(&pdev->dev);
1385
1386 return ret;
1387 }
1388
rnandc_remove(struct platform_device * pdev)1389 static int rnandc_remove(struct platform_device *pdev)
1390 {
1391 struct rnandc *rnandc = platform_get_drvdata(pdev);
1392
1393 rnandc_chips_cleanup(rnandc);
1394
1395 pm_runtime_put(&pdev->dev);
1396
1397 return 0;
1398 }
1399
1400 static const struct of_device_id rnandc_id_table[] = {
1401 { .compatible = "renesas,rcar-gen3-nandc" },
1402 { .compatible = "renesas,rzn1-nandc" },
1403 {} /* sentinel */
1404 };
1405 MODULE_DEVICE_TABLE(of, rnandc_id_table);
1406
1407 static struct platform_driver rnandc_driver = {
1408 .driver = {
1409 .name = "renesas-nandc",
1410 .of_match_table = rnandc_id_table,
1411 },
1412 .probe = rnandc_probe,
1413 .remove = rnandc_remove,
1414 };
1415 module_platform_driver(rnandc_driver);
1416
1417 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
1418 MODULE_DESCRIPTION("Renesas R-Car Gen3 & RZ/N1 NAND controller driver");
1419 MODULE_LICENSE("GPL v2");
1420