1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Access SD/MMC cards through SPI master controllers
4 *
5 * (C) Copyright 2005, Intec Automation,
6 * Mike Lavender (mike@steroidmicros)
7 * (C) Copyright 2006-2007, David Brownell
8 * (C) Copyright 2007, Axis Communications,
9 * Hans-Peter Nilsson (hp@axis.com)
10 * (C) Copyright 2007, ATRON electronic GmbH,
11 * Jan Nikitenko <jan.nikitenko@gmail.com>
12 */
13 #include <linux/sched.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/crc7.h>
20 #include <linux/crc-itu-t.h>
21 #include <linux/scatterlist.h>
22
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
25 #include <linux/mmc/slot-gpio.h>
26
27 #include <linux/spi/spi.h>
28 #include <linux/spi/mmc_spi.h>
29
30 #include <asm/unaligned.h>
31
32
33 /* NOTES:
34 *
35 * - For now, we won't try to interoperate with a real mmc/sd/sdio
36 * controller, although some of them do have hardware support for
37 * SPI protocol. The main reason for such configs would be mmc-ish
38 * cards like DataFlash, which don't support that "native" protocol.
39 *
40 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
41 * switch between driver stacks, and in any case if "native" mode
42 * is available, it will be faster and hence preferable.
43 *
44 * - MMC depends on a different chipselect management policy than the
45 * SPI interface currently supports for shared bus segments: it needs
46 * to issue multiple spi_message requests with the chipselect active,
47 * using the results of one message to decide the next one to issue.
48 *
49 * Pending updates to the programming interface, this driver expects
50 * that it not share the bus with other drivers (precluding conflicts).
51 *
52 * - We tell the controller to keep the chipselect active from the
53 * beginning of an mmc_host_ops.request until the end. So beware
54 * of SPI controller drivers that mis-handle the cs_change flag!
55 *
56 * However, many cards seem OK with chipselect flapping up/down
57 * during that time ... at least on unshared bus segments.
58 */
59
60
61 /*
62 * Local protocol constants, internal to data block protocols.
63 */
64
65 /* Response tokens used to ack each block written: */
66 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
67 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
68 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
69 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
70
71 /* Read and write blocks start with these tokens and end with crc;
72 * on error, read tokens act like a subset of R2_SPI_* values.
73 */
74 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
75 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
76 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
77
78 #define MMC_SPI_BLOCKSIZE 512
79
80
81 /* These fixed timeouts come from the latest SD specs, which say to ignore
82 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the
83 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
84 * reads which takes nowhere near that long. Older cards may be able to use
85 * shorter timeouts ... but why bother?
86 */
87 #define r1b_timeout (HZ * 3)
88
89 /* One of the critical speed parameters is the amount of data which may
90 * be transferred in one command. If this value is too low, the SD card
91 * controller has to do multiple partial block writes (argggh!). With
92 * today (2008) SD cards there is little speed gain if we transfer more
93 * than 64 KBytes at a time. So use this value until there is any indication
94 * that we should do more here.
95 */
96 #define MMC_SPI_BLOCKSATONCE 128
97
98 /****************************************************************************/
99
100 /*
101 * Local Data Structures
102 */
103
104 /* "scratch" is per-{command,block} data exchanged with the card */
105 struct scratch {
106 u8 status[29];
107 u8 data_token;
108 __be16 crc_val;
109 };
110
111 struct mmc_spi_host {
112 struct mmc_host *mmc;
113 struct spi_device *spi;
114
115 unsigned char power_mode;
116 u16 powerup_msecs;
117
118 struct mmc_spi_platform_data *pdata;
119
120 /* for bulk data transfers */
121 struct spi_transfer token, t, crc, early_status;
122 struct spi_message m;
123
124 /* for status readback */
125 struct spi_transfer status;
126 struct spi_message readback;
127
128 /* underlying DMA-aware controller, or null */
129 struct device *dma_dev;
130
131 /* buffer used for commands and for message "overhead" */
132 struct scratch *data;
133 dma_addr_t data_dma;
134
135 /* Specs say to write ones most of the time, even when the card
136 * has no need to read its input data; and many cards won't care.
137 * This is our source of those ones.
138 */
139 void *ones;
140 dma_addr_t ones_dma;
141 };
142
143
144 /****************************************************************************/
145
146 /*
147 * MMC-over-SPI protocol glue, used by the MMC stack interface
148 */
149
mmc_cs_off(struct mmc_spi_host * host)150 static inline int mmc_cs_off(struct mmc_spi_host *host)
151 {
152 /* chipselect will always be inactive after setup() */
153 return spi_setup(host->spi);
154 }
155
156 static int
mmc_spi_readbytes(struct mmc_spi_host * host,unsigned len)157 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
158 {
159 int status;
160
161 if (len > sizeof(*host->data)) {
162 WARN_ON(1);
163 return -EIO;
164 }
165
166 host->status.len = len;
167
168 if (host->dma_dev)
169 dma_sync_single_for_device(host->dma_dev,
170 host->data_dma, sizeof(*host->data),
171 DMA_FROM_DEVICE);
172
173 status = spi_sync_locked(host->spi, &host->readback);
174
175 if (host->dma_dev)
176 dma_sync_single_for_cpu(host->dma_dev,
177 host->data_dma, sizeof(*host->data),
178 DMA_FROM_DEVICE);
179
180 return status;
181 }
182
mmc_spi_skip(struct mmc_spi_host * host,unsigned long timeout,unsigned n,u8 byte)183 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
184 unsigned n, u8 byte)
185 {
186 u8 *cp = host->data->status;
187 unsigned long start = jiffies;
188
189 while (1) {
190 int status;
191 unsigned i;
192
193 status = mmc_spi_readbytes(host, n);
194 if (status < 0)
195 return status;
196
197 for (i = 0; i < n; i++) {
198 if (cp[i] != byte)
199 return cp[i];
200 }
201
202 if (time_is_before_jiffies(start + timeout))
203 break;
204
205 /* If we need long timeouts, we may release the CPU.
206 * We use jiffies here because we want to have a relation
207 * between elapsed time and the blocking of the scheduler.
