1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Marvell NAND flash controller driver
4 *
5 * Copyright (C) 2017 Marvell
6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
7 *
8 *
9 * This NAND controller driver handles two versions of the hardware,
10 * one is called NFCv1 and is available on PXA SoCs and the other is
11 * called NFCv2 and is available on Armada SoCs.
12 *
13 * The main visible difference is that NFCv1 only has Hamming ECC
14 * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA
15 * is not used with NFCv2.
16 *
17 * The ECC layouts are depicted in details in Marvell AN-379, but here
18 * is a brief description.
19 *
20 * When using Hamming, the data is split in 512B chunks (either 1, 2
21 * or 4) and each chunk will have its own ECC "digest" of 6B at the
22 * beginning of the OOB area and eventually the remaining free OOB
23 * bytes (also called "spare" bytes in the driver). This engine
24 * corrects up to 1 bit per chunk and detects reliably an error if
25 * there are at most 2 bitflips. Here is the page layout used by the
26 * controller when Hamming is chosen:
27 *
28 * +-------------------------------------------------------------+
29 * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes |
30 * +-------------------------------------------------------------+
31 *
32 * When using the BCH engine, there are N identical (data + free OOB +
33 * ECC) sections and potentially an extra one to deal with
34 * configurations where the chosen (data + free OOB + ECC) sizes do
35 * not align with the page (data + OOB) size. ECC bytes are always
36 * 30B per ECC chunk. Here is the page layout used by the controller
37 * when BCH is chosen:
38 *
39 * +-----------------------------------------
40 * | Data 1 | Free OOB bytes 1 | ECC 1 | ...
41 * +-----------------------------------------
42 *
43 * -------------------------------------------
44 * ... | Data N | Free OOB bytes N | ECC N |
45 * -------------------------------------------
46 *
47 * --------------------------------------------+
48 * Last Data | Last Free OOB bytes | Last ECC |
49 * --------------------------------------------+
50 *
51 * In both cases, the layout seen by the user is always: all data
52 * first, then all free OOB bytes and finally all ECC bytes. With BCH,
53 * ECC bytes are 30B long and are padded with 0xFF to align on 32
54 * bytes.
55 *
56 * The controller has certain limitations that are handled by the
57 * driver:
58 * - It can only read 2k at a time. To overcome this limitation, the
59 * driver issues data cycles on the bus, without issuing new
60 * CMD + ADDR cycles. The Marvell term is "naked" operations.
61 * - The ECC strength in BCH mode cannot be tuned. It is fixed 16
62 * bits. What can be tuned is the ECC block size as long as it
63 * stays between 512B and 2kiB. It's usually chosen based on the
64 * chip ECC requirements. For instance, using 2kiB ECC chunks
65 * provides 4b/512B correctability.
66 * - The controller will always treat data bytes, free OOB bytes
67 * and ECC bytes in that order, no matter what the real layout is
68 * (which is usually all data then all OOB bytes). The
69 * marvell_nfc_layouts array below contains the currently
70 * supported layouts.
71 * - Because of these weird layouts, the Bad Block Markers can be
72 * located in data section. In this case, the NAND_BBT_NO_OOB_BBM
73 * option must be set to prevent scanning/writing bad block
74 * markers.
75 */
76
77 #include <linux/module.h>
78 #include <linux/clk.h>
79 #include <linux/mtd/rawnand.h>
80 #include <linux/of_platform.h>
81 #include <linux/iopoll.h>
82 #include <linux/interrupt.h>
83 #include <linux/slab.h>
84 #include <linux/mfd/syscon.h>
85 #include <linux/regmap.h>
86 #include <asm/unaligned.h>
87
88 #include <linux/dmaengine.h>
89 #include <linux/dma-mapping.h>
90 #include <linux/dma/pxa-dma.h>
91 #include <linux/platform_data/mtd-nand-pxa3xx.h>
92
93 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
94 #define FIFO_DEPTH 8
95 #define FIFO_REP(x) (x / sizeof(u32))
96 #define BCH_SEQ_READS (32 / FIFO_DEPTH)
97 /* NFC does not support transfers of larger chunks at a time */
98 #define MAX_CHUNK_SIZE 2112
99 /* NFCv1 cannot read more that 7 bytes of ID */
100 #define NFCV1_READID_LEN 7
101 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
102 #define POLL_PERIOD 0
103 #define POLL_TIMEOUT 100000
104 /* Interrupt maximum wait period in ms */
105 #define IRQ_TIMEOUT 1000
106 /* Latency in clock cycles between SoC pins and NFC logic */
107 #define MIN_RD_DEL_CNT 3
108 /* Maximum number of contiguous address cycles */
109 #define MAX_ADDRESS_CYC_NFCV1 5
110 #define MAX_ADDRESS_CYC_NFCV2 7
111 /* System control registers/bits to enable the NAND controller on some SoCs */
112 #define GENCONF_SOC_DEVICE_MUX 0x208
113 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
114 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
115 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
116 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
117 #define GENCONF_CLK_GATING_CTRL 0x220
118 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
119 #define GENCONF_ND_CLK_CTRL 0x700
120 #define GENCONF_ND_CLK_CTRL_EN BIT(0)
121
122 /* NAND controller data flash control register */
123 #define NDCR 0x00
124 #define NDCR_ALL_INT GENMASK(11, 0)
125 #define NDCR_CS1_CMDDM BIT(7)
126 #define NDCR_CS0_CMDDM BIT(8)
127 #define NDCR_RDYM BIT(11)
128 #define NDCR_ND_ARB_EN BIT(12)
129 #define NDCR_RA_START BIT(15)
130 #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16)
131 #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0)
132 #define NDCR_DWIDTH_M BIT(26)
133 #define NDCR_DWIDTH_C BIT(27)
134 #define NDCR_ND_RUN BIT(28)
135 #define NDCR_DMA_EN BIT(29)
136 #define NDCR_ECC_EN BIT(30)
137 #define NDCR_SPARE_EN BIT(31)
138 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
139 NDCR_DWIDTH_M | NDCR_DWIDTH_C))
140
141 /* NAND interface timing parameter 0 register */
142 #define NDTR0 0x04
143 #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0)
144 #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3)
145 #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3)
146 #define NDTR0_SEL_NRE_EDGE BIT(7)
147 #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8)
148 #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11)
149 #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16)
150 #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19)
151 #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22)
152 #define NDTR0_SELCNTR BIT(26)
153 #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27)
154
155 /* NAND interface timing parameter 1 register */
156 #define NDTR1 0x0C
157 #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0)
158 #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4)
159 #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8)
160 #define NDTR1_PRESCALE BIT(14)
161 #define NDTR1_WAIT_MODE BIT(15)
162 #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16)
163
164 /* NAND controller status register */
165 #define NDSR 0x14
166 #define NDSR_WRCMDREQ BIT(0)
167 #define NDSR_RDDREQ BIT(1)
168 #define NDSR_WRDREQ BIT(2)
169 #define NDSR_CORERR BIT(3)
170 #define NDSR_UNCERR BIT(4)
171 #define NDSR_CMDD(cs) BIT(8 - cs)
172 #define NDSR_RDY(rb) BIT(11 + rb)
173 #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F)
174
175 /* NAND ECC control register */
176 #define NDECCCTRL 0x28
177 #define NDECCCTRL_BCH_EN BIT(0)
178
179 /* NAND controller data buffer register */
180 #define NDDB 0x40
181
182 /* NAND controller command buffer 0 register */
183 #define NDCB0 0x48
184 #define NDCB0_CMD1(x) ((x & 0xFF) << 0)
185 #define NDCB0_CMD2(x) ((x & 0xFF) << 8)
186 #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16)
187 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
188 #define NDCB0_DBC BIT(19)
189 #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21)
190 #define NDCB0_CSEL BIT(24)
191 #define NDCB0_RDY_BYP BIT(27)
192 #define NDCB0_LEN_OVRD BIT(28)
193 #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29)
194
195 /* NAND controller command buffer 1 register */
196 #define NDCB1 0x4C
197 #define NDCB1_COLS(x) ((x & 0xFFFF) << 0)
198 #define NDCB1_ADDRS_PAGE(x) (x << 16)
199
200 /* NAND controller command buffer 2 register */
201 #define NDCB2 0x50
202 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0)
203 #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0)
204
205 /* NAND controller command buffer 3 register */
206 #define NDCB3 0x54
207 #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16)
208 #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24)
209
210 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */
211 #define TYPE_READ 0
212 #define TYPE_WRITE 1
213 #define TYPE_ERASE 2
214 #define TYPE_READ_ID 3
215 #define TYPE_STATUS 4
216 #define TYPE_RESET 5
217 #define TYPE_NAKED_CMD 6
218 #define TYPE_NAKED_ADDR 7
219 #define TYPE_MASK 7
220 #define XTYPE_MONOLITHIC_RW 0
221 #define XTYPE_LAST_NAKED_RW 1
222 #define XTYPE_FINAL_COMMAND 3
223 #define XTYPE_READ 4
224 #define XTYPE_WRITE_DISPATCH 4
225 #define XTYPE_NAKED_RW 5
226 #define XTYPE_COMMAND_DISPATCH 6
227 #define XTYPE_MASK 7
228
229 /**
230 * struct marvell_hw_ecc_layout - layout of Marvell ECC
231 *
232 * Marvell ECC engine works differently than the others, in order to limit the
233 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
234 * per subpage, and depending on a the desired strength needed by the NAND chip,
235 * a particular layout mixing data/spare/ecc is defined, with a possible last
236 * chunk smaller that the others.
237 *
238 * @writesize: Full page size on which the layout applies
239 * @chunk: Desired ECC chunk size on which the layout applies
240 * @strength: Desired ECC strength (per chunk size bytes) on which the
241 * layout applies
242 * @nchunks: Total number of chunks
243 * @full_chunk_cnt: Number of full-sized chunks, which is the number of
244 * repetitions of the pattern:
245 * (data_bytes + spare_bytes + ecc_bytes).
246 * @data_bytes: Number of data bytes per chunk
247 * @spare_bytes: Number of spare bytes per chunk
248 * @ecc_bytes: Number of ecc bytes per chunk
249 * @last_data_bytes: Number of data bytes in the last chunk
250 * @last_spare_bytes: Number of spare bytes in the last chunk
251 * @last_ecc_bytes: Number of ecc bytes in the last chunk
252 */
253 struct marvell_hw_ecc_layout {
254 /* Constraints */
255 int writesize;
256 int chunk;
257 int strength;
258 /* Corresponding layout */
259 int nchunks;
260 int full_chunk_cnt;
261 int data_bytes;
262 int spare_bytes;
263 int ecc_bytes;
264 int last_data_bytes;
265 int last_spare_bytes;
266 int last_ecc_bytes;
267 };
268
269 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \
270 { \
271 .writesize = ws, \
272 .chunk = dc, \
273 .strength = ds, \
274 .nchunks = nc, \
275 .full_chunk_cnt = fcc, \
276 .data_bytes = db, \
277 .spare_bytes = sb, \
278 .ecc_bytes = eb, \
279 .last_data_bytes = ldb, \
280 .last_spare_bytes = lsb, \
281 .last_ecc_bytes = leb, \
282 }
283
284 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
285 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
286 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0),
287 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0),
288 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0),
289 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30),
290 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0),
291 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30),
292 MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0),
293 MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30),
294 };
295
296 /**
297 * struct marvell_nand_chip_sel - CS line description
298 *
299 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
300 * is made by a field in NDCB0 register, and in another field in NDCB2 register.
301 * The datasheet describes the logic with an error: ADDR5 field is once
302 * declared at the beginning of NDCB2, and another time at its end. Because the
303 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
304 * to use the last bit of this field instead of the first ones.
305 *
306 * @cs: Wanted CE lane.
307 * @ndcb0_csel: Value of the NDCB0 register with or without the flag
308 * selecting the wanted CE lane. This is set once when
309 * the Device Tree is probed.
