1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/host/au1xmmc.c - AU1XX0 MMC driver
4 *
5 * Copyright (c) 2005, Advanced Micro Devices, Inc.
6 *
7 * Developed with help from the 2.4.30 MMC AU1XXX controller including
8 * the following copyright notices:
9 * Copyright (c) 2003-2004 Embedded Edge, LLC.
10 * Portions Copyright (C) 2002 Embedix, Inc
11 * Copyright 2002 Hewlett-Packard Company
12
13 * 2.6 version of this driver inspired by:
14 * (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman,
15 * All Rights Reserved.
16 * (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King,
17 * All Rights Reserved.
18 *
19
20 */
21
22 /* Why don't we use the SD controllers' carddetect feature?
23 *
24 * From the AU1100 MMC application guide:
25 * If the Au1100-based design is intended to support both MultiMediaCards
26 * and 1- or 4-data bit SecureDigital cards, then the solution is to
27 * connect a weak (560KOhm) pull-up resistor to connector pin 1.
28 * In doing so, a MMC card never enters SPI-mode communications,
29 * but now the SecureDigital card-detect feature of CD/DAT3 is ineffective
30 * (the low to high transition will not occur).
31 */
32
33 #include <linux/clk.h>
34 #include <linux/module.h>
35 #include <linux/init.h>
36 #include <linux/platform_device.h>
37 #include <linux/mm.h>
38 #include <linux/interrupt.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/scatterlist.h>
41 #include <linux/highmem.h>
42 #include <linux/leds.h>
43 #include <linux/mmc/host.h>
44 #include <linux/slab.h>
45
46 #include <asm/io.h>
47 #include <asm/mach-au1x00/au1000.h>
48 #include <asm/mach-au1x00/au1xxx_dbdma.h>
49 #include <asm/mach-au1x00/au1100_mmc.h>
50
51 #define DRIVER_NAME "au1xxx-mmc"
52
53 /* Set this to enable special debugging macros */
54 /* #define DEBUG */
55
56 #ifdef DEBUG
57 #define DBG(fmt, idx, args...) \
58 pr_debug("au1xmmc(%d): DEBUG: " fmt, idx, ##args)
59 #else
60 #define DBG(fmt, idx, args...) do {} while (0)
61 #endif
62
63 /* Hardware definitions */
64 #define AU1XMMC_DESCRIPTOR_COUNT 1
65
66 /* max DMA seg size: 64KB on Au1100, 4MB on Au1200 */
67 #define AU1100_MMC_DESCRIPTOR_SIZE 0x0000ffff
68 #define AU1200_MMC_DESCRIPTOR_SIZE 0x003fffff
69
70 #define AU1XMMC_OCR (MMC_VDD_27_28 | MMC_VDD_28_29 | MMC_VDD_29_30 | \
71 MMC_VDD_30_31 | MMC_VDD_31_32 | MMC_VDD_32_33 | \
72 MMC_VDD_33_34 | MMC_VDD_34_35 | MMC_VDD_35_36)
73
74 /* This gives us a hard value for the stop command that we can write directly
75 * to the command register.
76 */
77 #define STOP_CMD \
78 (SD_CMD_RT_1B | SD_CMD_CT_7 | (0xC << SD_CMD_CI_SHIFT) | SD_CMD_GO)
79
80 /* This is the set of interrupts that we configure by default. */
81 #define AU1XMMC_INTERRUPTS \
82 (SD_CONFIG_SC | SD_CONFIG_DT | SD_CONFIG_RAT | \
83 SD_CONFIG_CR | SD_CONFIG_I)
84
85 /* The poll event (looking for insert/remove events runs twice a second. */
86 #define AU1XMMC_DETECT_TIMEOUT (HZ/2)
87
88 struct au1xmmc_host {
89 struct mmc_host *mmc;
90 struct mmc_request *mrq;
91
92 u32 flags;
93 void __iomem *iobase;
94 u32 clock;
95 u32 bus_width;
96 u32 power_mode;
97
98 int status;
99
100 struct {
101 int len;
102 int dir;
103 } dma;
104
105 struct {
106 int index;
107 int offset;
108 int len;
109 } pio;
110
111 u32 tx_chan;
112 u32 rx_chan;
113
114 int irq;
115
116 struct tasklet_struct finish_task;
117 struct tasklet_struct data_task;
118 struct au1xmmc_platform_data *platdata;
119 struct platform_device *pdev;
120 struct resource *ioarea;
121 struct clk *clk;
122 };
123
124 /* Status flags used by the host structure */
125 #define HOST_F_XMIT 0x0001
126 #define HOST_F_RECV 0x0002
