1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Marvell NAND flash controller driver
4 *
5 * Copyright (C) 2017 Marvell
6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
7 *
8 */
9
10 #include <linux/module.h>
11 #include <linux/clk.h>
12 #include <linux/mtd/rawnand.h>
13 #include <linux/of_platform.h>
14 #include <linux/iopoll.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/regmap.h>
19 #include <asm/unaligned.h>
20
21 #include <linux/dmaengine.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dma/pxa-dma.h>
24 #include <linux/platform_data/mtd-nand-pxa3xx.h>
25
26 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
27 #define FIFO_DEPTH 8
28 #define FIFO_REP(x) (x / sizeof(u32))
29 #define BCH_SEQ_READS (32 / FIFO_DEPTH)
30 /* NFC does not support transfers of larger chunks at a time */
31 #define MAX_CHUNK_SIZE 2112
32 /* NFCv1 cannot read more that 7 bytes of ID */
33 #define NFCV1_READID_LEN 7
34 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
35 #define POLL_PERIOD 0
36 #define POLL_TIMEOUT 100000
37 /* Interrupt maximum wait period in ms */
38 #define IRQ_TIMEOUT 1000
39 /* Latency in clock cycles between SoC pins and NFC logic */
40 #define MIN_RD_DEL_CNT 3
41 /* Maximum number of contiguous address cycles */
42 #define MAX_ADDRESS_CYC_NFCV1 5
43 #define MAX_ADDRESS_CYC_NFCV2 7
44 /* System control registers/bits to enable the NAND controller on some SoCs */
45 #define GENCONF_SOC_DEVICE_MUX 0x208
46 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
47 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
48 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
49 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
50 #define GENCONF_CLK_GATING_CTRL 0x220
51 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
52 #define GENCONF_ND_CLK_CTRL 0x700
53 #define GENCONF_ND_CLK_CTRL_EN BIT(0)
54
55 /* NAND controller data flash control register */
56 #define NDCR 0x00
57 #define NDCR_ALL_INT GENMASK(11, 0)
58 #define NDCR_CS1_CMDDM BIT(7)
59 #define NDCR_CS0_CMDDM BIT(8)
60 #define NDCR_RDYM BIT(11)
61 #define NDCR_ND_ARB_EN BIT(12)
62 #define NDCR_RA_START BIT(15)
63 #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16)
64 #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0)
65 #define NDCR_DWIDTH_M BIT(26)
66 #define NDCR_DWIDTH_C BIT(27)
67 #define NDCR_ND_RUN BIT(28)
68 #define NDCR_DMA_EN BIT(29)
69 #define NDCR_ECC_EN BIT(30)
70 #define NDCR_SPARE_EN BIT(31)
71 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
72 NDCR_DWIDTH_M | NDCR_DWIDTH_C))
73
74 /* NAND interface timing parameter 0 register */
75 #define NDTR0 0x04
76 #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0)
77 #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3)
78 #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3)
79 #define NDTR0_SEL_NRE_EDGE BIT(7)
80 #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8)
81 #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11)
82 #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16)
83 #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19)
84 #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22)
85 #define NDTR0_SELCNTR BIT(26)
86 #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27)
87
88 /* NAND interface timing parameter 1 register */
89 #define NDTR1 0x0C
90 #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0)
91 #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4)
92 #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8)
93 #define NDTR1_PRESCALE BIT(14)
94 #define NDTR1_WAIT_MODE BIT(15)
95 #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16)
96
97 /* NAND controller status register */
98 #define NDSR 0x14
99 #define NDSR_WRCMDREQ BIT(0)
100 #define NDSR_RDDREQ BIT(1)
101 #define NDSR_WRDREQ BIT(2)
102 #define NDSR_CORERR BIT(3)
103 #define NDSR_UNCERR BIT(4)
104 #define NDSR_CMDD(cs) BIT(8 - cs)
105 #define NDSR_RDY(rb) BIT(11 + rb)
106 #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F)
107
108 /* NAND ECC control register */
109 #define NDECCCTRL 0x28
110 #define NDECCCTRL_BCH_EN BIT(0)
111
112 /* NAND controller data buffer register */
113 #define NDDB 0x40
114
115 /* NAND controller command buffer 0 register */
116 #define NDCB0 0x48
117 #define NDCB0_CMD1(x) ((x & 0xFF) << 0)
118 #define NDCB0_CMD2(x) ((x & 0xFF) << 8)
119 #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16)
120 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
121 #define NDCB0_DBC BIT(19)
122 #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21)
123 #define NDCB0_CSEL BIT(24)
124 #define NDCB0_RDY_BYP BIT(27)
125 #define NDCB0_LEN_OVRD BIT(28)
126 #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29)
127
128 /* NAND controller command buffer 1 register */
129 #define NDCB1 0x4C
130 #define NDCB1_COLS(x) ((x & 0xFFFF) << 0)
131 #define NDCB1_ADDRS_PAGE(x) (x << 16)
132
133 /* NAND controller command buffer 2 register */
134 #define NDCB2 0x50
135 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0)
136 #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0)
137
138 /* NAND controller command buffer 3 register */
139 #define NDCB3 0x54
140 #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16)
141 #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24)
142
143 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */
144 #define TYPE_READ 0
145 #define TYPE_WRITE 1
146 #define TYPE_ERASE 2
147 #define TYPE_READ_ID 3
148 #define TYPE_STATUS 4
149 #define TYPE_RESET 5
150 #define TYPE_NAKED_CMD 6
151 #define TYPE_NAKED_ADDR 7
152 #define TYPE_MASK 7
153 #define XTYPE_MONOLITHIC_RW 0
154 #define XTYPE_LAST_NAKED_RW 1
155 #define XTYPE_FINAL_COMMAND 3
156 #define XTYPE_READ 4
157 #define XTYPE_WRITE_DISPATCH 4
158 #define XTYPE_NAKED_RW 5
159 #define XTYPE_COMMAND_DISPATCH 6
160 #define XTYPE_MASK 7
161
162 /**
163 * Marvell ECC engine works differently than the others, in order to limit the
164 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
165 * per subpage, and depending on a the desired strength needed by the NAND chip,
166 * a particular layout mixing data/spare/ecc is defined, with a possible last
167 * chunk smaller that the others.
168 *
169 * @writesize: Full page size on which the layout applies
170 * @chunk: Desired ECC chunk size on which the layout applies
171 * @strength: Desired ECC strength (per chunk size bytes) on which the
172 * layout applies
173 * @nchunks: Total number of chunks
174 * @full_chunk_cnt: Number of full-sized chunks, which is the number of
175 * repetitions of the pattern:
176 * (data_bytes + spare_bytes + ecc_bytes).
177 * @data_bytes: Number of data bytes per chunk
178 * @spare_bytes: Number of spare bytes per chunk
179 * @ecc_bytes: Number of ecc bytes per chunk
180 * @last_data_bytes: Number of data bytes in the last chunk
181 * @last_spare_bytes: Number of spare bytes in the last chunk
182 * @last_ecc_bytes: Number of ecc bytes in the last chunk
183 */
184 struct marvell_hw_ecc_layout {
185 /* Constraints */
186 int writesize;
187 int chunk;
188 int strength;
189 /* Corresponding layout */
190 int nchunks;
191 int full_chunk_cnt;
192 int data_bytes;
193 int spare_bytes;
194 int ecc_bytes;
195 int last_data_bytes;
196 int last_spare_bytes;
197 int last_ecc_bytes;
198 };
199
200 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \
201 { \
202 .writesize = ws, \
203 .chunk = dc, \
204 .strength = ds, \
205 .nchunks = nc, \
206 .full_chunk_cnt = fcc, \
207 .data_bytes = db, \
208 .spare_bytes = sb, \
209 .ecc_bytes = eb, \
210 .last_data_bytes = ldb, \
211 .last_spare_bytes = lsb, \
212 .last_ecc_bytes = leb, \
213 }
214
215 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
216 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
217 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0),
218 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0),
219 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0),
220 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0),
221 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30),
222 };
223
224 /**
225 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
226 * is made by a field in NDCB0 register, and in another field in NDCB2 register.
227 * The datasheet describes the logic with an error: ADDR5 field is once
228 * declared at the beginning of NDCB2, and another time at its end. Because the
229 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
230 * to use the last bit of this field instead of the first ones.
231 *
232 * @cs: Wanted CE lane.
233 * @ndcb0_csel: Value of the NDCB0 register with or without the flag
234 * selecting the wanted CE lane. This is set once when
235 * the Device Tree is probed.
236 * @rb: Ready/Busy pin for the flash chip
237 */
238 struct marvell_nand_chip_sel {
239 unsigned int cs;
240 u32 ndcb0_csel;
241 unsigned int rb;
242 };
243
244 /**
245 * NAND chip structure: stores NAND chip device related information
246 *
247 * @chip: Base NAND chip structure
248 * @node: Used to store NAND chips into a list
249 * @layout NAND layout when using hardware ECC
250 * @ndcr: Controller register value for this NAND chip
251 * @ndtr0: Timing registers 0 value for this NAND chip
252 * @ndtr1: Timing registers 1 value for this NAND chip
253 * @selected_die: Current active CS
254 * @nsels: Number of CS lines required by the NAND chip
255 * @sels: Array of CS lines descriptions
256 */
257 struct marvell_nand_chip {
258 struct nand_chip chip;
259 struct list_head node;
260 const struct marvell_hw_ecc_layout *layout;
261 u32 ndcr;
262 u32 ndtr0;
263 u32 ndtr1;
264 int addr_cyc;
265 int selected_die;
266 unsigned int nsels;
267 struct marvell_nand_chip_sel sels[0];
268 };
269
to_marvell_nand(struct nand_chip * chip)270 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
271 {
272 return container_of(chip, struct marvell_nand_chip, chip);
273 }
274
to_nand_sel(struct marvell_nand_chip * nand)275 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
276 *nand)
277 {
278 return &nand->sels[nand->selected_die];
279 }
280
281 /**
282 * NAND controller capabilities for distinction between compatible strings
283 *
284 * @max_cs_nb: Number of Chip Select lines available
285 * @max_rb_nb: Number of Ready/Busy lines available
286 * @need_system_controller: Indicates if the SoC needs to have access to the
287 * system controller (ie. to enable the NAND controller)
288 * @legacy_of_bindings: Indicates if DT parsing must be done using the old
289 * fashion way
290 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie.
291 * BCH error detection and correction algorithm,
292 * NDCB3 register has been added
293 * @use_dma: Use dma for data transfers
294 */
295 struct marvell_nfc_caps {
296 unsigned int max_cs_nb;
297 unsigned int max_rb_nb;
298 bool need_system_controller;
299 bool legacy_of_bindings;
300 bool is_nfcv2;
301 bool use_dma;
302 };
303
304 /**
305 * NAND controller structure: stores Marvell NAND controller information
306 *
307 * @controller: Base controller structure
308 * @dev: Parent device (used to print error messages)
309 * @regs: NAND controller registers
310 * @core_clk: Core clock
311 * @reg_clk: Regiters clock
312 * @complete: Completion object to wait for NAND controller events
313 * @assigned_cs: Bitmask describing already assigned CS lines
314 * @chips: List containing all the NAND chips attached to
315 * this NAND controller
316 * @caps: NAND controller capabilities for each compatible string
317 * @dma_chan: DMA channel (NFCv1 only)
318 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only)
319 */
320 struct marvell_nfc {
321 struct nand_controller controller;
322 struct device *dev;
323 void __iomem *regs;
324 struct clk *core_clk;
325 struct clk *reg_clk;
326 struct completion complete;
327 unsigned long assigned_cs;
328 struct list_head chips;
329 struct nand_chip *selected_chip;
330 const struct marvell_nfc_caps *caps;
331
332 /* DMA (NFCv1 only) */
333 bool use_dma;
334 struct dma_chan *dma_chan;
335 u8 *dma_buf;
336 };
337
to_marvell_nfc(struct nand_controller * ctrl)338 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
339 {
340 return container_of(ctrl, struct marvell_nfc, controller);
341 }
342
343 /**
344 * NAND controller timings expressed in NAND Controller clock cycles
345 *
346 * @tRP: ND_nRE pulse width
347 * @tRH: ND_nRE high duration
348 * @tWP: ND_nWE pulse time
349 * @tWH: ND_nWE high duration
350 * @tCS: Enable signal setup time
351 * @tCH: Enable signal hold time
352 * @tADL: Address to write data delay
353 * @tAR: ND_ALE low to ND_nRE low delay
354 * @tWHR: ND_nWE high to ND_nRE low for status read
355 * @tRHW: ND_nRE high duration, read to write delay
356 * @tR: ND_nWE high to ND_nRE low for read
357 */
358 struct marvell_nfc_timings {
359 /* NDTR0 fields */
360 unsigned int tRP;
361 unsigned int tRH;
362 unsigned int tWP;
363 unsigned int tWH;
364 unsigned int tCS;
365 unsigned int tCH;
366 unsigned int tADL;
367 /* NDTR1 fields */
368 unsigned int tAR;
369 unsigned int tWHR;
370 unsigned int tRHW;
371 unsigned int tR;
372 };
373
374 /**
375 * Derives a duration in numbers of clock cycles.