310 * @rb: Ready/Busy pin for the flash chip
311 */
312 struct marvell_nand_chip_sel {
313 unsigned int cs;
314 u32 ndcb0_csel;
315 unsigned int rb;
316 };
317
318 /**
319 * struct marvell_nand_chip - stores NAND chip device related information
320 *
321 * @chip: Base NAND chip structure
322 * @node: Used to store NAND chips into a list
323 * @layout: NAND layout when using hardware ECC
324 * @ndcr: Controller register value for this NAND chip
325 * @ndtr0: Timing registers 0 value for this NAND chip
326 * @ndtr1: Timing registers 1 value for this NAND chip
327 * @addr_cyc: Amount of cycles needed to pass column address
328 * @selected_die: Current active CS
329 * @nsels: Number of CS lines required by the NAND chip
330 * @sels: Array of CS lines descriptions
331 */
332 struct marvell_nand_chip {
333 struct nand_chip chip;
334 struct list_head node;
335 const struct marvell_hw_ecc_layout *layout;
336 u32 ndcr;
337 u32 ndtr0;
338 u32 ndtr1;
339 int addr_cyc;
340 int selected_die;
341 unsigned int nsels;
342 struct marvell_nand_chip_sel sels[];
343 };
344
to_marvell_nand(struct nand_chip * chip)345 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
346 {
347 return container_of(chip, struct marvell_nand_chip, chip);
348 }
349
to_nand_sel(struct marvell_nand_chip * nand)350 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
351 *nand)
352 {
353 return &nand->sels[nand->selected_die];
354 }
355
356 /**
357 * struct marvell_nfc_caps - NAND controller capabilities for distinction
358 * between compatible strings
359 *
360 * @max_cs_nb: Number of Chip Select lines available
361 * @max_rb_nb: Number of Ready/Busy lines available
362 * @need_system_controller: Indicates if the SoC needs to have access to the
363 * system controller (ie. to enable the NAND controller)
364 * @legacy_of_bindings: Indicates if DT parsing must be done using the old
365 * fashion way
366 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie.
367 * BCH error detection and correction algorithm,
368 * NDCB3 register has been added
369 * @use_dma: Use dma for data transfers
370 */
371 struct marvell_nfc_caps {
372 unsigned int max_cs_nb;
373 unsigned int max_rb_nb;
374 bool need_system_controller;
375 bool legacy_of_bindings;
376 bool is_nfcv2;
377 bool use_dma;
378 };
379
380 /**
381 * struct marvell_nfc - stores Marvell NAND controller information
382 *
383 * @controller: Base controller structure
384 * @dev: Parent device (used to print error messages)
385 * @regs: NAND controller registers
386 * @core_clk: Core clock
387 * @reg_clk: Registers clock
388 * @complete: Completion object to wait for NAND controller events
389 * @assigned_cs: Bitmask describing already assigned CS lines
390 * @chips: List containing all the NAND chips attached to
391 * this NAND controller
392 * @selected_chip: Currently selected target chip
393 * @caps: NAND controller capabilities for each compatible string
394 * @use_dma: Whetner DMA is used
395 * @dma_chan: DMA channel (NFCv1 only)
396 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only)
397 */
398 struct marvell_nfc {
399 struct nand_controller controller;
400 struct device *dev;
401 void __iomem *regs;
402 struct clk *core_clk;
403 struct clk *reg_clk;
404 struct completion complete;
405 unsigned long assigned_cs;
406 struct list_head chips;
407 struct nand_chip *selected_chip;
408 const struct marvell_nfc_caps *caps;
409
410 /* DMA (NFCv1 only) */
411 bool use_dma;
412 struct dma_chan *dma_chan;
413 u8 *dma_buf;
414 };
415
to_marvell_nfc(struct nand_controller * ctrl)416 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
417 {
418 return container_of(ctrl, struct marvell_nfc, controller);
419 }
420
421 /**
422 * struct marvell_nfc_timings - NAND controller timings expressed in NAND
423 * Controller clock cycles
424 *
425 * @tRP: ND_nRE pulse width
426 * @tRH: ND_nRE high duration
427 * @tWP: ND_nWE pulse time
428 * @tWH: ND_nWE high duration
429 * @tCS: Enable signal setup time
430 * @tCH: Enable signal hold time
431 * @tADL: Address to write data delay
432 * @tAR: ND_ALE low to ND_nRE low delay
433 * @tWHR: ND_nWE high to ND_nRE low for status read
434 * @tRHW: ND_nRE high duration, read to write delay
435 * @tR: ND_nWE high to ND_nRE low for read
436 */
437 struct marvell_nfc_timings {
438 /* NDTR0 fields */
439 unsigned int tRP;
440 unsigned int tRH;
441 unsigned int tWP;
442 unsigned int tWH;
443 unsigned int tCS;
444 unsigned int tCH;
445 unsigned int tADL;
446 /* NDTR1 fields */
447 unsigned int tAR;
448 unsigned int tWHR;
449 unsigned int tRHW;
450 unsigned int tR;
451 };
452
453 /**
454 * TO_CYCLES() - Derives a duration in numbers of clock cycles.
455 *
456 * @ps: Duration in pico-seconds
457 * @period_ns: Clock period in nano-seconds
458 *
459 * Convert the duration in nano-seconds, then divide by the period and
460 * return the number of clock periods.
461 */
462 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
463 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
464 period_ns))
465
466 /**
467 * struct marvell_nfc_op - filled during the parsing of the ->exec_op()
468 * subop subset of instructions.
469 *
470 * @ndcb: Array of values written to NDCBx registers
471 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle
472 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
473 * @rdy_delay_ns: Optional delay after waiting for the RB pin
474 * @data_delay_ns: Optional delay after the data xfer
475 * @data_instr_idx: Index of the data instruction in the subop
476 * @data_instr: Pointer to the data instruction in the subop
477 */
478 struct marvell_nfc_op {
479 u32 ndcb[4];
480 unsigned int cle_ale_delay_ns;
481 unsigned int rdy_timeout_ms;
482 unsigned int rdy_delay_ns;
483 unsigned int data_delay_ns;
484 unsigned int data_instr_idx;
485 const struct nand_op_instr *data_instr;
486 };
487
488 /*
489 * Internal helper to conditionnally apply a delay (from the above structure,
490 * most of the time).
491 */
cond_delay(unsigned int ns)492 static void cond_delay(unsigned int ns)
493 {
494 if (!ns)
495 return;
496
497 if (ns < 10000)
498 ndelay(ns);
499 else
500 udelay(DIV_ROUND_UP(ns, 1000));
501 }
502
503 /*
504 * The controller has many flags that could generate interrupts, most of them
505 * are disabled and polling is used. For the very slow signals, using interrupts
506 * may relax the CPU charge.
507 */
marvell_nfc_disable_int(struct marvell_nfc * nfc,u32 int_mask)508 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
509 {
510 u32 reg;
511
512 /* Writing 1 disables the interrupt */
513 reg = readl_relaxed(nfc->regs + NDCR);
514 writel_relaxed(reg | int_mask, nfc->regs + NDCR);
515 }
516
marvell_nfc_enable_int(struct marvell_nfc * nfc,u32 int_mask)517 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
518 {
519 u32 reg;
520
521 /* Writing 0 enables the interrupt */
522 reg = readl_relaxed(nfc->regs + NDCR);
523 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
524 }
525
marvell_nfc_clear_int(struct marvell_nfc * nfc,u32 int_mask)526 static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
527 {
528 u32 reg;
529
530 reg = readl_relaxed(nfc->regs + NDSR);
531 writel_relaxed(int_mask, nfc->regs + NDSR);
532
533 return reg & int_mask;
534 }
535
marvell_nfc_force_byte_access(struct nand_chip * chip,bool force_8bit)536 static void marvell_nfc_force_byte_access(struct nand_chip *chip,
537 bool force_8bit)
538 {
539 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
540 u32 ndcr;
541
542 /*
543 * Callers of this function do not verify if the NAND is using a 16-bit
544 * an 8-bit bus for normal operations, so we need to take care of that
545 * here by leaving the configuration unchanged if the NAND does not have
546 * the NAND_BUSWIDTH_16 flag set.
547 */
548 if (!(chip->options & NAND_BUSWIDTH_16))
549 return;
550
551 ndcr = readl_relaxed(nfc->regs + NDCR);
552
553 if (force_8bit)
554 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
555 else
556 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
557
558 writel_relaxed(ndcr, nfc->regs + NDCR);
559 }
560
marvell_nfc_wait_ndrun(struct nand_chip * chip)561 static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
562 {
563 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
564 u32 val;
565 int ret;
566
567 /*
568 * The command is being processed, wait for the ND_RUN bit to be
569 * cleared by the NFC. If not, we must clear it by hand.
570 */
571 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
572 (val & NDCR_ND_RUN) == 0,
573 POLL_PERIOD, POLL_TIMEOUT);
574 if (ret) {
575 dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
576 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
577 nfc->regs + NDCR);
578 return ret;
579 }
580
581 return 0;
582 }
583
584 /*
585 * Any time a command has to be sent to the controller, the following sequence
586 * has to be followed:
587 * - call marvell_nfc_prepare_cmd()
588 * -> activate the ND_RUN bit that will kind of 'start a job'
589 * -> wait the signal indicating the NFC is waiting for a command
590 * - send the command (cmd and address cycles)
591 * - enventually send or receive the data
592 * - call marvell_nfc_end_cmd() with the corresponding flag
593 * -> wait the flag to be triggered or cancel the job with a timeout
594 *
595 * The following helpers are here to factorize the code a bit so that
596 * specialized functions responsible for executing the actual NAND
597 * operations do not have to replicate the same code blocks.
598 */
marvell_nfc_prepare_cmd(struct nand_chip * chip)599 static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
600 {
601 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
602 u32 ndcr, val;
603 int ret;
604
605 /* Poll ND_RUN and clear NDSR before issuing any command */
606 ret = marvell_nfc_wait_ndrun(chip);
607 if (ret) {
608 dev_err(nfc->dev, "Last operation did not succeed\n");
609 return ret;
610 }
611
612 ndcr = readl_relaxed(nfc->regs + NDCR);
613 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
614
615 /* Assert ND_RUN bit and wait the NFC to be ready */
616 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
617 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
618 val & NDSR_WRCMDREQ,
619 POLL_PERIOD, POLL_TIMEOUT);
620 if (ret) {
621 dev_err(nfc->dev, "Timeout on WRCMDRE\n");
622 return -ETIMEDOUT;
623 }
624
625 /* Command may be written, clear WRCMDREQ status bit */
626 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
627
628 return 0;
629 }
630
marvell_nfc_send_cmd(struct nand_chip * chip,struct marvell_nfc_op * nfc_op)631 static void marvell_nfc_send_cmd(struct nand_chip *chip,
632 struct marvell_nfc_op *nfc_op)
633 {
634 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
635 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
636
637 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n"
638 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
639 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
640 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
641
642 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
643 nfc->regs + NDCB0);
644 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
645 writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
646
647 /*
648 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
649 * fields are used (only available on NFCv2).
650 */
651 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
652 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
653 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
654 writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
655 }
656 }
657
marvell_nfc_end_cmd(struct nand_chip * chip,int flag,const char * label)658 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
659 const char *label)
660 {
661 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
662 u32 val;
663 int ret;
664
665 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
666 val & flag,
667 POLL_PERIOD, POLL_TIMEOUT);
668
669 if (ret) {
670 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
671 label, val);
672 if (nfc->dma_chan)
673 dmaengine_terminate_all(nfc->dma_chan);
674 return ret;
675 }
676
677 /*
678 * DMA function uses this helper to poll on CMDD bits without wanting
679 * them to be cleared.
680 */
681 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
682 return 0;
683
684 writel_relaxed(flag, nfc->regs + NDSR);
685
686 return 0;
687 }
688
marvell_nfc_wait_cmdd(struct nand_chip * chip)689 static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
690 {
691 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
692 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
693
694 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
695 }
696
marvell_nfc_poll_status(struct marvell_nfc * nfc,u32 mask,u32 expected_val,unsigned long timeout_ms)697 static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask,
698 u32 expected_val, unsigned long timeout_ms)
699 {
700 unsigned long limit;
701 u32 st;
702
703 limit = jiffies + msecs_to_jiffies(timeout_ms);
704 do {
705 st = readl_relaxed(nfc->regs + NDSR);
706 if (st & NDSR_RDY(1))
707 st |= NDSR_RDY(0);
708
709 if ((st & mask) == expected_val)
710 return 0;
711
712 cpu_relax();
713 } while (time_after(limit, jiffies));
714
715 return -ETIMEDOUT;
716 }
717
marvell_nfc_wait_op(struct nand_chip * chip,unsigned int timeout_ms)718 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
719 {
720 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
721 struct mtd_info *mtd = nand_to_mtd(chip);
722 u32 pending;
723 int ret;
724
725 /* Timeout is expressed in ms */
726 if (!timeout_ms)
727 timeout_ms = IRQ_TIMEOUT;
728
729 if (mtd->oops_panic_write) {
730 ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0),
731 NDSR_RDY(0),
732 timeout_ms);
733 } else {
734 init_completion(&nfc->complete);
735
736 marvell_nfc_enable_int(nfc, NDCR_RDYM);
737 ret = wait_for_completion_timeout(&nfc->complete,
738 msecs_to_jiffies(timeout_ms));
739 marvell_nfc_disable_int(nfc, NDCR_RDYM);
740 }
741 pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
742
743 /*
744 * In case the interrupt was not served in the required time frame,
745 * check if the ISR was not served or if something went actually wrong.