208 */
209 if (time_is_before_jiffies(start + 1))
210 schedule();
211 }
212 return -ETIMEDOUT;
213 }
214
215 static inline int
mmc_spi_wait_unbusy(struct mmc_spi_host * host,unsigned long timeout)216 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
217 {
218 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
219 }
220
mmc_spi_readtoken(struct mmc_spi_host * host,unsigned long timeout)221 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
222 {
223 return mmc_spi_skip(host, timeout, 1, 0xff);
224 }
225
226
227 /*
228 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
229 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
230 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
231 *
232 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
233 * newer cards R7 (IF_COND).
234 */
235
maptype(struct mmc_command * cmd)236 static char *maptype(struct mmc_command *cmd)
237 {
238 switch (mmc_spi_resp_type(cmd)) {
239 case MMC_RSP_SPI_R1: return "R1";
240 case MMC_RSP_SPI_R1B: return "R1B";
241 case MMC_RSP_SPI_R2: return "R2/R5";
242 case MMC_RSP_SPI_R3: return "R3/R4/R7";
243 default: return "?";
244 }
245 }
246
247 /* return zero, else negative errno after setting cmd->error */
mmc_spi_response_get(struct mmc_spi_host * host,struct mmc_command * cmd,int cs_on)248 static int mmc_spi_response_get(struct mmc_spi_host *host,
249 struct mmc_command *cmd, int cs_on)
250 {
251 u8 *cp = host->data->status;
252 u8 *end = cp + host->t.len;
253 int value = 0;
254 int bitshift;
255 u8 leftover = 0;
256 unsigned short rotator;
257 int i;
258 char tag[32];
259
260 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
261 cmd->opcode, maptype(cmd));
262
263 /* Except for data block reads, the whole response will already
264 * be stored in the scratch buffer. It's somewhere after the
265 * command and the first byte we read after it. We ignore that
266 * first byte. After STOP_TRANSMISSION command it may include
267 * two data bits, but otherwise it's all ones.
268 */
269 cp += 8;
270 while (cp < end && *cp == 0xff)
271 cp++;
272
273 /* Data block reads (R1 response types) may need more data... */
274 if (cp == end) {
275 cp = host->data->status;
276 end = cp+1;
277
278 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
279 * status byte ... and we already scanned 2 bytes.
280 *
281 * REVISIT block read paths use nasty byte-at-a-time I/O
282 * so it can always DMA directly into the target buffer.
283 * It'd probably be better to memcpy() the first chunk and
284 * avoid extra i/o calls...
285 *
286 * Note we check for more than 8 bytes, because in practice,
287 * some SD cards are slow...
288 */
289 for (i = 2; i < 16; i++) {
290 value = mmc_spi_readbytes(host, 1);
291 if (value < 0)
292 goto done;
293 if (*cp != 0xff)
294 goto checkstatus;
295 }
296 value = -ETIMEDOUT;
297 goto done;
298 }
299
300 checkstatus:
301 bitshift = 0;
302 if (*cp & 0x80) {
303 /* Houston, we have an ugly card with a bit-shifted response */
304 rotator = *cp++ << 8;
305 /* read the next byte */
306 if (cp == end) {
307 value = mmc_spi_readbytes(host, 1);
308 if (value < 0)
309 goto done;
310 cp = host->data->status;
311 end = cp+1;
312 }
313 rotator |= *cp++;
314 while (rotator & 0x8000) {
315 bitshift++;
316 rotator <<= 1;
317 }
318 cmd->resp[0] = rotator >> 8;
319 leftover = rotator;
320 } else {
321 cmd->resp[0] = *cp++;
322 }
323 cmd->error = 0;
324
325 /* Status byte: the entire seven-bit R1 response. */
326 if (cmd->resp[0] != 0) {
327 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
328 & cmd->resp[0])
329 value = -EFAULT; /* Bad address */
330 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
331 value = -ENOSYS; /* Function not implemented */
332 else if (R1_SPI_COM_CRC & cmd->resp[0])
333 value = -EILSEQ; /* Illegal byte sequence */
334 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
335 & cmd->resp[0])
336 value = -EIO; /* I/O error */
337 /* else R1_SPI_IDLE, "it's resetting" */
338 }
339
340 switch (mmc_spi_resp_type(cmd)) {
341
342 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
343 * and less-common stuff like various erase operations.
344 */
345 case MMC_RSP_SPI_R1B:
346 /* maybe we read all the busy tokens already */
347 while (cp < end && *cp == 0)
348 cp++;
349 if (cp == end)
350 mmc_spi_wait_unbusy(host, r1b_timeout);
351 break;
352
353 /* SPI R2 == R1 + second status byte; SEND_STATUS
354 * SPI R5 == R1 + data byte; IO_RW_DIRECT
355 */
356 case MMC_RSP_SPI_R2:
357 /* read the next byte */
358 if (cp == end) {
359 value = mmc_spi_readbytes(host, 1);
360 if (value < 0)
361 goto done;
362 cp = host->data->status;
363 end = cp+1;
364 }
365 if (bitshift) {
366 rotator = leftover << 8;
367 rotator |= *cp << bitshift;
368 cmd->resp[0] |= (rotator & 0xFF00);
369 } else {
370 cmd->resp[0] |= *cp << 8;
371 }
372 break;
373
374 /* SPI R3, R4, or R7 == R1 + 4 bytes */
375 case MMC_RSP_SPI_R3:
376 rotator = leftover << 8;
377 cmd->resp[1] = 0;
378 for (i = 0; i < 4; i++) {
379 cmd->resp[1] <<= 8;
380 /* read the next byte */
381 if (cp == end) {
382 value = mmc_spi_readbytes(host, 1);
383 if (value < 0)
384 goto done;
385 cp = host->data->status;
386 end = cp+1;
387 }
388 if (bitshift) {
389 rotator |= *cp++ << bitshift;
390 cmd->resp[1] |= (rotator >> 8);
391 rotator <<= 8;
392 } else {
393 cmd->resp[1] |= *cp++;
394 }
395 }
396 break;
397
398 /* SPI R1 == just one status byte */
399 case MMC_RSP_SPI_R1:
400 break;
401
402 default:
403 dev_dbg(&host->spi->dev, "bad response type %04x\n",
404 mmc_spi_resp_type(cmd));
405 if (value >= 0)
406 value = -EINVAL;
407 goto done;
408 }
409
410 if (value < 0)
411 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
412 tag, cmd->resp[0], cmd->resp[1]);
413
414 /* disable chipselect on errors and some success cases */
415 if (value >= 0 && cs_on)
416 return value;
417 done:
418 if (value < 0)
419 cmd->error = value;
420 mmc_cs_off(host);
421 return value;
422 }
423
424 /* Issue command and read its response.