127 #define HOST_F_DMA 0x0010
128 #define HOST_F_DBDMA 0x0020
129 #define HOST_F_ACTIVE 0x0100
130 #define HOST_F_STOP 0x1000
131
132 #define HOST_S_IDLE 0x0001
133 #define HOST_S_CMD 0x0002
134 #define HOST_S_DATA 0x0003
135 #define HOST_S_STOP 0x0004
136
137 /* Easy access macros */
138 #define HOST_STATUS(h) ((h)->iobase + SD_STATUS)
139 #define HOST_CONFIG(h) ((h)->iobase + SD_CONFIG)
140 #define HOST_ENABLE(h) ((h)->iobase + SD_ENABLE)
141 #define HOST_TXPORT(h) ((h)->iobase + SD_TXPORT)
142 #define HOST_RXPORT(h) ((h)->iobase + SD_RXPORT)
143 #define HOST_CMDARG(h) ((h)->iobase + SD_CMDARG)
144 #define HOST_BLKSIZE(h) ((h)->iobase + SD_BLKSIZE)
145 #define HOST_CMD(h) ((h)->iobase + SD_CMD)
146 #define HOST_CONFIG2(h) ((h)->iobase + SD_CONFIG2)
147 #define HOST_TIMEOUT(h) ((h)->iobase + SD_TIMEOUT)
148 #define HOST_DEBUG(h) ((h)->iobase + SD_DEBUG)
149
150 #define DMA_CHANNEL(h) \
151 (((h)->flags & HOST_F_XMIT) ? (h)->tx_chan : (h)->rx_chan)
152
has_dbdma(void)153 static inline int has_dbdma(void)
154 {
155 switch (alchemy_get_cputype()) {
156 case ALCHEMY_CPU_AU1200:
157 case ALCHEMY_CPU_AU1300:
158 return 1;
159 default:
160 return 0;
161 }
162 }
163
IRQ_ON(struct au1xmmc_host * host,u32 mask)164 static inline void IRQ_ON(struct au1xmmc_host *host, u32 mask)
165 {
166 u32 val = __raw_readl(HOST_CONFIG(host));
167 val |= mask;
168 __raw_writel(val, HOST_CONFIG(host));
169 wmb(); /* drain writebuffer */
170 }
171
FLUSH_FIFO(struct au1xmmc_host * host)172 static inline void FLUSH_FIFO(struct au1xmmc_host *host)
173 {
174 u32 val = __raw_readl(HOST_CONFIG2(host));
175
176 __raw_writel(val | SD_CONFIG2_FF, HOST_CONFIG2(host));
177 wmb(); /* drain writebuffer */
178 mdelay(1);
179
180 /* SEND_STOP will turn off clock control - this re-enables it */
181 val &= ~SD_CONFIG2_DF;
182
183 __raw_writel(val, HOST_CONFIG2(host));
184 wmb(); /* drain writebuffer */
185 }
186
IRQ_OFF(struct au1xmmc_host * host,u32 mask)187 static inline void IRQ_OFF(struct au1xmmc_host *host, u32 mask)
188 {
189 u32 val = __raw_readl(HOST_CONFIG(host));
190 val &= ~mask;
191 __raw_writel(val, HOST_CONFIG(host));
192 wmb(); /* drain writebuffer */
193 }
194
SEND_STOP(struct au1xmmc_host * host)195 static inline void SEND_STOP(struct au1xmmc_host *host)
196 {
197 u32 config2;
198
199 WARN_ON(host->status != HOST_S_DATA);
200 host->status = HOST_S_STOP;
201
202 config2 = __raw_readl(HOST_CONFIG2(host));
203 __raw_writel(config2 | SD_CONFIG2_DF, HOST_CONFIG2(host));
204 wmb(); /* drain writebuffer */
205
206 /* Send the stop command */
207 __raw_writel(STOP_CMD, HOST_CMD(host));
208 wmb(); /* drain writebuffer */
209 }
210
au1xmmc_set_power(struct au1xmmc_host * host,int state)211 static void au1xmmc_set_power(struct au1xmmc_host *host, int state)
212 {
213 if (host->platdata && host->platdata->set_power)
214 host->platdata->set_power(host->mmc, state);
215 }
216
au1xmmc_card_inserted(struct mmc_host * mmc)217 static int au1xmmc_card_inserted(struct mmc_host *mmc)
218 {
219 struct au1xmmc_host *host = mmc_priv(mmc);
220
221 if (host->platdata && host->platdata->card_inserted)
222 return !!host->platdata->card_inserted(host->mmc);
223
224 return -ENOSYS;
225 }
226
au1xmmc_card_readonly(struct mmc_host * mmc)227 static int au1xmmc_card_readonly(struct mmc_host *mmc)
228 {
229 struct au1xmmc_host *host = mmc_priv(mmc);
230
231 if (host->platdata && host->platdata->card_readonly)
232 return !!host->platdata->card_readonly(mmc);
233
234 return -ENOSYS;
235 }
236
au1xmmc_finish_request(struct au1xmmc_host * host)237 static void au1xmmc_finish_request(struct au1xmmc_host *host)