746 */
747 if (!ret && !pending) {
748 dev_err(nfc->dev, "Timeout waiting for RB signal\n");
749 return -ETIMEDOUT;
750 }
751
752 return 0;
753 }
754
marvell_nfc_select_target(struct nand_chip * chip,unsigned int die_nr)755 static void marvell_nfc_select_target(struct nand_chip *chip,
756 unsigned int die_nr)
757 {
758 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
759 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
760 u32 ndcr_generic;
761
762 /*
763 * Reset the NDCR register to a clean state for this particular chip,
764 * also clear ND_RUN bit.
765 */
766 ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
767 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
768 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
769
770 /* Also reset the interrupt status register */
771 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
772
773 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
774 return;
775
776 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
777 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
778
779 nfc->selected_chip = chip;
780 marvell_nand->selected_die = die_nr;
781 }
782
marvell_nfc_isr(int irq,void * dev_id)783 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
784 {
785 struct marvell_nfc *nfc = dev_id;
786 u32 st = readl_relaxed(nfc->regs + NDSR);
787 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
788
789 /*
790 * RDY interrupt mask is one bit in NDCR while there are two status
791 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
792 */
793 if (st & NDSR_RDY(1))
794 st |= NDSR_RDY(0);
795
796 if (!(st & ien))
797 return IRQ_NONE;
798
799 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
800
801 if (st & (NDSR_RDY(0) | NDSR_RDY(1)))
802 complete(&nfc->complete);
803
804 return IRQ_HANDLED;
805 }
806
807 /* HW ECC related functions */
marvell_nfc_enable_hw_ecc(struct nand_chip * chip)808 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
809 {
810 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
811 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
812
813 if (!(ndcr & NDCR_ECC_EN)) {
814 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
815
816 /*
817 * When enabling BCH, set threshold to 0 to always know the
818 * number of corrected bitflips.
819 */
820 if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
821 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
822 }
823 }
824
marvell_nfc_disable_hw_ecc(struct nand_chip * chip)825 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
826 {
827 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
828 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
829
830 if (ndcr & NDCR_ECC_EN) {
831 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
832 if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
833 writel_relaxed(0, nfc->regs + NDECCCTRL);
834 }
835 }
836
837 /* DMA related helpers */
marvell_nfc_enable_dma(struct marvell_nfc * nfc)838 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
839 {
840 u32 reg;
841
842 reg = readl_relaxed(nfc->regs + NDCR);
843 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
844 }
845
marvell_nfc_disable_dma(struct marvell_nfc * nfc)846 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
847 {
848 u32 reg;
849
850 reg = readl_relaxed(nfc->regs + NDCR);
851 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
852 }
853
854 /* Read/write PIO/DMA accessors */
marvell_nfc_xfer_data_dma(struct marvell_nfc * nfc,enum dma_data_direction direction,unsigned int len)855 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
856 enum dma_data_direction direction,
857 unsigned int len)
858 {
859 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
860 struct dma_async_tx_descriptor *tx;
861 struct scatterlist sg;
862 dma_cookie_t cookie;
863 int ret;
864
865 marvell_nfc_enable_dma(nfc);
866 /* Prepare the DMA transfer */
867 sg_init_one(&sg, nfc->dma_buf, dma_len);
868 ret = dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
869 if (!ret) {
870 dev_err(nfc->dev, "Could not map DMA S/G list\n");
871 return -ENXIO;
872 }
873
874 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
875 direction == DMA_FROM_DEVICE ?
876 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
877 DMA_PREP_INTERRUPT);
878 if (!tx) {
879 dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
880 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
881 return -ENXIO;
882 }
883
884 /* Do the task and wait for it to finish */
885 cookie = dmaengine_submit(tx);
886 ret = dma_submit_error(cookie);
887 if (ret)
888 return -EIO;
889
890 dma_async_issue_pending(nfc->dma_chan);
891 ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
892 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
893 marvell_nfc_disable_dma(nfc);
894 if (ret) {
895 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
896 dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
897 dmaengine_terminate_all(nfc->dma_chan);
898 return -ETIMEDOUT;
899 }
900
901 return 0;
902 }
903
marvell_nfc_xfer_data_in_pio(struct marvell_nfc * nfc,u8 * in,unsigned int len)904 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
905 unsigned int len)
906 {
907 unsigned int last_len = len % FIFO_DEPTH;
908 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
909 int i;
910
911 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
912 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
913
914 if (last_len) {
915 u8 tmp_buf[FIFO_DEPTH];
916
917 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
918 memcpy(in + last_full_offset, tmp_buf, last_len);
919 }
920
921 return 0;
922 }
923
marvell_nfc_xfer_data_out_pio(struct marvell_nfc * nfc,const u8 * out,unsigned int len)924 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
925 unsigned int len)
926 {
927 unsigned int last_len = len % FIFO_DEPTH;
928 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
929 int i;
930
931 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
932 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
933
934 if (last_len) {
935 u8 tmp_buf[FIFO_DEPTH];
936
937 memcpy(tmp_buf, out + last_full_offset, last_len);
938 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
939 }
940
941 return 0;
942 }
943
marvell_nfc_check_empty_chunk(struct nand_chip * chip,u8 * data,int data_len,u8 * spare,int spare_len,u8 * ecc,int ecc_len,unsigned int * max_bitflips)944 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
945 u8 *data, int data_len,
946 u8 *spare, int spare_len,
947 u8 *ecc, int ecc_len,
948 unsigned int *max_bitflips)
949 {
950 struct mtd_info *mtd = nand_to_mtd(chip);
951 int bf;
952
953 /*
954 * Blank pages (all 0xFF) that have not been written may be recognized
955 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
956 * check if the entire page (with ECC bytes) is actually blank or not.
957 */
958 if (!data)
959 data_len = 0;
960 if (!spare)
961 spare_len = 0;
962 if (!ecc)
963 ecc_len = 0;
964
965 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
966 spare, spare_len, chip->ecc.strength);
967 if (bf < 0) {
968 mtd->ecc_stats.failed++;
969 return;
970 }
971
972 /* Update the stats and max_bitflips */
973 mtd->ecc_stats.corrected += bf;
974 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
975 }
976
977 /*
978 * Check if a chunk is correct or not according to the hardware ECC engine.
979 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
980 * mtd->ecc_stats.failure is not, the function will instead return a non-zero
981 * value indicating that a check on the emptyness of the subpage must be
982 * performed before actually declaring the subpage as "corrupted".
983 */
marvell_nfc_hw_ecc_check_bitflips(struct nand_chip * chip,unsigned int * max_bitflips)984 static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip,
985 unsigned int *max_bitflips)
986 {
987 struct mtd_info *mtd = nand_to_mtd(chip);
988 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
989 int bf = 0;
990 u32 ndsr;
991
992 ndsr = readl_relaxed(nfc->regs + NDSR);
993
994 /* Check uncorrectable error flag */
995 if (ndsr & NDSR_UNCERR) {
996 writel_relaxed(ndsr, nfc->regs + NDSR);
997
998 /*
999 * Do not increment ->ecc_stats.failed now, instead, return a
1000 * non-zero value to indicate that this chunk was apparently
1001 * bad, and it should be check to see if it empty or not. If
1002 * the chunk (with ECC bytes) is not declared empty, the calling
1003 * function must increment the failure count.
1004 */
1005 return -EBADMSG;
1006 }
1007
1008 /* Check correctable error flag */
1009 if (ndsr & NDSR_CORERR) {
1010 writel_relaxed(ndsr, nfc->regs + NDSR);
1011
1012 if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
1013 bf = NDSR_ERRCNT(ndsr);
1014 else
1015 bf = 1;
1016 }
1017
1018 /* Update the stats and max_bitflips */
1019 mtd->ecc_stats.corrected += bf;
1020 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
1021
1022 return 0;
1023 }
1024
1025 /* Hamming read helpers */
marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip * chip,u8 * data_buf,u8 * oob_buf,bool raw,int page)1026 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
1027 u8 *data_buf, u8 *oob_buf,
1028 bool raw, int page)
1029 {
1030 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1031 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1032 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1033 struct marvell_nfc_op nfc_op = {
1034 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1035 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1036 NDCB0_DBC |
1037 NDCB0_CMD1(NAND_CMD_READ0) |
1038 NDCB0_CMD2(NAND_CMD_READSTART),
1039 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1040 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1041 };
1042 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1043 int ret;
1044
1045 /* NFCv2 needs more information about the operation being executed */
1046 if (nfc->caps->is_nfcv2)
1047 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1048
1049 ret = marvell_nfc_prepare_cmd(chip);
1050 if (ret)
1051 return ret;
1052
1053 marvell_nfc_send_cmd(chip, &nfc_op);
1054 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1055 "RDDREQ while draining FIFO (data/oob)");
1056 if (ret)
1057 return ret;
1058
1059 /*
1060 * Read the page then the OOB area. Unlike what is shown in current
1061 * documentation, spare bytes are protected by the ECC engine, and must
1062 * be at the beginning of the OOB area or running this driver on legacy
1063 * systems will prevent the discovery of the BBM/BBT.
1064 */
1065 if (nfc->use_dma) {
1066 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
1067 lt->data_bytes + oob_bytes);
1068 memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
1069 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
1070 } else {
1071 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
1072 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
1073 }
1074
1075 ret = marvell_nfc_wait_cmdd(chip);
1076 return ret;
1077 }
1078
marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip * chip,u8 * buf,int oob_required,int page)1079 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf,
1080 int oob_required, int page)
1081 {
1082 marvell_nfc_select_target(chip, chip->cur_cs);
1083 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1084 true, page);
1085 }
1086
marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip * chip,u8 * buf,int oob_required,int page)1087 static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf,
1088 int oob_required, int page)
1089 {
1090 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1091 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1092 int max_bitflips = 0, ret;
1093 u8 *raw_buf;
1094
1095 marvell_nfc_select_target(chip, chip->cur_cs);
1096 marvell_nfc_enable_hw_ecc(chip);
1097 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
1098 page);
1099 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
1100 marvell_nfc_disable_hw_ecc(chip);
1101
1102 if (!ret)
1103 return max_bitflips;
1104
1105 /*
1106 * When ECC failures are detected, check if the full page has been
1107 * written or not. Ignore the failure if it is actually empty.
1108 */
1109 raw_buf = kmalloc(full_sz, GFP_KERNEL);
1110 if (!raw_buf)
1111 return -ENOMEM;
1112
1113 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
1114 lt->data_bytes, true, page);
1115 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1116 &max_bitflips);
1117 kfree(raw_buf);
1118
1119 return max_bitflips;
1120 }
1121
1122 /*
1123 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1124 * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1125 * also stands for ->read_oob().
1126 */
marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip * chip,int page)1127 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page)
1128 {
1129 u8 *buf = nand_get_data_buf(chip);
1130
1131 marvell_nfc_select_target(chip, chip->cur_cs);
1132 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1133 true, page);
1134 }
1135
1136 /* Hamming write helpers */
marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip * chip,const u8 * data_buf,const u8 * oob_buf,bool raw,int page)1137 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1138 const u8 *data_buf,
1139 const u8 *oob_buf, bool raw,
1140 int page)
1141 {
1142 const struct nand_sdr_timings *sdr =
1143 nand_get_sdr_timings(nand_get_interface_config(chip));
1144 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1145 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1146 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1147 struct marvell_nfc_op nfc_op = {
1148 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1149 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1150 NDCB0_CMD1(NAND_CMD_SEQIN) |
1151 NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1152 NDCB0_DBC,
1153 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1154 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1155 };
1156 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1157 int ret;
1158
1159 /* NFCv2 needs more information about the operation being executed */
1160 if (nfc->caps->is_nfcv2)
1161 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1162
1163 ret = marvell_nfc_prepare_cmd(chip);
1164 if (ret)
1165 return ret;
1166
1167 marvell_nfc_send_cmd(chip, &nfc_op);
1168 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1169 "WRDREQ while loading FIFO (data)");
1170 if (ret)
1171 return ret;
1172
1173 /* Write the page then the OOB area */
1174 if (nfc->use_dma) {
1175 memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1176 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1177 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1178 lt->ecc_bytes + lt->spare_bytes);
1179 } else {
1180 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1181 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1182 }
1183
1184 ret = marvell_nfc_wait_cmdd(chip);
1185 if (ret)
1186 return ret;
1187
1188 ret = marvell_nfc_wait_op(chip,
1189 PSEC_TO_MSEC(sdr->tPROG_max));
1190 return ret;
1191 }
1192
marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip * chip,const u8 * buf,int oob_required,int page)1193 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip,
1194 const u8 *buf,
1195 int oob_required, int page)
1196 {
1197 marvell_nfc_select_target(chip, chip->cur_cs);
1198 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1199 true, page);
1200 }
1201
marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip * chip,const u8 * buf,int oob_required,int page)1202 static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip,
1203 const u8 *buf,
1204 int oob_required, int page)
1205 {
1206 int ret;
1207
1208 marvell_nfc_select_target(chip, chip->cur_cs);
1209 marvell_nfc_enable_hw_ecc(chip);
1210 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1211 false, page);
1212 marvell_nfc_disable_hw_ecc(chip);
1213
1214 return ret;
1215 }
1216
1217 /*
1218 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1219 * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1220 * also stands for ->write_oob().