376 *
377 * @ps: Duration in pico-seconds
378 * @period_ns: Clock period in nano-seconds
379 *
380 * Convert the duration in nano-seconds, then divide by the period and
381 * return the number of clock periods.
382 */
383 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
384 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
385 period_ns))
386
387 /**
388 * NAND driver structure filled during the parsing of the ->exec_op() subop
389 * subset of instructions.
390 *
391 * @ndcb: Array of values written to NDCBx registers
392 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle
393 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
394 * @rdy_delay_ns: Optional delay after waiting for the RB pin
395 * @data_delay_ns: Optional delay after the data xfer
396 * @data_instr_idx: Index of the data instruction in the subop
397 * @data_instr: Pointer to the data instruction in the subop
398 */
399 struct marvell_nfc_op {
400 u32 ndcb[4];
401 unsigned int cle_ale_delay_ns;
402 unsigned int rdy_timeout_ms;
403 unsigned int rdy_delay_ns;
404 unsigned int data_delay_ns;
405 unsigned int data_instr_idx;
406 const struct nand_op_instr *data_instr;
407 };
408
409 /*
410 * Internal helper to conditionnally apply a delay (from the above structure,
411 * most of the time).
412 */
cond_delay(unsigned int ns)413 static void cond_delay(unsigned int ns)
414 {
415 if (!ns)
416 return;
417
418 if (ns < 10000)
419 ndelay(ns);
420 else
421 udelay(DIV_ROUND_UP(ns, 1000));
422 }
423
424 /*
425 * The controller has many flags that could generate interrupts, most of them
426 * are disabled and polling is used. For the very slow signals, using interrupts
427 * may relax the CPU charge.
428 */
marvell_nfc_disable_int(struct marvell_nfc * nfc,u32 int_mask)429 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
430 {
431 u32 reg;
432
433 /* Writing 1 disables the interrupt */
434 reg = readl_relaxed(nfc->regs + NDCR);
435 writel_relaxed(reg | int_mask, nfc->regs + NDCR);
436 }
437
marvell_nfc_enable_int(struct marvell_nfc * nfc,u32 int_mask)438 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
439 {
440 u32 reg;
441
442 /* Writing 0 enables the interrupt */
443 reg = readl_relaxed(nfc->regs + NDCR);
444 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
445 }
446
marvell_nfc_clear_int(struct marvell_nfc * nfc,u32 int_mask)447 static void marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
448 {
449 writel_relaxed(int_mask, nfc->regs + NDSR);
450 }
451
marvell_nfc_force_byte_access(struct nand_chip * chip,bool force_8bit)452 static void marvell_nfc_force_byte_access(struct nand_chip *chip,
453 bool force_8bit)
454 {
455 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
456 u32 ndcr;
457
458 /*
459 * Callers of this function do not verify if the NAND is using a 16-bit
460 * an 8-bit bus for normal operations, so we need to take care of that
461 * here by leaving the configuration unchanged if the NAND does not have
462 * the NAND_BUSWIDTH_16 flag set.
463 */
464 if (!(chip->options & NAND_BUSWIDTH_16))
465 return;
466
467 ndcr = readl_relaxed(nfc->regs + NDCR);
468
469 if (force_8bit)
470 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
471 else
472 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
473
474 writel_relaxed(ndcr, nfc->regs + NDCR);
475 }
476
marvell_nfc_wait_ndrun(struct nand_chip * chip)477 static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
478 {
479 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
480 u32 val;
481 int ret;
482
483 /*
484 * The command is being processed, wait for the ND_RUN bit to be
485 * cleared by the NFC. If not, we must clear it by hand.
486 */
487 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
488 (val & NDCR_ND_RUN) == 0,
489 POLL_PERIOD, POLL_TIMEOUT);
490 if (ret) {
491 dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
492 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
493 nfc->regs + NDCR);
494 return ret;
495 }
496
497 return 0;
498 }
499
500 /*
501 * Any time a command has to be sent to the controller, the following sequence
502 * has to be followed:
503 * - call marvell_nfc_prepare_cmd()
504 * -> activate the ND_RUN bit that will kind of 'start a job'
505 * -> wait the signal indicating the NFC is waiting for a command
506 * - send the command (cmd and address cycles)
507 * - enventually send or receive the data
508 * - call marvell_nfc_end_cmd() with the corresponding flag
509 * -> wait the flag to be triggered or cancel the job with a timeout
510 *
511 * The following helpers are here to factorize the code a bit so that
512 * specialized functions responsible for executing the actual NAND
513 * operations do not have to replicate the same code blocks.
514 */
marvell_nfc_prepare_cmd(struct nand_chip * chip)515 static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
516 {
517 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
518 u32 ndcr, val;
519 int ret;
520
521 /* Poll ND_RUN and clear NDSR before issuing any command */
522 ret = marvell_nfc_wait_ndrun(chip);
523 if (ret) {
524 dev_err(nfc->dev, "Last operation did not succeed\n");
525 return ret;
526 }
527
528 ndcr = readl_relaxed(nfc->regs + NDCR);
529 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
530
531 /* Assert ND_RUN bit and wait the NFC to be ready */
532 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
533 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
534 val & NDSR_WRCMDREQ,
535 POLL_PERIOD, POLL_TIMEOUT);
536 if (ret) {
537 dev_err(nfc->dev, "Timeout on WRCMDRE\n");
538 return -ETIMEDOUT;
539 }
540
541 /* Command may be written, clear WRCMDREQ status bit */
542 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
543
544 return 0;
545 }
546
marvell_nfc_send_cmd(struct nand_chip * chip,struct marvell_nfc_op * nfc_op)547 static void marvell_nfc_send_cmd(struct nand_chip *chip,
548 struct marvell_nfc_op *nfc_op)
549 {
550 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
551 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
552
553 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n"
554 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
555 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
556 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
557
558 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
559 nfc->regs + NDCB0);
560 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
561 writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
562
563 /*
564 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
565 * fields are used (only available on NFCv2).
566 */
567 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
568 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
569 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
570 writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
571 }
572 }
573
marvell_nfc_end_cmd(struct nand_chip * chip,int flag,const char * label)574 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
575 const char *label)
576 {
577 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
578 u32 val;
579 int ret;
580
581 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
582 val & flag,
583 POLL_PERIOD, POLL_TIMEOUT);
584
585 if (ret) {
586 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
587 label, val);
588 if (nfc->dma_chan)
589 dmaengine_terminate_all(nfc->dma_chan);
590 return ret;
591 }
592
593 /*
594 * DMA function uses this helper to poll on CMDD bits without wanting
595 * them to be cleared.
596 */
597 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
598 return 0;
599
600 writel_relaxed(flag, nfc->regs + NDSR);
601
602 return 0;
603 }
604
marvell_nfc_wait_cmdd(struct nand_chip * chip)605 static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
606 {
607 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
608 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
609
610 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
611 }
612
marvell_nfc_wait_op(struct nand_chip * chip,unsigned int timeout_ms)613 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
614 {
615 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
616 int ret;
617
618 /* Timeout is expressed in ms */
619 if (!timeout_ms)
620 timeout_ms = IRQ_TIMEOUT;
621
622 init_completion(&nfc->complete);
623
624 marvell_nfc_enable_int(nfc, NDCR_RDYM);
625 ret = wait_for_completion_timeout(&nfc->complete,
626 msecs_to_jiffies(timeout_ms));
627 marvell_nfc_disable_int(nfc, NDCR_RDYM);
628 marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
629 if (!ret) {
630 dev_err(nfc->dev, "Timeout waiting for RB signal\n");
631 return -ETIMEDOUT;
632 }
633
634 return 0;
635 }
636
marvell_nfc_select_chip(struct mtd_info * mtd,int die_nr)637 static void marvell_nfc_select_chip(struct mtd_info *mtd, int die_nr)
638 {
639 struct nand_chip *chip = mtd_to_nand(mtd);
640 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
641 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
642 u32 ndcr_generic;
643
644 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
645 return;
646
647 if (die_nr < 0 || die_nr >= marvell_nand->nsels) {
648 nfc->selected_chip = NULL;
649 marvell_nand->selected_die = -1;
650 return;
651 }
652
653 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
654 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
655
656 /*
657 * Reset the NDCR register to a clean state for this particular chip,
658 * also clear ND_RUN bit.
659 */
660 ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
661 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
662 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
663
664 /* Also reset the interrupt status register */
665 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
666
667 nfc->selected_chip = chip;
668 marvell_nand->selected_die = die_nr;
669 }
670
marvell_nfc_isr(int irq,void * dev_id)671 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
672 {
673 struct marvell_nfc *nfc = dev_id;
674 u32 st = readl_relaxed(nfc->regs + NDSR);
675 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
676
677 /*
678 * RDY interrupt mask is one bit in NDCR while there are two status
679 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
680 */
681 if (st & NDSR_RDY(1))
682 st |= NDSR_RDY(0);
683
684 if (!(st & ien))
685 return IRQ_NONE;
686
687 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
688
689 if (!(st & (NDSR_RDDREQ | NDSR_WRDREQ | NDSR_WRCMDREQ)))
690 complete(&nfc->complete);
691
692 return IRQ_HANDLED;
693 }
694
695 /* HW ECC related functions */
marvell_nfc_enable_hw_ecc(struct nand_chip * chip)696 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
697 {
698 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
699 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
700
701 if (!(ndcr & NDCR_ECC_EN)) {
702 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
703
704 /*
705 * When enabling BCH, set threshold to 0 to always know the
706 * number of corrected bitflips.
707 */
708 if (chip->ecc.algo == NAND_ECC_BCH)
709 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
710 }
711 }
712
marvell_nfc_disable_hw_ecc(struct nand_chip * chip)713 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
714 {
715 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
716 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
717
718 if (ndcr & NDCR_ECC_EN) {
719 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
720 if (chip->ecc.algo == NAND_ECC_BCH)
721 writel_relaxed(0, nfc->regs + NDECCCTRL);
722 }
723 }
724
725 /* DMA related helpers */
marvell_nfc_enable_dma(struct marvell_nfc * nfc)726 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
727 {
728 u32 reg;
729
730 reg = readl_relaxed(nfc->regs + NDCR);
731 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
732 }
733
marvell_nfc_disable_dma(struct marvell_nfc * nfc)734 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
735 {
736 u32 reg;
737
738 reg = readl_relaxed(nfc->regs + NDCR);
739 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
740 }
741
742 /* Read/write PIO/DMA accessors */
marvell_nfc_xfer_data_dma(struct marvell_nfc * nfc,enum dma_data_direction direction,unsigned int len)743 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
744 enum dma_data_direction direction,
745 unsigned int len)
746 {
747 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
748 struct dma_async_tx_descriptor *tx;
749 struct scatterlist sg;
750 dma_cookie_t cookie;
751 int ret;
752
753 marvell_nfc_enable_dma(nfc);
754 /* Prepare the DMA transfer */
755 sg_init_one(&sg, nfc->dma_buf, dma_len);
756 dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
757 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
758 direction == DMA_FROM_DEVICE ?