238 {
239 struct mmc_request *mrq = host->mrq;
240
241 host->mrq = NULL;
242 host->flags &= HOST_F_ACTIVE | HOST_F_DMA;
243
244 host->dma.len = 0;
245 host->dma.dir = 0;
246
247 host->pio.index = 0;
248 host->pio.offset = 0;
249 host->pio.len = 0;
250
251 host->status = HOST_S_IDLE;
252
253 mmc_request_done(host->mmc, mrq);
254 }
255
au1xmmc_tasklet_finish(struct tasklet_struct * t)256 static void au1xmmc_tasklet_finish(struct tasklet_struct *t)
257 {
258 struct au1xmmc_host *host = from_tasklet(host, t, finish_task);
259 au1xmmc_finish_request(host);
260 }
261
au1xmmc_send_command(struct au1xmmc_host * host,struct mmc_command * cmd,struct mmc_data * data)262 static int au1xmmc_send_command(struct au1xmmc_host *host,
263 struct mmc_command *cmd, struct mmc_data *data)
264 {
265 u32 mmccmd = (cmd->opcode << SD_CMD_CI_SHIFT);
266
267 switch (mmc_resp_type(cmd)) {
268 case MMC_RSP_NONE:
269 break;
270 case MMC_RSP_R1:
271 mmccmd |= SD_CMD_RT_1;
272 break;
273 case MMC_RSP_R1B:
274 mmccmd |= SD_CMD_RT_1B;
275 break;
276 case MMC_RSP_R2:
277 mmccmd |= SD_CMD_RT_2;
278 break;
279 case MMC_RSP_R3:
280 mmccmd |= SD_CMD_RT_3;
281 break;
282 default:
283 pr_info("au1xmmc: unhandled response type %02x\n",
284 mmc_resp_type(cmd));
285 return -EINVAL;
286 }
287
288 if (data) {
289 if (data->flags & MMC_DATA_READ) {
290 if (data->blocks > 1)
291 mmccmd |= SD_CMD_CT_4;
292 else
293 mmccmd |= SD_CMD_CT_2;
294 } else if (data->flags & MMC_DATA_WRITE) {
295 if (data->blocks > 1)
296 mmccmd |= SD_CMD_CT_3;
297 else
298 mmccmd |= SD_CMD_CT_1;
299 }
300 }
301
302 __raw_writel(cmd->arg, HOST_CMDARG(host));
303 wmb(); /* drain writebuffer */
304
305 __raw_writel((mmccmd | SD_CMD_GO), HOST_CMD(host));
306 wmb(); /* drain writebuffer */
307
308 /* Wait for the command to go on the line */
309 while (__raw_readl(HOST_CMD(host)) & SD_CMD_GO)
310 /* nop */;
311
312 return 0;
313 }
314
au1xmmc_data_complete(struct au1xmmc_host * host,u32 status)315 static void au1xmmc_data_complete(struct au1xmmc_host *host, u32 status)
316 {
317 struct mmc_request *mrq = host->mrq;
318 struct mmc_data *data;
319 u32 crc;
320
321 WARN_ON((host->status != HOST_S_DATA) && (host->status != HOST_S_STOP));
322
323 if (host->mrq == NULL)
324 return;
325
326 data = mrq->cmd->data;
327
328 if (status == 0)
329 status = __raw_readl(HOST_STATUS(host));
330
331 /* The transaction is really over when the SD_STATUS_DB bit is clear */
332 while ((host->flags & HOST_F_XMIT) && (status & SD_STATUS_DB))
333 status = __raw_readl(HOST_STATUS(host));
334
335 data->error = 0;
336 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir);
337
338 /* Process any errors */
339 crc = (status & (SD_STATUS_WC | SD_STATUS_RC));
340 if (host->flags & HOST_F_XMIT)
341 crc |= ((status & 0x07) == 0x02) ? 0 : 1;
342
343 if (crc)
344 data->error = -EILSEQ;
345
346 /* Clear the CRC bits */
347 __raw_writel(SD_STATUS_WC | SD_STATUS_RC, HOST_STATUS(host));
348
349 data->bytes_xfered = 0;
350
351 if (!data->error) {
352 if (host->flags & (HOST_F_DMA | HOST_F_DBDMA)) {
353 u32 chan = DMA_CHANNEL(host);
354
355 chan_tab_t *c = *((chan_tab_t **)chan);
356 au1x_dma_chan_t *cp = c->chan_ptr;
357 data->bytes_xfered = cp->ddma_bytecnt;
358 } else
359 data->bytes_xfered =
360 (data->blocks * data->blksz) - host->pio.len;
361 }
362
363 au1xmmc_finish_request(host);
364 }
365
au1xmmc_tasklet_data(struct tasklet_struct * t)366 static void au1xmmc_tasklet_data(struct tasklet_struct *t)
367 {
368 struct au1xmmc_host *host = from_tasklet(host, t, data_task);
369
370 u32 status = __raw_readl(HOST_STATUS(host));
371 au1xmmc_data_complete(host, status);
