1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
4 */
5 #include <linux/clk.h>
6 #include <linux/slab.h>
7 #include <linux/bitops.h>
8 #include <linux/dma/qcom_adm.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/module.h>
12 #include <linux/mtd/rawnand.h>
13 #include <linux/mtd/partitions.h>
14 #include <linux/of.h>
15 #include <linux/of_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma/qcom_bam_dma.h>
18
19 /* NANDc reg offsets */
20 #define NAND_FLASH_CMD 0x00
21 #define NAND_ADDR0 0x04
22 #define NAND_ADDR1 0x08
23 #define NAND_FLASH_CHIP_SELECT 0x0c
24 #define NAND_EXEC_CMD 0x10
25 #define NAND_FLASH_STATUS 0x14
26 #define NAND_BUFFER_STATUS 0x18
27 #define NAND_DEV0_CFG0 0x20
28 #define NAND_DEV0_CFG1 0x24
29 #define NAND_DEV0_ECC_CFG 0x28
30 #define NAND_AUTO_STATUS_EN 0x2c
31 #define NAND_DEV1_CFG0 0x30
32 #define NAND_DEV1_CFG1 0x34
33 #define NAND_READ_ID 0x40
34 #define NAND_READ_STATUS 0x44
35 #define NAND_DEV_CMD0 0xa0
36 #define NAND_DEV_CMD1 0xa4
37 #define NAND_DEV_CMD2 0xa8
38 #define NAND_DEV_CMD_VLD 0xac
39 #define SFLASHC_BURST_CFG 0xe0
40 #define NAND_ERASED_CW_DETECT_CFG 0xe8
41 #define NAND_ERASED_CW_DETECT_STATUS 0xec
42 #define NAND_EBI2_ECC_BUF_CFG 0xf0
43 #define FLASH_BUF_ACC 0x100
44
45 #define NAND_CTRL 0xf00
46 #define NAND_VERSION 0xf08
47 #define NAND_READ_LOCATION_0 0xf20
48 #define NAND_READ_LOCATION_1 0xf24
49 #define NAND_READ_LOCATION_2 0xf28
50 #define NAND_READ_LOCATION_3 0xf2c
51 #define NAND_READ_LOCATION_LAST_CW_0 0xf40
52 #define NAND_READ_LOCATION_LAST_CW_1 0xf44
53 #define NAND_READ_LOCATION_LAST_CW_2 0xf48
54 #define NAND_READ_LOCATION_LAST_CW_3 0xf4c
55
56 /* dummy register offsets, used by write_reg_dma */
57 #define NAND_DEV_CMD1_RESTORE 0xdead
58 #define NAND_DEV_CMD_VLD_RESTORE 0xbeef
59
60 /* NAND_FLASH_CMD bits */
61 #define PAGE_ACC BIT(4)
62 #define LAST_PAGE BIT(5)
63
64 /* NAND_FLASH_CHIP_SELECT bits */
65 #define NAND_DEV_SEL 0
66 #define DM_EN BIT(2)
67
68 /* NAND_FLASH_STATUS bits */
69 #define FS_OP_ERR BIT(4)
70 #define FS_READY_BSY_N BIT(5)
71 #define FS_MPU_ERR BIT(8)
72 #define FS_DEVICE_STS_ERR BIT(16)
73 #define FS_DEVICE_WP BIT(23)
74
75 /* NAND_BUFFER_STATUS bits */
76 #define BS_UNCORRECTABLE_BIT BIT(8)
77 #define BS_CORRECTABLE_ERR_MSK 0x1f
78
79 /* NAND_DEVn_CFG0 bits */
80 #define DISABLE_STATUS_AFTER_WRITE 4
81 #define CW_PER_PAGE 6
82 #define UD_SIZE_BYTES 9
83 #define UD_SIZE_BYTES_MASK GENMASK(18, 9)
84 #define ECC_PARITY_SIZE_BYTES_RS 19
85 #define SPARE_SIZE_BYTES 23
86 #define SPARE_SIZE_BYTES_MASK GENMASK(26, 23)
87 #define NUM_ADDR_CYCLES 27
88 #define STATUS_BFR_READ 30
89 #define SET_RD_MODE_AFTER_STATUS 31
90
91 /* NAND_DEVn_CFG0 bits */
92 #define DEV0_CFG1_ECC_DISABLE 0
93 #define WIDE_FLASH 1
94 #define NAND_RECOVERY_CYCLES 2
95 #define CS_ACTIVE_BSY 5
96 #define BAD_BLOCK_BYTE_NUM 6
97 #define BAD_BLOCK_IN_SPARE_AREA 16
98 #define WR_RD_BSY_GAP 17
99 #define ENABLE_BCH_ECC 27
100
101 /* NAND_DEV0_ECC_CFG bits */
102 #define ECC_CFG_ECC_DISABLE 0
103 #define ECC_SW_RESET 1
104 #define ECC_MODE 4
105 #define ECC_PARITY_SIZE_BYTES_BCH 8
106 #define ECC_NUM_DATA_BYTES 16
107 #define ECC_NUM_DATA_BYTES_MASK GENMASK(25, 16)
108 #define ECC_FORCE_CLK_OPEN 30
109
110 /* NAND_DEV_CMD1 bits */
111 #define READ_ADDR 0
112
113 /* NAND_DEV_CMD_VLD bits */
114 #define READ_START_VLD BIT(0)
115 #define READ_STOP_VLD BIT(1)
116 #define WRITE_START_VLD BIT(2)
117 #define ERASE_START_VLD BIT(3)
118 #define SEQ_READ_START_VLD BIT(4)
119
120 /* NAND_EBI2_ECC_BUF_CFG bits */
121 #define NUM_STEPS 0
122
123 /* NAND_ERASED_CW_DETECT_CFG bits */
124 #define ERASED_CW_ECC_MASK 1
125 #define AUTO_DETECT_RES 0
126 #define MASK_ECC (1 << ERASED_CW_ECC_MASK)
127 #define RESET_ERASED_DET (1 << AUTO_DETECT_RES)
128 #define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
129 #define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
130 #define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
131
132 /* NAND_ERASED_CW_DETECT_STATUS bits */
133 #define PAGE_ALL_ERASED BIT(7)
134 #define CODEWORD_ALL_ERASED BIT(6)
135 #define PAGE_ERASED BIT(5)
136 #define CODEWORD_ERASED BIT(4)
137 #define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
138 #define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
139
140 /* NAND_READ_LOCATION_n bits */
141 #define READ_LOCATION_OFFSET 0
142 #define READ_LOCATION_SIZE 16
143 #define READ_LOCATION_LAST 31
144
145 /* Version Mask */
146 #define NAND_VERSION_MAJOR_MASK 0xf0000000
147 #define NAND_VERSION_MAJOR_SHIFT 28
148 #define NAND_VERSION_MINOR_MASK 0x0fff0000
149 #define NAND_VERSION_MINOR_SHIFT 16
150
151 /* NAND OP_CMDs */
152 #define OP_PAGE_READ 0x2
153 #define OP_PAGE_READ_WITH_ECC 0x3
154 #define OP_PAGE_READ_WITH_ECC_SPARE 0x4
155 #define OP_PAGE_READ_ONFI_READ 0x5
156 #define OP_PROGRAM_PAGE 0x6
157 #define OP_PAGE_PROGRAM_WITH_ECC 0x7
158 #define OP_PROGRAM_PAGE_SPARE 0x9
159 #define OP_BLOCK_ERASE 0xa
160 #define OP_FETCH_ID 0xb
161 #define OP_RESET_DEVICE 0xd
162
163 /* Default Value for NAND_DEV_CMD_VLD */
164 #define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \
165 ERASE_START_VLD | SEQ_READ_START_VLD)
166
167 /* NAND_CTRL bits */
168 #define BAM_MODE_EN BIT(0)
169
170 /*
171 * the NAND controller performs reads/writes with ECC in 516 byte chunks.
172 * the driver calls the chunks 'step' or 'codeword' interchangeably
173 */
174 #define NANDC_STEP_SIZE 512
175
176 /*
177 * the largest page size we support is 8K, this will have 16 steps/codewords
178 * of 512 bytes each
179 */
180 #define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
181
182 /* we read at most 3 registers per codeword scan */
183 #define MAX_REG_RD (3 * MAX_NUM_STEPS)
184
185 /* ECC modes supported by the controller */
186 #define ECC_NONE BIT(0)
187 #define ECC_RS_4BIT BIT(1)
188 #define ECC_BCH_4BIT BIT(2)
189 #define ECC_BCH_8BIT BIT(3)
190
191 #define nandc_set_read_loc_first(chip, reg, cw_offset, read_size, is_last_read_loc) \
192 nandc_set_reg(chip, reg, \
193 ((cw_offset) << READ_LOCATION_OFFSET) | \
194 ((read_size) << READ_LOCATION_SIZE) | \
195 ((is_last_read_loc) << READ_LOCATION_LAST))
196
197 #define nandc_set_read_loc_last(chip, reg, cw_offset, read_size, is_last_read_loc) \
198 nandc_set_reg(chip, reg, \
199 ((cw_offset) << READ_LOCATION_OFFSET) | \
200 ((read_size) << READ_LOCATION_SIZE) | \
201 ((is_last_read_loc) << READ_LOCATION_LAST))
202 /*
203 * Returns the actual register address for all NAND_DEV_ registers
204 * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
205 */
206 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
207
208 /* Returns the NAND register physical address */
209 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
210
211 /* Returns the dma address for reg read buffer */
212 #define reg_buf_dma_addr(chip, vaddr) \
213 ((chip)->reg_read_dma + \
214 ((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
215
216 #define QPIC_PER_CW_CMD_ELEMENTS 32
217 #define QPIC_PER_CW_CMD_SGL 32
218 #define QPIC_PER_CW_DATA_SGL 8
219
220 #define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
221
222 /*
223 * Flags used in DMA descriptor preparation helper functions
224 * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
225 */
226 /* Don't set the EOT in current tx BAM sgl */
227 #define NAND_BAM_NO_EOT BIT(0)
228 /* Set the NWD flag in current BAM sgl */
229 #define NAND_BAM_NWD BIT(1)
230 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
231 #define NAND_BAM_NEXT_SGL BIT(2)
232 /*
233 * Erased codeword status is being used two times in single transfer so this
234 * flag will determine the current value of erased codeword status register
235 */
236 #define NAND_ERASED_CW_SET BIT(4)
237
238 /*
239 * This data type corresponds to the BAM transaction which will be used for all
240 * NAND transfers.
241 * @bam_ce - the array of BAM command elements
242 * @cmd_sgl - sgl for NAND BAM command pipe
243 * @data_sgl - sgl for NAND BAM consumer/producer pipe
244 * @last_data_desc - last DMA desc in data channel (tx/rx).
245 * @last_cmd_desc - last DMA desc in command channel.
246 * @txn_done - completion for NAND transfer.
247 * @bam_ce_pos - the index in bam_ce which is available for next sgl
248 * @bam_ce_start - the index in bam_ce which marks the start position ce
249 * for current sgl. It will be used for size calculation
250 * for current sgl
251 * @cmd_sgl_pos - current index in command sgl.
252 * @cmd_sgl_start - start index in command sgl.
253 * @tx_sgl_pos - current index in data sgl for tx.
254 * @tx_sgl_start - start index in data sgl for tx.
255 * @rx_sgl_pos - current index in data sgl for rx.
256 * @rx_sgl_start - start index in data sgl for rx.
257 * @wait_second_completion - wait for second DMA desc completion before making
258 * the NAND transfer completion.
259 */
260 struct bam_transaction {
261 struct bam_cmd_element *bam_ce;
262 struct scatterlist *cmd_sgl;
263 struct scatterlist *data_sgl;
264 struct dma_async_tx_descriptor *last_data_desc;
265 struct dma_async_tx_descriptor *last_cmd_desc;
266 struct completion txn_done;
267 u32 bam_ce_pos;
268 u32 bam_ce_start;
269 u32 cmd_sgl_pos;
270 u32 cmd_sgl_start;
271 u32 tx_sgl_pos;
272 u32 tx_sgl_start;
273 u32 rx_sgl_pos;
274 u32 rx_sgl_start;
275 bool wait_second_completion;
276 };
277
278 /*
279 * This data type corresponds to the nand dma descriptor
280 * @dma_desc - low level DMA engine descriptor
281 * @list - list for desc_info
282 *
283 * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
284 * ADM
285 * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
286 * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
287 * @dir - DMA transfer direction
288 */
289 struct desc_info {
290 struct dma_async_tx_descriptor *dma_desc;
291 struct list_head node;
292
293 union {
294 struct scatterlist adm_sgl;
295 struct {
296 struct scatterlist *bam_sgl;
297 int sgl_cnt;
298 };
299 };
300 enum dma_data_direction dir;
301 };
302
303 /*
304 * holds the current register values that we want to write. acts as a contiguous
305 * chunk of memory which we use to write the controller registers through DMA.