759 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
760 DMA_PREP_INTERRUPT);
761 if (!tx) {
762 dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
763 return -ENXIO;
764 }
765
766 /* Do the task and wait for it to finish */
767 cookie = dmaengine_submit(tx);
768 ret = dma_submit_error(cookie);
769 if (ret)
770 return -EIO;
771
772 dma_async_issue_pending(nfc->dma_chan);
773 ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
774 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
775 marvell_nfc_disable_dma(nfc);
776 if (ret) {
777 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
778 dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
779 dmaengine_terminate_all(nfc->dma_chan);
780 return -ETIMEDOUT;
781 }
782
783 return 0;
784 }
785
marvell_nfc_xfer_data_in_pio(struct marvell_nfc * nfc,u8 * in,unsigned int len)786 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
787 unsigned int len)
788 {
789 unsigned int last_len = len % FIFO_DEPTH;
790 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
791 int i;
792
793 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
794 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
795
796 if (last_len) {
797 u8 tmp_buf[FIFO_DEPTH];
798
799 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
800 memcpy(in + last_full_offset, tmp_buf, last_len);
801 }
802
803 return 0;
804 }
805
marvell_nfc_xfer_data_out_pio(struct marvell_nfc * nfc,const u8 * out,unsigned int len)806 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
807 unsigned int len)
808 {
809 unsigned int last_len = len % FIFO_DEPTH;
810 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
811 int i;
812
813 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
814 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
815
816 if (last_len) {
817 u8 tmp_buf[FIFO_DEPTH];
818
819 memcpy(tmp_buf, out + last_full_offset, last_len);
820 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
821 }
822
823 return 0;
824 }
825
marvell_nfc_check_empty_chunk(struct nand_chip * chip,u8 * data,int data_len,u8 * spare,int spare_len,u8 * ecc,int ecc_len,unsigned int * max_bitflips)826 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
827 u8 *data, int data_len,
828 u8 *spare, int spare_len,
829 u8 *ecc, int ecc_len,
830 unsigned int *max_bitflips)
831 {
832 struct mtd_info *mtd = nand_to_mtd(chip);
833 int bf;
834
835 /*
836 * Blank pages (all 0xFF) that have not been written may be recognized
837 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
838 * check if the entire page (with ECC bytes) is actually blank or not.
839 */
840 if (!data)
841 data_len = 0;
842 if (!spare)
843 spare_len = 0;
844 if (!ecc)
845 ecc_len = 0;
846
847 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
848 spare, spare_len, chip->ecc.strength);
849 if (bf < 0) {
850 mtd->ecc_stats.failed++;
851 return;
852 }
853
854 /* Update the stats and max_bitflips */
855 mtd->ecc_stats.corrected += bf;
856 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
857 }
858
859 /*
860 * Check a chunk is correct or not according to hardware ECC engine.
861 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
862 * mtd->ecc_stats.failure is not, the function will instead return a non-zero
863 * value indicating that a check on the emptyness of the subpage must be
864 * performed before declaring the subpage corrupted.
865 */
marvell_nfc_hw_ecc_correct(struct nand_chip * chip,unsigned int * max_bitflips)866 static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip,
867 unsigned int *max_bitflips)
868 {
869 struct mtd_info *mtd = nand_to_mtd(chip);
870 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
871 int bf = 0;
872 u32 ndsr;
873
874 ndsr = readl_relaxed(nfc->regs + NDSR);
875
876 /* Check uncorrectable error flag */
877 if (ndsr & NDSR_UNCERR) {
878 writel_relaxed(ndsr, nfc->regs + NDSR);
879
880 /*
881 * Do not increment ->ecc_stats.failed now, instead, return a
882 * non-zero value to indicate that this chunk was apparently
883 * bad, and it should be check to see if it empty or not. If
884 * the chunk (with ECC bytes) is not declared empty, the calling
885 * function must increment the failure count.
886 */
887 return -EBADMSG;
888 }
889
890 /* Check correctable error flag */
891 if (ndsr & NDSR_CORERR) {
892 writel_relaxed(ndsr, nfc->regs + NDSR);
893
894 if (chip->ecc.algo == NAND_ECC_BCH)
895 bf = NDSR_ERRCNT(ndsr);
896 else
897 bf = 1;
898 }
899
900 /* Update the stats and max_bitflips */
901 mtd->ecc_stats.corrected += bf;
902 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
903
904 return 0;
905 }
906
907 /* Hamming read helpers */
marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip * chip,u8 * data_buf,u8 * oob_buf,bool raw,int page)908 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
909 u8 *data_buf, u8 *oob_buf,
910 bool raw, int page)
911 {
912 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
913 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
914 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
915 struct marvell_nfc_op nfc_op = {
916 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
917 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
918 NDCB0_DBC |
919 NDCB0_CMD1(NAND_CMD_READ0) |
920 NDCB0_CMD2(NAND_CMD_READSTART),
921 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
922 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
923 };
924 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
925 int ret;
926
927 /* NFCv2 needs more information about the operation being executed */
928 if (nfc->caps->is_nfcv2)
929 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
930
931 ret = marvell_nfc_prepare_cmd(chip);
932 if (ret)
933 return ret;
934
935 marvell_nfc_send_cmd(chip, &nfc_op);
936 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
937 "RDDREQ while draining FIFO (data/oob)");
938 if (ret)
939 return ret;
940
941 /*
942 * Read the page then the OOB area. Unlike what is shown in current
943 * documentation, spare bytes are protected by the ECC engine, and must
944 * be at the beginning of the OOB area or running this driver on legacy
945 * systems will prevent the discovery of the BBM/BBT.
946 */
947 if (nfc->use_dma) {
948 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
949 lt->data_bytes + oob_bytes);
950 memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
951 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
952 } else {
953 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
954 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
955 }
956
957 ret = marvell_nfc_wait_cmdd(chip);
958
959 return ret;
960 }
961
marvell_nfc_hw_ecc_hmg_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,u8 * buf,int oob_required,int page)962 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct mtd_info *mtd,
963 struct nand_chip *chip, u8 *buf,
964 int oob_required, int page)
965 {
966 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
967 true, page);
968 }
969
marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info * mtd,struct nand_chip * chip,u8 * buf,int oob_required,int page)970 static int marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info *mtd,
971 struct nand_chip *chip,
972 u8 *buf, int oob_required,
973 int page)
974 {
975 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
976 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
977 int max_bitflips = 0, ret;
978 u8 *raw_buf;
979
980 marvell_nfc_enable_hw_ecc(chip);
981 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
982 page);
983 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
984 marvell_nfc_disable_hw_ecc(chip);
985
986 if (!ret)
987 return max_bitflips;
988
989 /*
990 * When ECC failures are detected, check if the full page has been
991 * written or not. Ignore the failure if it is actually empty.
992 */
993 raw_buf = kmalloc(full_sz, GFP_KERNEL);
994 if (!raw_buf)
995 return -ENOMEM;
996
997 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
998 lt->data_bytes, true, page);
999 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1000 &max_bitflips);
1001 kfree(raw_buf);
1002
1003 return max_bitflips;
1004 }
1005
1006 /*
1007 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1008 * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1009 * also stands for ->read_oob().
1010 */
marvell_nfc_hw_ecc_hmg_read_oob_raw(struct mtd_info * mtd,struct nand_chip * chip,int page)1011 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct mtd_info *mtd,
1012 struct nand_chip *chip, int page)
1013 {
1014 /* Invalidate page cache */
1015 chip->pagebuf = -1;
1016
1017 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf,
1018 chip->oob_poi, true, page);
1019 }
1020
1021 /* Hamming write helpers */
marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip * chip,const u8 * data_buf,const u8 * oob_buf,bool raw,int page)1022 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1023 const u8 *data_buf,
1024 const u8 *oob_buf, bool raw,
1025 int page)
1026 {
1027 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1028 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1029 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1030 struct marvell_nfc_op nfc_op = {
1031 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1032 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1033 NDCB0_CMD1(NAND_CMD_SEQIN) |
1034 NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1035 NDCB0_DBC,
1036 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1037 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1038 };
1039 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1040 int ret;
1041
1042 /* NFCv2 needs more information about the operation being executed */
1043 if (nfc->caps->is_nfcv2)
1044 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1045
1046 ret = marvell_nfc_prepare_cmd(chip);
1047 if (ret)
1048 return ret;
1049
1050 marvell_nfc_send_cmd(chip, &nfc_op);
1051 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1052 "WRDREQ while loading FIFO (data)");
1053 if (ret)
1054 return ret;
1055
1056 /* Write the page then the OOB area */
1057 if (nfc->use_dma) {
1058 memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1059 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1060 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1061 lt->ecc_bytes + lt->spare_bytes);
1062 } else {
1063 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1064 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1065 }
1066
1067 ret = marvell_nfc_wait_cmdd(chip);
1068 if (ret)
1069 return ret;
1070
1071 ret = marvell_nfc_wait_op(chip,
1072 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
1073 return ret;
1074 }
1075
marvell_nfc_hw_ecc_hmg_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const u8 * buf,int oob_required,int page)1076 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct mtd_info *mtd,
1077 struct nand_chip *chip,
1078 const u8 *buf,
1079 int oob_required, int page)
1080 {
1081 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1082 true, page);
1083 }
1084
marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info * mtd,struct nand_chip * chip,const u8 * buf,int oob_required,int page)1085 static int marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info *mtd,
1086 struct nand_chip *chip,
1087 const u8 *buf,
1088 int oob_required, int page)
1089 {
1090 int ret;
1091
1092 marvell_nfc_enable_hw_ecc(chip);
1093 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1094 false, page);
1095 marvell_nfc_disable_hw_ecc(chip);
1096
1097 return ret;
1098 }
1099
1100 /*
1101 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1102 * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1103 * also stands for ->write_oob().