372 }
373
374 #define AU1XMMC_MAX_TRANSFER 8
375
au1xmmc_send_pio(struct au1xmmc_host * host)376 static void au1xmmc_send_pio(struct au1xmmc_host *host)
377 {
378 struct mmc_data *data;
379 int sg_len, max, count;
380 unsigned char *sg_ptr, val;
381 u32 status;
382 struct scatterlist *sg;
383
384 data = host->mrq->data;
385
386 if (!(host->flags & HOST_F_XMIT))
387 return;
388
389 /* This is the pointer to the data buffer */
390 sg = &data->sg[host->pio.index];
391 sg_ptr = kmap_atomic(sg_page(sg)) + sg->offset + host->pio.offset;
392
393 /* This is the space left inside the buffer */
394 sg_len = data->sg[host->pio.index].length - host->pio.offset;
395
396 /* Check if we need less than the size of the sg_buffer */
397 max = (sg_len > host->pio.len) ? host->pio.len : sg_len;
398 if (max > AU1XMMC_MAX_TRANSFER)
399 max = AU1XMMC_MAX_TRANSFER;
400
401 for (count = 0; count < max; count++) {
402 status = __raw_readl(HOST_STATUS(host));
403
404 if (!(status & SD_STATUS_TH))
405 break;
406
407 val = sg_ptr[count];
408
409 __raw_writel((unsigned long)val, HOST_TXPORT(host));
410 wmb(); /* drain writebuffer */
411 }
412 kunmap_atomic(sg_ptr);
413
414 host->pio.len -= count;
415 host->pio.offset += count;
416
417 if (count == sg_len) {
418 host->pio.index++;
419 host->pio.offset = 0;
420 }
421
422 if (host->pio.len == 0) {
423 IRQ_OFF(host, SD_CONFIG_TH);
424
425 if (host->flags & HOST_F_STOP)
426 SEND_STOP(host);
427
428 tasklet_schedule(&host->data_task);
429 }
430 }
431
au1xmmc_receive_pio(struct au1xmmc_host * host)432 static void au1xmmc_receive_pio(struct au1xmmc_host *host)
433 {
434 struct mmc_data *data;
435 int max, count, sg_len = 0;
436 unsigned char *sg_ptr = NULL;
437 u32 status, val;
438 struct scatterlist *sg;
439
440 data = host->mrq->data;
441
442 if (!(host->flags & HOST_F_RECV))
443 return;
444
445 max = host->pio.len;
446
447 if (host->pio.index < host->dma.len) {
448 sg = &data->sg[host->pio.index];
449 sg_ptr = kmap_atomic(sg_page(sg)) + sg->offset + host->pio.offset;
450
451 /* This is the space left inside the buffer */
452 sg_len = sg_dma_len(&data->sg[host->pio.index]) - host->pio.offset;
453
454 /* Check if we need less than the size of the sg_buffer */
455 if (sg_len < max)
456 max = sg_len;
457 }
458
459 if (max > AU1XMMC_MAX_TRANSFER)
460 max = AU1XMMC_MAX_TRANSFER;
461
462 for (count = 0; count < max; count++) {
463 status = __raw_readl(HOST_STATUS(host));
464
465 if (!(status & SD_STATUS_NE))
466 break;
467
468 if (status & SD_STATUS_RC) {
469 DBG("RX CRC Error [%d + %d].\n", host->pdev->id,
470 host->pio.len, count);
471 break;
472 }
473
474 if (status & SD_STATUS_RO) {
475 DBG("RX Overrun [%d + %d]\n", host->pdev->id,
476 host->pio.len, count);
477 break;
478 }
479 else if (status & SD_STATUS_RU) {
480 DBG("RX Underrun [%d + %d]\n", host->pdev->id,
481 host->pio.len, count);
482 break;
483 }
484
485 val = __raw_readl(HOST_RXPORT(host));
486
487 if (sg_ptr)
488 sg_ptr[count] = (unsigned char)(val & 0xFF);
489 }
490 if (sg_ptr)
491 kunmap_atomic(sg_ptr);
492
493 host->pio.len -= count;
494 host->pio.offset += count;
495
496 if (sg_len && count == sg_len) {
497 host->pio.index++;
498 host->pio.offset = 0;
499 }
500
501 if (host->pio.len == 0) {
502 /* IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF); */
503 IRQ_OFF(host, SD_CONFIG_NE);
504
505 if (host->flags & HOST_F_STOP)
506 SEND_STOP(host);
507
508 tasklet_schedule(&host->data_task);
509 }
510 }
511
512 /* This is called when a command has been completed - grab the response
513 * and check for errors. Then start the data transfer if it is indicated.