306 */
307 struct nandc_regs {
308 __le32 cmd;
309 __le32 addr0;
310 __le32 addr1;
311 __le32 chip_sel;
312 __le32 exec;
313
314 __le32 cfg0;
315 __le32 cfg1;
316 __le32 ecc_bch_cfg;
317
318 __le32 clrflashstatus;
319 __le32 clrreadstatus;
320
321 __le32 cmd1;
322 __le32 vld;
323
324 __le32 orig_cmd1;
325 __le32 orig_vld;
326
327 __le32 ecc_buf_cfg;
328 __le32 read_location0;
329 __le32 read_location1;
330 __le32 read_location2;
331 __le32 read_location3;
332 __le32 read_location_last0;
333 __le32 read_location_last1;
334 __le32 read_location_last2;
335 __le32 read_location_last3;
336
337 __le32 erased_cw_detect_cfg_clr;
338 __le32 erased_cw_detect_cfg_set;
339 };
340
341 /*
342 * NAND controller data struct
343 *
344 * @dev: parent device
345 *
346 * @base: MMIO base
347 *
348 * @core_clk: controller clock
349 * @aon_clk: another controller clock
350 *
351 * @regs: a contiguous chunk of memory for DMA register
352 * writes. contains the register values to be
353 * written to controller
354 *
355 * @props: properties of current NAND controller,
356 * initialized via DT match data
357 *
358 * @controller: base controller structure
359 * @host_list: list containing all the chips attached to the
360 * controller
361 *
362 * @chan: dma channel
363 * @cmd_crci: ADM DMA CRCI for command flow control
364 * @data_crci: ADM DMA CRCI for data flow control
365 *
366 * @desc_list: DMA descriptor list (list of desc_infos)
367 *
368 * @data_buffer: our local DMA buffer for page read/writes,
369 * used when we can't use the buffer provided
370 * by upper layers directly
371 * @reg_read_buf: local buffer for reading back registers via DMA
372 *
373 * @base_phys: physical base address of controller registers
374 * @base_dma: dma base address of controller registers
375 * @reg_read_dma: contains dma address for register read buffer
376 *
377 * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf
378 * functions
379 * @max_cwperpage: maximum QPIC codewords required. calculated
380 * from all connected NAND devices pagesize
381 *
382 * @reg_read_pos: marker for data read in reg_read_buf
383 *
384 * @cmd1/vld: some fixed controller register values
385 */
386 struct qcom_nand_controller {
387 struct device *dev;
388
389 void __iomem *base;
390
391 struct clk *core_clk;
392 struct clk *aon_clk;
393
394 struct nandc_regs *regs;
395 struct bam_transaction *bam_txn;
396
397 const struct qcom_nandc_props *props;
398
399 struct nand_controller controller;
400 struct list_head host_list;
401
402 union {
403 /* will be used only by QPIC for BAM DMA */
404 struct {
405 struct dma_chan *tx_chan;
406 struct dma_chan *rx_chan;
407 struct dma_chan *cmd_chan;
408 };
409
410 /* will be used only by EBI2 for ADM DMA */
411 struct {
412 struct dma_chan *chan;
413 unsigned int cmd_crci;
414 unsigned int data_crci;
415 };
416 };
417
418 struct list_head desc_list;
419
420 u8 *data_buffer;
421 __le32 *reg_read_buf;
422
423 phys_addr_t base_phys;
424 dma_addr_t base_dma;
425 dma_addr_t reg_read_dma;
426
427 int buf_size;
428 int buf_count;
429 int buf_start;
430 unsigned int max_cwperpage;
431
432 int reg_read_pos;
433
434 u32 cmd1, vld;
435 };
436
437 /*
438 * NAND special boot partitions
439 *
440 * @page_offset: offset of the partition where spare data is not protected
441 * by ECC (value in pages)
442 * @page_offset: size of the partition where spare data is not protected
443 * by ECC (value in pages)
444 */
445 struct qcom_nand_boot_partition {
446 u32 page_offset;
447 u32 page_size;
448 };
449
450 /*
451 * NAND chip structure
452 *
453 * @boot_partitions: array of boot partitions where offset and size of the
454 * boot partitions are stored
455 *
456 * @chip: base NAND chip structure
457 * @node: list node to add itself to host_list in
458 * qcom_nand_controller
459 *
460 * @nr_boot_partitions: count of the boot partitions where spare data is not
461 * protected by ECC
462 *
463 * @cs: chip select value for this chip
464 * @cw_size: the number of bytes in a single step/codeword
465 * of a page, consisting of all data, ecc, spare
466 * and reserved bytes
467 * @cw_data: the number of bytes within a codeword protected
468 * by ECC
469 * @ecc_bytes_hw: ECC bytes used by controller hardware for this
470 * chip
471 *
472 * @last_command: keeps track of last command on this chip. used
473 * for reading correct status
474 *
475 * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for
476 * ecc/non-ecc mode for the current nand flash
477 * device
478 *
479 * @status: value to be returned if NAND_CMD_STATUS command
480 * is executed
481 * @codeword_fixup: keep track of the current layout used by
482 * the driver for read/write operation.
483 * @use_ecc: request the controller to use ECC for the
484 * upcoming read/write
485 * @bch_enabled: flag to tell whether BCH ECC mode is used
486 */
487 struct qcom_nand_host {
488 struct qcom_nand_boot_partition *boot_partitions;
489
490 struct nand_chip chip;
491 struct list_head node;
492
493 int nr_boot_partitions;
494
495 int cs;
496 int cw_size;
497 int cw_data;
498 int ecc_bytes_hw;
499 int spare_bytes;
500 int bbm_size;
501
502 int last_command;
503
504 u32 cfg0, cfg1;
505 u32 cfg0_raw, cfg1_raw;
506 u32 ecc_buf_cfg;
507 u32 ecc_bch_cfg;
508 u32 clrflashstatus;
509 u32 clrreadstatus;
510
511 u8 status;
512 bool codeword_fixup;
513 bool use_ecc;
514 bool bch_enabled;
515 };
516
517 /*
518 * This data type corresponds to the NAND controller properties which varies
519 * among different NAND controllers.
520 * @ecc_modes - ecc mode for NAND
521 * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
522 * @is_bam - whether NAND controller is using BAM
523 * @is_qpic - whether NAND CTRL is part of qpic IP
524 * @qpic_v2 - flag to indicate QPIC IP version 2
525 * @use_codeword_fixup - whether NAND has different layout for boot partitions
526 */
527 struct qcom_nandc_props {
528 u32 ecc_modes;
529 u32 dev_cmd_reg_start;
530 bool is_bam;
531 bool is_qpic;
532 bool qpic_v2;
533 bool use_codeword_fixup;
534 };
535
536 /* Frees the BAM transaction memory */
free_bam_transaction(struct qcom_nand_controller * nandc)537 static void free_bam_transaction(struct qcom_nand_controller *nandc)
538 {
539 struct bam_transaction *bam_txn = nandc->bam_txn;
540
541 devm_kfree(nandc->dev, bam_txn);
542 }
543
544 /* Allocates and Initializes the BAM transaction */
545 static struct bam_transaction *
alloc_bam_transaction(struct qcom_nand_controller * nandc)546 alloc_bam_transaction(struct qcom_nand_controller *nandc)
547 {
548 struct bam_transaction *bam_txn;
549 size_t bam_txn_size;
550 unsigned int num_cw = nandc->max_cwperpage;
551 void *bam_txn_buf;
552
553 bam_txn_size =
554 sizeof(*bam_txn) + num_cw *
555 ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
556 (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
557 (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
558
559 bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
560 if (!bam_txn_buf)
561 return NULL;
562
563 bam_txn = bam_txn_buf;
564 bam_txn_buf += sizeof(*bam_txn);
565
566 bam_txn->bam_ce = bam_txn_buf;
567 bam_txn_buf +=
568 sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
569
570 bam_txn->cmd_sgl = bam_txn_buf;
571 bam_txn_buf +=
572 sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
573
574 bam_txn->data_sgl = bam_txn_buf;
575
576 init_completion(&bam_txn->txn_done);
577
578 return bam_txn;
579 }
580
581 /* Clears the BAM transaction indexes */
clear_bam_transaction(struct qcom_nand_controller * nandc)582 static void clear_bam_transaction(struct qcom_nand_controller *nandc)
583 {
584 struct bam_transaction *bam_txn = nandc->bam_txn;
585
586 if (!nandc->props->is_bam)
587 return;
588
589 bam_txn->bam_ce_pos = 0;
590 bam_txn->bam_ce_start = 0;
591 bam_txn->cmd_sgl_pos = 0;
592 bam_txn->cmd_sgl_start = 0;
593 bam_txn->tx_sgl_pos = 0;
594 bam_txn->tx_sgl_start = 0;
595 bam_txn->rx_sgl_pos = 0;
596 bam_txn->rx_sgl_start = 0;
597 bam_txn->last_data_desc = NULL;
598 bam_txn->wait_second_completion = false;
599
600 sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
601 QPIC_PER_CW_CMD_SGL);
602 sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
603 QPIC_PER_CW_DATA_SGL);
604
605 reinit_completion(&bam_txn->txn_done);
606 }
607
608 /* Callback for DMA descriptor completion */
qpic_bam_dma_done(void * data)609 static void qpic_bam_dma_done(void *data)
610 {
611 struct bam_transaction *bam_txn = data;
612
613 /*
614 * In case of data transfer with NAND, 2 callbacks will be generated.
615 * One for command channel and another one for data channel.
616 * If current transaction has data descriptors
617 * (i.e. wait_second_completion is true), then set this to false
618 * and wait for second DMA descriptor completion.
619 */
620 if (bam_txn->wait_second_completion)
621 bam_txn->wait_second_completion = false;
622 else
623 complete(&bam_txn->txn_done);
624 }
625
to_qcom_nand_host(struct nand_chip * chip)626 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
627 {
628 return container_of(chip, struct qcom_nand_host, chip);
629 }
630
631 static inline struct qcom_nand_controller *
get_qcom_nand_controller(struct nand_chip * chip)632 get_qcom_nand_controller(struct nand_chip *chip)
633 {
634 return container_of(chip->controller, struct qcom_nand_controller,
635 controller);
636 }
637
nandc_read(struct qcom_nand_controller * nandc,int offset)638 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
639 {
640 return ioread32(nandc->base + offset);
641 }
642
nandc_write(struct qcom_nand_controller * nandc,int offset,u32 val)643 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
644 u32 val)
645 {
646 iowrite32(val, nandc->base + offset);
647 }
648
nandc_read_buffer_sync(struct qcom_nand_controller * nandc,bool is_cpu)649 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
650 bool is_cpu)
651 {
652 if (!nandc->props->is_bam)
653 return;
654
655 if (is_cpu)
656 dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
657 MAX_REG_RD *
658 sizeof(*nandc->reg_read_buf),
659 DMA_FROM_DEVICE);
660 else
661 dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
662 MAX_REG_RD *
663 sizeof(*nandc->reg_read_buf),
664 DMA_FROM_DEVICE);
665 }
666
offset_to_nandc_reg(struct nandc_regs * regs,int offset)667 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
668 {
669 switch (offset) {
670 case NAND_FLASH_CMD:
671 return ®s->cmd;
672 case NAND_ADDR0:
673 return ®s->addr0;
674 case NAND_ADDR1:
675 return ®s->addr1;
676 case NAND_FLASH_CHIP_SELECT:
677 return ®s->chip_sel;
678 case NAND_EXEC_CMD:
679 return ®s->exec;
680 case NAND_FLASH_STATUS:
681 return ®s->clrflashstatus;
682 case NAND_DEV0_CFG0:
683 return ®s->cfg0;
684 case NAND_DEV0_CFG1:
685 return ®s->cfg1;
686 case NAND_DEV0_ECC_CFG:
687 return ®s->ecc_bch_cfg;
688 case NAND_READ_STATUS:
689 return ®s->clrreadstatus;
690 case NAND_DEV_CMD1:
691 return ®s->cmd1;
692 case NAND_DEV_CMD1_RESTORE:
693 return ®s->orig_cmd1;
694 case NAND_DEV_CMD_VLD:
695 return ®s->vld;
696 case NAND_DEV_CMD_VLD_RESTORE:
697 return ®s->orig_vld;
698 case NAND_EBI2_ECC_BUF_CFG:
699 return ®s->ecc_buf_cfg;
700 case NAND_READ_LOCATION_0:
701 return ®s->read_location0;
702 case NAND_READ_LOCATION_1:
703 return ®s->read_location1;
704 case NAND_READ_LOCATION_2:
705 return ®s->read_location2;
706 case NAND_READ_LOCATION_3:
707 return ®s->read_location3;
708 case NAND_READ_LOCATION_LAST_CW_0:
709 return ®s->read_location_last0;
710 case NAND_READ_LOCATION_LAST_CW_1:
711 return ®s->read_location_last1;
712 case NAND_READ_LOCATION_LAST_CW_2:
713 return ®s->read_location_last2;
714 case NAND_READ_LOCATION_LAST_CW_3:
715 return ®s->read_location_last3;
716 default:
717 return NULL;
718 }
719 }
720
nandc_set_reg(struct nand_chip * chip,int offset,u32 val)721 static void nandc_set_reg(struct nand_chip *chip, int offset,
722 u32 val)
723 {
724 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
725 struct nandc_regs *regs = nandc->regs;
726 __le32 *reg;
727
728 reg = offset_to_nandc_reg(regs, offset);
729
730 if (reg)
731 *reg = cpu_to_le32(val);
732 }
733
734 /* Helper to check the code word, whether it is last cw or not */
qcom_nandc_is_last_cw(struct nand_ecc_ctrl * ecc,int cw)735 static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw)
736 {
737 return cw == (ecc->steps - 1);
738 }
739
740 /* helper to configure location register values */
nandc_set_read_loc(struct nand_chip * chip,int cw,int reg,int cw_offset,int read_size,int is_last_read_loc)741 static void nandc_set_read_loc(struct nand_chip *chip, int cw, int reg,
742 int cw_offset, int read_size, int is_last_read_loc)
743 {
744 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
745 struct nand_ecc_ctrl *ecc = &chip->ecc;
746 int reg_base = NAND_READ_LOCATION_0;
747
748 if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
749 reg_base = NAND_READ_LOCATION_LAST_CW_0;
750
751 reg_base += reg * 4;
752
753 if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
754 return nandc_set_read_loc_last(chip, reg_base, cw_offset,
755 read_size, is_last_read_loc);
756 else
757 return nandc_set_read_loc_first(chip, reg_base, cw_offset,
758 read_size, is_last_read_loc);
759 }
760
761 /* helper to configure address register values */
set_address(struct qcom_nand_host * host,u16 column,int page)762 static void set_address(struct qcom_nand_host *host, u16 column, int page)
763 {
764 struct nand_chip *chip = &host->chip;
765
766 if (chip->options & NAND_BUSWIDTH_16)
767 column >>= 1;
768
769 nandc_set_reg(chip, NAND_ADDR0, page << 16 | column);
770 nandc_set_reg(chip, NAND_ADDR1, page >> 16 & 0xff);
771 }
772
773 /*
774 * update_rw_regs: set up read/write register values, these will be
775 * written to the NAND controller registers via DMA
776 *
777 * @num_cw: number of steps for the read/write operation
778 * @read: read or write operation
779 * @cw : which code word
780 */
update_rw_regs(struct qcom_nand_host * host,int num_cw,bool read,int cw)781 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, int cw)
782 {
783 struct nand_chip *chip = &host->chip;
784 u32 cmd, cfg0, cfg1, ecc_bch_cfg;
785 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
786
787 if (read) {
788 if (host->use_ecc)
789 cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
790 else
791 cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
792 } else {
793 cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
794 }
795
796 if (host->use_ecc) {
797 cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
798 (num_cw - 1) << CW_PER_PAGE;
799
800 cfg1 = host->cfg1;
801 ecc_bch_cfg = host->ecc_bch_cfg;
802 } else {
803 cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
804 (num_cw - 1) << CW_PER_PAGE;
805
806 cfg1 = host->cfg1_raw;
807 ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
808 }
809
810 nandc_set_reg(chip, NAND_FLASH_CMD, cmd);
811 nandc_set_reg(chip, NAND_DEV0_CFG0, cfg0);
812 nandc_set_reg(chip, NAND_DEV0_CFG1, cfg1);
813 nandc_set_reg(chip, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
814 if (!nandc->props->qpic_v2)
815 nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
816 nandc_set_reg(chip, NAND_FLASH_STATUS, host->clrflashstatus);
817 nandc_set_reg(chip, NAND_READ_STATUS, host->clrreadstatus);
818 nandc_set_reg(chip, NAND_EXEC_CMD, 1);
819
820 if (read)
821 nandc_set_read_loc(chip, cw, 0, 0, host->use_ecc ?