1221 */
marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip * chip,int page)1222 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip,
1223 int page)
1224 {
1225 struct mtd_info *mtd = nand_to_mtd(chip);
1226 u8 *buf = nand_get_data_buf(chip);
1227
1228 memset(buf, 0xFF, mtd->writesize);
1229
1230 marvell_nfc_select_target(chip, chip->cur_cs);
1231 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1232 true, page);
1233 }
1234
1235 /* BCH read helpers */
marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip * chip,u8 * buf,int oob_required,int page)1236 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf,
1237 int oob_required, int page)
1238 {
1239 struct mtd_info *mtd = nand_to_mtd(chip);
1240 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1241 u8 *oob = chip->oob_poi;
1242 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1243 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1244 lt->last_spare_bytes;
1245 int data_len = lt->data_bytes;
1246 int spare_len = lt->spare_bytes;
1247 int ecc_len = lt->ecc_bytes;
1248 int chunk;
1249
1250 marvell_nfc_select_target(chip, chip->cur_cs);
1251
1252 if (oob_required)
1253 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1254
1255 nand_read_page_op(chip, page, 0, NULL, 0);
1256
1257 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1258 /* Update last chunk length */
1259 if (chunk >= lt->full_chunk_cnt) {
1260 data_len = lt->last_data_bytes;
1261 spare_len = lt->last_spare_bytes;
1262 ecc_len = lt->last_ecc_bytes;
1263 }
1264
1265 /* Read data bytes*/
1266 nand_change_read_column_op(chip, chunk * chunk_size,
1267 buf + (lt->data_bytes * chunk),
1268 data_len, false);
1269
1270 /* Read spare bytes */
1271 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1272 spare_len, false, false);
1273
1274 /* Read ECC bytes */
1275 nand_read_data_op(chip, oob + ecc_offset +
1276 (ALIGN(lt->ecc_bytes, 32) * chunk),
1277 ecc_len, false, false);
1278 }
1279
1280 return 0;
1281 }
1282
marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip * chip,int chunk,u8 * data,unsigned int data_len,u8 * spare,unsigned int spare_len,int page)1283 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1284 u8 *data, unsigned int data_len,
1285 u8 *spare, unsigned int spare_len,
1286 int page)
1287 {
1288 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1289 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1290 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1291 int i, ret;
1292 struct marvell_nfc_op nfc_op = {
1293 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1294 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1295 NDCB0_LEN_OVRD,
1296 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1297 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1298 .ndcb[3] = data_len + spare_len,
1299 };
1300
1301 ret = marvell_nfc_prepare_cmd(chip);
1302 if (ret)
1303 return;
1304
1305 if (chunk == 0)
1306 nfc_op.ndcb[0] |= NDCB0_DBC |
1307 NDCB0_CMD1(NAND_CMD_READ0) |
1308 NDCB0_CMD2(NAND_CMD_READSTART);
1309
1310 /*
1311 * Trigger the monolithic read on the first chunk, then naked read on
1312 * intermediate chunks and finally a last naked read on the last chunk.
1313 */
1314 if (chunk == 0)
1315 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1316 else if (chunk < lt->nchunks - 1)
1317 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1318 else
1319 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1320
1321 marvell_nfc_send_cmd(chip, &nfc_op);
1322
1323 /*
1324 * According to the datasheet, when reading from NDDB
1325 * with BCH enabled, after each 32 bytes reads, we
1326 * have to make sure that the NDSR.RDDREQ bit is set.
1327 *
1328 * Drain the FIFO, 8 32-bit reads at a time, and skip
1329 * the polling on the last read.
1330 *
1331 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1332 */
1333 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1334 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1335 "RDDREQ while draining FIFO (data)");
1336 marvell_nfc_xfer_data_in_pio(nfc, data,
1337 FIFO_DEPTH * BCH_SEQ_READS);
1338 data += FIFO_DEPTH * BCH_SEQ_READS;
1339 }
1340
1341 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1342 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1343 "RDDREQ while draining FIFO (OOB)");
1344 marvell_nfc_xfer_data_in_pio(nfc, spare,
1345 FIFO_DEPTH * BCH_SEQ_READS);
1346 spare += FIFO_DEPTH * BCH_SEQ_READS;
1347 }
1348 }
1349
marvell_nfc_hw_ecc_bch_read_page(struct nand_chip * chip,u8 * buf,int oob_required,int page)1350 static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip,
1351 u8 *buf, int oob_required,
1352 int page)
1353 {
1354 struct mtd_info *mtd = nand_to_mtd(chip);
1355 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1356 int data_len = lt->data_bytes, spare_len = lt->spare_bytes;
1357 u8 *data = buf, *spare = chip->oob_poi;
1358 int max_bitflips = 0;
1359 u32 failure_mask = 0;
1360 int chunk, ret;
1361
1362 marvell_nfc_select_target(chip, chip->cur_cs);
1363
1364 /*
1365 * With BCH, OOB is not fully used (and thus not read entirely), not
1366 * expected bytes could show up at the end of the OOB buffer if not
1367 * explicitly erased.
1368 */
1369 if (oob_required)
1370 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1371
1372 marvell_nfc_enable_hw_ecc(chip);
1373
1374 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1375 /* Update length for the last chunk */
1376 if (chunk >= lt->full_chunk_cnt) {
1377 data_len = lt->last_data_bytes;
1378 spare_len = lt->last_spare_bytes;
1379 }
1380
1381 /* Read the chunk and detect number of bitflips */
1382 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1383 spare, spare_len, page);
1384 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
1385 if (ret)
1386 failure_mask |= BIT(chunk);
1387
1388 data += data_len;
1389 spare += spare_len;
1390 }
1391
1392 marvell_nfc_disable_hw_ecc(chip);
1393
1394 if (!failure_mask)
1395 return max_bitflips;
1396
1397 /*
1398 * Please note that dumping the ECC bytes during a normal read with OOB
1399 * area would add a significant overhead as ECC bytes are "consumed" by
1400 * the controller in normal mode and must be re-read in raw mode. To
1401 * avoid dropping the performances, we prefer not to include them. The
1402 * user should re-read the page in raw mode if ECC bytes are required.
1403 */
1404
1405 /*
1406 * In case there is any subpage read error, we usually re-read only ECC
1407 * bytes in raw mode and check if the whole page is empty. In this case,
1408 * it is normal that the ECC check failed and we just ignore the error.
1409 *
1410 * However, it has been empirically observed that for some layouts (e.g
1411 * 2k page, 8b strength per 512B chunk), the controller tries to correct
1412 * bits and may create itself bitflips in the erased area. To overcome
1413 * this strange behavior, the whole page is re-read in raw mode, not
1414 * only the ECC bytes.
1415 */
1416 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1417 int data_off_in_page, spare_off_in_page, ecc_off_in_page;
1418 int data_off, spare_off, ecc_off;
1419 int data_len, spare_len, ecc_len;
1420
1421 /* No failure reported for this chunk, move to the next one */
1422 if (!(failure_mask & BIT(chunk)))
1423 continue;
1424
1425 data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes +
1426 lt->ecc_bytes);
1427 spare_off_in_page = data_off_in_page +
1428 (chunk < lt->full_chunk_cnt ? lt->data_bytes :
1429 lt->last_data_bytes);
1430 ecc_off_in_page = spare_off_in_page +
1431 (chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1432 lt->last_spare_bytes);
1433
1434 data_off = chunk * lt->data_bytes;
1435 spare_off = chunk * lt->spare_bytes;
1436 ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) +
1437 lt->last_spare_bytes +
1438 (chunk * (lt->ecc_bytes + 2));
1439
1440 data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes :
1441 lt->last_data_bytes;
1442 spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1443 lt->last_spare_bytes;
1444 ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes :
1445 lt->last_ecc_bytes;
1446
1447 /*
1448 * Only re-read the ECC bytes, unless we are using the 2k/8b
1449 * layout which is buggy in the sense that the ECC engine will
1450 * try to correct data bytes anyway, creating bitflips. In this
1451 * case, re-read the entire page.
1452 */
1453 if (lt->writesize == 2048 && lt->strength == 8) {
1454 nand_change_read_column_op(chip, data_off_in_page,
1455 buf + data_off, data_len,
1456 false);
1457 nand_change_read_column_op(chip, spare_off_in_page,
1458 chip->oob_poi + spare_off, spare_len,
1459 false);
1460 }
1461
1462 nand_change_read_column_op(chip, ecc_off_in_page,
1463 chip->oob_poi + ecc_off, ecc_len,
1464 false);
1465
1466 /* Check the entire chunk (data + spare + ecc) for emptyness */
1467 marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len,
1468 chip->oob_poi + spare_off, spare_len,
1469 chip->oob_poi + ecc_off, ecc_len,
1470 &max_bitflips);
1471 }
1472
1473 return max_bitflips;
1474 }
1475
marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip * chip,int page)1476 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page)
1477 {
1478 u8 *buf = nand_get_data_buf(chip);
1479
1480 return chip->ecc.read_page_raw(chip, buf, true, page);
1481 }
1482
marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip * chip,int page)1483 static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page)
1484 {
1485 u8 *buf = nand_get_data_buf(chip);
1486
1487 return chip->ecc.read_page(chip, buf, true, page);
1488 }
1489
1490 /* BCH write helpers */
marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip * chip,const u8 * buf,int oob_required,int page)1491 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip,
1492 const u8 *buf,
1493 int oob_required, int page)
1494 {
1495 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1496 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1497 int data_len = lt->data_bytes;
1498 int spare_len = lt->spare_bytes;
1499 int ecc_len = lt->ecc_bytes;
1500 int spare_offset = 0;
1501 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1502 lt->last_spare_bytes;
1503 int chunk;
1504
1505 marvell_nfc_select_target(chip, chip->cur_cs);
1506
1507 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1508
1509 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1510 if (chunk >= lt->full_chunk_cnt) {
1511 data_len = lt->last_data_bytes;
1512 spare_len = lt->last_spare_bytes;
1513 ecc_len = lt->last_ecc_bytes;
1514 }
1515
1516 /* Point to the column of the next chunk */
1517 nand_change_write_column_op(chip, chunk * full_chunk_size,
1518 NULL, 0, false);
1519
1520 /* Write the data */
1521 nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1522 data_len, false);
1523
1524 if (!oob_required)
1525 continue;
1526
1527 /* Write the spare bytes */
1528 if (spare_len)
1529 nand_write_data_op(chip, chip->oob_poi + spare_offset,
1530 spare_len, false);
1531
1532 /* Write the ECC bytes */
1533 if (ecc_len)
1534 nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1535 ecc_len, false);
1536
1537 spare_offset += spare_len;
1538 ecc_offset += ALIGN(ecc_len, 32);
1539 }
1540
1541 return nand_prog_page_end_op(chip);
1542 }
1543
1544 static int
marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip * chip,int chunk,const u8 * data,unsigned int data_len,const u8 * spare,unsigned int spare_len,int page)1545 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1546 const u8 *data, unsigned int data_len,
1547 const u8 *spare, unsigned int spare_len,
1548 int page)
1549 {
1550 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1551 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1552 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1553 u32 xtype;
1554 int ret;
1555 struct marvell_nfc_op nfc_op = {
1556 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1557 .ndcb[3] = data_len + spare_len,
1558 };
1559
1560 /*
1561 * First operation dispatches the CMD_SEQIN command, issue the address
1562 * cycles and asks for the first chunk of data.