1104 */
marvell_nfc_hw_ecc_hmg_write_oob_raw(struct mtd_info * mtd,struct nand_chip * chip,int page)1105 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct mtd_info *mtd,
1106 struct nand_chip *chip,
1107 int page)
1108 {
1109 /* Invalidate page cache */
1110 chip->pagebuf = -1;
1111
1112 memset(chip->data_buf, 0xFF, mtd->writesize);
1113
1114 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf,
1115 chip->oob_poi, true, page);
1116 }
1117
1118 /* BCH read helpers */
marvell_nfc_hw_ecc_bch_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,u8 * buf,int oob_required,int page)1119 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct mtd_info *mtd,
1120 struct nand_chip *chip, u8 *buf,
1121 int oob_required, int page)
1122 {
1123 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1124 u8 *oob = chip->oob_poi;
1125 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1126 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1127 lt->last_spare_bytes;
1128 int data_len = lt->data_bytes;
1129 int spare_len = lt->spare_bytes;
1130 int ecc_len = lt->ecc_bytes;
1131 int chunk;
1132
1133 if (oob_required)
1134 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1135
1136 nand_read_page_op(chip, page, 0, NULL, 0);
1137
1138 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1139 /* Update last chunk length */
1140 if (chunk >= lt->full_chunk_cnt) {
1141 data_len = lt->last_data_bytes;
1142 spare_len = lt->last_spare_bytes;
1143 ecc_len = lt->last_ecc_bytes;
1144 }
1145
1146 /* Read data bytes*/
1147 nand_change_read_column_op(chip, chunk * chunk_size,
1148 buf + (lt->data_bytes * chunk),
1149 data_len, false);
1150
1151 /* Read spare bytes */
1152 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1153 spare_len, false);
1154
1155 /* Read ECC bytes */
1156 nand_read_data_op(chip, oob + ecc_offset +
1157 (ALIGN(lt->ecc_bytes, 32) * chunk),
1158 ecc_len, false);
1159 }
1160
1161 return 0;
1162 }
1163
marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip * chip,int chunk,u8 * data,unsigned int data_len,u8 * spare,unsigned int spare_len,int page)1164 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1165 u8 *data, unsigned int data_len,
1166 u8 *spare, unsigned int spare_len,
1167 int page)
1168 {
1169 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1170 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1171 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1172 int i, ret;
1173 struct marvell_nfc_op nfc_op = {
1174 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1175 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1176 NDCB0_LEN_OVRD,
1177 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1178 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1179 .ndcb[3] = data_len + spare_len,
1180 };
1181
1182 ret = marvell_nfc_prepare_cmd(chip);
1183 if (ret)
1184 return;
1185
1186 if (chunk == 0)
1187 nfc_op.ndcb[0] |= NDCB0_DBC |
1188 NDCB0_CMD1(NAND_CMD_READ0) |
1189 NDCB0_CMD2(NAND_CMD_READSTART);
1190
1191 /*
1192 * Trigger the monolithic read on the first chunk, then naked read on
1193 * intermediate chunks and finally a last naked read on the last chunk.
1194 */
1195 if (chunk == 0)
1196 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1197 else if (chunk < lt->nchunks - 1)
1198 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1199 else
1200 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1201
1202 marvell_nfc_send_cmd(chip, &nfc_op);
1203
1204 /*
1205 * According to the datasheet, when reading from NDDB
1206 * with BCH enabled, after each 32 bytes reads, we
1207 * have to make sure that the NDSR.RDDREQ bit is set.
1208 *
1209 * Drain the FIFO, 8 32-bit reads at a time, and skip
1210 * the polling on the last read.
1211 *
1212 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1213 */
1214 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1215 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1216 "RDDREQ while draining FIFO (data)");
1217 marvell_nfc_xfer_data_in_pio(nfc, data,
1218 FIFO_DEPTH * BCH_SEQ_READS);
1219 data += FIFO_DEPTH * BCH_SEQ_READS;
1220 }
1221
1222 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1223 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1224 "RDDREQ while draining FIFO (OOB)");
1225 marvell_nfc_xfer_data_in_pio(nfc, spare,
1226 FIFO_DEPTH * BCH_SEQ_READS);
1227 spare += FIFO_DEPTH * BCH_SEQ_READS;
1228 }
1229 }
1230
marvell_nfc_hw_ecc_bch_read_page(struct mtd_info * mtd,struct nand_chip * chip,u8 * buf,int oob_required,int page)1231 static int marvell_nfc_hw_ecc_bch_read_page(struct mtd_info *mtd,
1232 struct nand_chip *chip,
1233 u8 *buf, int oob_required,
1234 int page)
1235 {
1236 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1237 int data_len = lt->data_bytes, spare_len = lt->spare_bytes, ecc_len;
1238 u8 *data = buf, *spare = chip->oob_poi, *ecc;
1239 int max_bitflips = 0;
1240 u32 failure_mask = 0;
1241 int chunk, ecc_offset_in_page, ret;
1242
1243 /*
1244 * With BCH, OOB is not fully used (and thus not read entirely), not
1245 * expected bytes could show up at the end of the OOB buffer if not
1246 * explicitly erased.
1247 */
1248 if (oob_required)
1249 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1250
1251 marvell_nfc_enable_hw_ecc(chip);
1252
1253 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1254 /* Update length for the last chunk */
1255 if (chunk >= lt->full_chunk_cnt) {
1256 data_len = lt->last_data_bytes;
1257 spare_len = lt->last_spare_bytes;
1258 }
1259
1260 /* Read the chunk and detect number of bitflips */
1261 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1262 spare, spare_len, page);
1263 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
1264 if (ret)
1265 failure_mask |= BIT(chunk);
1266
1267 data += data_len;
1268 spare += spare_len;
1269 }
1270
1271 marvell_nfc_disable_hw_ecc(chip);
1272
1273 if (!failure_mask)
1274 return max_bitflips;
1275
1276 /*
1277 * Please note that dumping the ECC bytes during a normal read with OOB
1278 * area would add a significant overhead as ECC bytes are "consumed" by
1279 * the controller in normal mode and must be re-read in raw mode. To
1280 * avoid dropping the performances, we prefer not to include them. The
1281 * user should re-read the page in raw mode if ECC bytes are required.
1282 *
1283 * However, for any subpage read error reported by ->correct(), the ECC
1284 * bytes must be read in raw mode and the full subpage must be checked
1285 * to see if it is entirely empty of if there was an actual error.
1286 */
1287 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1288 /* No failure reported for this chunk, move to the next one */
1289 if (!(failure_mask & BIT(chunk)))
1290 continue;
1291
1292 /* Derive ECC bytes positions (in page/buffer) and length */
1293 ecc = chip->oob_poi +
1294 (lt->full_chunk_cnt * lt->spare_bytes) +
1295 lt->last_spare_bytes +
1296 (chunk * ALIGN(lt->ecc_bytes, 32));
1297 ecc_offset_in_page =
1298 (chunk * (lt->data_bytes + lt->spare_bytes +
1299 lt->ecc_bytes)) +
1300 (chunk < lt->full_chunk_cnt ?
1301 lt->data_bytes + lt->spare_bytes :
1302 lt->last_data_bytes + lt->last_spare_bytes);
1303 ecc_len = chunk < lt->full_chunk_cnt ?
1304 lt->ecc_bytes : lt->last_ecc_bytes;
1305
1306 /* Do the actual raw read of the ECC bytes */
1307 nand_change_read_column_op(chip, ecc_offset_in_page,
1308 ecc, ecc_len, false);
1309
1310 /* Derive data/spare bytes positions (in buffer) and length */
1311 data = buf + (chunk * lt->data_bytes);
1312 data_len = chunk < lt->full_chunk_cnt ?
1313 lt->data_bytes : lt->last_data_bytes;
1314 spare = chip->oob_poi + (chunk * (lt->spare_bytes +
1315 lt->ecc_bytes));
1316 spare_len = chunk < lt->full_chunk_cnt ?
1317 lt->spare_bytes : lt->last_spare_bytes;
1318
1319 /* Check the entire chunk (data + spare + ecc) for emptyness */
1320 marvell_nfc_check_empty_chunk(chip, data, data_len, spare,
1321 spare_len, ecc, ecc_len,
1322 &max_bitflips);
1323 }
1324
1325 return max_bitflips;
1326 }
1327
marvell_nfc_hw_ecc_bch_read_oob_raw(struct mtd_info * mtd,struct nand_chip * chip,int page)1328 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct mtd_info *mtd,
1329 struct nand_chip *chip, int page)
1330 {
1331 /* Invalidate page cache */
1332 chip->pagebuf = -1;
1333
1334 return chip->ecc.read_page_raw(mtd, chip, chip->data_buf, true, page);
1335 }
1336
marvell_nfc_hw_ecc_bch_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1337 static int marvell_nfc_hw_ecc_bch_read_oob(struct mtd_info *mtd,
1338 struct nand_chip *chip, int page)
1339 {
1340 /* Invalidate page cache */
1341 chip->pagebuf = -1;
1342
1343 return chip->ecc.read_page(mtd, chip, chip->data_buf, true, page);
1344 }
1345
1346 /* BCH write helpers */
marvell_nfc_hw_ecc_bch_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const u8 * buf,int oob_required,int page)1347 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct mtd_info *mtd,
1348 struct nand_chip *chip,
1349 const u8 *buf,
1350 int oob_required, int page)
1351 {
1352 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1353 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1354 int data_len = lt->data_bytes;
1355 int spare_len = lt->spare_bytes;
1356 int ecc_len = lt->ecc_bytes;
1357 int spare_offset = 0;
1358 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1359 lt->last_spare_bytes;
1360 int chunk;
1361
1362 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1363
1364 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1365 if (chunk >= lt->full_chunk_cnt) {
1366 data_len = lt->last_data_bytes;
1367 spare_len = lt->last_spare_bytes;
1368 ecc_len = lt->last_ecc_bytes;
1369 }
1370
1371 /* Point to the column of the next chunk */
1372 nand_change_write_column_op(chip, chunk * full_chunk_size,
1373 NULL, 0, false);
1374
1375 /* Write the data */
1376 nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1377 data_len, false);
1378
1379 if (!oob_required)
1380 continue;
1381
1382 /* Write the spare bytes */
1383 if (spare_len)
1384 nand_write_data_op(chip, chip->oob_poi + spare_offset,
1385 spare_len, false);
1386
1387 /* Write the ECC bytes */
1388 if (ecc_len)
1389 nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1390 ecc_len, false);
1391
1392 spare_offset += spare_len;
1393 ecc_offset += ALIGN(ecc_len, 32);
1394 }
1395
1396 return nand_prog_page_end_op(chip);
1397 }
1398
1399 static int
marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip * chip,int chunk,const u8 * data,unsigned int data_len,const u8 * spare,unsigned int spare_len,int page)1400 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1401 const u8 *data, unsigned int data_len,
1402 const u8 *spare, unsigned int spare_len,
1403 int page)
1404 {
1405 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1406 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1407 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1408 u32 xtype;
1409 int ret;
1410 struct marvell_nfc_op nfc_op = {
1411 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1412 .ndcb[3] = data_len + spare_len,
1413 };
1414
1415 /*
1416 * First operation dispatches the CMD_SEQIN command, issue the address
1417 * cycles and asks for the first chunk of data.
1418 * All operations in the middle (if any) will issue a naked write and
1419 * also ask for data.
1420 * Last operation (if any) asks for the last chunk of data through a
1421 * last naked write.
1422 */
1423 if (chunk == 0) {
1424 if (lt->nchunks == 1)
1425 xtype = XTYPE_MONOLITHIC_RW;
1426 else
1427 xtype = XTYPE_WRITE_DISPATCH;
1428
1429 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
1430 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1431 NDCB0_CMD1(NAND_CMD_SEQIN);
1432 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1433 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1434 } else if (chunk < lt->nchunks - 1) {
1435 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1436 } else {
1437 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1438 }
1439
1440 /* Always dispatch the PAGEPROG command on the last chunk */
1441 if (chunk == lt->nchunks - 1)
1442 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1443
1444 ret = marvell_nfc_prepare_cmd(chip);
1445 if (ret)
1446 return ret;
1447
1448 marvell_nfc_send_cmd(chip, &nfc_op);
1449 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1450 "WRDREQ while loading FIFO (data)");
1451 if (ret)
1452 return ret;
1453
1454 /* Transfer the contents */
1455 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1456 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1457
1458 return 0;
1459 }
1460
marvell_nfc_hw_ecc_bch_write_page(struct mtd_info * mtd,struct nand_chip * chip,const u8 * buf,int oob_required,int page)1461 static int marvell_nfc_hw_ecc_bch_write_page(struct mtd_info *mtd,
1462 struct nand_chip *chip,
1463 const u8 *buf,
1464 int oob_required, int page)
1465 {
1466 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1467 const u8 *data = buf;
1468 const u8 *spare = chip->oob_poi;
1469 int data_len = lt->data_bytes;
1470 int spare_len = lt->spare_bytes;
1471 int chunk, ret;
1472
1473 /* Spare data will be written anyway, so clear it to avoid garbage */
1474 if (!oob_required)
1475 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1476
1477 marvell_nfc_enable_hw_ecc(chip);
1478
1479 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1480 if (chunk >= lt->full_chunk_cnt) {
1481 data_len = lt->last_data_bytes;
1482 spare_len = lt->last_spare_bytes;
1483 }
1484
1485 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1486 spare, spare_len, page);
1487 data += data_len;
1488 spare += spare_len;
1489
1490 /*
1491 * Waiting only for CMDD or PAGED is not enough, ECC are
1492 * partially written. No flag is set once the operation is
1493 * really finished but the ND_RUN bit is cleared, so wait for it
1494 * before stepping into the next command.