822 host->cw_data : host->cw_size, 1);
823 }
824
825 /*
826 * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
827 * for BAM. This descriptor will be added in the NAND DMA descriptor queue
828 * which will be submitted to DMA engine.
829 */
prepare_bam_async_desc(struct qcom_nand_controller * nandc,struct dma_chan * chan,unsigned long flags)830 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
831 struct dma_chan *chan,
832 unsigned long flags)
833 {
834 struct desc_info *desc;
835 struct scatterlist *sgl;
836 unsigned int sgl_cnt;
837 int ret;
838 struct bam_transaction *bam_txn = nandc->bam_txn;
839 enum dma_transfer_direction dir_eng;
840 struct dma_async_tx_descriptor *dma_desc;
841
842 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
843 if (!desc)
844 return -ENOMEM;
845
846 if (chan == nandc->cmd_chan) {
847 sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
848 sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
849 bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
850 dir_eng = DMA_MEM_TO_DEV;
851 desc->dir = DMA_TO_DEVICE;
852 } else if (chan == nandc->tx_chan) {
853 sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
854 sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
855 bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
856 dir_eng = DMA_MEM_TO_DEV;
857 desc->dir = DMA_TO_DEVICE;
858 } else {
859 sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
860 sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
861 bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
862 dir_eng = DMA_DEV_TO_MEM;
863 desc->dir = DMA_FROM_DEVICE;
864 }
865
866 sg_mark_end(sgl + sgl_cnt - 1);
867 ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
868 if (ret == 0) {
869 dev_err(nandc->dev, "failure in mapping desc\n");
870 kfree(desc);
871 return -ENOMEM;
872 }
873
874 desc->sgl_cnt = sgl_cnt;
875 desc->bam_sgl = sgl;
876
877 dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
878 flags);
879
880 if (!dma_desc) {
881 dev_err(nandc->dev, "failure in prep desc\n");
882 dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
883 kfree(desc);
884 return -EINVAL;
885 }
886
887 desc->dma_desc = dma_desc;
888
889 /* update last data/command descriptor */
890 if (chan == nandc->cmd_chan)
891 bam_txn->last_cmd_desc = dma_desc;
892 else
893 bam_txn->last_data_desc = dma_desc;
894
895 list_add_tail(&desc->node, &nandc->desc_list);
896
897 return 0;
898 }
899
900 /*
901 * Prepares the command descriptor for BAM DMA which will be used for NAND
902 * register reads and writes. The command descriptor requires the command
903 * to be formed in command element type so this function uses the command
904 * element from bam transaction ce array and fills the same with required
905 * data. A single SGL can contain multiple command elements so
906 * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
907 * after the current command element.
908 */
prep_bam_dma_desc_cmd(struct qcom_nand_controller * nandc,bool read,int reg_off,const void * vaddr,int size,unsigned int flags)909 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
910 int reg_off, const void *vaddr,
911 int size, unsigned int flags)
912 {
913 int bam_ce_size;
914 int i, ret;
915 struct bam_cmd_element *bam_ce_buffer;
916 struct bam_transaction *bam_txn = nandc->bam_txn;
917
918 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
919
920 /* fill the command desc */
921 for (i = 0; i < size; i++) {
922 if (read)
923 bam_prep_ce(&bam_ce_buffer[i],
924 nandc_reg_phys(nandc, reg_off + 4 * i),
925 BAM_READ_COMMAND,
926 reg_buf_dma_addr(nandc,
927 (__le32 *)vaddr + i));
928 else
929 bam_prep_ce_le32(&bam_ce_buffer[i],
930 nandc_reg_phys(nandc, reg_off + 4 * i),
931 BAM_WRITE_COMMAND,
932 *((__le32 *)vaddr + i));
933 }
934
935 bam_txn->bam_ce_pos += size;
936
937 /* use the separate sgl after this command */
938 if (flags & NAND_BAM_NEXT_SGL) {
939 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
940 bam_ce_size = (bam_txn->bam_ce_pos -
941 bam_txn->bam_ce_start) *
942 sizeof(struct bam_cmd_element);
943 sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
944 bam_ce_buffer, bam_ce_size);
945 bam_txn->cmd_sgl_pos++;
946 bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
947
948 if (flags & NAND_BAM_NWD) {
949 ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
950 DMA_PREP_FENCE |
951 DMA_PREP_CMD);
952 if (ret)
953 return ret;
954 }
955 }
956
957 return 0;
958 }
959
960 /*
961 * Prepares the data descriptor for BAM DMA which will be used for NAND
962 * data reads and writes.
963 */
prep_bam_dma_desc_data(struct qcom_nand_controller * nandc,bool read,const void * vaddr,int size,unsigned int flags)964 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
965 const void *vaddr,
966 int size, unsigned int flags)
967 {
968 int ret;
969 struct bam_transaction *bam_txn = nandc->bam_txn;
970
971 if (read) {
972 sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
973 vaddr, size);
974 bam_txn->rx_sgl_pos++;
975 } else {
976 sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
977 vaddr, size);
978 bam_txn->tx_sgl_pos++;
979
980 /*
981 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
982 * is not set, form the DMA descriptor
983 */
984 if (!(flags & NAND_BAM_NO_EOT)) {
985 ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
986 DMA_PREP_INTERRUPT);
987 if (ret)
988 return ret;
989 }
990 }
991
992 return 0;
993 }
994
prep_adm_dma_desc(struct qcom_nand_controller * nandc,bool read,int reg_off,const void * vaddr,int size,bool flow_control)995 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
996 int reg_off, const void *vaddr, int size,
997 bool flow_control)
998 {
999 struct desc_info *desc;
1000 struct dma_async_tx_descriptor *dma_desc;
1001 struct scatterlist *sgl;
1002 struct dma_slave_config slave_conf;
1003 struct qcom_adm_peripheral_config periph_conf = {};
1004 enum dma_transfer_direction dir_eng;
1005 int ret;
1006
1007 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1008 if (!desc)
1009 return -ENOMEM;
1010
1011 sgl = &desc->adm_sgl;
1012
1013 sg_init_one(sgl, vaddr, size);
1014
1015 if (read) {
1016 dir_eng = DMA_DEV_TO_MEM;
1017 desc->dir = DMA_FROM_DEVICE;
1018 } else {
1019 dir_eng = DMA_MEM_TO_DEV;
1020 desc->dir = DMA_TO_DEVICE;
1021 }
1022
1023 ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
1024 if (ret == 0) {
1025 ret = -ENOMEM;
1026 goto err;
1027 }
1028
1029 memset(&slave_conf, 0x00, sizeof(slave_conf));
1030
1031 slave_conf.device_fc = flow_control;
1032 if (read) {
1033 slave_conf.src_maxburst = 16;
1034 slave_conf.src_addr = nandc->base_dma + reg_off;
1035 if (nandc->data_crci) {
1036 periph_conf.crci = nandc->data_crci;
1037 slave_conf.peripheral_config = &periph_conf;
1038 slave_conf.peripheral_size = sizeof(periph_conf);
1039 }
1040 } else {
1041 slave_conf.dst_maxburst = 16;
1042 slave_conf.dst_addr = nandc->base_dma + reg_off;
1043 if (nandc->cmd_crci) {
1044 periph_conf.crci = nandc->cmd_crci;
1045 slave_conf.peripheral_config = &periph_conf;
1046 slave_conf.peripheral_size = sizeof(periph_conf);
1047 }
1048 }
1049
1050 ret = dmaengine_slave_config(nandc->chan, &slave_conf);
1051 if (ret) {
1052 dev_err(nandc->dev, "failed to configure dma channel\n");
1053 goto err;
1054 }
1055
1056 dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
1057 if (!dma_desc) {
1058 dev_err(nandc->dev, "failed to prepare desc\n");
1059 ret = -EINVAL;
1060 goto err;
1061 }
1062
1063 desc->dma_desc = dma_desc;
1064
1065 list_add_tail(&desc->node, &nandc->desc_list);
1066
1067 return 0;
1068 err:
1069 kfree(desc);
1070
1071 return ret;
1072 }
1073
1074 /*
1075 * read_reg_dma: prepares a descriptor to read a given number of
1076 * contiguous registers to the reg_read_buf pointer
1077 *
1078 * @first: offset of the first register in the contiguous block
1079 * @num_regs: number of registers to read
1080 * @flags: flags to control DMA descriptor preparation
1081 */
read_reg_dma(struct qcom_nand_controller * nandc,int first,int num_regs,unsigned int flags)1082 static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
1083 int num_regs, unsigned int flags)
1084 {
1085 bool flow_control = false;
1086 void *vaddr;
1087
1088 vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
1089 nandc->reg_read_pos += num_regs;
1090
1091 if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
1092 first = dev_cmd_reg_addr(nandc, first);
1093
1094 if (nandc->props->is_bam)
1095 return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
1096 num_regs, flags);
1097
1098 if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
1099 flow_control = true;
1100
1101 return prep_adm_dma_desc(nandc, true, first, vaddr,
1102 num_regs * sizeof(u32), flow_control);
1103 }
1104
1105 /*
1106 * write_reg_dma: prepares a descriptor to write a given number of
1107 * contiguous registers
1108 *
1109 * @first: offset of the first register in the contiguous block
1110 * @num_regs: number of registers to write
1111 * @flags: flags to control DMA descriptor preparation
1112 */
write_reg_dma(struct qcom_nand_controller * nandc,int first,int num_regs,unsigned int flags)1113 static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
1114 int num_regs, unsigned int flags)
1115 {
1116 bool flow_control = false;
1117 struct nandc_regs *regs = nandc->regs;
1118 void *vaddr;
1119
1120 vaddr = offset_to_nandc_reg(regs, first);
1121
1122 if (first == NAND_ERASED_CW_DETECT_CFG) {
1123 if (flags & NAND_ERASED_CW_SET)
1124 vaddr = ®s->erased_cw_detect_cfg_set;
1125 else
1126 vaddr = ®s->erased_cw_detect_cfg_clr;
1127 }
1128
1129 if (first == NAND_EXEC_CMD)
1130 flags |= NAND_BAM_NWD;
1131
1132 if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
1133 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
1134
1135 if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
1136 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
1137
1138 if (nandc->props->is_bam)
1139 return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
1140 num_regs, flags);
1141
1142 if (first == NAND_FLASH_CMD)
1143 flow_control = true;
1144
1145 return prep_adm_dma_desc(nandc, false, first, vaddr,
1146 num_regs * sizeof(u32), flow_control);
1147 }
1148
1149 /*
1150 * read_data_dma: prepares a DMA descriptor to transfer data from the
1151 * controller's internal buffer to the buffer 'vaddr'
1152 *
1153 * @reg_off: offset within the controller's data buffer
1154 * @vaddr: virtual address of the buffer we want to write to
1155 * @size: DMA transaction size in bytes
1156 * @flags: flags to control DMA descriptor preparation
1157 */
read_data_dma(struct qcom_nand_controller * nandc,int reg_off,const u8 * vaddr,int size,unsigned int flags)1158 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1159 const u8 *vaddr, int size, unsigned int flags)
1160 {
1161 if (nandc->props->is_bam)
1162 return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
1163
1164 return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
1165 }
1166
1167 /*
1168 * write_data_dma: prepares a DMA descriptor to transfer data from
1169 * 'vaddr' to the controller's internal buffer
1170 *
1171 * @reg_off: offset within the controller's data buffer
1172 * @vaddr: virtual address of the buffer we want to read from
1173 * @size: DMA transaction size in bytes
1174 * @flags: flags to control DMA descriptor preparation
1175 */
write_data_dma(struct qcom_nand_controller * nandc,int reg_off,const u8 * vaddr,int size,unsigned int flags)1176 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1177 const u8 *vaddr, int size, unsigned int flags)
1178 {
1179 if (nandc->props->is_bam)
1180 return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
1181
1182 return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
1183 }
1184
1185 /*
1186 * Helper to prepare DMA descriptors for configuring registers
1187 * before reading a NAND page.
1188 */
config_nand_page_read(struct nand_chip * chip)1189 static void config_nand_page_read(struct nand_chip *chip)
1190 {
1191 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1192
1193 write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1194 write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1195 if (!nandc->props->qpic_v2)
1196 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
1197 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
1198 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
1199 NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
1200 }
1201
1202 /*
1203 * Helper to prepare DMA descriptors for configuring registers
1204 * before reading each codeword in NAND page.
1205 */
1206 static void
config_nand_cw_read(struct nand_chip * chip,bool use_ecc,int cw)1207 config_nand_cw_read(struct nand_chip *chip, bool use_ecc, int cw)
1208 {
1209 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1210 struct nand_ecc_ctrl *ecc = &chip->ecc;
1211
1212 int reg = NAND_READ_LOCATION_0;
1213
1214 if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
1215 reg = NAND_READ_LOCATION_LAST_CW_0;
1216
1217 if (nandc->props->is_bam)
1218 write_reg_dma(nandc, reg, 4, NAND_BAM_NEXT_SGL);
1219
1220 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1221 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1222
1223 if (use_ecc) {
1224 read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
1225 read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
1226 NAND_BAM_NEXT_SGL);
1227 } else {
1228 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1229 }
1230 }
1231
1232 /*
1233 * Helper to prepare dma descriptors to configure registers needed for reading a
1234 * single codeword in page
1235 */
1236 static void
config_nand_single_cw_page_read(struct nand_chip * chip,bool use_ecc,int cw)1237 config_nand_single_cw_page_read(struct nand_chip *chip,
1238 bool use_ecc, int cw)
1239 {
1240 config_nand_page_read(chip);
1241 config_nand_cw_read(chip, use_ecc, cw);
1242 }
1243
1244 /*
1245 * Helper to prepare DMA descriptors used to configure registers needed for
1246 * before writing a NAND page.
1247 */
config_nand_page_write(struct nand_chip * chip)1248 static void config_nand_page_write(struct nand_chip *chip)
1249 {
1250 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1251
1252 write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1253 write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1254 if (!nandc->props->qpic_v2)
1255 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
1256 NAND_BAM_NEXT_SGL);
1257 }
1258
1259 /*
1260 * Helper to prepare DMA descriptors for configuring registers
1261 * before writing each codeword in NAND page.