1563 * All operations in the middle (if any) will issue a naked write and
1564 * also ask for data.
1565 * Last operation (if any) asks for the last chunk of data through a
1566 * last naked write.
1567 */
1568 if (chunk == 0) {
1569 if (lt->nchunks == 1)
1570 xtype = XTYPE_MONOLITHIC_RW;
1571 else
1572 xtype = XTYPE_WRITE_DISPATCH;
1573
1574 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
1575 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1576 NDCB0_CMD1(NAND_CMD_SEQIN);
1577 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1578 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1579 } else if (chunk < lt->nchunks - 1) {
1580 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1581 } else {
1582 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1583 }
1584
1585 /* Always dispatch the PAGEPROG command on the last chunk */
1586 if (chunk == lt->nchunks - 1)
1587 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1588
1589 ret = marvell_nfc_prepare_cmd(chip);
1590 if (ret)
1591 return ret;
1592
1593 marvell_nfc_send_cmd(chip, &nfc_op);
1594 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1595 "WRDREQ while loading FIFO (data)");
1596 if (ret)
1597 return ret;
1598
1599 /* Transfer the contents */
1600 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1601 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1602
1603 return 0;
1604 }
1605
marvell_nfc_hw_ecc_bch_write_page(struct nand_chip * chip,const u8 * buf,int oob_required,int page)1606 static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip,
1607 const u8 *buf,
1608 int oob_required, int page)
1609 {
1610 const struct nand_sdr_timings *sdr =
1611 nand_get_sdr_timings(nand_get_interface_config(chip));
1612 struct mtd_info *mtd = nand_to_mtd(chip);
1613 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1614 const u8 *data = buf;
1615 const u8 *spare = chip->oob_poi;
1616 int data_len = lt->data_bytes;
1617 int spare_len = lt->spare_bytes;
1618 int chunk, ret;
1619
1620 marvell_nfc_select_target(chip, chip->cur_cs);
1621
1622 /* Spare data will be written anyway, so clear it to avoid garbage */
1623 if (!oob_required)
1624 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1625
1626 marvell_nfc_enable_hw_ecc(chip);
1627
1628 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1629 if (chunk >= lt->full_chunk_cnt) {
1630 data_len = lt->last_data_bytes;
1631 spare_len = lt->last_spare_bytes;
1632 }
1633
1634 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1635 spare, spare_len, page);
1636 data += data_len;
1637 spare += spare_len;
1638
1639 /*
1640 * Waiting only for CMDD or PAGED is not enough, ECC are
1641 * partially written. No flag is set once the operation is
1642 * really finished but the ND_RUN bit is cleared, so wait for it
1643 * before stepping into the next command.
1644 */
1645 marvell_nfc_wait_ndrun(chip);
1646 }
1647
1648 ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max));
1649
1650 marvell_nfc_disable_hw_ecc(chip);
1651
1652 if (ret)
1653 return ret;
1654
1655 return 0;
1656 }
1657
marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip * chip,int page)1658 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip,
1659 int page)
1660 {
1661 struct mtd_info *mtd = nand_to_mtd(chip);
1662 u8 *buf = nand_get_data_buf(chip);
1663
1664 memset(buf, 0xFF, mtd->writesize);
1665
1666 return chip->ecc.write_page_raw(chip, buf, true, page);
1667 }
1668
marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip * chip,int page)1669 static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page)
1670 {
1671 struct mtd_info *mtd = nand_to_mtd(chip);
1672 u8 *buf = nand_get_data_buf(chip);
1673
1674 memset(buf, 0xFF, mtd->writesize);
1675
1676 return chip->ecc.write_page(chip, buf, true, page);
1677 }
1678
1679 /* NAND framework ->exec_op() hooks and related helpers */
marvell_nfc_parse_instructions(struct nand_chip * chip,const struct nand_subop * subop,struct marvell_nfc_op * nfc_op)1680 static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1681 const struct nand_subop *subop,
1682 struct marvell_nfc_op *nfc_op)
1683 {
1684 const struct nand_op_instr *instr = NULL;
1685 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1686 bool first_cmd = true;
1687 unsigned int op_id;
1688 int i;
1689
1690 /* Reset the input structure as most of its fields will be OR'ed */
1691 memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1692
1693 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1694 unsigned int offset, naddrs;
1695 const u8 *addrs;
1696 int len;
1697
1698 instr = &subop->instrs[op_id];
1699
1700 switch (instr->type) {
1701 case NAND_OP_CMD_INSTR:
1702 if (first_cmd)
1703 nfc_op->ndcb[0] |=
1704 NDCB0_CMD1(instr->ctx.cmd.opcode);
1705 else
1706 nfc_op->ndcb[0] |=
1707 NDCB0_CMD2(instr->ctx.cmd.opcode) |
1708 NDCB0_DBC;
1709
1710 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1711 first_cmd = false;
1712 break;
1713
1714 case NAND_OP_ADDR_INSTR:
1715 offset = nand_subop_get_addr_start_off(subop, op_id);
1716 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1717 addrs = &instr->ctx.addr.addrs[offset];
1718
1719 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1720
1721 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1722 nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1723
1724 if (naddrs >= 5)
1725 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1726 if (naddrs >= 6)
1727 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1728 if (naddrs == 7)
1729 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1730
1731 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1732 break;
1733
1734 case NAND_OP_DATA_IN_INSTR:
1735 nfc_op->data_instr = instr;
1736 nfc_op->data_instr_idx = op_id;
1737 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1738 if (nfc->caps->is_nfcv2) {
1739 nfc_op->ndcb[0] |=
1740 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1741 NDCB0_LEN_OVRD;
1742 len = nand_subop_get_data_len(subop, op_id);
1743 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1744 }
1745 nfc_op->data_delay_ns = instr->delay_ns;
1746 break;
1747
1748 case NAND_OP_DATA_OUT_INSTR:
1749 nfc_op->data_instr = instr;
1750 nfc_op->data_instr_idx = op_id;
1751 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1752 if (nfc->caps->is_nfcv2) {
1753 nfc_op->ndcb[0] |=
1754 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1755 NDCB0_LEN_OVRD;
1756 len = nand_subop_get_data_len(subop, op_id);
1757 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1758 }
1759 nfc_op->data_delay_ns = instr->delay_ns;
1760 break;
1761
1762 case NAND_OP_WAITRDY_INSTR:
1763 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1764 nfc_op->rdy_delay_ns = instr->delay_ns;
1765 break;
1766 }
1767 }
1768 }
1769
marvell_nfc_xfer_data_pio(struct nand_chip * chip,const struct nand_subop * subop,struct marvell_nfc_op * nfc_op)1770 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1771 const struct nand_subop *subop,
1772 struct marvell_nfc_op *nfc_op)
1773 {
1774 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1775 const struct nand_op_instr *instr = nfc_op->data_instr;
1776 unsigned int op_id = nfc_op->data_instr_idx;
1777 unsigned int len = nand_subop_get_data_len(subop, op_id);
1778 unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1779 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1780 int ret;
1781
1782 if (instr->ctx.data.force_8bit)
1783 marvell_nfc_force_byte_access(chip, true);
1784
1785 if (reading) {
1786 u8 *in = instr->ctx.data.buf.in + offset;
1787
1788 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1789 } else {
1790 const u8 *out = instr->ctx.data.buf.out + offset;
1791
1792 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1793 }
1794
1795 if (instr->ctx.data.force_8bit)
1796 marvell_nfc_force_byte_access(chip, false);
1797
1798 return ret;
1799 }
1800
marvell_nfc_monolithic_access_exec(struct nand_chip * chip,const struct nand_subop * subop)1801 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1802 const struct nand_subop *subop)
1803 {
1804 struct marvell_nfc_op nfc_op;
1805 bool reading;
1806 int ret;
1807
1808 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1809 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1810
1811 ret = marvell_nfc_prepare_cmd(chip);
1812 if (ret)
1813 return ret;
1814
1815 marvell_nfc_send_cmd(chip, &nfc_op);
1816 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1817 "RDDREQ/WRDREQ while draining raw data");
1818 if (ret)
1819 return ret;
1820
1821 cond_delay(nfc_op.cle_ale_delay_ns);
1822
1823 if (reading) {
1824 if (nfc_op.rdy_timeout_ms) {
1825 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1826 if (ret)
1827 return ret;
1828 }
1829
1830 cond_delay(nfc_op.rdy_delay_ns);
1831 }
1832
1833 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1834 ret = marvell_nfc_wait_cmdd(chip);
1835 if (ret)
1836 return ret;
1837
1838 cond_delay(nfc_op.data_delay_ns);
1839
1840 if (!reading) {
1841 if (nfc_op.rdy_timeout_ms) {
1842 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1843 if (ret)
1844 return ret;
1845 }
1846
1847 cond_delay(nfc_op.rdy_delay_ns);
1848 }
1849
1850 /*
1851 * NDCR ND_RUN bit should be cleared automatically at the end of each
1852 * operation but experience shows that the behavior is buggy when it
1853 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1854 */
1855 if (!reading) {
1856 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1857
1858 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1859 nfc->regs + NDCR);
1860 }
1861
1862 return 0;
1863 }
1864
marvell_nfc_naked_access_exec(struct nand_chip * chip,const struct nand_subop * subop)1865 static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1866 const struct nand_subop *subop)
1867 {
1868 struct marvell_nfc_op nfc_op;
1869 int ret;
1870
1871 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1872
1873 /*
1874 * Naked access are different in that they need to be flagged as naked
1875 * by the controller. Reset the controller registers fields that inform
1876 * on the type and refill them according to the ongoing operation.