425 * Returns zero on success, negative for error.
426 *
427 * On error, caller must cope with mmc core retry mechanism. That
428 * means immediate low-level resubmit, which affects the bus lock...
429 */
430 static int
mmc_spi_command_send(struct mmc_spi_host * host,struct mmc_request * mrq,struct mmc_command * cmd,int cs_on)431 mmc_spi_command_send(struct mmc_spi_host *host,
432 struct mmc_request *mrq,
433 struct mmc_command *cmd, int cs_on)
434 {
435 struct scratch *data = host->data;
436 u8 *cp = data->status;
437 int status;
438 struct spi_transfer *t;
439
440 /* We can handle most commands (except block reads) in one full
441 * duplex I/O operation before either starting the next transfer
442 * (data block or command) or else deselecting the card.
443 *
444 * First, write 7 bytes:
445 * - an all-ones byte to ensure the card is ready
446 * - opcode byte (plus start and transmission bits)
447 * - four bytes of big-endian argument
448 * - crc7 (plus end bit) ... always computed, it's cheap
449 *
450 * We init the whole buffer to all-ones, which is what we need
451 * to write while we're reading (later) response data.
452 */
453 memset(cp, 0xff, sizeof(data->status));
454
455 cp[1] = 0x40 | cmd->opcode;
456 put_unaligned_be32(cmd->arg, cp + 2);
457 cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
458 cp += 7;
459
460 /* Then, read up to 13 bytes (while writing all-ones):
461 * - N(CR) (== 1..8) bytes of all-ones
462 * - status byte (for all response types)
463 * - the rest of the response, either:
464 * + nothing, for R1 or R1B responses
465 * + second status byte, for R2 responses
466 * + four data bytes, for R3 and R7 responses
467 *
468 * Finally, read some more bytes ... in the nice cases we know in
469 * advance how many, and reading 1 more is always OK:
470 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
471 * - N(RC) (== 1..N) bytes of all-ones, before next command
472 * - N(WR) (== 1..N) bytes of all-ones, before data write
473 *
474 * So in those cases one full duplex I/O of at most 21 bytes will
475 * handle the whole command, leaving the card ready to receive a
476 * data block or new command. We do that whenever we can, shaving
477 * CPU and IRQ costs (especially when using DMA or FIFOs).
478 *
479 * There are two other cases, where it's not generally practical
480 * to rely on a single I/O:
481 *
482 * - R1B responses need at least N(EC) bytes of all-zeroes.
483 *
484 * In this case we can *try* to fit it into one I/O, then
485 * maybe read more data later.
486 *
487 * - Data block reads are more troublesome, since a variable
488 * number of padding bytes precede the token and data.
489 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
490 * + N(AC) (== 1..many) bytes of all-ones
491 *
492 * In this case we currently only have minimal speedups here:
493 * when N(CR) == 1 we can avoid I/O in response_get().
494 */
495 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
496 cp += 2; /* min(N(CR)) + status */
497 /* R1 */
498 } else {
499 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
500 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
501 cp++;
502 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
503 cp += 4;
504 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
505 cp = data->status + sizeof(data->status);
506 /* else: R1 (most commands) */
507 }
508
509 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n",
510 cmd->opcode, maptype(cmd));
511
512 /* send command, leaving chipselect active */
513 spi_message_init(&host->m);
514
515 t = &host->t;
516 memset(t, 0, sizeof(*t));
517 t->tx_buf = t->rx_buf = data->status;
518 t->tx_dma = t->rx_dma = host->data_dma;
519 t->len = cp - data->status;
520 t->cs_change = 1;
521 spi_message_add_tail(t, &host->m);
522
523 if (host->dma_dev) {
524 host->m.is_dma_mapped = 1;
525 dma_sync_single_for_device(host->dma_dev,
526 host->data_dma, sizeof(*host->data),
527 DMA_BIDIRECTIONAL);
528 }
529 status = spi_sync_locked(host->spi, &host->m);
530
531 if (host->dma_dev)
532 dma_sync_single_for_cpu(host->dma_dev,
533 host->data_dma, sizeof(*host->data),
534 DMA_BIDIRECTIONAL);
535 if (status < 0) {
536 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
537 cmd->error = status;
538 return status;
539 }
540
541 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
542 return mmc_spi_response_get(host, cmd, cs_on);
543 }
544
545 /* Build data message with up to four separate transfers. For TX, we
546 * start by writing the data token. And in most cases, we finish with
547 * a status transfer.
548 *
549 * We always provide TX data for data and CRC. The MMC/SD protocol
550 * requires us to write ones; but Linux defaults to writing zeroes;
551 * so we explicitly initialize it to all ones on RX paths.
552 *
553 * We also handle DMA mapping, so the underlying SPI controller does
554 * not need to (re)do it for each message.
555 */
556 static void
mmc_spi_setup_data_message(struct mmc_spi_host * host,int multiple,enum dma_data_direction direction)557 mmc_spi_setup_data_message(
558 struct mmc_spi_host *host,
559 int multiple,
560 enum dma_data_direction direction)
561 {
562 struct spi_transfer *t;
563 struct scratch *scratch = host->data;
564 dma_addr_t dma = host->data_dma;
565
566 spi_message_init(&host->m);
567 if (dma)
568 host->m.is_dma_mapped = 1;
569
570 /* for reads, readblock() skips 0xff bytes before finding
571 * the token; for writes, this transfer issues that token.
572 */
573 if (direction == DMA_TO_DEVICE) {
574 t = &host->token;
575 memset(t, 0, sizeof(*t));
576 t->len = 1;
577 if (multiple)
578 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
579 else
580 scratch->data_token = SPI_TOKEN_SINGLE;
581 t->tx_buf = &scratch->data_token;
582 if (dma)
583 t->tx_dma = dma + offsetof(struct scratch, data_token);
584 spi_message_add_tail(t, &host->m);
585 }
586
587 /* Body of transfer is buffer, then CRC ...
588 * either TX-only, or RX with TX-ones.