1495 */
1496 marvell_nfc_wait_ndrun(chip);
1497 }
1498
1499 ret = marvell_nfc_wait_op(chip,
1500 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
1501
1502 marvell_nfc_disable_hw_ecc(chip);
1503
1504 if (ret)
1505 return ret;
1506
1507 return 0;
1508 }
1509
marvell_nfc_hw_ecc_bch_write_oob_raw(struct mtd_info * mtd,struct nand_chip * chip,int page)1510 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct mtd_info *mtd,
1511 struct nand_chip *chip,
1512 int page)
1513 {
1514 /* Invalidate page cache */
1515 chip->pagebuf = -1;
1516
1517 memset(chip->data_buf, 0xFF, mtd->writesize);
1518
1519 return chip->ecc.write_page_raw(mtd, chip, chip->data_buf, true, page);
1520 }
1521
marvell_nfc_hw_ecc_bch_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1522 static int marvell_nfc_hw_ecc_bch_write_oob(struct mtd_info *mtd,
1523 struct nand_chip *chip, int page)
1524 {
1525 /* Invalidate page cache */
1526 chip->pagebuf = -1;
1527
1528 memset(chip->data_buf, 0xFF, mtd->writesize);
1529
1530 return chip->ecc.write_page(mtd, chip, chip->data_buf, true, page);
1531 }
1532
1533 /* NAND framework ->exec_op() hooks and related helpers */
marvell_nfc_parse_instructions(struct nand_chip * chip,const struct nand_subop * subop,struct marvell_nfc_op * nfc_op)1534 static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1535 const struct nand_subop *subop,
1536 struct marvell_nfc_op *nfc_op)
1537 {
1538 const struct nand_op_instr *instr = NULL;
1539 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1540 bool first_cmd = true;
1541 unsigned int op_id;
1542 int i;
1543
1544 /* Reset the input structure as most of its fields will be OR'ed */
1545 memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1546
1547 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1548 unsigned int offset, naddrs;
1549 const u8 *addrs;
1550 int len;
1551
1552 instr = &subop->instrs[op_id];
1553
1554 switch (instr->type) {
1555 case NAND_OP_CMD_INSTR:
1556 if (first_cmd)
1557 nfc_op->ndcb[0] |=
1558 NDCB0_CMD1(instr->ctx.cmd.opcode);
1559 else
1560 nfc_op->ndcb[0] |=
1561 NDCB0_CMD2(instr->ctx.cmd.opcode) |
1562 NDCB0_DBC;
1563
1564 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1565 first_cmd = false;
1566 break;
1567
1568 case NAND_OP_ADDR_INSTR:
1569 offset = nand_subop_get_addr_start_off(subop, op_id);
1570 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1571 addrs = &instr->ctx.addr.addrs[offset];
1572
1573 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1574
1575 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1576 nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1577
1578 if (naddrs >= 5)
1579 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1580 if (naddrs >= 6)
1581 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1582 if (naddrs == 7)
1583 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1584
1585 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1586 break;
1587
1588 case NAND_OP_DATA_IN_INSTR:
1589 nfc_op->data_instr = instr;
1590 nfc_op->data_instr_idx = op_id;
1591 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1592 if (nfc->caps->is_nfcv2) {
1593 nfc_op->ndcb[0] |=
1594 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1595 NDCB0_LEN_OVRD;
1596 len = nand_subop_get_data_len(subop, op_id);
1597 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1598 }
1599 nfc_op->data_delay_ns = instr->delay_ns;
1600 break;
1601
1602 case NAND_OP_DATA_OUT_INSTR:
1603 nfc_op->data_instr = instr;
1604 nfc_op->data_instr_idx = op_id;
1605 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1606 if (nfc->caps->is_nfcv2) {
1607 nfc_op->ndcb[0] |=
1608 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1609 NDCB0_LEN_OVRD;
1610 len = nand_subop_get_data_len(subop, op_id);
1611 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1612 }
1613 nfc_op->data_delay_ns = instr->delay_ns;
1614 break;
1615
1616 case NAND_OP_WAITRDY_INSTR:
1617 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1618 nfc_op->rdy_delay_ns = instr->delay_ns;
1619 break;
1620 }
1621 }
1622 }
1623
marvell_nfc_xfer_data_pio(struct nand_chip * chip,const struct nand_subop * subop,struct marvell_nfc_op * nfc_op)1624 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1625 const struct nand_subop *subop,
1626 struct marvell_nfc_op *nfc_op)
1627 {
1628 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1629 const struct nand_op_instr *instr = nfc_op->data_instr;
1630 unsigned int op_id = nfc_op->data_instr_idx;
1631 unsigned int len = nand_subop_get_data_len(subop, op_id);
1632 unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1633 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1634 int ret;
1635
1636 if (instr->ctx.data.force_8bit)
1637 marvell_nfc_force_byte_access(chip, true);
1638
1639 if (reading) {
1640 u8 *in = instr->ctx.data.buf.in + offset;
1641
1642 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1643 } else {
1644 const u8 *out = instr->ctx.data.buf.out + offset;
1645
1646 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1647 }
1648
1649 if (instr->ctx.data.force_8bit)
1650 marvell_nfc_force_byte_access(chip, false);
1651
1652 return ret;
1653 }
1654
marvell_nfc_monolithic_access_exec(struct nand_chip * chip,const struct nand_subop * subop)1655 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1656 const struct nand_subop *subop)
1657 {
1658 struct marvell_nfc_op nfc_op;
1659 bool reading;
1660 int ret;
1661
1662 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1663 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1664
1665 ret = marvell_nfc_prepare_cmd(chip);
1666 if (ret)
1667 return ret;
1668
1669 marvell_nfc_send_cmd(chip, &nfc_op);
1670 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1671 "RDDREQ/WRDREQ while draining raw data");
1672 if (ret)
1673 return ret;
1674
1675 cond_delay(nfc_op.cle_ale_delay_ns);
1676
1677 if (reading) {
1678 if (nfc_op.rdy_timeout_ms) {
1679 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1680 if (ret)
1681 return ret;
1682 }
1683
1684 cond_delay(nfc_op.rdy_delay_ns);
1685 }
1686
1687 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1688 ret = marvell_nfc_wait_cmdd(chip);
1689 if (ret)
1690 return ret;
1691
1692 cond_delay(nfc_op.data_delay_ns);
1693
1694 if (!reading) {
1695 if (nfc_op.rdy_timeout_ms) {
1696 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1697 if (ret)
1698 return ret;
1699 }
1700
1701 cond_delay(nfc_op.rdy_delay_ns);
1702 }
1703
1704 /*
1705 * NDCR ND_RUN bit should be cleared automatically at the end of each
1706 * operation but experience shows that the behavior is buggy when it
1707 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1708 */
1709 if (!reading) {
1710 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1711
1712 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1713 nfc->regs + NDCR);
1714 }
1715
1716 return 0;
1717 }
1718
marvell_nfc_naked_access_exec(struct nand_chip * chip,const struct nand_subop * subop)1719 static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1720 const struct nand_subop *subop)
1721 {
1722 struct marvell_nfc_op nfc_op;
1723 int ret;
1724
1725 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1726
1727 /*
1728 * Naked access are different in that they need to be flagged as naked
1729 * by the controller. Reset the controller registers fields that inform
1730 * on the type and refill them according to the ongoing operation.
1731 */
1732 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1733 NDCB0_CMD_XTYPE(XTYPE_MASK));
1734 switch (subop->instrs[0].type) {
1735 case NAND_OP_CMD_INSTR:
1736 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1737 break;
1738 case NAND_OP_ADDR_INSTR:
1739 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1740 break;
1741 case NAND_OP_DATA_IN_INSTR:
1742 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1743 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1744 break;
1745 case NAND_OP_DATA_OUT_INSTR:
1746 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1747 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1748 break;
1749 default:
1750 /* This should never happen */
1751 break;
1752 }
1753
1754 ret = marvell_nfc_prepare_cmd(chip);
1755 if (ret)
1756 return ret;
1757
1758 marvell_nfc_send_cmd(chip, &nfc_op);
1759
1760 if (!nfc_op.data_instr) {
1761 ret = marvell_nfc_wait_cmdd(chip);
1762 cond_delay(nfc_op.cle_ale_delay_ns);
1763 return ret;
1764 }
1765
1766 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1767 "RDDREQ/WRDREQ while draining raw data");
1768 if (ret)
1769 return ret;
1770
1771 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1772 ret = marvell_nfc_wait_cmdd(chip);
1773 if (ret)
1774 return ret;
1775
1776 /*
1777 * NDCR ND_RUN bit should be cleared automatically at the end of each
1778 * operation but experience shows that the behavior is buggy when it
1779 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1780 */
1781 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1782 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1783
1784 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1785 nfc->regs + NDCR);
1786 }
1787
1788 return 0;
1789 }
1790
marvell_nfc_naked_waitrdy_exec(struct nand_chip * chip,const struct nand_subop * subop)1791 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1792 const struct nand_subop *subop)
1793 {
1794 struct marvell_nfc_op nfc_op;
1795 int ret;
1796
1797 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1798
1799 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1800 cond_delay(nfc_op.rdy_delay_ns);
1801
1802 return ret;
1803 }
1804
marvell_nfc_read_id_type_exec(struct nand_chip * chip,const struct nand_subop * subop)1805 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1806 const struct nand_subop *subop)
1807 {
1808 struct marvell_nfc_op nfc_op;
1809 int ret;
1810
1811 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1812 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1813 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1814
1815 ret = marvell_nfc_prepare_cmd(chip);
1816 if (ret)
1817 return ret;
1818
1819 marvell_nfc_send_cmd(chip, &nfc_op);
1820 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1821 "RDDREQ while reading ID");
1822 if (ret)
1823 return ret;
1824
1825 cond_delay(nfc_op.cle_ale_delay_ns);
1826
1827 if (nfc_op.rdy_timeout_ms) {
1828 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1829 if (ret)
1830 return ret;
1831 }
1832
1833 cond_delay(nfc_op.rdy_delay_ns);
1834
1835 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1836 ret = marvell_nfc_wait_cmdd(chip);
1837 if (ret)
1838 return ret;
1839
1840 cond_delay(nfc_op.data_delay_ns);
1841
1842 return 0;
1843 }
1844
marvell_nfc_read_status_exec(struct nand_chip * chip,const struct nand_subop * subop)1845 static int marvell_nfc_read_status_exec(struct nand_chip *chip,
1846 const struct nand_subop *subop)
1847 {
1848 struct marvell_nfc_op nfc_op;
1849 int ret;
1850
1851 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1852 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1853 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
1854
1855 ret = marvell_nfc_prepare_cmd(chip);
1856 if (ret)
1857 return ret;
1858
1859 marvell_nfc_send_cmd(chip, &nfc_op);
1860 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1861 "RDDREQ while reading status");
1862 if (ret)
1863 return ret;
1864
1865 cond_delay(nfc_op.cle_ale_delay_ns);
1866
1867 if (nfc_op.rdy_timeout_ms) {
1868 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1869 if (ret)
1870 return ret;
1871 }
1872
1873 cond_delay(nfc_op.rdy_delay_ns);
1874
1875 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1876 ret = marvell_nfc_wait_cmdd(chip);
1877 if (ret)
1878 return ret;
1879
1880 cond_delay(nfc_op.data_delay_ns);
1881
1882 return 0;
1883 }
1884
marvell_nfc_reset_cmd_type_exec(struct nand_chip * chip,const struct nand_subop * subop)1885 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
1886 const struct nand_subop *subop)
1887 {
1888 struct marvell_nfc_op nfc_op;
1889 int ret;
1890
1891 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1892 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
1893
1894 ret = marvell_nfc_prepare_cmd(chip);
1895 if (ret)
1896 return ret;
1897
1898 marvell_nfc_send_cmd(chip, &nfc_op);
1899 ret = marvell_nfc_wait_cmdd(chip);