1877 */
1878 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1879 NDCB0_CMD_XTYPE(XTYPE_MASK));
1880 switch (subop->instrs[0].type) {
1881 case NAND_OP_CMD_INSTR:
1882 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1883 break;
1884 case NAND_OP_ADDR_INSTR:
1885 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1886 break;
1887 case NAND_OP_DATA_IN_INSTR:
1888 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1889 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1890 break;
1891 case NAND_OP_DATA_OUT_INSTR:
1892 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1893 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1894 break;
1895 default:
1896 /* This should never happen */
1897 break;
1898 }
1899
1900 ret = marvell_nfc_prepare_cmd(chip);
1901 if (ret)
1902 return ret;
1903
1904 marvell_nfc_send_cmd(chip, &nfc_op);
1905
1906 if (!nfc_op.data_instr) {
1907 ret = marvell_nfc_wait_cmdd(chip);
1908 cond_delay(nfc_op.cle_ale_delay_ns);
1909 return ret;
1910 }
1911
1912 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1913 "RDDREQ/WRDREQ while draining raw data");
1914 if (ret)
1915 return ret;
1916
1917 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1918 ret = marvell_nfc_wait_cmdd(chip);
1919 if (ret)
1920 return ret;
1921
1922 /*
1923 * NDCR ND_RUN bit should be cleared automatically at the end of each
1924 * operation but experience shows that the behavior is buggy when it
1925 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1926 */
1927 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1928 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1929
1930 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1931 nfc->regs + NDCR);
1932 }
1933
1934 return 0;
1935 }
1936
marvell_nfc_naked_waitrdy_exec(struct nand_chip * chip,const struct nand_subop * subop)1937 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1938 const struct nand_subop *subop)
1939 {
1940 struct marvell_nfc_op nfc_op;
1941 int ret;
1942
1943 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1944
1945 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1946 cond_delay(nfc_op.rdy_delay_ns);
1947
1948 return ret;
1949 }
1950
marvell_nfc_read_id_type_exec(struct nand_chip * chip,const struct nand_subop * subop)1951 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1952 const struct nand_subop *subop)
1953 {
1954 struct marvell_nfc_op nfc_op;
1955 int ret;
1956
1957 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1958 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1959 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1960
1961 ret = marvell_nfc_prepare_cmd(chip);
1962 if (ret)
1963 return ret;
1964
1965 marvell_nfc_send_cmd(chip, &nfc_op);
1966 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1967 "RDDREQ while reading ID");
1968 if (ret)
1969 return ret;
1970
1971 cond_delay(nfc_op.cle_ale_delay_ns);
1972
1973 if (nfc_op.rdy_timeout_ms) {
1974 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1975 if (ret)
1976 return ret;
1977 }
1978
1979 cond_delay(nfc_op.rdy_delay_ns);
1980
1981 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1982 ret = marvell_nfc_wait_cmdd(chip);
1983 if (ret)
1984 return ret;
1985
1986 cond_delay(nfc_op.data_delay_ns);
1987
1988 return 0;
1989 }
1990
marvell_nfc_read_status_exec(struct nand_chip * chip,const struct nand_subop * subop)1991 static int marvell_nfc_read_status_exec(struct nand_chip *chip,
1992 const struct nand_subop *subop)
1993 {
1994 struct marvell_nfc_op nfc_op;
1995 int ret;
1996
1997 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1998 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1999 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
2000
2001 ret = marvell_nfc_prepare_cmd(chip);
2002 if (ret)
2003 return ret;
2004
2005 marvell_nfc_send_cmd(chip, &nfc_op);
2006 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
2007 "RDDREQ while reading status");
2008 if (ret)
2009 return ret;
2010
2011 cond_delay(nfc_op.cle_ale_delay_ns);
2012
2013 if (nfc_op.rdy_timeout_ms) {
2014 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2015 if (ret)
2016 return ret;
2017 }
2018
2019 cond_delay(nfc_op.rdy_delay_ns);
2020
2021 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
2022 ret = marvell_nfc_wait_cmdd(chip);
2023 if (ret)
2024 return ret;
2025
2026 cond_delay(nfc_op.data_delay_ns);
2027
2028 return 0;
2029 }
2030
marvell_nfc_reset_cmd_type_exec(struct nand_chip * chip,const struct nand_subop * subop)2031 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
2032 const struct nand_subop *subop)
2033 {
2034 struct marvell_nfc_op nfc_op;
2035 int ret;
2036
2037 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2038 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
2039
2040 ret = marvell_nfc_prepare_cmd(chip);
2041 if (ret)
2042 return ret;
2043
2044 marvell_nfc_send_cmd(chip, &nfc_op);
2045 ret = marvell_nfc_wait_cmdd(chip);
2046 if (ret)
2047 return ret;
2048
2049 cond_delay(nfc_op.cle_ale_delay_ns);
2050
2051 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2052 if (ret)
2053 return ret;
2054
2055 cond_delay(nfc_op.rdy_delay_ns);
2056
2057 return 0;
2058 }
2059
marvell_nfc_erase_cmd_type_exec(struct nand_chip * chip,const struct nand_subop * subop)2060 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
2061 const struct nand_subop *subop)
2062 {
2063 struct marvell_nfc_op nfc_op;
2064 int ret;
2065
2066 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2067 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
2068
2069 ret = marvell_nfc_prepare_cmd(chip);
2070 if (ret)
2071 return ret;
2072
2073 marvell_nfc_send_cmd(chip, &nfc_op);
2074 ret = marvell_nfc_wait_cmdd(chip);
2075 if (ret)
2076 return ret;
2077
2078 cond_delay(nfc_op.cle_ale_delay_ns);
2079
2080 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2081 if (ret)
2082 return ret;
2083
2084 cond_delay(nfc_op.rdy_delay_ns);
2085
2086 return 0;
2087 }
2088
2089 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
2090 /* Monolithic reads/writes */
2091 NAND_OP_PARSER_PATTERN(
2092 marvell_nfc_monolithic_access_exec,
2093 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2094 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
2095 NAND_OP_PARSER_PAT_CMD_ELEM(true),
2096 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
2097 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2098 NAND_OP_PARSER_PATTERN(
2099 marvell_nfc_monolithic_access_exec,
2100 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2101 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
2102 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
2103 NAND_OP_PARSER_PAT_CMD_ELEM(true),
2104 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
2105 /* Naked commands */
2106 NAND_OP_PARSER_PATTERN(
2107 marvell_nfc_naked_access_exec,
2108 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2109 NAND_OP_PARSER_PATTERN(
2110 marvell_nfc_naked_access_exec,
2111 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
2112 NAND_OP_PARSER_PATTERN(
2113 marvell_nfc_naked_access_exec,
2114 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2115 NAND_OP_PARSER_PATTERN(
2116 marvell_nfc_naked_access_exec,
2117 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
2118 NAND_OP_PARSER_PATTERN(
2119 marvell_nfc_naked_waitrdy_exec,
2120 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2121 );
2122
2123 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
2124 /* Naked commands not supported, use a function for each pattern */
2125 NAND_OP_PARSER_PATTERN(
2126 marvell_nfc_read_id_type_exec,
2127 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2128 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2129 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
2130 NAND_OP_PARSER_PATTERN(
2131 marvell_nfc_erase_cmd_type_exec,
2132 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2133 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2134 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2135 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2136 NAND_OP_PARSER_PATTERN(
2137 marvell_nfc_read_status_exec,
2138 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2139 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
2140 NAND_OP_PARSER_PATTERN(
2141 marvell_nfc_reset_cmd_type_exec,
2142 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2143 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2144 NAND_OP_PARSER_PATTERN(
2145 marvell_nfc_naked_waitrdy_exec,
2146 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2147 );
2148
marvell_nfc_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)2149 static int marvell_nfc_exec_op(struct nand_chip *chip,
2150 const struct nand_operation *op,
2151 bool check_only)
2152 {
2153 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2154
2155 if (!check_only)
2156 marvell_nfc_select_target(chip, op->cs);
2157
2158 if (nfc->caps->is_nfcv2)
2159 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2160 op, check_only);
2161 else
2162 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2163 op, check_only);
2164 }
2165
2166 /*
2167 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2168 * usable.
2169 */
marvell_nand_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)2170 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2171 struct mtd_oob_region *oobregion)
2172 {
2173 struct nand_chip *chip = mtd_to_nand(mtd);
2174 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2175
2176 if (section)
2177 return -ERANGE;
2178
2179 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2180 lt->last_ecc_bytes;
2181 oobregion->offset = mtd->oobsize - oobregion->length;
2182
2183 return 0;
2184 }
2185
marvell_nand_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)2186 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2187 struct mtd_oob_region *oobregion)
2188 {
2189 struct nand_chip *chip = mtd_to_nand(mtd);
2190 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2191
2192 if (section)
2193 return -ERANGE;
2194
2195 /*
2196 * Bootrom looks in bytes 0 & 5 for bad blocks for the
2197 * 4KB page / 4bit BCH combination.
2198 */
2199 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2200 oobregion->offset = 6;
2201 else
2202 oobregion->offset = 2;
2203
2204 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2205 lt->last_spare_bytes - oobregion->offset;
2206
2207 return 0;
2208 }
2209
2210 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2211 .ecc = marvell_nand_ooblayout_ecc,
2212 .free = marvell_nand_ooblayout_free,
2213 };
2214
marvell_nand_hw_ecc_controller_init(struct mtd_info * mtd,struct nand_ecc_ctrl * ecc)2215 static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd,
2216 struct nand_ecc_ctrl *ecc)
2217 {
2218 struct nand_chip *chip = mtd_to_nand(mtd);
2219 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2220 const struct marvell_hw_ecc_layout *l;
2221 int i;
2222
2223 if (!nfc->caps->is_nfcv2 &&
2224 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2225 dev_err(nfc->dev,
2226 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2227 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2228 return -ENOTSUPP;
2229 }
2230
2231 to_marvell_nand(chip)->layout = NULL;
2232 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2233 l = &marvell_nfc_layouts[i];
2234 if (mtd->writesize == l->writesize &&
2235 ecc->size == l->chunk && ecc->strength == l->strength) {
2236 to_marvell_nand(chip)->layout = l;
2237 break;
2238 }
2239 }
2240
2241 if (!to_marvell_nand(chip)->layout ||
2242 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2243 dev_err(nfc->dev,
2244 "ECC strength %d at page size %d is not supported\n",
2245 ecc->strength, mtd->writesize);
2246 return -ENOTSUPP;
2247 }
2248
2249 /* Special care for the layout 2k/8-bit/512B */
2250 if (l->writesize == 2048 && l->strength == 8) {
2251 if (mtd->oobsize < 128) {
2252 dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n");
2253 return -ENOTSUPP;
2254 } else {
2255 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2256 }
2257 }
2258
2259 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2260 ecc->steps = l->nchunks;
2261 ecc->size = l->data_bytes;
2262
2263 if (ecc->strength == 1) {
2264 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2265 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2266 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2267 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2268 ecc->read_oob = ecc->read_oob_raw;
2269 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2270 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2271 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2272 ecc->write_oob = ecc->write_oob_raw;
2273 } else {
2274 chip->ecc.algo = NAND_ECC_ALGO_BCH;
2275 ecc->strength = 16;
2276 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2277 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2278 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2279 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2280 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2281 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2282 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2283 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2284 }
2285
2286 return 0;
2287 }
2288
marvell_nand_ecc_init(struct mtd_info * mtd,struct nand_ecc_ctrl * ecc)2289 static int marvell_nand_ecc_init(struct mtd_info *mtd,
2290 struct nand_ecc_ctrl *ecc)
2291 {
2292 struct nand_chip *chip = mtd_to_nand(mtd);
2293 const struct nand_ecc_props *requirements =
2294 nanddev_get_ecc_requirements(&chip->base);
2295 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2296 int ret;
2297
2298 if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2299 (!ecc->size || !ecc->strength)) {
2300 if (requirements->step_size && requirements->strength) {
2301 ecc->size = requirements->step_size;
2302 ecc->strength = requirements->strength;
2303 } else {
2304 dev_info(nfc->dev,
2305 "No minimum ECC strength, using 1b/512B\n");
2306 ecc->size = 512;
2307 ecc->strength = 1;
2308 }
2309 }
2310
2311 switch (ecc->engine_type) {
2312 case NAND_ECC_ENGINE_TYPE_ON_HOST:
2313 ret = marvell_nand_hw_ecc_controller_init(mtd, ecc);
2314 if (ret)
2315 return ret;
2316 break;
2317 case NAND_ECC_ENGINE_TYPE_NONE:
2318 case NAND_ECC_ENGINE_TYPE_SOFT:
2319 case NAND_ECC_ENGINE_TYPE_ON_DIE:
2320 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2321 mtd->writesize != SZ_2K) {
2322 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2323 mtd->writesize);
2324 return -EINVAL;
2325 }
2326 break;
2327 default:
2328 return -EINVAL;
2329 }
2330
2331 return 0;
2332 }
2333
2334 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2335 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2336
2337 static struct nand_bbt_descr bbt_main_descr = {
2338 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2339 NAND_BBT_2BIT | NAND_BBT_VERSION,
2340 .offs = 8,
2341 .len = 6,
2342 .veroffs = 14,
2343 .maxblocks = 8, /* Last 8 blocks in each chip */
2344 .pattern = bbt_pattern
2345 };
2346
2347 static struct nand_bbt_descr bbt_mirror_descr = {
2348 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2349 NAND_BBT_2BIT | NAND_BBT_VERSION,
2350 .offs = 8,
2351 .len = 6,
2352 .veroffs = 14,
2353 .maxblocks = 8, /* Last 8 blocks in each chip */
2354 .pattern = bbt_mirror_pattern
2355 };
2356
marvell_nfc_setup_interface(struct nand_chip * chip,int chipnr,const struct nand_interface_config * conf)2357 static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr,
2358 const struct nand_interface_config *conf)
2359 {
2360 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2361 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2362 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
2363 const struct nand_sdr_timings *sdr;
2364 struct marvell_nfc_timings nfc_tmg;
2365 int read_delay;
2366
2367 sdr = nand_get_sdr_timings(conf);
2368 if (IS_ERR(sdr))
2369 return PTR_ERR(sdr);
2370
2371 /*
2372 * SDR timings are given in pico-seconds while NFC timings must be
2373 * expressed in NAND controller clock cycles, which is half of the
2374 * frequency of the accessible ECC clock retrieved by clk_get_rate().
2375 * This is not written anywhere in the datasheet but was observed
2376 * with an oscilloscope.
2377 *
2378 * NFC datasheet gives equations from which thoses calculations
2379 * are derived, they tend to be slightly more restrictives than the
2380 * given core timings and may improve the overall speed.
2381 */
2382 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2383 nfc_tmg.tRH = nfc_tmg.tRP;
2384 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2385 nfc_tmg.tWH = nfc_tmg.tWP;
2386 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2387 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2388 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2389 /*
2390 * Read delay is the time of propagation from SoC pins to NFC internal
2391 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2392 * EDO mode, an additional delay of tRH must be taken into account so
2393 * the data is sampled on the falling edge instead of the rising edge.
2394 */
2395 read_delay = sdr->tRC_min >= 30000 ?