1262 */
config_nand_cw_write(struct nand_chip * chip)1263 static void config_nand_cw_write(struct nand_chip *chip)
1264 {
1265 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1266
1267 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1268 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1269
1270 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1271
1272 write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1273 write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1274 }
1275
1276 /*
1277 * the following functions are used within chip->legacy.cmdfunc() to
1278 * perform different NAND_CMD_* commands
1279 */
1280
1281 /* sets up descriptors for NAND_CMD_PARAM */
nandc_param(struct qcom_nand_host * host)1282 static int nandc_param(struct qcom_nand_host *host)
1283 {
1284 struct nand_chip *chip = &host->chip;
1285 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1286
1287 /*
1288 * NAND_CMD_PARAM is called before we know much about the FLASH chip
1289 * in use. we configure the controller to perform a raw read of 512
1290 * bytes to read onfi params
1291 */
1292 if (nandc->props->qpic_v2)
1293 nandc_set_reg(chip, NAND_FLASH_CMD, OP_PAGE_READ_ONFI_READ |
1294 PAGE_ACC | LAST_PAGE);
1295 else
1296 nandc_set_reg(chip, NAND_FLASH_CMD, OP_PAGE_READ |
1297 PAGE_ACC | LAST_PAGE);
1298
1299 nandc_set_reg(chip, NAND_ADDR0, 0);
1300 nandc_set_reg(chip, NAND_ADDR1, 0);
1301 nandc_set_reg(chip, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
1302 | 512 << UD_SIZE_BYTES
1303 | 5 << NUM_ADDR_CYCLES
1304 | 0 << SPARE_SIZE_BYTES);
1305 nandc_set_reg(chip, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
1306 | 0 << CS_ACTIVE_BSY
1307 | 17 << BAD_BLOCK_BYTE_NUM
1308 | 1 << BAD_BLOCK_IN_SPARE_AREA
1309 | 2 << WR_RD_BSY_GAP
1310 | 0 << WIDE_FLASH
1311 | 1 << DEV0_CFG1_ECC_DISABLE);
1312 if (!nandc->props->qpic_v2)
1313 nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
1314
1315 /* configure CMD1 and VLD for ONFI param probing in QPIC v1 */
1316 if (!nandc->props->qpic_v2) {
1317 nandc_set_reg(chip, NAND_DEV_CMD_VLD,
1318 (nandc->vld & ~READ_START_VLD));
1319 nandc_set_reg(chip, NAND_DEV_CMD1,
1320 (nandc->cmd1 & ~(0xFF << READ_ADDR))
1321 | NAND_CMD_PARAM << READ_ADDR);
1322 }
1323
1324 nandc_set_reg(chip, NAND_EXEC_CMD, 1);
1325
1326 if (!nandc->props->qpic_v2) {
1327 nandc_set_reg(chip, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
1328 nandc_set_reg(chip, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
1329 }
1330
1331 nandc_set_read_loc(chip, 0, 0, 0, 512, 1);
1332
1333 if (!nandc->props->qpic_v2) {
1334 write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
1335 write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
1336 }
1337
1338 nandc->buf_count = 512;
1339 memset(nandc->data_buffer, 0xff, nandc->buf_count);
1340
1341 config_nand_single_cw_page_read(chip, false, 0);
1342
1343 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1344 nandc->buf_count, 0);
1345
1346 /* restore CMD1 and VLD regs */
1347 if (!nandc->props->qpic_v2) {
1348 write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
1349 write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
1350 }
1351
1352 return 0;
1353 }
1354
1355 /* sets up descriptors for NAND_CMD_ERASE1 */
erase_block(struct qcom_nand_host * host,int page_addr)1356 static int erase_block(struct qcom_nand_host *host, int page_addr)
1357 {
1358 struct nand_chip *chip = &host->chip;
1359 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1360
1361 nandc_set_reg(chip, NAND_FLASH_CMD,
1362 OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
1363 nandc_set_reg(chip, NAND_ADDR0, page_addr);
1364 nandc_set_reg(chip, NAND_ADDR1, 0);
1365 nandc_set_reg(chip, NAND_DEV0_CFG0,
1366 host->cfg0_raw & ~(7 << CW_PER_PAGE));
1367 nandc_set_reg(chip, NAND_DEV0_CFG1, host->cfg1_raw);
1368 nandc_set_reg(chip, NAND_EXEC_CMD, 1);
1369 nandc_set_reg(chip, NAND_FLASH_STATUS, host->clrflashstatus);
1370 nandc_set_reg(chip, NAND_READ_STATUS, host->clrreadstatus);
1371
1372 write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
1373 write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
1374 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1375
1376 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1377
1378 write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1379 write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1380
1381 return 0;
1382 }
1383
1384 /* sets up descriptors for NAND_CMD_READID */
read_id(struct qcom_nand_host * host,int column)1385 static int read_id(struct qcom_nand_host *host, int column)
1386 {
1387 struct nand_chip *chip = &host->chip;
1388 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1389
1390 if (column == -1)
1391 return 0;
1392
1393 nandc_set_reg(chip, NAND_FLASH_CMD, OP_FETCH_ID);
1394 nandc_set_reg(chip, NAND_ADDR0, column);
1395 nandc_set_reg(chip, NAND_ADDR1, 0);
1396 nandc_set_reg(chip, NAND_FLASH_CHIP_SELECT,
1397 nandc->props->is_bam ? 0 : DM_EN);
1398 nandc_set_reg(chip, NAND_EXEC_CMD, 1);
1399
1400 write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
1401 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1402
1403 read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
1404
1405 return 0;
1406 }
1407
1408 /* sets up descriptors for NAND_CMD_RESET */
reset(struct qcom_nand_host * host)1409 static int reset(struct qcom_nand_host *host)
1410 {
1411 struct nand_chip *chip = &host->chip;
1412 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1413
1414 nandc_set_reg(chip, NAND_FLASH_CMD, OP_RESET_DEVICE);
1415 nandc_set_reg(chip, NAND_EXEC_CMD, 1);
1416
1417 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1418 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1419
1420 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1421
1422 return 0;
1423 }
1424
1425 /* helpers to submit/free our list of dma descriptors */
submit_descs(struct qcom_nand_controller * nandc)1426 static int submit_descs(struct qcom_nand_controller *nandc)
1427 {
1428 struct desc_info *desc;
1429 dma_cookie_t cookie = 0;
1430 struct bam_transaction *bam_txn = nandc->bam_txn;
1431 int r;
1432
1433 if (nandc->props->is_bam) {
1434 if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1435 r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1436 if (r)
1437 return r;
1438 }
1439
1440 if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1441 r = prepare_bam_async_desc(nandc, nandc->tx_chan,
1442 DMA_PREP_INTERRUPT);
1443 if (r)
1444 return r;
1445 }
1446
1447 if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1448 r = prepare_bam_async_desc(nandc, nandc->cmd_chan,
1449 DMA_PREP_CMD);
1450 if (r)
1451 return r;
1452 }
1453 }
1454
1455 list_for_each_entry(desc, &nandc->desc_list, node)
1456 cookie = dmaengine_submit(desc->dma_desc);
1457
1458 if (nandc->props->is_bam) {
1459 bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
1460 bam_txn->last_cmd_desc->callback_param = bam_txn;
1461 if (bam_txn->last_data_desc) {
1462 bam_txn->last_data_desc->callback = qpic_bam_dma_done;
1463 bam_txn->last_data_desc->callback_param = bam_txn;
1464 bam_txn->wait_second_completion = true;
1465 }
1466
1467 dma_async_issue_pending(nandc->tx_chan);
1468 dma_async_issue_pending(nandc->rx_chan);
1469 dma_async_issue_pending(nandc->cmd_chan);
1470
1471 if (!wait_for_completion_timeout(&bam_txn->txn_done,
1472 QPIC_NAND_COMPLETION_TIMEOUT))
1473 return -ETIMEDOUT;
1474 } else {
1475 if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1476 return -ETIMEDOUT;
1477 }
1478
1479 return 0;
1480 }
1481
free_descs(struct qcom_nand_controller * nandc)1482 static void free_descs(struct qcom_nand_controller *nandc)
1483 {
1484 struct desc_info *desc, *n;
1485
1486 list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1487 list_del(&desc->node);
1488
1489 if (nandc->props->is_bam)
1490 dma_unmap_sg(nandc->dev, desc->bam_sgl,
1491 desc->sgl_cnt, desc->dir);
1492 else
1493 dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1494 desc->dir);
1495
1496 kfree(desc);
1497 }
1498 }
1499
1500 /* reset the register read buffer for next NAND operation */
clear_read_regs(struct qcom_nand_controller * nandc)1501 static void clear_read_regs(struct qcom_nand_controller *nandc)
1502 {
1503 nandc->reg_read_pos = 0;
1504 nandc_read_buffer_sync(nandc, false);
1505 }
1506
pre_command(struct qcom_nand_host * host,int command)1507 static void pre_command(struct qcom_nand_host *host, int command)
1508 {
1509 struct nand_chip *chip = &host->chip;
1510 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1511
1512 nandc->buf_count = 0;
1513 nandc->buf_start = 0;
1514 host->use_ecc = false;
1515 host->last_command = command;
1516
1517 clear_read_regs(nandc);
1518
1519 if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
1520 command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
1521 clear_bam_transaction(nandc);
1522 }
1523
1524 /*
1525 * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
1526 * privately maintained status byte, this status byte can be read after
1527 * NAND_CMD_STATUS is called
1528 */
parse_erase_write_errors(struct qcom_nand_host * host,int command)1529 static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
1530 {
1531 struct nand_chip *chip = &host->chip;
1532 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1533 struct nand_ecc_ctrl *ecc = &chip->ecc;
1534 int num_cw;
1535 int i;
1536
1537 num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
1538 nandc_read_buffer_sync(nandc, true);
1539
1540 for (i = 0; i < num_cw; i++) {
1541 u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
1542
1543 if (flash_status & FS_MPU_ERR)
1544 host->status &= ~NAND_STATUS_WP;
1545
1546 if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
1547 (flash_status &
1548 FS_DEVICE_STS_ERR)))
1549 host->status |= NAND_STATUS_FAIL;
1550 }
1551 }
1552
post_command(struct qcom_nand_host * host,int command)1553 static void post_command(struct qcom_nand_host *host, int command)
1554 {
1555 struct nand_chip *chip = &host->chip;
1556 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1557
1558 switch (command) {
1559 case NAND_CMD_READID:
1560 nandc_read_buffer_sync(nandc, true);
1561 memcpy(nandc->data_buffer, nandc->reg_read_buf,
1562 nandc->buf_count);
1563 break;
1564 case NAND_CMD_PAGEPROG:
1565 case NAND_CMD_ERASE1:
1566 parse_erase_write_errors(host, command);
1567 break;
1568 default:
1569 break;
1570 }
1571 }
1572
1573 /*
1574 * Implements chip->legacy.cmdfunc. It's only used for a limited set of
1575 * commands. The rest of the commands wouldn't be called by upper layers.
1576 * For example, NAND_CMD_READOOB would never be called because we have our own
1577 * versions of read_oob ops for nand_ecc_ctrl.
1578 */
qcom_nandc_command(struct nand_chip * chip,unsigned int command,int column,int page_addr)1579 static void qcom_nandc_command(struct nand_chip *chip, unsigned int command,
1580 int column, int page_addr)
1581 {
1582 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1583 struct nand_ecc_ctrl *ecc = &chip->ecc;
1584 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1585 bool wait = false;
1586 int ret = 0;
1587
1588 pre_command(host, command);
1589
1590 switch (command) {
1591 case NAND_CMD_RESET:
1592 ret = reset(host);
1593 wait = true;
1594 break;
1595
1596 case NAND_CMD_READID:
1597 nandc->buf_count = 4;
1598 ret = read_id(host, column);
1599 wait = true;
1600 break;
1601
1602 case NAND_CMD_PARAM:
1603 ret = nandc_param(host);
1604 wait = true;
1605 break;
1606
1607 case NAND_CMD_ERASE1:
1608 ret = erase_block(host, page_addr);
1609 wait = true;
1610 break;
1611
1612 case NAND_CMD_READ0:
1613 /* we read the entire page for now */
1614 WARN_ON(column != 0);
1615
1616 host->use_ecc = true;
1617 set_address(host, 0, page_addr);
1618 update_rw_regs(host, ecc->steps, true, 0);
1619 break;
1620
1621 case NAND_CMD_SEQIN:
1622 WARN_ON(column != 0);
1623 set_address(host, 0, page_addr);
1624 break;
1625
1626 case NAND_CMD_PAGEPROG:
1627 case NAND_CMD_STATUS:
1628 case NAND_CMD_NONE:
1629 default:
1630 break;
1631 }
1632
1633 if (ret) {
1634 dev_err(nandc->dev, "failure executing command %d\n",
1635 command);
1636 free_descs(nandc);
1637 return;
1638 }
1639
1640 if (wait) {
1641 ret = submit_descs(nandc);
1642 if (ret)
1643 dev_err(nandc->dev,
1644 "failure submitting descs for command %d\n",
1645 command);
1646 }
1647
1648 free_descs(nandc);
1649
1650 post_command(host, command);
1651 }
1652
1653 /*
1654 * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1655 * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1656 *
1657 * when using RS ECC, the HW reports the same erros when reading an erased CW,
1658 * but it notifies that it is an erased CW by placing special characters at
1659 * certain offsets in the buffer.
1660 *
1661 * verify if the page is erased or not, and fix up the page for RS ECC by
1662 * replacing the special characters with 0xff.