1900 if (ret)
1901 return ret;
1902
1903 cond_delay(nfc_op.cle_ale_delay_ns);
1904
1905 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1906 if (ret)
1907 return ret;
1908
1909 cond_delay(nfc_op.rdy_delay_ns);
1910
1911 return 0;
1912 }
1913
marvell_nfc_erase_cmd_type_exec(struct nand_chip * chip,const struct nand_subop * subop)1914 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
1915 const struct nand_subop *subop)
1916 {
1917 struct marvell_nfc_op nfc_op;
1918 int ret;
1919
1920 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1921 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
1922
1923 ret = marvell_nfc_prepare_cmd(chip);
1924 if (ret)
1925 return ret;
1926
1927 marvell_nfc_send_cmd(chip, &nfc_op);
1928 ret = marvell_nfc_wait_cmdd(chip);
1929 if (ret)
1930 return ret;
1931
1932 cond_delay(nfc_op.cle_ale_delay_ns);
1933
1934 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1935 if (ret)
1936 return ret;
1937
1938 cond_delay(nfc_op.rdy_delay_ns);
1939
1940 return 0;
1941 }
1942
1943 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
1944 /* Monolithic reads/writes */
1945 NAND_OP_PARSER_PATTERN(
1946 marvell_nfc_monolithic_access_exec,
1947 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1948 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
1949 NAND_OP_PARSER_PAT_CMD_ELEM(true),
1950 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
1951 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1952 NAND_OP_PARSER_PATTERN(
1953 marvell_nfc_monolithic_access_exec,
1954 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1955 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
1956 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
1957 NAND_OP_PARSER_PAT_CMD_ELEM(true),
1958 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
1959 /* Naked commands */
1960 NAND_OP_PARSER_PATTERN(
1961 marvell_nfc_naked_access_exec,
1962 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
1963 NAND_OP_PARSER_PATTERN(
1964 marvell_nfc_naked_access_exec,
1965 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
1966 NAND_OP_PARSER_PATTERN(
1967 marvell_nfc_naked_access_exec,
1968 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1969 NAND_OP_PARSER_PATTERN(
1970 marvell_nfc_naked_access_exec,
1971 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
1972 NAND_OP_PARSER_PATTERN(
1973 marvell_nfc_naked_waitrdy_exec,
1974 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1975 );
1976
1977 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
1978 /* Naked commands not supported, use a function for each pattern */
1979 NAND_OP_PARSER_PATTERN(
1980 marvell_nfc_read_id_type_exec,
1981 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1982 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1983 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
1984 NAND_OP_PARSER_PATTERN(
1985 marvell_nfc_erase_cmd_type_exec,
1986 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1987 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1988 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1989 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1990 NAND_OP_PARSER_PATTERN(
1991 marvell_nfc_read_status_exec,
1992 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1993 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
1994 NAND_OP_PARSER_PATTERN(
1995 marvell_nfc_reset_cmd_type_exec,
1996 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1997 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1998 NAND_OP_PARSER_PATTERN(
1999 marvell_nfc_naked_waitrdy_exec,
2000 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2001 );
2002
marvell_nfc_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)2003 static int marvell_nfc_exec_op(struct nand_chip *chip,
2004 const struct nand_operation *op,
2005 bool check_only)
2006 {
2007 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2008
2009 if (nfc->caps->is_nfcv2)
2010 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2011 op, check_only);
2012 else
2013 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2014 op, check_only);
2015 }
2016
2017 /*
2018 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2019 * usable.
2020 */
marvell_nand_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)2021 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2022 struct mtd_oob_region *oobregion)
2023 {
2024 struct nand_chip *chip = mtd_to_nand(mtd);
2025 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2026
2027 if (section)
2028 return -ERANGE;
2029
2030 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2031 lt->last_ecc_bytes;
2032 oobregion->offset = mtd->oobsize - oobregion->length;
2033
2034 return 0;
2035 }
2036
marvell_nand_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)2037 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2038 struct mtd_oob_region *oobregion)
2039 {
2040 struct nand_chip *chip = mtd_to_nand(mtd);
2041 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2042
2043 if (section)
2044 return -ERANGE;
2045
2046 /*
2047 * Bootrom looks in bytes 0 & 5 for bad blocks for the
2048 * 4KB page / 4bit BCH combination.
2049 */
2050 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2051 oobregion->offset = 6;
2052 else
2053 oobregion->offset = 2;
2054
2055 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2056 lt->last_spare_bytes - oobregion->offset;
2057
2058 return 0;
2059 }
2060
2061 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2062 .ecc = marvell_nand_ooblayout_ecc,
2063 .free = marvell_nand_ooblayout_free,
2064 };
2065
marvell_nand_hw_ecc_ctrl_init(struct mtd_info * mtd,struct nand_ecc_ctrl * ecc)2066 static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
2067 struct nand_ecc_ctrl *ecc)
2068 {
2069 struct nand_chip *chip = mtd_to_nand(mtd);
2070 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2071 const struct marvell_hw_ecc_layout *l;
2072 int i;
2073
2074 if (!nfc->caps->is_nfcv2 &&
2075 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2076 dev_err(nfc->dev,
2077 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2078 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2079 return -ENOTSUPP;
2080 }
2081
2082 to_marvell_nand(chip)->layout = NULL;
2083 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2084 l = &marvell_nfc_layouts[i];
2085 if (mtd->writesize == l->writesize &&
2086 ecc->size == l->chunk && ecc->strength == l->strength) {
2087 to_marvell_nand(chip)->layout = l;
2088 break;
2089 }
2090 }
2091
2092 if (!to_marvell_nand(chip)->layout ||
2093 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2094 dev_err(nfc->dev,
2095 "ECC strength %d at page size %d is not supported\n",
2096 ecc->strength, mtd->writesize);
2097 return -ENOTSUPP;
2098 }
2099
2100 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2101 ecc->steps = l->nchunks;
2102 ecc->size = l->data_bytes;
2103
2104 if (ecc->strength == 1) {
2105 chip->ecc.algo = NAND_ECC_HAMMING;
2106 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2107 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2108 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2109 ecc->read_oob = ecc->read_oob_raw;
2110 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2111 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2112 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2113 ecc->write_oob = ecc->write_oob_raw;
2114 } else {
2115 chip->ecc.algo = NAND_ECC_BCH;
2116 ecc->strength = 16;
2117 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2118 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2119 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2120 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2121 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2122 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2123 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2124 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2125 }
2126
2127 return 0;
2128 }
2129
marvell_nand_ecc_init(struct mtd_info * mtd,struct nand_ecc_ctrl * ecc)2130 static int marvell_nand_ecc_init(struct mtd_info *mtd,
2131 struct nand_ecc_ctrl *ecc)
2132 {
2133 struct nand_chip *chip = mtd_to_nand(mtd);
2134 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2135 int ret;
2136
2137 if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) {
2138 if (chip->ecc_step_ds && chip->ecc_strength_ds) {
2139 ecc->size = chip->ecc_step_ds;
2140 ecc->strength = chip->ecc_strength_ds;
2141 } else {
2142 dev_info(nfc->dev,
2143 "No minimum ECC strength, using 1b/512B\n");
2144 ecc->size = 512;
2145 ecc->strength = 1;
2146 }
2147 }
2148
2149 switch (ecc->mode) {
2150 case NAND_ECC_HW:
2151 ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc);
2152 if (ret)
2153 return ret;
2154 break;
2155 case NAND_ECC_NONE:
2156 case NAND_ECC_SOFT:
2157 case NAND_ECC_ON_DIE:
2158 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2159 mtd->writesize != SZ_2K) {
2160 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2161 mtd->writesize);
2162 return -EINVAL;
2163 }
2164 break;
2165 default:
2166 return -EINVAL;
2167 }
2168
2169 return 0;
2170 }
2171
2172 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2173 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2174
2175 static struct nand_bbt_descr bbt_main_descr = {
2176 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2177 NAND_BBT_2BIT | NAND_BBT_VERSION,
2178 .offs = 8,
2179 .len = 6,
2180 .veroffs = 14,
2181 .maxblocks = 8, /* Last 8 blocks in each chip */
2182 .pattern = bbt_pattern
2183 };
2184
2185 static struct nand_bbt_descr bbt_mirror_descr = {
2186 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2187 NAND_BBT_2BIT | NAND_BBT_VERSION,
2188 .offs = 8,
2189 .len = 6,
2190 .veroffs = 14,
2191 .maxblocks = 8, /* Last 8 blocks in each chip */
2192 .pattern = bbt_mirror_pattern
2193 };
2194
marvell_nfc_setup_data_interface(struct mtd_info * mtd,int chipnr,const struct nand_data_interface * conf)2195 static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
2196 const struct nand_data_interface
2197 *conf)
2198 {
2199 struct nand_chip *chip = mtd_to_nand(mtd);
2200 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2201 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2202 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
2203 const struct nand_sdr_timings *sdr;
2204 struct marvell_nfc_timings nfc_tmg;
2205 int read_delay;
2206
2207 sdr = nand_get_sdr_timings(conf);
2208 if (IS_ERR(sdr))
2209 return PTR_ERR(sdr);
2210
2211 /*
2212 * SDR timings are given in pico-seconds while NFC timings must be
2213 * expressed in NAND controller clock cycles, which is half of the
2214 * frequency of the accessible ECC clock retrieved by clk_get_rate().
2215 * This is not written anywhere in the datasheet but was observed
2216 * with an oscilloscope.
2217 *
2218 * NFC datasheet gives equations from which thoses calculations
2219 * are derived, they tend to be slightly more restrictives than the
2220 * given core timings and may improve the overall speed.
2221 */
2222 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2223 nfc_tmg.tRH = nfc_tmg.tRP;
2224 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2225 nfc_tmg.tWH = nfc_tmg.tWP;
2226 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2227 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2228 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2229 /*
2230 * Read delay is the time of propagation from SoC pins to NFC internal
2231 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2232 * EDO mode, an additional delay of tRH must be taken into account so
2233 * the data is sampled on the falling edge instead of the rising edge.
2234 */
2235 read_delay = sdr->tRC_min >= 30000 ?
2236 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2237
2238 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2239 /*
2240 * tWHR and tRHW are supposed to be read to write delays (and vice
2241 * versa) but in some cases, ie. when doing a change column, they must
2242 * be greater than that to be sure tCCS delay is respected.
2243 */
2244 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2245 period_ns) - 2,
2246 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2247 period_ns);
2248
2249 /*
2250 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2251 * NFCv1: No WAIT_MODE, tR must be maximal.