2396 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2397
2398 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2399 /*
2400 * tWHR and tRHW are supposed to be read to write delays (and vice
2401 * versa) but in some cases, ie. when doing a change column, they must
2402 * be greater than that to be sure tCCS delay is respected.
2403 */
2404 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2405 period_ns) - 2;
2406 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2407 period_ns);
2408
2409 /*
2410 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2411 * NFCv1: No WAIT_MODE, tR must be maximal.
2412 */
2413 if (nfc->caps->is_nfcv2) {
2414 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2415 } else {
2416 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2417 period_ns);
2418 if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2419 nfc_tmg.tR = nfc_tmg.tCH - 3;
2420 else
2421 nfc_tmg.tR = 0;
2422 }
2423
2424 if (chipnr < 0)
2425 return 0;
2426
2427 marvell_nand->ndtr0 =
2428 NDTR0_TRP(nfc_tmg.tRP) |
2429 NDTR0_TRH(nfc_tmg.tRH) |
2430 NDTR0_ETRP(nfc_tmg.tRP) |
2431 NDTR0_TWP(nfc_tmg.tWP) |
2432 NDTR0_TWH(nfc_tmg.tWH) |
2433 NDTR0_TCS(nfc_tmg.tCS) |
2434 NDTR0_TCH(nfc_tmg.tCH);
2435
2436 marvell_nand->ndtr1 =
2437 NDTR1_TAR(nfc_tmg.tAR) |
2438 NDTR1_TWHR(nfc_tmg.tWHR) |
2439 NDTR1_TR(nfc_tmg.tR);
2440
2441 if (nfc->caps->is_nfcv2) {
2442 marvell_nand->ndtr0 |=
2443 NDTR0_RD_CNT_DEL(read_delay) |
2444 NDTR0_SELCNTR |
2445 NDTR0_TADL(nfc_tmg.tADL);
2446
2447 marvell_nand->ndtr1 |=
2448 NDTR1_TRHW(nfc_tmg.tRHW) |
2449 NDTR1_WAIT_MODE;
2450 }
2451
2452 return 0;
2453 }
2454
marvell_nand_attach_chip(struct nand_chip * chip)2455 static int marvell_nand_attach_chip(struct nand_chip *chip)
2456 {
2457 struct mtd_info *mtd = nand_to_mtd(chip);
2458 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2459 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2460 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
2461 int ret;
2462
2463 if (pdata && pdata->flash_bbt)
2464 chip->bbt_options |= NAND_BBT_USE_FLASH;
2465
2466 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2467 /*
2468 * We'll use a bad block table stored in-flash and don't
2469 * allow writing the bad block marker to the flash.
2470 */
2471 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2472 chip->bbt_td = &bbt_main_descr;
2473 chip->bbt_md = &bbt_mirror_descr;
2474 }
2475
2476 /* Save the chip-specific fields of NDCR */
2477 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2478 if (chip->options & NAND_BUSWIDTH_16)
2479 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2480
2481 /*
2482 * On small page NANDs, only one cycle is needed to pass the
2483 * column address.
2484 */
2485 if (mtd->writesize <= 512) {
2486 marvell_nand->addr_cyc = 1;
2487 } else {
2488 marvell_nand->addr_cyc = 2;
2489 marvell_nand->ndcr |= NDCR_RA_START;
2490 }
2491
2492 /*
2493 * Now add the number of cycles needed to pass the row
2494 * address.
2495 *
2496 * Addressing a chip using CS 2 or 3 should also need the third row
2497 * cycle but due to inconsistance in the documentation and lack of
2498 * hardware to test this situation, this case is not supported.
2499 */
2500 if (chip->options & NAND_ROW_ADDR_3)
2501 marvell_nand->addr_cyc += 3;
2502 else
2503 marvell_nand->addr_cyc += 2;
2504
2505 if (pdata) {
2506 chip->ecc.size = pdata->ecc_step_size;
2507 chip->ecc.strength = pdata->ecc_strength;
2508 }
2509
2510 ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2511 if (ret) {
2512 dev_err(nfc->dev, "ECC init failed: %d\n", ret);
2513 return ret;
2514 }
2515
2516 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
2517 /*
2518 * Subpage write not available with hardware ECC, prohibit also
2519 * subpage read as in userspace subpage access would still be
2520 * allowed and subpage write, if used, would lead to numerous
2521 * uncorrectable ECC errors.
2522 */
2523 chip->options |= NAND_NO_SUBPAGE_WRITE;
2524 }
2525
2526 if (pdata || nfc->caps->legacy_of_bindings) {
2527 /*
2528 * We keep the MTD name unchanged to avoid breaking platforms
2529 * where the MTD cmdline parser is used and the bootloader
2530 * has not been updated to use the new naming scheme.
2531 */
2532 mtd->name = "pxa3xx_nand-0";
2533 } else if (!mtd->name) {
2534 /*
2535 * If the new bindings are used and the bootloader has not been
2536 * updated to pass a new mtdparts parameter on the cmdline, you
2537 * should define the following property in your NAND node, ie:
2538 *
2539 * label = "main-storage";
2540 *
2541 * This way, mtd->name will be set by the core when
2542 * nand_set_flash_node() is called.
2543 */
2544 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2545 "%s:nand.%d", dev_name(nfc->dev),
2546 marvell_nand->sels[0].cs);
2547 if (!mtd->name) {
2548 dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2549 return -ENOMEM;
2550 }
2551 }
2552
2553 return 0;
2554 }
2555
2556 static const struct nand_controller_ops marvell_nand_controller_ops = {
2557 .attach_chip = marvell_nand_attach_chip,
2558 .exec_op = marvell_nfc_exec_op,
2559 .setup_interface = marvell_nfc_setup_interface,
2560 };
2561
marvell_nand_chip_init(struct device * dev,struct marvell_nfc * nfc,struct device_node * np)2562 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2563 struct device_node *np)
2564 {
2565 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2566 struct marvell_nand_chip *marvell_nand;
2567 struct mtd_info *mtd;
2568 struct nand_chip *chip;
2569 int nsels, ret, i;
2570 u32 cs, rb;
2571
2572 /*
2573 * The legacy "num-cs" property indicates the number of CS on the only
2574 * chip connected to the controller (legacy bindings does not support
2575 * more than one chip). The CS and RB pins are always the #0.
2576 *
2577 * When not using legacy bindings, a couple of "reg" and "nand-rb"
2578 * properties must be filled. For each chip, expressed as a subnode,
2579 * "reg" points to the CS lines and "nand-rb" to the RB line.
2580 */
2581 if (pdata || nfc->caps->legacy_of_bindings) {
2582 nsels = 1;
2583 } else {
2584 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2585 if (nsels <= 0) {
2586 dev_err(dev, "missing/invalid reg property\n");
2587 return -EINVAL;
2588 }
2589 }
2590
2591 /* Alloc the nand chip structure */
2592 marvell_nand = devm_kzalloc(dev,
2593 struct_size(marvell_nand, sels, nsels),
2594 GFP_KERNEL);
2595 if (!marvell_nand) {
2596 dev_err(dev, "could not allocate chip structure\n");
2597 return -ENOMEM;
2598 }
2599
2600 marvell_nand->nsels = nsels;
2601 marvell_nand->selected_die = -1;
2602
2603 for (i = 0; i < nsels; i++) {
2604 if (pdata || nfc->caps->legacy_of_bindings) {
2605 /*
2606 * Legacy bindings use the CS lines in natural
2607 * order (0, 1, ...)
2608 */
2609 cs = i;
2610 } else {
2611 /* Retrieve CS id */
2612 ret = of_property_read_u32_index(np, "reg", i, &cs);
2613 if (ret) {
2614 dev_err(dev, "could not retrieve reg property: %d\n",
2615 ret);
2616 return ret;
2617 }
2618 }
2619
2620 if (cs >= nfc->caps->max_cs_nb) {
2621 dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2622 cs, nfc->caps->max_cs_nb);
2623 return -EINVAL;
2624 }
2625
2626 if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2627 dev_err(dev, "CS %d already assigned\n", cs);
2628 return -EINVAL;
2629 }
2630
2631 /*
2632 * The cs variable represents the chip select id, which must be
2633 * converted in bit fields for NDCB0 and NDCB2 to select the
2634 * right chip. Unfortunately, due to a lack of information on
2635 * the subject and incoherent documentation, the user should not
2636 * use CS1 and CS3 at all as asserting them is not supported in
2637 * a reliable way (due to multiplexing inside ADDR5 field).
2638 */
2639 marvell_nand->sels[i].cs = cs;
2640 switch (cs) {
2641 case 0:
2642 case 2:
2643 marvell_nand->sels[i].ndcb0_csel = 0;
2644 break;
2645 case 1:
2646 case 3:
2647 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2648 break;
2649 default:
2650 return -EINVAL;
2651 }
2652
2653 /* Retrieve RB id */
2654 if (pdata || nfc->caps->legacy_of_bindings) {
2655 /* Legacy bindings always use RB #0 */
2656 rb = 0;
2657 } else {
2658 ret = of_property_read_u32_index(np, "nand-rb", i,
2659 &rb);
2660 if (ret) {
2661 dev_err(dev,
2662 "could not retrieve RB property: %d\n",
2663 ret);
2664 return ret;
2665 }
2666 }
2667
2668 if (rb >= nfc->caps->max_rb_nb) {
2669 dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2670 rb, nfc->caps->max_rb_nb);
2671 return -EINVAL;
2672 }
2673
2674 marvell_nand->sels[i].rb = rb;
2675 }
2676
2677 chip = &marvell_nand->chip;
2678 chip->controller = &nfc->controller;
2679 nand_set_flash_node(chip, np);
2680
2681 if (of_property_read_bool(np, "marvell,nand-keep-config"))
2682 chip->options |= NAND_KEEP_TIMINGS;
2683
2684 mtd = nand_to_mtd(chip);
2685 mtd->dev.parent = dev;
2686
2687 /*
2688 * Save a reference value for timing registers before
2689 * ->setup_interface() is called.
2690 */
2691 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2692 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2693
2694 chip->options |= NAND_BUSWIDTH_AUTO;
2695
2696 ret = nand_scan(chip, marvell_nand->nsels);
2697 if (ret) {
2698 dev_err(dev, "could not scan the nand chip\n");
2699 return ret;
2700 }
2701
2702 if (pdata)
2703 /* Legacy bindings support only one chip */
2704 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2705 else
2706 ret = mtd_device_register(mtd, NULL, 0);
2707 if (ret) {
2708 dev_err(dev, "failed to register mtd device: %d\n", ret);
2709 nand_cleanup(chip);
2710 return ret;
2711 }
2712
2713 list_add_tail(&marvell_nand->node, &nfc->chips);
2714
2715 return 0;
2716 }
2717
marvell_nand_chips_cleanup(struct marvell_nfc * nfc)2718 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2719 {
2720 struct marvell_nand_chip *entry, *temp;
2721 struct nand_chip *chip;
2722 int ret;
2723
2724 list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2725 chip = &entry->chip;
2726 ret = mtd_device_unregister(nand_to_mtd(chip));
2727 WARN_ON(ret);
2728 nand_cleanup(chip);
2729 list_del(&entry->node);
2730 }
2731 }
2732
marvell_nand_chips_init(struct device * dev,struct marvell_nfc * nfc)2733 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2734 {
2735 struct device_node *np = dev->of_node;
2736 struct device_node *nand_np;
2737 int max_cs = nfc->caps->max_cs_nb;
2738 int nchips;
2739 int ret;
2740
2741 if (!np)
2742 nchips = 1;
2743 else
2744 nchips = of_get_child_count(np);
2745
2746 if (nchips > max_cs) {
2747 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2748 max_cs);
2749 return -EINVAL;
2750 }
2751
2752 /*
2753 * Legacy bindings do not use child nodes to exhibit NAND chip
2754 * properties and layout. Instead, NAND properties are mixed with the
2755 * controller ones, and partitions are defined as direct subnodes of the
2756 * NAND controller node.