1663 */
erased_chunk_check_and_fixup(u8 * data_buf,int data_len)1664 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1665 {
1666 u8 empty1, empty2;
1667
1668 /*
1669 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1670 * is erased by looking for 0x54s at offsets 3 and 175 from the
1671 * beginning of each codeword
1672 */
1673
1674 empty1 = data_buf[3];
1675 empty2 = data_buf[175];
1676
1677 /*
1678 * if the erased codework markers, if they exist override them with
1679 * 0xffs
1680 */
1681 if ((empty1 == 0x54 && empty2 == 0xff) ||
1682 (empty1 == 0xff && empty2 == 0x54)) {
1683 data_buf[3] = 0xff;
1684 data_buf[175] = 0xff;
1685 }
1686
1687 /*
1688 * check if the entire chunk contains 0xffs or not. if it doesn't, then
1689 * restore the original values at the special offsets
1690 */
1691 if (memchr_inv(data_buf, 0xff, data_len)) {
1692 data_buf[3] = empty1;
1693 data_buf[175] = empty2;
1694
1695 return false;
1696 }
1697
1698 return true;
1699 }
1700
1701 struct read_stats {
1702 __le32 flash;
1703 __le32 buffer;
1704 __le32 erased_cw;
1705 };
1706
1707 /* reads back FLASH_STATUS register set by the controller */
check_flash_errors(struct qcom_nand_host * host,int cw_cnt)1708 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
1709 {
1710 struct nand_chip *chip = &host->chip;
1711 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1712 int i;
1713
1714 nandc_read_buffer_sync(nandc, true);
1715
1716 for (i = 0; i < cw_cnt; i++) {
1717 u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
1718
1719 if (flash & (FS_OP_ERR | FS_MPU_ERR))
1720 return -EIO;
1721 }
1722
1723 return 0;
1724 }
1725
1726 /* performs raw read for one codeword */
1727 static int
qcom_nandc_read_cw_raw(struct mtd_info * mtd,struct nand_chip * chip,u8 * data_buf,u8 * oob_buf,int page,int cw)1728 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
1729 u8 *data_buf, u8 *oob_buf, int page, int cw)
1730 {
1731 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1732 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1733 struct nand_ecc_ctrl *ecc = &chip->ecc;
1734 int data_size1, data_size2, oob_size1, oob_size2;
1735 int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
1736 int raw_cw = cw;
1737
1738 nand_read_page_op(chip, page, 0, NULL, 0);
1739 host->use_ecc = false;
1740
1741 if (nandc->props->qpic_v2)
1742 raw_cw = ecc->steps - 1;
1743
1744 clear_bam_transaction(nandc);
1745 set_address(host, host->cw_size * cw, page);
1746 update_rw_regs(host, 1, true, raw_cw);
1747 config_nand_page_read(chip);
1748
1749 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1750 oob_size1 = host->bbm_size;
1751
1752 if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) {
1753 data_size2 = ecc->size - data_size1 -
1754 ((ecc->steps - 1) * 4);
1755 oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
1756 host->spare_bytes;
1757 } else {
1758 data_size2 = host->cw_data - data_size1;
1759 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1760 }
1761
1762 if (nandc->props->is_bam) {
1763 nandc_set_read_loc(chip, cw, 0, read_loc, data_size1, 0);
1764 read_loc += data_size1;
1765
1766 nandc_set_read_loc(chip, cw, 1, read_loc, oob_size1, 0);
1767 read_loc += oob_size1;
1768
1769 nandc_set_read_loc(chip, cw, 2, read_loc, data_size2, 0);
1770 read_loc += data_size2;
1771
1772 nandc_set_read_loc(chip, cw, 3, read_loc, oob_size2, 1);
1773 }
1774
1775 config_nand_cw_read(chip, false, raw_cw);
1776
1777 read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1778 reg_off += data_size1;
1779
1780 read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1781 reg_off += oob_size1;
1782
1783 read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
1784 reg_off += data_size2;
1785
1786 read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
1787
1788 ret = submit_descs(nandc);
1789 free_descs(nandc);
1790 if (ret) {
1791 dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
1792 return ret;
1793 }
1794
1795 return check_flash_errors(host, 1);
1796 }
1797
1798 /*
1799 * Bitflips can happen in erased codewords also so this function counts the
1800 * number of 0 in each CW for which ECC engine returns the uncorrectable
1801 * error. The page will be assumed as erased if this count is less than or
1802 * equal to the ecc->strength for each CW.
1803 *
1804 * 1. Both DATA and OOB need to be checked for number of 0. The
1805 * top-level API can be called with only data buf or OOB buf so use
1806 * chip->data_buf if data buf is null and chip->oob_poi if oob buf
1807 * is null for copying the raw bytes.
1808 * 2. Perform raw read for all the CW which has uncorrectable errors.
1809 * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
1810 * The BBM and spare bytes bit flip won’t affect the ECC so don’t check
1811 * the number of bitflips in this area.
1812 */
1813 static int
check_for_erased_page(struct qcom_nand_host * host,u8 * data_buf,u8 * oob_buf,unsigned long uncorrectable_cws,int page,unsigned int max_bitflips)1814 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
1815 u8 *oob_buf, unsigned long uncorrectable_cws,
1816 int page, unsigned int max_bitflips)
1817 {
1818 struct nand_chip *chip = &host->chip;
1819 struct mtd_info *mtd = nand_to_mtd(chip);
1820 struct nand_ecc_ctrl *ecc = &chip->ecc;
1821 u8 *cw_data_buf, *cw_oob_buf;
1822 int cw, data_size, oob_size, ret = 0;
1823
1824 if (!data_buf)
1825 data_buf = nand_get_data_buf(chip);
1826
1827 if (!oob_buf) {
1828 nand_get_data_buf(chip);
1829 oob_buf = chip->oob_poi;
1830 }
1831
1832 for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
1833 if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) {
1834 data_size = ecc->size - ((ecc->steps - 1) * 4);
1835 oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
1836 } else {
1837 data_size = host->cw_data;
1838 oob_size = host->ecc_bytes_hw;
1839 }
1840
1841 /* determine starting buffer address for current CW */
1842 cw_data_buf = data_buf + (cw * host->cw_data);
1843 cw_oob_buf = oob_buf + (cw * ecc->bytes);
1844
1845 ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
1846 cw_oob_buf, page, cw);
1847 if (ret)
1848 return ret;
1849
1850 /*
1851 * make sure it isn't an erased page reported
1852 * as not-erased by HW because of a few bitflips
1853 */
1854 ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
1855 cw_oob_buf + host->bbm_size,
1856 oob_size, NULL,
1857 0, ecc->strength);
1858 if (ret < 0) {
1859 mtd->ecc_stats.failed++;
1860 } else {
1861 mtd->ecc_stats.corrected += ret;
1862 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1863 }
1864 }
1865
1866 return max_bitflips;
1867 }
1868
1869 /*
1870 * reads back status registers set by the controller to notify page read
1871 * errors. this is equivalent to what 'ecc->correct()' would do.
1872 */
parse_read_errors(struct qcom_nand_host * host,u8 * data_buf,u8 * oob_buf,int page)1873 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1874 u8 *oob_buf, int page)
1875 {
1876 struct nand_chip *chip = &host->chip;
1877 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1878 struct mtd_info *mtd = nand_to_mtd(chip);
1879 struct nand_ecc_ctrl *ecc = &chip->ecc;
1880 unsigned int max_bitflips = 0, uncorrectable_cws = 0;
1881 struct read_stats *buf;
1882 bool flash_op_err = false, erased;
1883 int i;
1884 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1885
1886 buf = (struct read_stats *)nandc->reg_read_buf;
1887 nandc_read_buffer_sync(nandc, true);
1888
1889 for (i = 0; i < ecc->steps; i++, buf++) {
1890 u32 flash, buffer, erased_cw;
1891 int data_len, oob_len;
1892
1893 if (qcom_nandc_is_last_cw(ecc, i)) {
1894 data_len = ecc->size - ((ecc->steps - 1) << 2);
1895 oob_len = ecc->steps << 2;
1896 } else {
1897 data_len = host->cw_data;
1898 oob_len = 0;
1899 }
1900
1901 flash = le32_to_cpu(buf->flash);
1902 buffer = le32_to_cpu(buf->buffer);
1903 erased_cw = le32_to_cpu(buf->erased_cw);
1904
1905 /*
1906 * Check ECC failure for each codeword. ECC failure can
1907 * happen in either of the following conditions
1908 * 1. If number of bitflips are greater than ECC engine
1909 * capability.
1910 * 2. If this codeword contains all 0xff for which erased
1911 * codeword detection check will be done.
1912 */
1913 if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
1914 /*
1915 * For BCH ECC, ignore erased codeword errors, if
1916 * ERASED_CW bits are set.
1917 */
1918 if (host->bch_enabled) {
1919 erased = (erased_cw & ERASED_CW) == ERASED_CW;
1920 /*
1921 * For RS ECC, HW reports the erased CW by placing
1922 * special characters at certain offsets in the buffer.
1923 * These special characters will be valid only if
1924 * complete page is read i.e. data_buf is not NULL.
1925 */
1926 } else if (data_buf) {
1927 erased = erased_chunk_check_and_fixup(data_buf,
1928 data_len);
1929 } else {
1930 erased = false;
1931 }
1932
1933 if (!erased)
1934 uncorrectable_cws |= BIT(i);
1935 /*
1936 * Check if MPU or any other operational error (timeout,
1937 * device failure, etc.) happened for this codeword and
1938 * make flash_op_err true. If flash_op_err is set, then
1939 * EIO will be returned for page read.
1940 */
1941 } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1942 flash_op_err = true;
1943 /*
1944 * No ECC or operational errors happened. Check the number of
1945 * bits corrected and update the ecc_stats.corrected.
1946 */
1947 } else {
1948 unsigned int stat;
1949
1950 stat = buffer & BS_CORRECTABLE_ERR_MSK;
1951 mtd->ecc_stats.corrected += stat;
1952 max_bitflips = max(max_bitflips, stat);
1953 }
1954
1955 if (data_buf)
1956 data_buf += data_len;
1957 if (oob_buf)
1958 oob_buf += oob_len + ecc->bytes;
1959 }
1960
1961 if (flash_op_err)
1962 return -EIO;
1963
1964 if (!uncorrectable_cws)
1965 return max_bitflips;
1966
1967 return check_for_erased_page(host, data_buf_start, oob_buf_start,
1968 uncorrectable_cws, page,
1969 max_bitflips);
1970 }
1971
1972 /*
1973 * helper to perform the actual page read operation, used by ecc->read_page(),
1974 * ecc->read_oob()
1975 */
read_page_ecc(struct qcom_nand_host * host,u8 * data_buf,u8 * oob_buf,int page)1976 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1977 u8 *oob_buf, int page)
1978 {
1979 struct nand_chip *chip = &host->chip;
1980 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1981 struct nand_ecc_ctrl *ecc = &chip->ecc;
1982 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1983 int i, ret;
1984
1985 config_nand_page_read(chip);
1986
1987 /* queue cmd descs for each codeword */
1988 for (i = 0; i < ecc->steps; i++) {
1989 int data_size, oob_size;
1990
1991 if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) {
1992 data_size = ecc->size - ((ecc->steps - 1) << 2);
1993 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1994 host->spare_bytes;
1995 } else {
1996 data_size = host->cw_data;
1997 oob_size = host->ecc_bytes_hw + host->spare_bytes;
1998 }
1999
2000 if (nandc->props->is_bam) {
2001 if (data_buf && oob_buf) {
2002 nandc_set_read_loc(chip, i, 0, 0, data_size, 0);
2003 nandc_set_read_loc(chip, i, 1, data_size,
2004 oob_size, 1);
2005 } else if (data_buf) {
2006 nandc_set_read_loc(chip, i, 0, 0, data_size, 1);
2007 } else {
2008 nandc_set_read_loc(chip, i, 0, data_size,
2009 oob_size, 1);
2010 }
2011 }
2012
2013 config_nand_cw_read(chip, true, i);
2014
2015 if (data_buf)
2016 read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
2017 data_size, 0);
2018
2019 /*
2020 * when ecc is enabled, the controller doesn't read the real
2021 * or dummy bad block markers in each chunk. To maintain a
2022 * consistent layout across RAW and ECC reads, we just
2023 * leave the real/dummy BBM offsets empty (i.e, filled with
2024 * 0xffs)
2025 */
2026 if (oob_buf) {
2027 int j;
2028
2029 for (j = 0; j < host->bbm_size; j++)
2030 *oob_buf++ = 0xff;
2031
2032 read_data_dma(nandc, FLASH_BUF_ACC + data_size,
2033 oob_buf, oob_size, 0);
2034 }
2035
2036 if (data_buf)
2037 data_buf += data_size;
2038 if (oob_buf)
2039 oob_buf += oob_size;
2040 }
2041
2042 ret = submit_descs(nandc);
2043 free_descs(nandc);
2044
2045 if (ret) {
2046 dev_err(nandc->dev, "failure to read page/oob\n");
2047 return ret;
2048 }
2049
2050 return parse_read_errors(host, data_buf_start, oob_buf_start, page);
2051 }
2052
2053 /*
2054 * a helper that copies the last step/codeword of a page (containing free oob)
2055 * into our local buffer
2056 */
copy_last_cw(struct qcom_nand_host * host,int page)2057 static int copy_last_cw(struct qcom_nand_host *host, int page)
2058 {
2059 struct nand_chip *chip = &host->chip;
2060 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2061 struct nand_ecc_ctrl *ecc = &chip->ecc;
2062 int size;
2063 int ret;
2064
2065 clear_read_regs(nandc);
2066
2067 size = host->use_ecc ? host->cw_data : host->cw_size;
2068
2069 /* prepare a clean read buffer */
2070 memset(nandc->data_buffer, 0xff, size);
2071
2072 set_address(host, host->cw_size * (ecc->steps - 1), page);
2073 update_rw_regs(host, 1, true, ecc->steps - 1);
2074
2075 config_nand_single_cw_page_read(chip, host->use_ecc, ecc->steps - 1);
2076
2077 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
2078
2079 ret = submit_descs(nandc);
2080 if (ret)
2081 dev_err(nandc->dev, "failed to copy last codeword\n");
2082
2083 free_descs(nandc);
2084
2085 return ret;
2086 }
2087
qcom_nandc_is_boot_partition(struct qcom_nand_host * host,int page)2088 static bool qcom_nandc_is_boot_partition(struct qcom_nand_host *host, int page)
2089 {
2090 struct qcom_nand_boot_partition *boot_partition;
2091 u32 start, end;
2092 int i;
2093
2094 /*
2095 * Since the frequent access will be to the non-boot partitions like rootfs,
2096 * optimize the page check by:
2097 *
2098 * 1. Checking if the page lies after the last boot partition.
2099 * 2. Checking from the boot partition end.