2252 */
2253 if (nfc->caps->is_nfcv2) {
2254 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2255 } else {
2256 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2257 period_ns);
2258 if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2259 nfc_tmg.tR = nfc_tmg.tCH - 3;
2260 else
2261 nfc_tmg.tR = 0;
2262 }
2263
2264 if (chipnr < 0)
2265 return 0;
2266
2267 marvell_nand->ndtr0 =
2268 NDTR0_TRP(nfc_tmg.tRP) |
2269 NDTR0_TRH(nfc_tmg.tRH) |
2270 NDTR0_ETRP(nfc_tmg.tRP) |
2271 NDTR0_TWP(nfc_tmg.tWP) |
2272 NDTR0_TWH(nfc_tmg.tWH) |
2273 NDTR0_TCS(nfc_tmg.tCS) |
2274 NDTR0_TCH(nfc_tmg.tCH);
2275
2276 marvell_nand->ndtr1 =
2277 NDTR1_TAR(nfc_tmg.tAR) |
2278 NDTR1_TWHR(nfc_tmg.tWHR) |
2279 NDTR1_TR(nfc_tmg.tR);
2280
2281 if (nfc->caps->is_nfcv2) {
2282 marvell_nand->ndtr0 |=
2283 NDTR0_RD_CNT_DEL(read_delay) |
2284 NDTR0_SELCNTR |
2285 NDTR0_TADL(nfc_tmg.tADL);
2286
2287 marvell_nand->ndtr1 |=
2288 NDTR1_TRHW(nfc_tmg.tRHW) |
2289 NDTR1_WAIT_MODE;
2290 }
2291
2292 return 0;
2293 }
2294
marvell_nand_attach_chip(struct nand_chip * chip)2295 static int marvell_nand_attach_chip(struct nand_chip *chip)
2296 {
2297 struct mtd_info *mtd = nand_to_mtd(chip);
2298 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2299 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2300 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
2301 int ret;
2302
2303 if (pdata && pdata->flash_bbt)
2304 chip->bbt_options |= NAND_BBT_USE_FLASH;
2305
2306 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2307 /*
2308 * We'll use a bad block table stored in-flash and don't
2309 * allow writing the bad block marker to the flash.
2310 */
2311 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2312 chip->bbt_td = &bbt_main_descr;
2313 chip->bbt_md = &bbt_mirror_descr;
2314 }
2315
2316 /* Save the chip-specific fields of NDCR */
2317 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2318 if (chip->options & NAND_BUSWIDTH_16)
2319 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2320
2321 /*
2322 * On small page NANDs, only one cycle is needed to pass the
2323 * column address.
2324 */
2325 if (mtd->writesize <= 512) {
2326 marvell_nand->addr_cyc = 1;
2327 } else {
2328 marvell_nand->addr_cyc = 2;
2329 marvell_nand->ndcr |= NDCR_RA_START;
2330 }
2331
2332 /*
2333 * Now add the number of cycles needed to pass the row
2334 * address.
2335 *
2336 * Addressing a chip using CS 2 or 3 should also need the third row
2337 * cycle but due to inconsistance in the documentation and lack of
2338 * hardware to test this situation, this case is not supported.
2339 */
2340 if (chip->options & NAND_ROW_ADDR_3)
2341 marvell_nand->addr_cyc += 3;
2342 else
2343 marvell_nand->addr_cyc += 2;
2344
2345 if (pdata) {
2346 chip->ecc.size = pdata->ecc_step_size;
2347 chip->ecc.strength = pdata->ecc_strength;
2348 }
2349
2350 ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2351 if (ret) {
2352 dev_err(nfc->dev, "ECC init failed: %d\n", ret);
2353 return ret;
2354 }
2355
2356 if (chip->ecc.mode == NAND_ECC_HW) {
2357 /*
2358 * Subpage write not available with hardware ECC, prohibit also
2359 * subpage read as in userspace subpage access would still be
2360 * allowed and subpage write, if used, would lead to numerous
2361 * uncorrectable ECC errors.
2362 */
2363 chip->options |= NAND_NO_SUBPAGE_WRITE;
2364 }
2365
2366 if (pdata || nfc->caps->legacy_of_bindings) {
2367 /*
2368 * We keep the MTD name unchanged to avoid breaking platforms
2369 * where the MTD cmdline parser is used and the bootloader
2370 * has not been updated to use the new naming scheme.
2371 */
2372 mtd->name = "pxa3xx_nand-0";
2373 } else if (!mtd->name) {
2374 /*
2375 * If the new bindings are used and the bootloader has not been
2376 * updated to pass a new mtdparts parameter on the cmdline, you
2377 * should define the following property in your NAND node, ie:
2378 *
2379 * label = "main-storage";
2380 *
2381 * This way, mtd->name will be set by the core when
2382 * nand_set_flash_node() is called.
2383 */
2384 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2385 "%s:nand.%d", dev_name(nfc->dev),
2386 marvell_nand->sels[0].cs);
2387 if (!mtd->name) {
2388 dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2389 return -ENOMEM;
2390 }
2391 }
2392
2393 return 0;
2394 }
2395
2396 static const struct nand_controller_ops marvell_nand_controller_ops = {
2397 .attach_chip = marvell_nand_attach_chip,
2398 };
2399
marvell_nand_chip_init(struct device * dev,struct marvell_nfc * nfc,struct device_node * np)2400 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2401 struct device_node *np)
2402 {
2403 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2404 struct marvell_nand_chip *marvell_nand;
2405 struct mtd_info *mtd;
2406 struct nand_chip *chip;
2407 int nsels, ret, i;
2408 u32 cs, rb;
2409
2410 /*
2411 * The legacy "num-cs" property indicates the number of CS on the only
2412 * chip connected to the controller (legacy bindings does not support
2413 * more than one chip). The CS and RB pins are always the #0.
2414 *
2415 * When not using legacy bindings, a couple of "reg" and "nand-rb"
2416 * properties must be filled. For each chip, expressed as a subnode,
2417 * "reg" points to the CS lines and "nand-rb" to the RB line.
2418 */
2419 if (pdata || nfc->caps->legacy_of_bindings) {
2420 nsels = 1;
2421 } else {
2422 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2423 if (nsels <= 0) {
2424 dev_err(dev, "missing/invalid reg property\n");
2425 return -EINVAL;
2426 }
2427 }
2428
2429 /* Alloc the nand chip structure */
2430 marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) +
2431 (nsels *
2432 sizeof(struct marvell_nand_chip_sel)),
2433 GFP_KERNEL);
2434 if (!marvell_nand) {
2435 dev_err(dev, "could not allocate chip structure\n");
2436 return -ENOMEM;
2437 }
2438
2439 marvell_nand->nsels = nsels;
2440 marvell_nand->selected_die = -1;
2441
2442 for (i = 0; i < nsels; i++) {
2443 if (pdata || nfc->caps->legacy_of_bindings) {
2444 /*
2445 * Legacy bindings use the CS lines in natural
2446 * order (0, 1, ...)
2447 */
2448 cs = i;
2449 } else {
2450 /* Retrieve CS id */
2451 ret = of_property_read_u32_index(np, "reg", i, &cs);
2452 if (ret) {
2453 dev_err(dev, "could not retrieve reg property: %d\n",
2454 ret);
2455 return ret;
2456 }
2457 }
2458
2459 if (cs >= nfc->caps->max_cs_nb) {
2460 dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2461 cs, nfc->caps->max_cs_nb);
2462 return -EINVAL;
2463 }
2464
2465 if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2466 dev_err(dev, "CS %d already assigned\n", cs);
2467 return -EINVAL;
2468 }
2469
2470 /*
2471 * The cs variable represents the chip select id, which must be
2472 * converted in bit fields for NDCB0 and NDCB2 to select the
2473 * right chip. Unfortunately, due to a lack of information on
2474 * the subject and incoherent documentation, the user should not
2475 * use CS1 and CS3 at all as asserting them is not supported in
2476 * a reliable way (due to multiplexing inside ADDR5 field).
2477 */
2478 marvell_nand->sels[i].cs = cs;
2479 switch (cs) {
2480 case 0:
2481 case 2:
2482 marvell_nand->sels[i].ndcb0_csel = 0;
2483 break;
2484 case 1:
2485 case 3:
2486 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2487 break;
2488 default:
2489 return -EINVAL;
2490 }
2491
2492 /* Retrieve RB id */
2493 if (pdata || nfc->caps->legacy_of_bindings) {
2494 /* Legacy bindings always use RB #0 */
2495 rb = 0;
2496 } else {
2497 ret = of_property_read_u32_index(np, "nand-rb", i,
2498 &rb);
2499 if (ret) {
2500 dev_err(dev,
2501 "could not retrieve RB property: %d\n",
2502 ret);
2503 return ret;
2504 }
2505 }
2506
2507 if (rb >= nfc->caps->max_rb_nb) {
2508 dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2509 rb, nfc->caps->max_rb_nb);
2510 return -EINVAL;
2511 }
2512
2513 marvell_nand->sels[i].rb = rb;
2514 }
2515
2516 chip = &marvell_nand->chip;
2517 chip->controller = &nfc->controller;
2518 nand_set_flash_node(chip, np);
2519
2520 chip->exec_op = marvell_nfc_exec_op;
2521 chip->select_chip = marvell_nfc_select_chip;
2522 if (!of_property_read_bool(np, "marvell,nand-keep-config"))
2523 chip->setup_data_interface = marvell_nfc_setup_data_interface;
2524
2525 mtd = nand_to_mtd(chip);
2526 mtd->dev.parent = dev;
2527
2528 /*
2529 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2530 * in the DT node, this entry will be overwritten in nand_scan_ident().
2531 */
2532 chip->ecc.mode = NAND_ECC_HW;
2533
2534 /*
2535 * Save a reference value for timing registers before
2536 * ->setup_data_interface() is called.
2537 */
2538 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2539 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2540
2541 chip->options |= NAND_BUSWIDTH_AUTO;
2542
2543 ret = nand_scan(mtd, marvell_nand->nsels);
2544 if (ret) {
2545 dev_err(dev, "could not scan the nand chip\n");
2546 return ret;
2547 }
2548
2549 if (pdata)
2550 /* Legacy bindings support only one chip */
2551 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2552 else
2553 ret = mtd_device_register(mtd, NULL, 0);
2554 if (ret) {
2555 dev_err(dev, "failed to register mtd device: %d\n", ret);
2556 nand_release(mtd);
2557 return ret;
2558 }
2559
2560 list_add_tail(&marvell_nand->node, &nfc->chips);
2561
2562 return 0;
2563 }
2564
marvell_nand_chips_init(struct device * dev,struct marvell_nfc * nfc)2565 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2566 {
2567 struct device_node *np = dev->of_node;
2568 struct device_node *nand_np;
2569 int max_cs = nfc->caps->max_cs_nb;
2570 int nchips;
2571 int ret;
2572
2573 if (!np)
2574 nchips = 1;
2575 else
2576 nchips = of_get_child_count(np);
2577
2578 if (nchips > max_cs) {
2579 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2580 max_cs);
2581 return -EINVAL;
2582 }
2583
2584 /*
2585 * Legacy bindings do not use child nodes to exhibit NAND chip
2586 * properties and layout. Instead, NAND properties are mixed with the
2587 * controller ones, and partitions are defined as direct subnodes of the
2588 * NAND controller node.
2589 */
2590 if (nfc->caps->legacy_of_bindings) {
2591 ret = marvell_nand_chip_init(dev, nfc, np);
2592 return ret;
2593 }
2594
2595 for_each_child_of_node(np, nand_np) {
2596 ret = marvell_nand_chip_init(dev, nfc, nand_np);
2597 if (ret) {
2598 of_node_put(nand_np);
2599 return ret;
2600 }
2601 }
2602
2603 return 0;
2604 }
2605
marvell_nand_chips_cleanup(struct marvell_nfc * nfc)2606 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2607 {
2608 struct marvell_nand_chip *entry, *temp;
2609
2610 list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2611 nand_release(nand_to_mtd(&entry->chip));
2612 list_del(&entry->node);
2613 }
2614 }
2615
marvell_nfc_init_dma(struct marvell_nfc * nfc)2616 static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2617 {
2618 struct platform_device *pdev = container_of(nfc->dev,
2619 struct platform_device,
2620 dev);
2621 struct dma_slave_config config = {};
2622 struct resource *r;
2623 int ret;
2624
2625 if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2626 dev_warn(nfc->dev,
2627 "DMA not enabled in configuration\n");
2628 return -ENOTSUPP;
2629 }
2630
2631 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2632 if (ret)
2633 return ret;
2634
2635 nfc->dma_chan = dma_request_slave_channel(nfc->dev, "data");
2636 if (!nfc->dma_chan) {
2637 dev_err(nfc->dev,
2638 "Unable to request data DMA channel\n");
2639 return -ENODEV;
2640 }
2641
2642 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2643 if (!r)
2644 return -ENXIO;
2645
2646 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2647 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2648 config.src_addr = r->start + NDDB;
2649 config.dst_addr = r->start + NDDB;
2650 config.src_maxburst = 32;
2651 config.dst_maxburst = 32;
2652 ret = dmaengine_slave_config(nfc->dma_chan, &config);
2653 if (ret < 0) {
2654 dev_err(nfc->dev, "Failed to configure DMA channel\n");
2655 return ret;
2656 }
2657
2658 /*
2659 * DMA must act on length multiple of 32 and this length may be
2660 * bigger than the destination buffer. Use this buffer instead
2661 * for DMA transfers and then copy the desired amount of data to
2662 * the provided buffer.