2757 */
2758 if (nfc->caps->legacy_of_bindings) {
2759 ret = marvell_nand_chip_init(dev, nfc, np);
2760 return ret;
2761 }
2762
2763 for_each_child_of_node(np, nand_np) {
2764 ret = marvell_nand_chip_init(dev, nfc, nand_np);
2765 if (ret) {
2766 of_node_put(nand_np);
2767 goto cleanup_chips;
2768 }
2769 }
2770
2771 return 0;
2772
2773 cleanup_chips:
2774 marvell_nand_chips_cleanup(nfc);
2775
2776 return ret;
2777 }
2778
marvell_nfc_init_dma(struct marvell_nfc * nfc)2779 static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2780 {
2781 struct platform_device *pdev = container_of(nfc->dev,
2782 struct platform_device,
2783 dev);
2784 struct dma_slave_config config = {};
2785 struct resource *r;
2786 int ret;
2787
2788 if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2789 dev_warn(nfc->dev,
2790 "DMA not enabled in configuration\n");
2791 return -ENOTSUPP;
2792 }
2793
2794 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2795 if (ret)
2796 return ret;
2797
2798 nfc->dma_chan = dma_request_chan(nfc->dev, "data");
2799 if (IS_ERR(nfc->dma_chan)) {
2800 ret = PTR_ERR(nfc->dma_chan);
2801 nfc->dma_chan = NULL;
2802 return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n");
2803 }
2804
2805 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2806 if (!r) {
2807 ret = -ENXIO;
2808 goto release_channel;
2809 }
2810
2811 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2812 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2813 config.src_addr = r->start + NDDB;
2814 config.dst_addr = r->start + NDDB;
2815 config.src_maxburst = 32;
2816 config.dst_maxburst = 32;
2817 ret = dmaengine_slave_config(nfc->dma_chan, &config);
2818 if (ret < 0) {
2819 dev_err(nfc->dev, "Failed to configure DMA channel\n");
2820 goto release_channel;
2821 }
2822
2823 /*
2824 * DMA must act on length multiple of 32 and this length may be
2825 * bigger than the destination buffer. Use this buffer instead
2826 * for DMA transfers and then copy the desired amount of data to
2827 * the provided buffer.
2828 */
2829 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
2830 if (!nfc->dma_buf) {
2831 ret = -ENOMEM;
2832 goto release_channel;
2833 }
2834
2835 nfc->use_dma = true;
2836
2837 return 0;
2838
2839 release_channel:
2840 dma_release_channel(nfc->dma_chan);
2841 nfc->dma_chan = NULL;
2842
2843 return ret;
2844 }
2845
marvell_nfc_reset(struct marvell_nfc * nfc)2846 static void marvell_nfc_reset(struct marvell_nfc *nfc)
2847 {
2848 /*
2849 * ECC operations and interruptions are only enabled when specifically
2850 * needed. ECC shall not be activated in the early stages (fails probe).
2851 * Arbiter flag, even if marked as "reserved", must be set (empirical).
2852 * SPARE_EN bit must always be set or ECC bytes will not be at the same
2853 * offset in the read page and this will fail the protection.
2854 */
2855 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2856 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2857 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2858 writel_relaxed(0, nfc->regs + NDECCCTRL);
2859 }
2860
marvell_nfc_init(struct marvell_nfc * nfc)2861 static int marvell_nfc_init(struct marvell_nfc *nfc)
2862 {
2863 struct device_node *np = nfc->dev->of_node;
2864
2865 /*
2866 * Some SoCs like A7k/A8k need to enable manually the NAND
2867 * controller, gated clocks and reset bits to avoid being bootloader
2868 * dependent. This is done through the use of the System Functions
2869 * registers.
2870 */
2871 if (nfc->caps->need_system_controller) {
2872 struct regmap *sysctrl_base =
2873 syscon_regmap_lookup_by_phandle(np,
2874 "marvell,system-controller");
2875
2876 if (IS_ERR(sysctrl_base))
2877 return PTR_ERR(sysctrl_base);
2878
2879 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX,
2880 GENCONF_SOC_DEVICE_MUX_NFC_EN |
2881 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2882 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2883 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN);
2884
2885 regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL,
2886 GENCONF_CLK_GATING_CTRL_ND_GATE,
2887 GENCONF_CLK_GATING_CTRL_ND_GATE);
2888
2889 regmap_update_bits(sysctrl_base, GENCONF_ND_CLK_CTRL,
2890 GENCONF_ND_CLK_CTRL_EN,
2891 GENCONF_ND_CLK_CTRL_EN);
2892 }
2893
2894 /* Configure the DMA if appropriate */
2895 if (!nfc->caps->is_nfcv2)
2896 marvell_nfc_init_dma(nfc);
2897
2898 marvell_nfc_reset(nfc);
2899
2900 return 0;
2901 }
2902
marvell_nfc_probe(struct platform_device * pdev)2903 static int marvell_nfc_probe(struct platform_device *pdev)
2904 {
2905 struct device *dev = &pdev->dev;
2906 struct marvell_nfc *nfc;
2907 int ret;
2908 int irq;
2909
2910 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2911 GFP_KERNEL);
2912 if (!nfc)
2913 return -ENOMEM;
2914
2915 nfc->dev = dev;
2916 nand_controller_init(&nfc->controller);
2917 nfc->controller.ops = &marvell_nand_controller_ops;
2918 INIT_LIST_HEAD(&nfc->chips);
2919
2920 nfc->regs = devm_platform_ioremap_resource(pdev, 0);
2921 if (IS_ERR(nfc->regs))
2922 return PTR_ERR(nfc->regs);
2923
2924 irq = platform_get_irq(pdev, 0);
2925 if (irq < 0)
2926 return irq;
2927
2928 nfc->core_clk = devm_clk_get(&pdev->dev, "core");
2929
2930 /* Managed the legacy case (when the first clock was not named) */
2931 if (nfc->core_clk == ERR_PTR(-ENOENT))
2932 nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
2933
2934 if (IS_ERR(nfc->core_clk))
2935 return PTR_ERR(nfc->core_clk);
2936
2937 ret = clk_prepare_enable(nfc->core_clk);
2938 if (ret)
2939 return ret;
2940
2941 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2942 if (IS_ERR(nfc->reg_clk)) {
2943 if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2944 ret = PTR_ERR(nfc->reg_clk);
2945 goto unprepare_core_clk;
2946 }
2947
2948 nfc->reg_clk = NULL;
2949 }
2950
2951 ret = clk_prepare_enable(nfc->reg_clk);
2952 if (ret)
2953 goto unprepare_core_clk;
2954
2955 marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2956 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2957 ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2958 0, "marvell-nfc", nfc);
2959 if (ret)
2960 goto unprepare_reg_clk;
2961
2962 /* Get NAND controller capabilities */
2963 if (pdev->id_entry)
2964 nfc->caps = (void *)pdev->id_entry->driver_data;
2965 else
2966 nfc->caps = of_device_get_match_data(&pdev->dev);
2967
2968 if (!nfc->caps) {
2969 dev_err(dev, "Could not retrieve NFC caps\n");
2970 ret = -EINVAL;
2971 goto unprepare_reg_clk;
2972 }
2973
2974 /* Init the controller and then probe the chips */
2975 ret = marvell_nfc_init(nfc);
2976 if (ret)
2977 goto unprepare_reg_clk;
2978
2979 platform_set_drvdata(pdev, nfc);
2980
2981 ret = marvell_nand_chips_init(dev, nfc);
2982 if (ret)
2983 goto release_dma;
2984
2985 return 0;
2986
2987 release_dma:
2988 if (nfc->use_dma)
2989 dma_release_channel(nfc->dma_chan);
2990 unprepare_reg_clk:
2991 clk_disable_unprepare(nfc->reg_clk);
2992 unprepare_core_clk:
2993 clk_disable_unprepare(nfc->core_clk);
2994
2995 return ret;
2996 }
2997
marvell_nfc_remove(struct platform_device * pdev)2998 static int marvell_nfc_remove(struct platform_device *pdev)
2999 {
3000 struct marvell_nfc *nfc = platform_get_drvdata(pdev);
3001
3002 marvell_nand_chips_cleanup(nfc);
3003
3004 if (nfc->use_dma) {
3005 dmaengine_terminate_all(nfc->dma_chan);
3006 dma_release_channel(nfc->dma_chan);
3007 }
3008
3009 clk_disable_unprepare(nfc->reg_clk);
3010 clk_disable_unprepare(nfc->core_clk);
3011
3012 return 0;
3013 }
3014
marvell_nfc_suspend(struct device * dev)3015 static int __maybe_unused marvell_nfc_suspend(struct device *dev)
3016 {
3017 struct marvell_nfc *nfc = dev_get_drvdata(dev);
3018 struct marvell_nand_chip *chip;
3019
3020 list_for_each_entry(chip, &nfc->chips, node)
3021 marvell_nfc_wait_ndrun(&chip->chip);
3022
3023 clk_disable_unprepare(nfc->reg_clk);
3024 clk_disable_unprepare(nfc->core_clk);
3025
3026 return 0;
3027 }
3028
marvell_nfc_resume(struct device * dev)3029 static int __maybe_unused marvell_nfc_resume(struct device *dev)
3030 {
3031 struct marvell_nfc *nfc = dev_get_drvdata(dev);
3032 int ret;
3033
3034 ret = clk_prepare_enable(nfc->core_clk);
3035 if (ret < 0)
3036 return ret;
3037
3038 ret = clk_prepare_enable(nfc->reg_clk);
3039 if (ret < 0) {
3040 clk_disable_unprepare(nfc->core_clk);
3041 return ret;
3042 }
3043
3044 /*
3045 * Reset nfc->selected_chip so the next command will cause the timing
3046 * registers to be restored in marvell_nfc_select_target().
3047 */
3048 nfc->selected_chip = NULL;
3049
3050 /* Reset registers that have lost their contents */
3051 marvell_nfc_reset(nfc);
3052
3053 return 0;
3054 }
3055
3056 static const struct dev_pm_ops marvell_nfc_pm_ops = {
3057 SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
3058 };
3059
3060 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
3061 .max_cs_nb = 4,
3062 .max_rb_nb = 2,
3063 .need_system_controller = true,
3064 .is_nfcv2 = true,
3065 };
3066
3067 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
3068 .max_cs_nb = 4,
3069 .max_rb_nb = 2,
3070 .is_nfcv2 = true,
3071 };
3072
3073 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
3074 .max_cs_nb = 2,
3075 .max_rb_nb = 1,
3076 .use_dma = true,
3077 };
3078
3079 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
3080 .max_cs_nb = 4,
3081 .max_rb_nb = 2,
3082 .need_system_controller = true,
3083 .legacy_of_bindings = true,
3084 .is_nfcv2 = true,
3085 };
3086
3087 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
3088 .max_cs_nb = 4,
3089 .max_rb_nb = 2,
3090 .legacy_of_bindings = true,
3091 .is_nfcv2 = true,
3092 };
3093
3094 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
3095 .max_cs_nb = 2,
3096 .max_rb_nb = 1,
3097 .legacy_of_bindings = true,
3098 .use_dma = true,
3099 };
3100
3101 static const struct platform_device_id marvell_nfc_platform_ids[] = {
3102 {
3103 .name = "pxa3xx-nand",
3104 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
3105 },
3106 { /* sentinel */ },
3107 };
3108 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
3109
3110 static const struct of_device_id marvell_nfc_of_ids[] = {
3111 {
3112 .compatible = "marvell,armada-8k-nand-controller",
3113 .data = &marvell_armada_8k_nfc_caps,
3114 },
3115 {
3116 .compatible = "marvell,armada370-nand-controller",
3117 .data = &marvell_armada370_nfc_caps,
3118 },
3119 {
3120 .compatible = "marvell,pxa3xx-nand-controller",
3121 .data = &marvell_pxa3xx_nfc_caps,
3122 },
3123 /* Support for old/deprecated bindings: */
3124 {
3125 .compatible = "marvell,armada-8k-nand",
3126 .data = &marvell_armada_8k_nfc_legacy_caps,
3127 },
3128 {
3129 .compatible = "marvell,armada370-nand",
3130 .data = &marvell_armada370_nfc_legacy_caps,
3131 },
3132 {
3133 .compatible = "marvell,pxa3xx-nand",
3134 .data = &marvell_pxa3xx_nfc_legacy_caps,
3135 },
3136 { /* sentinel */ },
3137 };
3138 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
3139
3140 static struct platform_driver marvell_nfc_driver = {
3141 .driver = {
3142 .name = "marvell-nfc",
3143 .of_match_table = marvell_nfc_of_ids,
3144 .pm = &marvell_nfc_pm_ops,
3145 },
3146 .id_table = marvell_nfc_platform_ids,
3147 .probe = marvell_nfc_probe,
3148 .remove = marvell_nfc_remove,
3149 };
3150 module_platform_driver(marvell_nfc_driver);
3151
3152 MODULE_LICENSE("GPL");
3153 MODULE_DESCRIPTION("Marvell NAND controller driver");
3154