2100 */
2101
2102 /* First check the last boot partition */
2103 boot_partition = &host->boot_partitions[host->nr_boot_partitions - 1];
2104 start = boot_partition->page_offset;
2105 end = start + boot_partition->page_size;
2106
2107 /* Page is after the last boot partition end. This is NOT a boot partition */
2108 if (page > end)
2109 return false;
2110
2111 /* Actually check if it's a boot partition */
2112 if (page < end && page >= start)
2113 return true;
2114
2115 /* Check the other boot partitions starting from the second-last partition */
2116 for (i = host->nr_boot_partitions - 2; i >= 0; i--) {
2117 boot_partition = &host->boot_partitions[i];
2118 start = boot_partition->page_offset;
2119 end = start + boot_partition->page_size;
2120
2121 if (page < end && page >= start)
2122 return true;
2123 }
2124
2125 return false;
2126 }
2127
qcom_nandc_codeword_fixup(struct qcom_nand_host * host,int page)2128 static void qcom_nandc_codeword_fixup(struct qcom_nand_host *host, int page)
2129 {
2130 bool codeword_fixup = qcom_nandc_is_boot_partition(host, page);
2131
2132 /* Skip conf write if we are already in the correct mode */
2133 if (codeword_fixup == host->codeword_fixup)
2134 return;
2135
2136 host->codeword_fixup = codeword_fixup;
2137
2138 host->cw_data = codeword_fixup ? 512 : 516;
2139 host->spare_bytes = host->cw_size - host->ecc_bytes_hw -
2140 host->bbm_size - host->cw_data;
2141
2142 host->cfg0 &= ~(SPARE_SIZE_BYTES_MASK | UD_SIZE_BYTES_MASK);
2143 host->cfg0 |= host->spare_bytes << SPARE_SIZE_BYTES |
2144 host->cw_data << UD_SIZE_BYTES;
2145
2146 host->ecc_bch_cfg &= ~ECC_NUM_DATA_BYTES_MASK;
2147 host->ecc_bch_cfg |= host->cw_data << ECC_NUM_DATA_BYTES;
2148 host->ecc_buf_cfg = (host->cw_data - 1) << NUM_STEPS;
2149 }
2150
2151 /* implements ecc->read_page() */
qcom_nandc_read_page(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2152 static int qcom_nandc_read_page(struct nand_chip *chip, uint8_t *buf,
2153 int oob_required, int page)
2154 {
2155 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2156 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2157 u8 *data_buf, *oob_buf = NULL;
2158
2159 if (host->nr_boot_partitions)
2160 qcom_nandc_codeword_fixup(host, page);
2161
2162 nand_read_page_op(chip, page, 0, NULL, 0);
2163 data_buf = buf;
2164 oob_buf = oob_required ? chip->oob_poi : NULL;
2165
2166 clear_bam_transaction(nandc);
2167
2168 return read_page_ecc(host, data_buf, oob_buf, page);
2169 }
2170
2171 /* implements ecc->read_page_raw() */
qcom_nandc_read_page_raw(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2172 static int qcom_nandc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
2173 int oob_required, int page)
2174 {
2175 struct mtd_info *mtd = nand_to_mtd(chip);
2176 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2177 struct nand_ecc_ctrl *ecc = &chip->ecc;
2178 int cw, ret;
2179 u8 *data_buf = buf, *oob_buf = chip->oob_poi;
2180
2181 if (host->nr_boot_partitions)
2182 qcom_nandc_codeword_fixup(host, page);
2183
2184 for (cw = 0; cw < ecc->steps; cw++) {
2185 ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
2186 page, cw);
2187 if (ret)
2188 return ret;
2189
2190 data_buf += host->cw_data;
2191 oob_buf += ecc->bytes;
2192 }
2193
2194 return 0;
2195 }
2196
2197 /* implements ecc->read_oob() */
qcom_nandc_read_oob(struct nand_chip * chip,int page)2198 static int qcom_nandc_read_oob(struct nand_chip *chip, int page)
2199 {
2200 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2201 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2202 struct nand_ecc_ctrl *ecc = &chip->ecc;
2203
2204 if (host->nr_boot_partitions)
2205 qcom_nandc_codeword_fixup(host, page);
2206
2207 clear_read_regs(nandc);
2208 clear_bam_transaction(nandc);
2209
2210 host->use_ecc = true;
2211 set_address(host, 0, page);
2212 update_rw_regs(host, ecc->steps, true, 0);
2213
2214 return read_page_ecc(host, NULL, chip->oob_poi, page);
2215 }
2216
2217 /* implements ecc->write_page() */
qcom_nandc_write_page(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2218 static int qcom_nandc_write_page(struct nand_chip *chip, const uint8_t *buf,
2219 int oob_required, int page)
2220 {
2221 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2222 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2223 struct nand_ecc_ctrl *ecc = &chip->ecc;
2224 u8 *data_buf, *oob_buf;
2225 int i, ret;
2226
2227 if (host->nr_boot_partitions)
2228 qcom_nandc_codeword_fixup(host, page);
2229
2230 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2231
2232 clear_read_regs(nandc);
2233 clear_bam_transaction(nandc);
2234
2235 data_buf = (u8 *)buf;
2236 oob_buf = chip->oob_poi;
2237
2238 host->use_ecc = true;
2239 update_rw_regs(host, ecc->steps, false, 0);
2240 config_nand_page_write(chip);
2241
2242 for (i = 0; i < ecc->steps; i++) {
2243 int data_size, oob_size;
2244
2245 if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) {
2246 data_size = ecc->size - ((ecc->steps - 1) << 2);
2247 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
2248 host->spare_bytes;
2249 } else {
2250 data_size = host->cw_data;
2251 oob_size = ecc->bytes;
2252 }
2253
2254
2255 write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
2256 i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
2257
2258 /*
2259 * when ECC is enabled, we don't really need to write anything
2260 * to oob for the first n - 1 codewords since these oob regions
2261 * just contain ECC bytes that's written by the controller
2262 * itself. For the last codeword, we skip the bbm positions and
2263 * write to the free oob area.
2264 */
2265 if (qcom_nandc_is_last_cw(ecc, i)) {
2266 oob_buf += host->bbm_size;
2267
2268 write_data_dma(nandc, FLASH_BUF_ACC + data_size,
2269 oob_buf, oob_size, 0);
2270 }
2271
2272 config_nand_cw_write(chip);
2273
2274 data_buf += data_size;
2275 oob_buf += oob_size;
2276 }
2277
2278 ret = submit_descs(nandc);
2279 if (ret)
2280 dev_err(nandc->dev, "failure to write page\n");
2281
2282 free_descs(nandc);
2283
2284 if (!ret)
2285 ret = nand_prog_page_end_op(chip);
2286
2287 return ret;
2288 }
2289
2290 /* implements ecc->write_page_raw() */
qcom_nandc_write_page_raw(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2291 static int qcom_nandc_write_page_raw(struct nand_chip *chip,
2292 const uint8_t *buf, int oob_required,
2293 int page)
2294 {
2295 struct mtd_info *mtd = nand_to_mtd(chip);
2296 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2297 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2298 struct nand_ecc_ctrl *ecc = &chip->ecc;
2299 u8 *data_buf, *oob_buf;
2300 int i, ret;
2301
2302 if (host->nr_boot_partitions)
2303 qcom_nandc_codeword_fixup(host, page);
2304
2305 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2306 clear_read_regs(nandc);
2307 clear_bam_transaction(nandc);
2308
2309 data_buf = (u8 *)buf;
2310 oob_buf = chip->oob_poi;
2311
2312 host->use_ecc = false;
2313 update_rw_regs(host, ecc->steps, false, 0);
2314 config_nand_page_write(chip);
2315
2316 for (i = 0; i < ecc->steps; i++) {
2317 int data_size1, data_size2, oob_size1, oob_size2;
2318 int reg_off = FLASH_BUF_ACC;
2319
2320 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
2321 oob_size1 = host->bbm_size;
2322
2323 if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) {
2324 data_size2 = ecc->size - data_size1 -
2325 ((ecc->steps - 1) << 2);
2326 oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
2327 host->spare_bytes;
2328 } else {
2329 data_size2 = host->cw_data - data_size1;
2330 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
2331 }
2332
2333 write_data_dma(nandc, reg_off, data_buf, data_size1,
2334 NAND_BAM_NO_EOT);
2335 reg_off += data_size1;
2336 data_buf += data_size1;
2337
2338 write_data_dma(nandc, reg_off, oob_buf, oob_size1,
2339 NAND_BAM_NO_EOT);
2340 reg_off += oob_size1;
2341 oob_buf += oob_size1;
2342
2343 write_data_dma(nandc, reg_off, data_buf, data_size2,
2344 NAND_BAM_NO_EOT);
2345 reg_off += data_size2;
2346 data_buf += data_size2;
2347
2348 write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
2349 oob_buf += oob_size2;
2350
2351 config_nand_cw_write(chip);
2352 }
2353
2354 ret = submit_descs(nandc);
2355 if (ret)
2356 dev_err(nandc->dev, "failure to write raw page\n");
2357
2358 free_descs(nandc);
2359
2360 if (!ret)
2361 ret = nand_prog_page_end_op(chip);
2362
2363 return ret;
2364 }
2365
2366 /*
2367 * implements ecc->write_oob()
2368 *
2369 * the NAND controller cannot write only data or only OOB within a codeword
2370 * since ECC is calculated for the combined codeword. So update the OOB from
2371 * chip->oob_poi, and pad the data area with OxFF before writing.
2372 */
qcom_nandc_write_oob(struct nand_chip * chip,int page)2373 static int qcom_nandc_write_oob(struct nand_chip *chip, int page)
2374 {
2375 struct mtd_info *mtd = nand_to_mtd(chip);
2376 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2377 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2378 struct nand_ecc_ctrl *ecc = &chip->ecc;
2379 u8 *oob = chip->oob_poi;
2380 int data_size, oob_size;
2381 int ret;
2382
2383 if (host->nr_boot_partitions)
2384 qcom_nandc_codeword_fixup(host, page);
2385
2386 host->use_ecc = true;
2387 clear_bam_transaction(nandc);
2388
2389 /* calculate the data and oob size for the last codeword/step */
2390 data_size = ecc->size - ((ecc->steps - 1) << 2);
2391 oob_size = mtd->oobavail;
2392
2393 memset(nandc->data_buffer, 0xff, host->cw_data);
2394 /* override new oob content to last codeword */
2395 mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
2396 0, mtd->oobavail);
2397
2398 set_address(host, host->cw_size * (ecc->steps - 1), page);
2399 update_rw_regs(host, 1, false, 0);
2400
2401 config_nand_page_write(chip);
2402 write_data_dma(nandc, FLASH_BUF_ACC,
2403 nandc->data_buffer, data_size + oob_size, 0);
2404 config_nand_cw_write(chip);
2405
2406 ret = submit_descs(nandc);
2407
2408 free_descs(nandc);
2409
2410 if (ret) {
2411 dev_err(nandc->dev, "failure to write oob\n");
2412 return -EIO;
2413 }
2414
2415 return nand_prog_page_end_op(chip);
2416 }
2417
qcom_nandc_block_bad(struct nand_chip * chip,loff_t ofs)2418 static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs)
2419 {
2420 struct mtd_info *mtd = nand_to_mtd(chip);
2421 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2422 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2423 struct nand_ecc_ctrl *ecc = &chip->ecc;
2424 int page, ret, bbpos, bad = 0;
2425
2426 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2427
2428 /*
2429 * configure registers for a raw sub page read, the address is set to
2430 * the beginning of the last codeword, we don't care about reading ecc
2431 * portion of oob. we just want the first few bytes from this codeword
2432 * that contains the BBM
2433 */
2434 host->use_ecc = false;
2435
2436 clear_bam_transaction(nandc);
2437 ret = copy_last_cw(host, page);
2438 if (ret)
2439 goto err;
2440
2441 if (check_flash_errors(host, 1)) {
2442 dev_warn(nandc->dev, "error when trying to read BBM\n");
2443 goto err;
2444 }
2445
2446 bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
2447
2448 bad = nandc->data_buffer[bbpos] != 0xff;
2449
2450 if (chip->options & NAND_BUSWIDTH_16)
2451 bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
2452 err:
2453 return bad;
2454 }
2455
qcom_nandc_block_markbad(struct nand_chip * chip,loff_t ofs)2456 static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs)
2457 {
2458 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2459 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2460 struct nand_ecc_ctrl *ecc = &chip->ecc;
2461 int page, ret;
2462
2463 clear_read_regs(nandc);
2464 clear_bam_transaction(nandc);
2465
2466 /*
2467 * to mark the BBM as bad, we flash the entire last codeword with 0s.
2468 * we don't care about the rest of the content in the codeword since
2469 * we aren't going to use this block again
2470 */
2471 memset(nandc->data_buffer, 0x00, host->cw_size);
2472
2473 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2474
2475 /* prepare write */
2476 host->use_ecc = false;
2477 set_address(host, host->cw_size * (ecc->steps - 1), page);
2478 update_rw_regs(host, 1, false, ecc->steps - 1);
2479
2480 config_nand_page_write(chip);
2481 write_data_dma(nandc, FLASH_BUF_ACC,
2482 nandc->data_buffer, host->cw_size, 0);
2483 config_nand_cw_write(chip);
2484
2485 ret = submit_descs(nandc);
2486
2487 free_descs(nandc);
2488
2489 if (ret) {
2490 dev_err(nandc->dev, "failure to update BBM\n");
2491 return -EIO;
2492 }
2493
2494 return nand_prog_page_end_op(chip);
2495 }
2496
2497 /*
2498 * the three functions below implement chip->legacy.read_byte(),
2499 * chip->legacy.read_buf() and chip->legacy.write_buf() respectively. these
2500 * aren't used for reading/writing page data, they are used for smaller data
2501 * like reading id, status etc
2502 */
qcom_nandc_read_byte(struct nand_chip * chip)2503 static uint8_t qcom_nandc_read_byte(struct nand_chip *chip)
2504 {
2505 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2506 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2507 u8 *buf = nandc->data_buffer;
2508 u8 ret = 0x0;
2509
2510 if (host->last_command == NAND_CMD_STATUS) {
2511 ret = host->status;
2512
2513 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2514
2515 return ret;
2516 }
2517
2518 if (nandc->buf_start < nandc->buf_count)
2519 ret = buf[nandc->buf_start++];
2520
2521 return ret;
2522 }
2523
qcom_nandc_read_buf(struct nand_chip * chip,uint8_t * buf,int len)2524 static void qcom_nandc_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
2525 {
2526 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2527 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2528
2529 memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
2530 nandc->buf_start += real_len;
2531 }
2532
qcom_nandc_write_buf(struct nand_chip * chip,const uint8_t * buf,int len)2533 static void qcom_nandc_write_buf(struct nand_chip *chip, const uint8_t *buf,
2534 int len)
2535 {
2536 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2537 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2538
2539 memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
2540
2541 nandc->buf_start += real_len;
2542 }
2543
2544 /* we support only one external chip for now */
qcom_nandc_select_chip(struct nand_chip * chip,int chipnr)2545 static void qcom_nandc_select_chip(struct nand_chip *chip, int chipnr)
2546 {
2547 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2548
2549 if (chipnr <= 0)
2550 return;
2551
2552 dev_warn(nandc->dev, "invalid chip select\n");
2553 }
2554
2555 /*
2556 * NAND controller page layout info
2557 *
2558 * Layout with ECC enabled:
2559 *
2560 * |----------------------| |---------------------------------|
2561 * | xx.......yy| | *********xx.......yy|
2562 * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy|
2563 * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy|
2564 * | xx.......yy| | *********xx.......yy|
2565 * |----------------------| |---------------------------------|
2566 * codeword 1,2..n-1 codeword n
2567 * <---(528/532 Bytes)--> <-------(528/532 Bytes)--------->
2568 *
2569 * n = Number of codewords in the page
2570 * . = ECC bytes
2571 * * = Spare/free bytes
2572 * x = Unused byte(s)
2573 * y = Reserved byte(s)
2574 *
2575 * 2K page: n = 4, spare = 16 bytes
2576 * 4K page: n = 8, spare = 32 bytes
2577 * 8K page: n = 16, spare = 64 bytes
2578 *
2579 * the qcom nand controller operates at a sub page/codeword level. each
2580 * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2581 * the number of ECC bytes vary based on the ECC strength and the bus width.