589 */
590 t = &host->t;
591 memset(t, 0, sizeof(*t));
592 t->tx_buf = host->ones;
593 t->tx_dma = host->ones_dma;
594 /* length and actual buffer info are written later */
595 spi_message_add_tail(t, &host->m);
596
597 t = &host->crc;
598 memset(t, 0, sizeof(*t));
599 t->len = 2;
600 if (direction == DMA_TO_DEVICE) {
601 /* the actual CRC may get written later */
602 t->tx_buf = &scratch->crc_val;
603 if (dma)
604 t->tx_dma = dma + offsetof(struct scratch, crc_val);
605 } else {
606 t->tx_buf = host->ones;
607 t->tx_dma = host->ones_dma;
608 t->rx_buf = &scratch->crc_val;
609 if (dma)
610 t->rx_dma = dma + offsetof(struct scratch, crc_val);
611 }
612 spi_message_add_tail(t, &host->m);
613
614 /*
615 * A single block read is followed by N(EC) [0+] all-ones bytes
616 * before deselect ... don't bother.
617 *
618 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
619 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
620 * collect that single byte, so readblock() doesn't need to.
621 *
622 * For a write, the one-byte data response follows immediately, then
623 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
624 * Then single block reads may deselect, and multiblock ones issue
625 * the next token (next data block, or STOP_TRAN). We can try to
626 * minimize I/O ops by using a single read to collect end-of-busy.
627 */
628 if (multiple || direction == DMA_TO_DEVICE) {
629 t = &host->early_status;
630 memset(t, 0, sizeof(*t));
631 t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
632 t->tx_buf = host->ones;
633 t->tx_dma = host->ones_dma;
634 t->rx_buf = scratch->status;
635 if (dma)
636 t->rx_dma = dma + offsetof(struct scratch, status);
637 t->cs_change = 1;
638 spi_message_add_tail(t, &host->m);
639 }
640 }
641
642 /*
643 * Write one block:
644 * - caller handled preceding N(WR) [1+] all-ones bytes
645 * - data block
646 * + token
647 * + data bytes
648 * + crc16
649 * - an all-ones byte ... card writes a data-response byte
650 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
651 *
652 * Return negative errno, else success.
653 */
654 static int
mmc_spi_writeblock(struct mmc_spi_host * host,struct spi_transfer * t,unsigned long timeout)655 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
656 unsigned long timeout)
657 {
658 struct spi_device *spi = host->spi;
659 int status, i;
660 struct scratch *scratch = host->data;
661 u32 pattern;
662
663 if (host->mmc->use_spi_crc)
664 scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
665 if (host->dma_dev)
666 dma_sync_single_for_device(host->dma_dev,
667 host->data_dma, sizeof(*scratch),
668 DMA_BIDIRECTIONAL);
669
670 status = spi_sync_locked(spi, &host->m);
671
672 if (status != 0) {
673 dev_dbg(&spi->dev, "write error (%d)\n", status);
674 return status;
675 }
676
677 if (host->dma_dev)
678 dma_sync_single_for_cpu(host->dma_dev,
679 host->data_dma, sizeof(*scratch),
680 DMA_BIDIRECTIONAL);
681
682 /*
683 * Get the transmission data-response reply. It must follow
684 * immediately after the data block we transferred. This reply
685 * doesn't necessarily tell whether the write operation succeeded;
686 * it just says if the transmission was ok and whether *earlier*
687 * writes succeeded; see the standard.
688 *
689 * In practice, there are (even modern SDHC-)cards which are late
690 * in sending the response, and miss the time frame by a few bits,
691 * so we have to cope with this situation and check the response
692 * bit-by-bit. Arggh!!!
693 */
694 pattern = get_unaligned_be32(scratch->status);
695
696 /* First 3 bit of pattern are undefined */
697 pattern |= 0xE0000000;
698
699 /* left-adjust to leading 0 bit */
700 while (pattern & 0x80000000)
701 pattern <<= 1;
702 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
703 pattern >>= 27;
704
705 switch (pattern) {
706 case SPI_RESPONSE_ACCEPTED:
707 status = 0;
708 break;
709 case SPI_RESPONSE_CRC_ERR:
710 /* host shall then issue MMC_STOP_TRANSMISSION */
711 status = -EILSEQ;
712 break;
713 case SPI_RESPONSE_WRITE_ERR:
714 /* host shall then issue MMC_STOP_TRANSMISSION,
715 * and should MMC_SEND_STATUS to sort it out
716 */
717 status = -EIO;
718 break;
719 default:
720 status = -EPROTO;
721 break;
722 }
723 if (status != 0) {
724 dev_dbg(&spi->dev, "write error %02x (%d)\n",
725 scratch->status[0], status);
726 return status;
727 }
728
729 t->tx_buf += t->len;
730 if (host->dma_dev)
731 t->tx_dma += t->len;
732
733 /* Return when not busy. If we didn't collect that status yet,
734 * we'll need some more I/O.
735 */
736 for (i = 4; i < sizeof(scratch->status); i++) {
737 /* card is non-busy if the most recent bit is 1 */
738 if (scratch->status[i] & 0x01)
739 return 0;
740 }
741 return mmc_spi_wait_unbusy(host, timeout);
742 }
743
744 /*
745 * Read one block:
746 * - skip leading all-ones bytes ... either
747 * + N(AC) [1..f(clock,CSD)] usually, else
748 * + N(CX) [0..8] when reading CSD or CID
749 * - data block
750 * + token ... if error token, no data or crc
751 * + data bytes
752 * + crc16
753 *
754 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
755 * before dropping chipselect.
756 *
757 * For multiblock reads, caller either reads the next block or issues a
758 * STOP_TRANSMISSION command.
759 */
760 static int
mmc_spi_readblock(struct mmc_spi_host * host,struct spi_transfer * t,unsigned long timeout)761 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
762 unsigned long timeout)
763 {
764 struct spi_device *spi = host->spi;
765 int status;
766 struct scratch *scratch = host->data;
767 unsigned int bitshift;
768 u8 leftover;
769
770 /* At least one SD card sends an all-zeroes byte when N(CX)
771 * applies, before the all-ones bytes ... just cope with that.
772 */
773 status = mmc_spi_readbytes(host, 1);
774 if (status < 0)
775 return status;
776 status = scratch->status[0];
777 if (status == 0xff || status == 0)
778 status = mmc_spi_readtoken(host, timeout);
779
780 if (status < 0) {
781 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
782 return status;
783 }
784
785 /* The token may be bit-shifted...