2663 */
2664 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
2665 if (!nfc->dma_buf)
2666 return -ENOMEM;
2667
2668 nfc->use_dma = true;
2669
2670 return 0;
2671 }
2672
marvell_nfc_reset(struct marvell_nfc * nfc)2673 static void marvell_nfc_reset(struct marvell_nfc *nfc)
2674 {
2675 /*
2676 * ECC operations and interruptions are only enabled when specifically
2677 * needed. ECC shall not be activated in the early stages (fails probe).
2678 * Arbiter flag, even if marked as "reserved", must be set (empirical).
2679 * SPARE_EN bit must always be set or ECC bytes will not be at the same
2680 * offset in the read page and this will fail the protection.
2681 */
2682 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2683 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2684 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2685 writel_relaxed(0, nfc->regs + NDECCCTRL);
2686 }
2687
marvell_nfc_init(struct marvell_nfc * nfc)2688 static int marvell_nfc_init(struct marvell_nfc *nfc)
2689 {
2690 struct device_node *np = nfc->dev->of_node;
2691
2692 /*
2693 * Some SoCs like A7k/A8k need to enable manually the NAND
2694 * controller, gated clocks and reset bits to avoid being bootloader
2695 * dependent. This is done through the use of the System Functions
2696 * registers.
2697 */
2698 if (nfc->caps->need_system_controller) {
2699 struct regmap *sysctrl_base =
2700 syscon_regmap_lookup_by_phandle(np,
2701 "marvell,system-controller");
2702 u32 reg;
2703
2704 if (IS_ERR(sysctrl_base))
2705 return PTR_ERR(sysctrl_base);
2706
2707 reg = GENCONF_SOC_DEVICE_MUX_NFC_EN |
2708 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2709 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2710 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN;
2711 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg);
2712
2713 regmap_read(sysctrl_base, GENCONF_CLK_GATING_CTRL, ®);
2714 reg |= GENCONF_CLK_GATING_CTRL_ND_GATE;
2715 regmap_write(sysctrl_base, GENCONF_CLK_GATING_CTRL, reg);
2716
2717 regmap_read(sysctrl_base, GENCONF_ND_CLK_CTRL, ®);
2718 reg |= GENCONF_ND_CLK_CTRL_EN;
2719 regmap_write(sysctrl_base, GENCONF_ND_CLK_CTRL, reg);
2720 }
2721
2722 /* Configure the DMA if appropriate */
2723 if (!nfc->caps->is_nfcv2)
2724 marvell_nfc_init_dma(nfc);
2725
2726 marvell_nfc_reset(nfc);
2727
2728 return 0;
2729 }
2730
marvell_nfc_probe(struct platform_device * pdev)2731 static int marvell_nfc_probe(struct platform_device *pdev)
2732 {
2733 struct device *dev = &pdev->dev;
2734 struct resource *r;
2735 struct marvell_nfc *nfc;
2736 int ret;
2737 int irq;
2738
2739 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2740 GFP_KERNEL);
2741 if (!nfc)
2742 return -ENOMEM;
2743
2744 nfc->dev = dev;
2745 nand_controller_init(&nfc->controller);
2746 nfc->controller.ops = &marvell_nand_controller_ops;
2747 INIT_LIST_HEAD(&nfc->chips);
2748
2749 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2750 nfc->regs = devm_ioremap_resource(dev, r);
2751 if (IS_ERR(nfc->regs))
2752 return PTR_ERR(nfc->regs);
2753
2754 irq = platform_get_irq(pdev, 0);
2755 if (irq < 0) {
2756 dev_err(dev, "failed to retrieve irq\n");
2757 return irq;
2758 }
2759
2760 nfc->core_clk = devm_clk_get(&pdev->dev, "core");
2761
2762 /* Managed the legacy case (when the first clock was not named) */
2763 if (nfc->core_clk == ERR_PTR(-ENOENT))
2764 nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
2765
2766 if (IS_ERR(nfc->core_clk))
2767 return PTR_ERR(nfc->core_clk);
2768
2769 ret = clk_prepare_enable(nfc->core_clk);
2770 if (ret)
2771 return ret;
2772
2773 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2774 if (IS_ERR(nfc->reg_clk)) {
2775 if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2776 ret = PTR_ERR(nfc->reg_clk);
2777 goto unprepare_core_clk;
2778 }
2779
2780 nfc->reg_clk = NULL;
2781 }
2782
2783 ret = clk_prepare_enable(nfc->reg_clk);
2784 if (ret)
2785 goto unprepare_core_clk;
2786
2787 marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2788 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2789 ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2790 0, "marvell-nfc", nfc);
2791 if (ret)
2792 goto unprepare_reg_clk;
2793
2794 /* Get NAND controller capabilities */
2795 if (pdev->id_entry)
2796 nfc->caps = (void *)pdev->id_entry->driver_data;
2797 else
2798 nfc->caps = of_device_get_match_data(&pdev->dev);
2799
2800 if (!nfc->caps) {
2801 dev_err(dev, "Could not retrieve NFC caps\n");
2802 ret = -EINVAL;
2803 goto unprepare_reg_clk;
2804 }
2805
2806 /* Init the controller and then probe the chips */
2807 ret = marvell_nfc_init(nfc);
2808 if (ret)
2809 goto unprepare_reg_clk;
2810
2811 platform_set_drvdata(pdev, nfc);
2812
2813 ret = marvell_nand_chips_init(dev, nfc);
2814 if (ret)
2815 goto unprepare_reg_clk;
2816
2817 return 0;
2818
2819 unprepare_reg_clk:
2820 clk_disable_unprepare(nfc->reg_clk);
2821 unprepare_core_clk:
2822 clk_disable_unprepare(nfc->core_clk);
2823
2824 return ret;
2825 }
2826
marvell_nfc_remove(struct platform_device * pdev)2827 static int marvell_nfc_remove(struct platform_device *pdev)
2828 {
2829 struct marvell_nfc *nfc = platform_get_drvdata(pdev);
2830
2831 marvell_nand_chips_cleanup(nfc);
2832
2833 if (nfc->use_dma) {
2834 dmaengine_terminate_all(nfc->dma_chan);
2835 dma_release_channel(nfc->dma_chan);
2836 }
2837
2838 clk_disable_unprepare(nfc->reg_clk);
2839 clk_disable_unprepare(nfc->core_clk);
2840
2841 return 0;
2842 }
2843
marvell_nfc_suspend(struct device * dev)2844 static int __maybe_unused marvell_nfc_suspend(struct device *dev)
2845 {
2846 struct marvell_nfc *nfc = dev_get_drvdata(dev);
2847 struct marvell_nand_chip *chip;
2848
2849 list_for_each_entry(chip, &nfc->chips, node)
2850 marvell_nfc_wait_ndrun(&chip->chip);
2851
2852 clk_disable_unprepare(nfc->reg_clk);
2853 clk_disable_unprepare(nfc->core_clk);
2854
2855 return 0;
2856 }
2857
marvell_nfc_resume(struct device * dev)2858 static int __maybe_unused marvell_nfc_resume(struct device *dev)
2859 {
2860 struct marvell_nfc *nfc = dev_get_drvdata(dev);
2861 int ret;
2862
2863 ret = clk_prepare_enable(nfc->core_clk);
2864 if (ret < 0)
2865 return ret;
2866
2867 ret = clk_prepare_enable(nfc->reg_clk);
2868 if (ret < 0)
2869 return ret;
2870
2871 /*
2872 * Reset nfc->selected_chip so the next command will cause the timing
2873 * registers to be restored in marvell_nfc_select_chip().
2874 */
2875 nfc->selected_chip = NULL;
2876
2877 /* Reset registers that have lost their contents */
2878 marvell_nfc_reset(nfc);
2879
2880 return 0;
2881 }
2882
2883 static const struct dev_pm_ops marvell_nfc_pm_ops = {
2884 SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
2885 };
2886
2887 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
2888 .max_cs_nb = 4,
2889 .max_rb_nb = 2,
2890 .need_system_controller = true,
2891 .is_nfcv2 = true,
2892 };
2893
2894 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
2895 .max_cs_nb = 4,
2896 .max_rb_nb = 2,
2897 .is_nfcv2 = true,
2898 };
2899
2900 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
2901 .max_cs_nb = 2,
2902 .max_rb_nb = 1,
2903 .use_dma = true,
2904 };
2905
2906 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
2907 .max_cs_nb = 4,
2908 .max_rb_nb = 2,
2909 .need_system_controller = true,
2910 .legacy_of_bindings = true,
2911 .is_nfcv2 = true,
2912 };
2913
2914 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
2915 .max_cs_nb = 4,
2916 .max_rb_nb = 2,
2917 .legacy_of_bindings = true,
2918 .is_nfcv2 = true,
2919 };
2920
2921 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
2922 .max_cs_nb = 2,
2923 .max_rb_nb = 1,
2924 .legacy_of_bindings = true,
2925 .use_dma = true,
2926 };
2927
2928 static const struct platform_device_id marvell_nfc_platform_ids[] = {
2929 {
2930 .name = "pxa3xx-nand",
2931 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
2932 },
2933 { /* sentinel */ },
2934 };
2935 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
2936
2937 static const struct of_device_id marvell_nfc_of_ids[] = {
2938 {
2939 .compatible = "marvell,armada-8k-nand-controller",
2940 .data = &marvell_armada_8k_nfc_caps,
2941 },
2942 {
2943 .compatible = "marvell,armada370-nand-controller",
2944 .data = &marvell_armada370_nfc_caps,
2945 },
2946 {
2947 .compatible = "marvell,pxa3xx-nand-controller",
2948 .data = &marvell_pxa3xx_nfc_caps,
2949 },
2950 /* Support for old/deprecated bindings: */
2951 {
2952 .compatible = "marvell,armada-8k-nand",
2953 .data = &marvell_armada_8k_nfc_legacy_caps,
2954 },
2955 {
2956 .compatible = "marvell,armada370-nand",
2957 .data = &marvell_armada370_nfc_legacy_caps,
2958 },
2959 {
2960 .compatible = "marvell,pxa3xx-nand",
2961 .data = &marvell_pxa3xx_nfc_legacy_caps,
2962 },
2963 { /* sentinel */ },
2964 };
2965 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
2966
2967 static struct platform_driver marvell_nfc_driver = {
2968 .driver = {
2969 .name = "marvell-nfc",
2970 .of_match_table = marvell_nfc_of_ids,
2971 .pm = &marvell_nfc_pm_ops,
2972 },
2973 .id_table = marvell_nfc_platform_ids,
2974 .probe = marvell_nfc_probe,
2975 .remove = marvell_nfc_remove,
2976 };
2977 module_platform_driver(marvell_nfc_driver);
2978
2979 MODULE_LICENSE("GPL");
2980 MODULE_DESCRIPTION("Marvell NAND controller driver");
2981