2582 *
2583 * the first n - 1 codewords contains 516 bytes of user data, the remaining
2584 * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2585 * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2586 *
2587 * When we access a page with ECC enabled, the reserved bytes(s) are not
2588 * accessible at all. When reading, we fill up these unreadable positions
2589 * with 0xffs. When writing, the controller skips writing the inaccessible
2590 * bytes.
2591 *
2592 * Layout with ECC disabled:
2593 *
2594 * |------------------------------| |---------------------------------------|
2595 * | yy xx.......| | bb *********xx.......|
2596 * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..|
2597 * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......|
2598 * | yy xx.......| | bb *********xx.......|
2599 * |------------------------------| |---------------------------------------|
2600 * codeword 1,2..n-1 codeword n
2601 * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)----------->
2602 *
2603 * n = Number of codewords in the page
2604 * . = ECC bytes
2605 * * = Spare/free bytes
2606 * x = Unused byte(s)
2607 * y = Dummy Bad Bock byte(s)
2608 * b = Real Bad Block byte(s)
2609 * size1/size2 = function of codeword size and 'n'
2610 *
2611 * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2612 * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2613 * Block Markers. In the last codeword, this position contains the real BBM
2614 *
2615 * In order to have a consistent layout between RAW and ECC modes, we assume
2616 * the following OOB layout arrangement:
2617 *
2618 * |-----------| |--------------------|
2619 * |yyxx.......| |bb*********xx.......|
2620 * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..|
2621 * |yyxx.......| |bb*********xx.......|
2622 * |yyxx.......| |bb*********xx.......|
2623 * |-----------| |--------------------|
2624 * first n - 1 nth OOB region
2625 * OOB regions
2626 *
2627 * n = Number of codewords in the page
2628 * . = ECC bytes
2629 * * = FREE OOB bytes
2630 * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2631 * x = Unused byte(s)
2632 * b = Real bad block byte(s) (inaccessible when ECC enabled)
2633 *
2634 * This layout is read as is when ECC is disabled. When ECC is enabled, the
2635 * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2636 * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2637 * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2638 * the sum of the three).
2639 */
qcom_nand_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)2640 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2641 struct mtd_oob_region *oobregion)
2642 {
2643 struct nand_chip *chip = mtd_to_nand(mtd);
2644 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2645 struct nand_ecc_ctrl *ecc = &chip->ecc;
2646
2647 if (section > 1)
2648 return -ERANGE;
2649
2650 if (!section) {
2651 oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2652 host->bbm_size;
2653 oobregion->offset = 0;
2654 } else {
2655 oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2656 oobregion->offset = mtd->oobsize - oobregion->length;
2657 }
2658
2659 return 0;
2660 }
2661
qcom_nand_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)2662 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2663 struct mtd_oob_region *oobregion)
2664 {
2665 struct nand_chip *chip = mtd_to_nand(mtd);
2666 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2667 struct nand_ecc_ctrl *ecc = &chip->ecc;
2668
2669 if (section)
2670 return -ERANGE;
2671
2672 oobregion->length = ecc->steps * 4;
2673 oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2674
2675 return 0;
2676 }
2677
2678 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2679 .ecc = qcom_nand_ooblayout_ecc,
2680 .free = qcom_nand_ooblayout_free,
2681 };
2682
2683 static int
qcom_nandc_calc_ecc_bytes(int step_size,int strength)2684 qcom_nandc_calc_ecc_bytes(int step_size, int strength)
2685 {
2686 return strength == 4 ? 12 : 16;
2687 }
2688 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
2689 NANDC_STEP_SIZE, 4, 8);
2690
qcom_nand_attach_chip(struct nand_chip * chip)2691 static int qcom_nand_attach_chip(struct nand_chip *chip)
2692 {
2693 struct mtd_info *mtd = nand_to_mtd(chip);
2694 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2695 struct nand_ecc_ctrl *ecc = &chip->ecc;
2696 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2697 int cwperpage, bad_block_byte, ret;
2698 bool wide_bus;
2699 int ecc_mode = 1;
2700
2701 /* controller only supports 512 bytes data steps */
2702 ecc->size = NANDC_STEP_SIZE;
2703 wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2704 cwperpage = mtd->writesize / NANDC_STEP_SIZE;
2705
2706 /*
2707 * Each CW has 4 available OOB bytes which will be protected with ECC
2708 * so remaining bytes can be used for ECC.
2709 */
2710 ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
2711 mtd->oobsize - (cwperpage * 4));
2712 if (ret) {
2713 dev_err(nandc->dev, "No valid ECC settings possible\n");
2714 return ret;
2715 }
2716
2717 if (ecc->strength >= 8) {
2718 /* 8 bit ECC defaults to BCH ECC on all platforms */
2719 host->bch_enabled = true;
2720 ecc_mode = 1;
2721
2722 if (wide_bus) {
2723 host->ecc_bytes_hw = 14;
2724 host->spare_bytes = 0;
2725 host->bbm_size = 2;
2726 } else {
2727 host->ecc_bytes_hw = 13;
2728 host->spare_bytes = 2;
2729 host->bbm_size = 1;
2730 }
2731 } else {
2732 /*
2733 * if the controller supports BCH for 4 bit ECC, the controller
2734 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2735 * always 10 bytes
2736 */
2737 if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2738 /* BCH */
2739 host->bch_enabled = true;
2740 ecc_mode = 0;
2741
2742 if (wide_bus) {
2743 host->ecc_bytes_hw = 8;
2744 host->spare_bytes = 2;
2745 host->bbm_size = 2;
2746 } else {
2747 host->ecc_bytes_hw = 7;
2748 host->spare_bytes = 4;
2749 host->bbm_size = 1;
2750 }
2751 } else {
2752 /* RS */
2753 host->ecc_bytes_hw = 10;
2754
2755 if (wide_bus) {
2756 host->spare_bytes = 0;
2757 host->bbm_size = 2;
2758 } else {
2759 host->spare_bytes = 1;
2760 host->bbm_size = 1;
2761 }
2762 }
2763 }
2764
2765 /*
2766 * we consider ecc->bytes as the sum of all the non-data content in a
2767 * step. It gives us a clean representation of the oob area (even if
2768 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2769 * ECC and 12 bytes for 4 bit ECC
2770 */
2771 ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2772
2773 ecc->read_page = qcom_nandc_read_page;
2774 ecc->read_page_raw = qcom_nandc_read_page_raw;
2775 ecc->read_oob = qcom_nandc_read_oob;
2776 ecc->write_page = qcom_nandc_write_page;
2777 ecc->write_page_raw = qcom_nandc_write_page_raw;
2778 ecc->write_oob = qcom_nandc_write_oob;
2779
2780 ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2781
2782 mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2783 /* Free the initially allocated BAM transaction for reading the ONFI params */
2784 if (nandc->props->is_bam)
2785 free_bam_transaction(nandc);
2786
2787 nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2788 cwperpage);
2789
2790 /* Now allocate the BAM transaction based on updated max_cwperpage */
2791 if (nandc->props->is_bam) {
2792 nandc->bam_txn = alloc_bam_transaction(nandc);
2793 if (!nandc->bam_txn) {
2794 dev_err(nandc->dev,
2795 "failed to allocate bam transaction\n");
2796 return -ENOMEM;
2797 }
2798 }
2799
2800 /*
2801 * DATA_UD_BYTES varies based on whether the read/write command protects
2802 * spare data with ECC too. We protect spare data by default, so we set
2803 * it to main + spare data, which are 512 and 4 bytes respectively.
2804 */
2805 host->cw_data = 516;
2806
2807 /*
2808 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2809 * for 8 bit ECC
2810 */
2811 host->cw_size = host->cw_data + ecc->bytes;
2812 bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2813
2814 host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2815 | host->cw_data << UD_SIZE_BYTES
2816 | 0 << DISABLE_STATUS_AFTER_WRITE
2817 | 5 << NUM_ADDR_CYCLES
2818 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2819 | 0 << STATUS_BFR_READ
2820 | 1 << SET_RD_MODE_AFTER_STATUS
2821 | host->spare_bytes << SPARE_SIZE_BYTES;
2822
2823 host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2824 | 0 << CS_ACTIVE_BSY
2825 | bad_block_byte << BAD_BLOCK_BYTE_NUM
2826 | 0 << BAD_BLOCK_IN_SPARE_AREA
2827 | 2 << WR_RD_BSY_GAP
2828 | wide_bus << WIDE_FLASH
2829 | host->bch_enabled << ENABLE_BCH_ECC;
2830
2831 host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2832 | host->cw_size << UD_SIZE_BYTES
2833 | 5 << NUM_ADDR_CYCLES
2834 | 0 << SPARE_SIZE_BYTES;
2835
2836 host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2837 | 0 << CS_ACTIVE_BSY
2838 | 17 << BAD_BLOCK_BYTE_NUM
2839 | 1 << BAD_BLOCK_IN_SPARE_AREA
2840 | 2 << WR_RD_BSY_GAP
2841 | wide_bus << WIDE_FLASH
2842 | 1 << DEV0_CFG1_ECC_DISABLE;
2843
2844 host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2845 | 0 << ECC_SW_RESET
2846 | host->cw_data << ECC_NUM_DATA_BYTES
2847 | 1 << ECC_FORCE_CLK_OPEN
2848 | ecc_mode << ECC_MODE
2849 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2850
2851 if (!nandc->props->qpic_v2)
2852 host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2853
2854 host->clrflashstatus = FS_READY_BSY_N;
2855 host->clrreadstatus = 0xc0;
2856 nandc->regs->erased_cw_detect_cfg_clr =
2857 cpu_to_le32(CLR_ERASED_PAGE_DET);
2858 nandc->regs->erased_cw_detect_cfg_set =
2859 cpu_to_le32(SET_ERASED_PAGE_DET);
2860
2861 dev_dbg(nandc->dev,
2862 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2863 host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2864 host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2865 cwperpage);
2866
2867 return 0;
2868 }
2869
2870 static const struct nand_controller_ops qcom_nandc_ops = {
2871 .attach_chip = qcom_nand_attach_chip,
2872 };
2873
qcom_nandc_unalloc(struct qcom_nand_controller * nandc)2874 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
2875 {
2876 if (nandc->props->is_bam) {
2877 if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
2878 dma_unmap_single(nandc->dev, nandc->reg_read_dma,
2879 MAX_REG_RD *
2880 sizeof(*nandc->reg_read_buf),
2881 DMA_FROM_DEVICE);
2882
2883 if (nandc->tx_chan)
2884 dma_release_channel(nandc->tx_chan);
2885
2886 if (nandc->rx_chan)
2887 dma_release_channel(nandc->rx_chan);
2888
2889 if (nandc->cmd_chan)
2890 dma_release_channel(nandc->cmd_chan);
2891 } else {
2892 if (nandc->chan)
2893 dma_release_channel(nandc->chan);
2894 }
2895 }
2896
qcom_nandc_alloc(struct qcom_nand_controller * nandc)2897 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
2898 {
2899 int ret;
2900
2901 ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
2902 if (ret) {
2903 dev_err(nandc->dev, "failed to set DMA mask\n");
2904 return ret;
2905 }
2906
2907 /*
2908 * we use the internal buffer for reading ONFI params, reading small
2909 * data like ID and status, and preforming read-copy-write operations
2910 * when writing to a codeword partially. 532 is the maximum possible
2911 * size of a codeword for our nand controller
2912 */
2913 nandc->buf_size = 532;
2914
2915 nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
2916 GFP_KERNEL);
2917 if (!nandc->data_buffer)
2918 return -ENOMEM;
2919
2920 nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
2921 GFP_KERNEL);
2922 if (!nandc->regs)
2923 return -ENOMEM;
2924
2925 nandc->reg_read_buf = devm_kcalloc(nandc->dev,
2926 MAX_REG_RD, sizeof(*nandc->reg_read_buf),
2927 GFP_KERNEL);
2928 if (!nandc->reg_read_buf)
2929 return -ENOMEM;
2930
2931 if (nandc->props->is_bam) {
2932 nandc->reg_read_dma =
2933 dma_map_single(nandc->dev, nandc->reg_read_buf,
2934 MAX_REG_RD *
2935 sizeof(*nandc->reg_read_buf),
2936 DMA_FROM_DEVICE);
2937 if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
2938 dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
2939 return -EIO;
2940 }
2941
2942 nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
2943 if (IS_ERR(nandc->tx_chan)) {
2944 ret = PTR_ERR(nandc->tx_chan);
2945 nandc->tx_chan = NULL;
2946 dev_err_probe(nandc->dev, ret,
2947 "tx DMA channel request failed\n");
2948 goto unalloc;
2949 }
2950
2951 nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
2952 if (IS_ERR(nandc->rx_chan)) {
2953 ret = PTR_ERR(nandc->rx_chan);
2954 nandc->rx_chan = NULL;
2955 dev_err_probe(nandc->dev, ret,
2956 "rx DMA channel request failed\n");
2957 goto unalloc;
2958 }
2959
2960 nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
2961 if (IS_ERR(nandc->cmd_chan)) {
2962 ret = PTR_ERR(nandc->cmd_chan);
2963 nandc->cmd_chan = NULL;
2964 dev_err_probe(nandc->dev, ret,
2965 "cmd DMA channel request failed\n");
2966 goto unalloc;
2967 }
2968
2969 /*
2970 * Initially allocate BAM transaction to read ONFI param page.