786 * the first 0-bit precedes the data stream.
787 */
788 bitshift = 7;
789 while (status & 0x80) {
790 status <<= 1;
791 bitshift--;
792 }
793 leftover = status << 1;
794
795 if (host->dma_dev) {
796 dma_sync_single_for_device(host->dma_dev,
797 host->data_dma, sizeof(*scratch),
798 DMA_BIDIRECTIONAL);
799 dma_sync_single_for_device(host->dma_dev,
800 t->rx_dma, t->len,
801 DMA_FROM_DEVICE);
802 }
803
804 status = spi_sync_locked(spi, &host->m);
805 if (status < 0) {
806 dev_dbg(&spi->dev, "read error %d\n", status);
807 return status;
808 }
809
810 if (host->dma_dev) {
811 dma_sync_single_for_cpu(host->dma_dev,
812 host->data_dma, sizeof(*scratch),
813 DMA_BIDIRECTIONAL);
814 dma_sync_single_for_cpu(host->dma_dev,
815 t->rx_dma, t->len,
816 DMA_FROM_DEVICE);
817 }
818
819 if (bitshift) {
820 /* Walk through the data and the crc and do
821 * all the magic to get byte-aligned data.
822 */
823 u8 *cp = t->rx_buf;
824 unsigned int len;
825 unsigned int bitright = 8 - bitshift;
826 u8 temp;
827 for (len = t->len; len; len--) {
828 temp = *cp;
829 *cp++ = leftover | (temp >> bitshift);
830 leftover = temp << bitright;
831 }
832 cp = (u8 *) &scratch->crc_val;
833 temp = *cp;
834 *cp++ = leftover | (temp >> bitshift);
835 leftover = temp << bitright;
836 temp = *cp;
837 *cp = leftover | (temp >> bitshift);
838 }
839
840 if (host->mmc->use_spi_crc) {
841 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
842
843 be16_to_cpus(&scratch->crc_val);
844 if (scratch->crc_val != crc) {
845 dev_dbg(&spi->dev,
846 "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
847 scratch->crc_val, crc, t->len);
848 return -EILSEQ;
849 }
850 }
851
852 t->rx_buf += t->len;
853 if (host->dma_dev)
854 t->rx_dma += t->len;
855
856 return 0;
857 }
858
859 /*
860 * An MMC/SD data stage includes one or more blocks, optional CRCs,
861 * and inline handshaking. That handhaking makes it unlike most
862 * other SPI protocol stacks.
863 */
864 static void
mmc_spi_data_do(struct mmc_spi_host * host,struct mmc_command * cmd,struct mmc_data * data,u32 blk_size)865 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
866 struct mmc_data *data, u32 blk_size)
867 {
868 struct spi_device *spi = host->spi;
869 struct device *dma_dev = host->dma_dev;
870 struct spi_transfer *t;
871 enum dma_data_direction direction;
872 struct scatterlist *sg;
873 unsigned n_sg;
874 int multiple = (data->blocks > 1);
875 u32 clock_rate;
876 unsigned long timeout;
877
878 direction = mmc_get_dma_dir(data);
879 mmc_spi_setup_data_message(host, multiple, direction);
880 t = &host->t;
881
882 if (t->speed_hz)
883 clock_rate = t->speed_hz;
884 else
885 clock_rate = spi->max_speed_hz;
886
887 timeout = data->timeout_ns +
888 data->timeout_clks * 1000000 / clock_rate;
889 timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
890
891 /* Handle scatterlist segments one at a time, with synch for
892 * each 512-byte block
893 */
894 for_each_sg(data->sg, sg, data->sg_len, n_sg) {
895 int status = 0;
896 dma_addr_t dma_addr = 0;
897 void *kmap_addr;
898 unsigned length = sg->length;
899 enum dma_data_direction dir = direction;
900
901 /* set up dma mapping for controller drivers that might
902 * use DMA ... though they may fall back to PIO
903 */
904 if (dma_dev) {
905 /* never invalidate whole *shared* pages ... */
906 if ((sg->offset != 0 || length != PAGE_SIZE)
907 && dir == DMA_FROM_DEVICE)
908 dir = DMA_BIDIRECTIONAL;
909
910 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
911 PAGE_SIZE, dir);
912 if (dma_mapping_error(dma_dev, dma_addr)) {
913 data->error = -EFAULT;
914 break;
915 }
916 if (direction == DMA_TO_DEVICE)
917 t->tx_dma = dma_addr + sg->offset;
918 else
919 t->rx_dma = dma_addr + sg->offset;
920 }
921
922 /* allow pio too; we don't allow highmem */
923 kmap_addr = kmap(sg_page(sg));
924 if (direction == DMA_TO_DEVICE)
925 t->tx_buf = kmap_addr + sg->offset;
926 else
927 t->rx_buf = kmap_addr + sg->offset;
928
929 /* transfer each block, and update request status */
930 while (length) {
931 t->len = min(length, blk_size);
932
933 dev_dbg(&host->spi->dev,
934 " mmc_spi: %s block, %d bytes\n",
935 (direction == DMA_TO_DEVICE) ? "write" : "read",
936 t->len);
937
938 if (direction == DMA_TO_DEVICE)
939 status = mmc_spi_writeblock(host, t, timeout);
940 else
941 status = mmc_spi_readblock(host, t, timeout);
942 if (status < 0)
943 break;
944
945 data->bytes_xfered += t->len;
946 length -= t->len;
947
948 if (!multiple)
949 break;
950 }
951
952 /* discard mappings */
953 if (direction == DMA_FROM_DEVICE)
954 flush_kernel_dcache_page(sg_page(sg));
955 kunmap(sg_page(sg));
956 if (dma_dev)
957 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
958
959 if (status < 0) {
960 data->error = status;
961 dev_dbg(&spi->dev, "%s status %d\n",
962 (direction == DMA_TO_DEVICE) ? "write" : "read",
963 status);
964 break;
965 }
966 }
967
968 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
969 * can be issued before multiblock writes. Unlike its more widely
970 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
971 * that can affect the STOP_TRAN logic. Complete (and current)
972 * MMC specs should sort that out before Linux starts using CMD23.
973 */
974 if (direction == DMA_TO_DEVICE && multiple) {
975 struct scratch *scratch = host->data;
976 int tmp;
977 const unsigned statlen = sizeof(scratch->status);
978
979 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n");
980
981 /* Tweak the per-block message we set up earlier by morphing
982 * it to hold single buffer with the token followed by some
983 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
984 * "not busy any longer" status, and leave chip selected.
985 */
986 INIT_LIST_HEAD(&host->m.transfers);
987 list_add(&host->early_status.transfer_list,
988 &host->m.transfers);
989
990 memset(scratch->status, 0xff, statlen);
991 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
992
993 host->early_status.tx_buf = host->early_status.rx_buf;
994 host->early_status.tx_dma = host->early_status.rx_dma;
995 host->early_status.len = statlen;
996
997 if (host->dma_dev)
998 dma_sync_single_for_device(host->dma_dev,
999 host->data_dma, sizeof(*scratch),
1000 DMA_BIDIRECTIONAL);
1001
1002 tmp = spi_sync_locked(spi, &host->m);
1003
1004 if (host->dma_dev)
1005 dma_sync_single_for_cpu(host->dma_dev,
1006 host->data_dma, sizeof(*scratch),
1007 DMA_BIDIRECTIONAL);
1008
1009 if (tmp < 0) {
1010 if (!data->error)
1011 data->error = tmp;
1012 return;
1013 }
1014
1015 /* Ideally we collected "not busy" status with one I/O,
1016 * avoiding wasteful byte-at-a-time scanning... but more
1017 * I/O is often needed.
1018 */
1019 for (tmp = 2; tmp < statlen; tmp++) {
1020 if (scratch->status[tmp] != 0)
1021 return;
1022 }
1023 tmp = mmc_spi_wait_unbusy(host, timeout);
1024 if (tmp < 0 && !data->error)
1025 data->error = tmp;
1026 }
1027 }
1028
1029 /****************************************************************************/
1030
1031 /*
1032 * MMC driver implementation -- the interface to the MMC stack
1033 */
1034
mmc_spi_request(struct mmc_host * mmc,struct mmc_request * mrq)1035 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1036 {
1037 struct mmc_spi_host *host = mmc_priv(mmc);
1038 int status = -EINVAL;
1039 int crc_retry = 5;
1040 struct mmc_command stop;
1041
1042 #ifdef DEBUG
1043 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1044 {
1045 struct mmc_command *cmd;
1046 int invalid = 0;
1047
1048 cmd = mrq->cmd;
1049 if (!mmc_spi_resp_type(cmd)) {
1050 dev_dbg(&host->spi->dev, "bogus command\n");
1051 cmd->error = -EINVAL;
1052 invalid = 1;
1053 }
1054
1055 cmd = mrq->stop;
1056 if (cmd && !mmc_spi_resp_type(cmd)) {
1057 dev_dbg(&host->spi->dev, "bogus STOP command\n");
1058 cmd->error = -EINVAL;
1059 invalid = 1;
1060 }
1061
1062 if (invalid) {
1063 dump_stack();
1064 mmc_request_done(host->mmc, mrq);
1065 return;
1066 }
1067 }
1068 #endif
1069
1070 /* request exclusive bus access */
1071 spi_bus_lock(host->spi->master);
1072
1073 crc_recover:
1074 /* issue command; then optionally data and stop */
1075 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1076 if (status == 0 && mrq->data) {
1077 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1078
1079 /*
1080 * The SPI bus is not always reliable for large data transfers.
1081 * If an occasional crc error is reported by the SD device with
1082 * data read/write over SPI, it may be recovered by repeating
1083 * the last SD command again. The retry count is set to 5 to
1084 * ensure the driver passes stress tests.
1085 */
1086 if (mrq->data->error == -EILSEQ && crc_retry) {
1087 stop.opcode = MMC_STOP_TRANSMISSION;
1088 stop.arg = 0;
1089 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1090 status = mmc_spi_command_send(host, mrq, &stop, 0);
1091 crc_retry--;
1092 mrq->data->error = 0;
1093 goto crc_recover;
1094 }
1095
1096 if (mrq->stop)
1097 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1098 else
1099 mmc_cs_off(host);
1100 }
1101
1102 /* release the bus */
1103 spi_bus_unlock(host->spi->master);
1104
1105 mmc_request_done(host->mmc, mrq);
1106 }
1107
1108 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1109 *
1110 * NOTE that here we can't know that the card has just been powered up;
1111 * not all MMC/SD sockets support power switching.
1112 *
1113 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1114 * this doesn't seem to do the right thing at all...
1115 */
mmc_spi_initsequence(struct mmc_spi_host * host)1116 static void mmc_spi_initsequence(struct mmc_spi_host *host)
1117 {
1118 /* Try to be very sure any previous command has completed;
1119 * wait till not-busy, skip debris from any old commands.
1120 */
1121 mmc_spi_wait_unbusy(host, r1b_timeout);
1122 mmc_spi_readbytes(host, 10);
1123
1124 /*
1125 * Do a burst with chipselect active-high. We need to do this to
1126 * meet the requirement of 74 clock cycles with both chipselect
1127 * and CMD (MOSI) high before CMD0 ... after the card has been
1128 * powered up to Vdd(min), and so is ready to take commands.
1129 *
1130 * Some cards are particularly needy of this (e.g. Viking "SD256")
1131 * while most others don't seem to care.
1132 *
1133 * Note that this is one of the places MMC/SD plays games with the
1134 * SPI protocol. Another is that when chipselect is released while
1135 * the card returns BUSY status, the clock must issue several cycles
1136 * with chipselect high before the card will stop driving its output.