2971 * After detecting all the devices, this BAM transaction will
2972 * be freed and the next BAM tranasction will be allocated with
2973 * maximum codeword size
2974 */
2975 nandc->max_cwperpage = 1;
2976 nandc->bam_txn = alloc_bam_transaction(nandc);
2977 if (!nandc->bam_txn) {
2978 dev_err(nandc->dev,
2979 "failed to allocate bam transaction\n");
2980 ret = -ENOMEM;
2981 goto unalloc;
2982 }
2983 } else {
2984 nandc->chan = dma_request_chan(nandc->dev, "rxtx");
2985 if (IS_ERR(nandc->chan)) {
2986 ret = PTR_ERR(nandc->chan);
2987 nandc->chan = NULL;
2988 dev_err_probe(nandc->dev, ret,
2989 "rxtx DMA channel request failed\n");
2990 return ret;
2991 }
2992 }
2993
2994 INIT_LIST_HEAD(&nandc->desc_list);
2995 INIT_LIST_HEAD(&nandc->host_list);
2996
2997 nand_controller_init(&nandc->controller);
2998 nandc->controller.ops = &qcom_nandc_ops;
2999
3000 return 0;
3001 unalloc:
3002 qcom_nandc_unalloc(nandc);
3003 return ret;
3004 }
3005
3006 /* one time setup of a few nand controller registers */
qcom_nandc_setup(struct qcom_nand_controller * nandc)3007 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
3008 {
3009 u32 nand_ctrl;
3010
3011 /* kill onenand */
3012 if (!nandc->props->is_qpic)
3013 nandc_write(nandc, SFLASHC_BURST_CFG, 0);
3014
3015 if (!nandc->props->qpic_v2)
3016 nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
3017 NAND_DEV_CMD_VLD_VAL);
3018
3019 /* enable ADM or BAM DMA */
3020 if (nandc->props->is_bam) {
3021 nand_ctrl = nandc_read(nandc, NAND_CTRL);
3022
3023 /*
3024 *NAND_CTRL is an operational registers, and CPU
3025 * access to operational registers are read only
3026 * in BAM mode. So update the NAND_CTRL register
3027 * only if it is not in BAM mode. In most cases BAM
3028 * mode will be enabled in bootloader
3029 */
3030 if (!(nand_ctrl & BAM_MODE_EN))
3031 nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
3032 } else {
3033 nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
3034 }
3035
3036 /* save the original values of these registers */
3037 if (!nandc->props->qpic_v2) {
3038 nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
3039 nandc->vld = NAND_DEV_CMD_VLD_VAL;
3040 }
3041
3042 return 0;
3043 }
3044
3045 static const char * const probes[] = { "cmdlinepart", "ofpart", "qcomsmem", NULL };
3046
qcom_nand_host_parse_boot_partitions(struct qcom_nand_controller * nandc,struct qcom_nand_host * host,struct device_node * dn)3047 static int qcom_nand_host_parse_boot_partitions(struct qcom_nand_controller *nandc,
3048 struct qcom_nand_host *host,
3049 struct device_node *dn)
3050 {
3051 struct nand_chip *chip = &host->chip;
3052 struct mtd_info *mtd = nand_to_mtd(chip);
3053 struct qcom_nand_boot_partition *boot_partition;
3054 struct device *dev = nandc->dev;
3055 int partitions_count, i, j, ret;
3056
3057 if (!of_find_property(dn, "qcom,boot-partitions", NULL))
3058 return 0;
3059
3060 partitions_count = of_property_count_u32_elems(dn, "qcom,boot-partitions");
3061 if (partitions_count <= 0) {
3062 dev_err(dev, "Error parsing boot partition\n");
3063 return partitions_count ? partitions_count : -EINVAL;
3064 }
3065
3066 host->nr_boot_partitions = partitions_count / 2;
3067 host->boot_partitions = devm_kcalloc(dev, host->nr_boot_partitions,
3068 sizeof(*host->boot_partitions), GFP_KERNEL);
3069 if (!host->boot_partitions) {
3070 host->nr_boot_partitions = 0;
3071 return -ENOMEM;
3072 }
3073
3074 for (i = 0, j = 0; i < host->nr_boot_partitions; i++, j += 2) {
3075 boot_partition = &host->boot_partitions[i];
3076
3077 ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j,
3078 &boot_partition->page_offset);
3079 if (ret) {
3080 dev_err(dev, "Error parsing boot partition offset at index %d\n", i);
3081 host->nr_boot_partitions = 0;
3082 return ret;
3083 }
3084
3085 if (boot_partition->page_offset % mtd->writesize) {
3086 dev_err(dev, "Boot partition offset not multiple of writesize at index %i\n",
3087 i);
3088 host->nr_boot_partitions = 0;
3089 return -EINVAL;
3090 }
3091 /* Convert offset to nand pages */
3092 boot_partition->page_offset /= mtd->writesize;
3093
3094 ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j + 1,
3095 &boot_partition->page_size);
3096 if (ret) {
3097 dev_err(dev, "Error parsing boot partition size at index %d\n", i);
3098 host->nr_boot_partitions = 0;
3099 return ret;
3100 }
3101
3102 if (boot_partition->page_size % mtd->writesize) {
3103 dev_err(dev, "Boot partition size not multiple of writesize at index %i\n",
3104 i);
3105 host->nr_boot_partitions = 0;
3106 return -EINVAL;
3107 }
3108 /* Convert size to nand pages */
3109 boot_partition->page_size /= mtd->writesize;
3110 }
3111
3112 return 0;
3113 }
3114
qcom_nand_host_init_and_register(struct qcom_nand_controller * nandc,struct qcom_nand_host * host,struct device_node * dn)3115 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
3116 struct qcom_nand_host *host,
3117 struct device_node *dn)
3118 {
3119 struct nand_chip *chip = &host->chip;
3120 struct mtd_info *mtd = nand_to_mtd(chip);
3121 struct device *dev = nandc->dev;
3122 int ret;
3123
3124 ret = of_property_read_u32(dn, "reg", &host->cs);
3125 if (ret) {
3126 dev_err(dev, "can't get chip-select\n");
3127 return -ENXIO;
3128 }
3129
3130 nand_set_flash_node(chip, dn);
3131 mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
3132 if (!mtd->name)
3133 return -ENOMEM;
3134
3135 mtd->owner = THIS_MODULE;
3136 mtd->dev.parent = dev;
3137
3138 chip->legacy.cmdfunc = qcom_nandc_command;
3139 chip->legacy.select_chip = qcom_nandc_select_chip;
3140 chip->legacy.read_byte = qcom_nandc_read_byte;
3141 chip->legacy.read_buf = qcom_nandc_read_buf;
3142 chip->legacy.write_buf = qcom_nandc_write_buf;
3143 chip->legacy.set_features = nand_get_set_features_notsupp;
3144 chip->legacy.get_features = nand_get_set_features_notsupp;
3145
3146 /*
3147 * the bad block marker is readable only when we read the last codeword
3148 * of a page with ECC disabled. currently, the nand_base and nand_bbt
3149 * helpers don't allow us to read BB from a nand chip with ECC
3150 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
3151 * and block_markbad helpers until we permanently switch to using
3152 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
3153 */
3154 chip->legacy.block_bad = qcom_nandc_block_bad;
3155 chip->legacy.block_markbad = qcom_nandc_block_markbad;
3156
3157 chip->controller = &nandc->controller;
3158 chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA |
3159 NAND_SKIP_BBTSCAN;
3160
3161 /* set up initial status value */
3162 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
3163
3164 ret = nand_scan(chip, 1);
3165 if (ret)
3166 return ret;
3167
3168 ret = mtd_device_parse_register(mtd, probes, NULL, NULL, 0);
3169 if (ret)
3170 goto err;
3171
3172 if (nandc->props->use_codeword_fixup) {
3173 ret = qcom_nand_host_parse_boot_partitions(nandc, host, dn);
3174 if (ret)
3175 goto err;
3176 }
3177
3178 return 0;
3179
3180 err:
3181 nand_cleanup(chip);
3182 return ret;
3183 }
3184
qcom_probe_nand_devices(struct qcom_nand_controller * nandc)3185 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
3186 {
3187 struct device *dev = nandc->dev;
3188 struct device_node *dn = dev->of_node, *child;
3189 struct qcom_nand_host *host;
3190 int ret = -ENODEV;
3191
3192 for_each_available_child_of_node(dn, child) {
3193 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3194 if (!host) {
3195 of_node_put(child);
3196 return -ENOMEM;
3197 }
3198
3199 ret = qcom_nand_host_init_and_register(nandc, host, child);
3200 if (ret) {
3201 devm_kfree(dev, host);
3202 continue;
3203 }
3204
3205 list_add_tail(&host->node, &nandc->host_list);
3206 }
3207
3208 return ret;
3209 }
3210
3211 /* parse custom DT properties here */
qcom_nandc_parse_dt(struct platform_device * pdev)3212 static int qcom_nandc_parse_dt(struct platform_device *pdev)
3213 {
3214 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
3215 struct device_node *np = nandc->dev->of_node;
3216 int ret;
3217
3218 if (!nandc->props->is_bam) {
3219 ret = of_property_read_u32(np, "qcom,cmd-crci",
3220 &nandc->cmd_crci);
3221 if (ret) {
3222 dev_err(nandc->dev, "command CRCI unspecified\n");
3223 return ret;
3224 }
3225
3226 ret = of_property_read_u32(np, "qcom,data-crci",
3227 &nandc->data_crci);
3228 if (ret) {
3229 dev_err(nandc->dev, "data CRCI unspecified\n");
3230 return ret;
3231 }
3232 }
3233
3234 return 0;
3235 }
3236
qcom_nandc_probe(struct platform_device * pdev)3237 static int qcom_nandc_probe(struct platform_device *pdev)
3238 {
3239 struct qcom_nand_controller *nandc;
3240 const void *dev_data;
3241 struct device *dev = &pdev->dev;
3242 struct resource *res;
3243 int ret;
3244
3245 nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
3246 if (!nandc)
3247 return -ENOMEM;
3248
3249 platform_set_drvdata(pdev, nandc);
3250 nandc->dev = dev;
3251
3252 dev_data = of_device_get_match_data(dev);
3253 if (!dev_data) {
3254 dev_err(&pdev->dev, "failed to get device data\n");
3255 return -ENODEV;
3256 }
3257
3258 nandc->props = dev_data;
3259
3260 nandc->core_clk = devm_clk_get(dev, "core");
3261 if (IS_ERR(nandc->core_clk))
3262 return PTR_ERR(nandc->core_clk);
3263
3264 nandc->aon_clk = devm_clk_get(dev, "aon");
3265 if (IS_ERR(nandc->aon_clk))
3266 return PTR_ERR(nandc->aon_clk);
3267
3268 ret = qcom_nandc_parse_dt(pdev);
3269 if (ret)
3270 return ret;
3271
3272 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3273 nandc->base = devm_ioremap_resource(dev, res);
3274 if (IS_ERR(nandc->base))
3275 return PTR_ERR(nandc->base);
3276
3277 nandc->base_phys = res->start;
3278 nandc->base_dma = dma_map_resource(dev, res->start,
3279 resource_size(res),
3280 DMA_BIDIRECTIONAL, 0);
3281 if (dma_mapping_error(dev, nandc->base_dma))
3282 return -ENXIO;
3283
3284 ret = clk_prepare_enable(nandc->core_clk);
3285 if (ret)
3286 goto err_core_clk;
3287
3288 ret = clk_prepare_enable(nandc->aon_clk);
3289 if (ret)
3290 goto err_aon_clk;
3291
3292 ret = qcom_nandc_alloc(nandc);
3293 if (ret)
3294 goto err_nandc_alloc;
3295
3296 ret = qcom_nandc_setup(nandc);
3297 if (ret)
3298 goto err_setup;
3299
3300 ret = qcom_probe_nand_devices(nandc);
3301 if (ret)
3302 goto err_setup;
3303
3304 return 0;
3305
3306 err_setup:
3307 qcom_nandc_unalloc(nandc);
3308 err_nandc_alloc:
3309 clk_disable_unprepare(nandc->aon_clk);
3310 err_aon_clk:
3311 clk_disable_unprepare(nandc->core_clk);
3312 err_core_clk:
3313 dma_unmap_resource(dev, res->start, resource_size(res),
3314 DMA_BIDIRECTIONAL, 0);
3315 return ret;
3316 }
3317
qcom_nandc_remove(struct platform_device * pdev)3318 static int qcom_nandc_remove(struct platform_device *pdev)
3319 {
3320 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
3321 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3322 struct qcom_nand_host *host;
3323 struct nand_chip *chip;
3324 int ret;
3325
3326 list_for_each_entry(host, &nandc->host_list, node) {
3327 chip = &host->chip;
3328 ret = mtd_device_unregister(nand_to_mtd(chip));
3329 WARN_ON(ret);
3330 nand_cleanup(chip);
3331 }
3332
3333 qcom_nandc_unalloc(nandc);
3334
3335 clk_disable_unprepare(nandc->aon_clk);
3336 clk_disable_unprepare(nandc->core_clk);
3337
3338 dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
3339 DMA_BIDIRECTIONAL, 0);
3340
3341 return 0;
3342 }
3343
3344 static const struct qcom_nandc_props ipq806x_nandc_props = {
3345 .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
3346 .is_bam = false,
3347 .use_codeword_fixup = true,
3348 .dev_cmd_reg_start = 0x0,
3349 };
3350
3351 static const struct qcom_nandc_props ipq4019_nandc_props = {
3352 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3353 .is_bam = true,
3354 .is_qpic = true,
3355 .dev_cmd_reg_start = 0x0,
3356 };
3357
3358 static const struct qcom_nandc_props ipq8074_nandc_props = {
3359 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3360 .is_bam = true,
3361 .is_qpic = true,
3362 .dev_cmd_reg_start = 0x7000,
3363 };
3364
3365 static const struct qcom_nandc_props sdx55_nandc_props = {
3366 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3367 .is_bam = true,
3368 .is_qpic = true,
3369 .qpic_v2 = true,
3370 .dev_cmd_reg_start = 0x7000,
3371 };
3372
3373 /*
3374 * data will hold a struct pointer containing more differences once we support
3375 * more controller variants
3376 */
3377 static const struct of_device_id qcom_nandc_of_match[] = {
3378 {
3379 .compatible = "qcom,ipq806x-nand",
3380 .data = &ipq806x_nandc_props,
3381 },
3382 {
3383 .compatible = "qcom,ipq4019-nand",
3384 .data = &ipq4019_nandc_props,
3385 },
3386 {
3387 .compatible = "qcom,ipq6018-nand",
3388 .data = &ipq8074_nandc_props,
3389 },
3390 {
3391 .compatible = "qcom,ipq8074-nand",
3392 .data = &ipq8074_nandc_props,
3393 },
3394 {
3395 .compatible = "qcom,sdx55-nand",
3396 .data = &sdx55_nandc_props,
3397 },
3398 {}
3399 };
3400 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
3401
3402 static struct platform_driver qcom_nandc_driver = {
3403 .driver = {
3404 .name = "qcom-nandc",
3405 .of_match_table = qcom_nandc_of_match,
3406 },
3407 .probe = qcom_nandc_probe,
3408 .remove = qcom_nandc_remove,
3409 };
3410 module_platform_driver(qcom_nandc_driver);
3411
3412 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
3413 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
3414 MODULE_LICENSE("GPL v2");
3415