1137 */
1138 host->spi->mode |= SPI_CS_HIGH;
1139 if (spi_setup(host->spi) != 0) {
1140 /* Just warn; most cards work without it. */
1141 dev_warn(&host->spi->dev,
1142 "can't change chip-select polarity\n");
1143 host->spi->mode &= ~SPI_CS_HIGH;
1144 } else {
1145 mmc_spi_readbytes(host, 18);
1146
1147 host->spi->mode &= ~SPI_CS_HIGH;
1148 if (spi_setup(host->spi) != 0) {
1149 /* Wot, we can't get the same setup we had before? */
1150 dev_err(&host->spi->dev,
1151 "can't restore chip-select polarity\n");
1152 }
1153 }
1154 }
1155
mmc_powerstring(u8 power_mode)1156 static char *mmc_powerstring(u8 power_mode)
1157 {
1158 switch (power_mode) {
1159 case MMC_POWER_OFF: return "off";
1160 case MMC_POWER_UP: return "up";
1161 case MMC_POWER_ON: return "on";
1162 }
1163 return "?";
1164 }
1165
mmc_spi_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)1166 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1167 {
1168 struct mmc_spi_host *host = mmc_priv(mmc);
1169
1170 if (host->power_mode != ios->power_mode) {
1171 int canpower;
1172
1173 canpower = host->pdata && host->pdata->setpower;
1174
1175 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1176 mmc_powerstring(ios->power_mode),
1177 ios->vdd,
1178 canpower ? ", can switch" : "");
1179
1180 /* switch power on/off if possible, accounting for
1181 * max 250msec powerup time if needed.
1182 */
1183 if (canpower) {
1184 switch (ios->power_mode) {
1185 case MMC_POWER_OFF:
1186 case MMC_POWER_UP:
1187 host->pdata->setpower(&host->spi->dev,
1188 ios->vdd);
1189 if (ios->power_mode == MMC_POWER_UP)
1190 msleep(host->powerup_msecs);
1191 }
1192 }
1193
1194 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1195 if (ios->power_mode == MMC_POWER_ON)
1196 mmc_spi_initsequence(host);
1197
1198 /* If powering down, ground all card inputs to avoid power
1199 * delivery from data lines! On a shared SPI bus, this
1200 * will probably be temporary; 6.4.2 of the simplified SD
1201 * spec says this must last at least 1msec.
1202 *
1203 * - Clock low means CPOL 0, e.g. mode 0
1204 * - MOSI low comes from writing zero
1205 * - Chipselect is usually active low...
1206 */
1207 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1208 int mres;
1209 u8 nullbyte = 0;
1210
1211 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1212 mres = spi_setup(host->spi);
1213 if (mres < 0)
1214 dev_dbg(&host->spi->dev,
1215 "switch to SPI mode 0 failed\n");
1216
1217 if (spi_write(host->spi, &nullbyte, 1) < 0)
1218 dev_dbg(&host->spi->dev,
1219 "put spi signals to low failed\n");
1220
1221 /*
1222 * Now clock should be low due to spi mode 0;
1223 * MOSI should be low because of written 0x00;
1224 * chipselect should be low (it is active low)
1225 * power supply is off, so now MMC is off too!
1226 *
1227 * FIXME no, chipselect can be high since the
1228 * device is inactive and SPI_CS_HIGH is clear...
1229 */
1230 msleep(10);
1231 if (mres == 0) {
1232 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1233 mres = spi_setup(host->spi);
1234 if (mres < 0)
1235 dev_dbg(&host->spi->dev,
1236 "switch back to SPI mode 3 failed\n");
1237 }
1238 }
1239
1240 host->power_mode = ios->power_mode;
1241 }
1242
1243 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1244 int status;
1245
1246 host->spi->max_speed_hz = ios->clock;
1247 status = spi_setup(host->spi);
1248 dev_dbg(&host->spi->dev,
1249 "mmc_spi: clock to %d Hz, %d\n",
1250 host->spi->max_speed_hz, status);
1251 }
1252 }
1253
1254 static const struct mmc_host_ops mmc_spi_ops = {
1255 .request = mmc_spi_request,
1256 .set_ios = mmc_spi_set_ios,
1257 .get_ro = mmc_gpio_get_ro,
1258 .get_cd = mmc_gpio_get_cd,
1259 };
1260
1261
1262 /****************************************************************************/
1263
1264 /*
1265 * SPI driver implementation
1266 */
1267
1268 static irqreturn_t
mmc_spi_detect_irq(int irq,void * mmc)1269 mmc_spi_detect_irq(int irq, void *mmc)
1270 {
1271 struct mmc_spi_host *host = mmc_priv(mmc);
1272 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1273
1274 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1275 return IRQ_HANDLED;
1276 }
1277
mmc_spi_probe(struct spi_device * spi)1278 static int mmc_spi_probe(struct spi_device *spi)
1279 {
1280 void *ones;
1281 struct mmc_host *mmc;
1282 struct mmc_spi_host *host;
1283 int status;
1284 bool has_ro = false;
1285
1286 /* We rely on full duplex transfers, mostly to reduce
1287 * per-transfer overheads (by making fewer transfers).
1288 */
1289 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1290 return -EINVAL;
1291
1292 /* MMC and SD specs only seem to care that sampling is on the
1293 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1294 * should be legit. We'll use mode 0 since the steady state is 0,
1295 * which is appropriate for hotplugging, unless the platform data
1296 * specify mode 3 (if hardware is not compatible to mode 0).
1297 */
1298 if (spi->mode != SPI_MODE_3)
1299 spi->mode = SPI_MODE_0;
1300 spi->bits_per_word = 8;
1301
1302 status = spi_setup(spi);
1303 if (status < 0) {
1304 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1305 spi->mode, spi->max_speed_hz / 1000,
1306 status);
1307 return status;
1308 }
1309
1310 /* We need a supply of ones to transmit. This is the only time
1311 * the CPU touches these, so cache coherency isn't a concern.
1312 *
1313 * NOTE if many systems use more than one MMC-over-SPI connector
1314 * it'd save some memory to share this. That's evidently rare.
1315 */
1316 status = -ENOMEM;
1317 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1318 if (!ones)
1319 goto nomem;
1320 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1321
1322 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1323 if (!mmc)
1324 goto nomem;
1325
1326 mmc->ops = &mmc_spi_ops;
1327 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1328 mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1329 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1330 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1331
1332 mmc->caps = MMC_CAP_SPI;
1333
1334 /* SPI doesn't need the lowspeed device identification thing for
1335 * MMC or SD cards, since it never comes up in open drain mode.
1336 * That's good; some SPI masters can't handle very low speeds!
1337 *
1338 * However, low speed SDIO cards need not handle over 400 KHz;
1339 * that's the only reason not to use a few MHz for f_min (until
1340 * the upper layer reads the target frequency from the CSD).
1341 */
1342 mmc->f_min = 400000;
1343 mmc->f_max = spi->max_speed_hz;
1344
1345 host = mmc_priv(mmc);
1346 host->mmc = mmc;
1347 host->spi = spi;
1348
1349 host->ones = ones;
1350
1351 /* Platform data is used to hook up things like card sensing
1352 * and power switching gpios.
1353 */
1354 host->pdata = mmc_spi_get_pdata(spi);
1355 if (host->pdata)
1356 mmc->ocr_avail = host->pdata->ocr_mask;
1357 if (!mmc->ocr_avail) {
1358 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1359 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1360 }
1361 if (host->pdata && host->pdata->setpower) {
1362 host->powerup_msecs = host->pdata->powerup_msecs;
1363 if (!host->powerup_msecs || host->powerup_msecs > 250)
1364 host->powerup_msecs = 250;
1365 }
1366
1367 dev_set_drvdata(&spi->dev, mmc);
1368
1369 /* preallocate dma buffers */
1370 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1371 if (!host->data)
1372 goto fail_nobuf1;
1373
1374 if (spi->master->dev.parent->dma_mask) {
1375 struct device *dev = spi->master->dev.parent;
1376
1377 host->dma_dev = dev;
1378 host->ones_dma = dma_map_single(dev, ones,
1379 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1380 if (dma_mapping_error(dev, host->ones_dma))
1381 goto fail_ones_dma;
1382 host->data_dma = dma_map_single(dev, host->data,
1383 sizeof(*host->data), DMA_BIDIRECTIONAL);
1384 if (dma_mapping_error(dev, host->data_dma))
1385 goto fail_data_dma;
1386
1387 dma_sync_single_for_cpu(host->dma_dev,
1388 host->data_dma, sizeof(*host->data),
1389 DMA_BIDIRECTIONAL);
1390 }
1391
1392 /* setup message for status/busy readback */
1393 spi_message_init(&host->readback);
1394 host->readback.is_dma_mapped = (host->dma_dev != NULL);
1395
1396 spi_message_add_tail(&host->status, &host->readback);
1397 host->status.tx_buf = host->ones;
1398 host->status.tx_dma = host->ones_dma;
1399 host->status.rx_buf = &host->data->status;
1400 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1401 host->status.cs_change = 1;
1402
1403 /* register card detect irq */
1404 if (host->pdata && host->pdata->init) {
1405 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1406 if (status != 0)
1407 goto fail_glue_init;
1408 }
1409
1410 /* pass platform capabilities, if any */
1411 if (host->pdata) {
1412 mmc->caps |= host->pdata->caps;
1413 mmc->caps2 |= host->pdata->caps2;
1414 }
1415
1416 status = mmc_add_host(mmc);
1417 if (status != 0)
1418 goto fail_add_host;
1419
1420 /*
1421 * Index 0 is card detect
1422 * Old boardfiles were specifying 1 ms as debounce
1423 */
1424 status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1, NULL);
1425 if (status == -EPROBE_DEFER)
1426 goto fail_add_host;
1427 if (!status) {
1428 /*
1429 * The platform has a CD GPIO signal that may support
1430 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1431 * if polling is needed or not.
1432 */
1433 mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1434 mmc_gpiod_request_cd_irq(mmc);
1435 }
1436 mmc_detect_change(mmc, 0);
1437
1438 /* Index 1 is write protect/read only */
1439 status = mmc_gpiod_request_ro(mmc, NULL, 1, 0, NULL);
1440 if (status == -EPROBE_DEFER)
1441 goto fail_add_host;
1442 if (!status)
1443 has_ro = true;
1444
1445 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1446 dev_name(&mmc->class_dev),
1447 host->dma_dev ? "" : ", no DMA",
1448 has_ro ? "" : ", no WP",
1449 (host->pdata && host->pdata->setpower)
1450 ? "" : ", no poweroff",
1451 (mmc->caps & MMC_CAP_NEEDS_POLL)
1452 ? ", cd polling" : "");
1453 return 0;
1454
1455 fail_add_host:
1456 mmc_remove_host(mmc);
1457 fail_glue_init:
1458 if (host->dma_dev)
1459 dma_unmap_single(host->dma_dev, host->data_dma,
1460 sizeof(*host->data), DMA_BIDIRECTIONAL);
1461 fail_data_dma:
1462 if (host->dma_dev)
1463 dma_unmap_single(host->dma_dev, host->ones_dma,
1464 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1465 fail_ones_dma:
1466 kfree(host->data);
1467
1468 fail_nobuf1:
1469 mmc_free_host(mmc);
1470 mmc_spi_put_pdata(spi);
1471
1472 nomem:
1473 kfree(ones);
1474 return status;
1475 }
1476
1477
mmc_spi_remove(struct spi_device * spi)1478 static int mmc_spi_remove(struct spi_device *spi)
1479 {
1480 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1481 struct mmc_spi_host *host = mmc_priv(mmc);
1482
1483 /* prevent new mmc_detect_change() calls */
1484 if (host->pdata && host->pdata->exit)
1485 host->pdata->exit(&spi->dev, mmc);
1486
1487 mmc_remove_host(mmc);
1488
1489 if (host->dma_dev) {
1490 dma_unmap_single(host->dma_dev, host->ones_dma,
1491 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1492 dma_unmap_single(host->dma_dev, host->data_dma,
1493 sizeof(*host->data), DMA_BIDIRECTIONAL);
1494 }
1495
1496 kfree(host->data);
1497 kfree(host->ones);
1498
1499 spi->max_speed_hz = mmc->f_max;
1500 mmc_free_host(mmc);
1501 mmc_spi_put_pdata(spi);
1502 return 0;
1503 }
1504
1505 static const struct of_device_id mmc_spi_of_match_table[] = {
1506 { .compatible = "mmc-spi-slot", },
1507 {},
1508 };
1509 MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1510
1511 static struct spi_driver mmc_spi_driver = {
1512 .driver = {
1513 .name = "mmc_spi",
1514 .of_match_table = mmc_spi_of_match_table,
1515 },
1516 .probe = mmc_spi_probe,
1517 .remove = mmc_spi_remove,
1518 };
1519
1520 module_spi_driver(mmc_spi_driver);
1521
1522 MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1523 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1524 MODULE_LICENSE("GPL");
1525 MODULE_ALIAS("spi:mmc_spi");
1526