514 */
au1xmmc_cmd_complete(struct au1xmmc_host * host,u32 status)515 static void au1xmmc_cmd_complete(struct au1xmmc_host *host, u32 status)
516 {
517 struct mmc_request *mrq = host->mrq;
518 struct mmc_command *cmd;
519 u32 r[4];
520 int i, trans;
521
522 if (!host->mrq)
523 return;
524
525 cmd = mrq->cmd;
526 cmd->error = 0;
527
528 if (cmd->flags & MMC_RSP_PRESENT) {
529 if (cmd->flags & MMC_RSP_136) {
530 r[0] = __raw_readl(host->iobase + SD_RESP3);
531 r[1] = __raw_readl(host->iobase + SD_RESP2);
532 r[2] = __raw_readl(host->iobase + SD_RESP1);
533 r[3] = __raw_readl(host->iobase + SD_RESP0);
534
535 /* The CRC is omitted from the response, so really
536 * we only got 120 bytes, but the engine expects
537 * 128 bits, so we have to shift things up.
538 */
539 for (i = 0; i < 4; i++) {
540 cmd->resp[i] = (r[i] & 0x00FFFFFF) << 8;
541 if (i != 3)
542 cmd->resp[i] |= (r[i + 1] & 0xFF000000) >> 24;
543 }
544 } else {
545 /* Techincally, we should be getting all 48 bits of
546 * the response (SD_RESP1 + SD_RESP2), but because
547 * our response omits the CRC, our data ends up
548 * being shifted 8 bits to the right. In this case,
549 * that means that the OSR data starts at bit 31,
550 * so we can just read RESP0 and return that.
551 */
552 cmd->resp[0] = __raw_readl(host->iobase + SD_RESP0);
553 }
554 }
555
556 /* Figure out errors */
557 if (status & (SD_STATUS_SC | SD_STATUS_WC | SD_STATUS_RC))
558 cmd->error = -EILSEQ;
559
560 trans = host->flags & (HOST_F_XMIT | HOST_F_RECV);
561
562 if (!trans || cmd->error) {
563 IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA | SD_CONFIG_RF);
564 tasklet_schedule(&host->finish_task);
565 return;
566 }
567
568 host->status = HOST_S_DATA;
569
570 if ((host->flags & (HOST_F_DMA | HOST_F_DBDMA))) {
571 u32 channel = DMA_CHANNEL(host);
572
573 /* Start the DBDMA as soon as the buffer gets something in it */
574
575 if (host->flags & HOST_F_RECV) {
576 u32 mask = SD_STATUS_DB | SD_STATUS_NE;
577
578 while((status & mask) != mask)
579 status = __raw_readl(HOST_STATUS(host));
580 }
581
582 au1xxx_dbdma_start(channel);
583 }
584 }
585
au1xmmc_set_clock(struct au1xmmc_host * host,int rate)586 static void au1xmmc_set_clock(struct au1xmmc_host *host, int rate)
587 {
588 unsigned int pbus = clk_get_rate(host->clk);
589 unsigned int divisor = ((pbus / rate) / 2) - 1;
590 u32 config;
591
592 config = __raw_readl(HOST_CONFIG(host));
593
594 config &= ~(SD_CONFIG_DIV);
595 config |= (divisor & SD_CONFIG_DIV) | SD_CONFIG_DE;
596
597 __raw_writel(config, HOST_CONFIG(host));
598 wmb(); /* drain writebuffer */
599 }
600
au1xmmc_prepare_data(struct au1xmmc_host * host,struct mmc_data * data)601 static int au1xmmc_prepare_data(struct au1xmmc_host *host,
602 struct mmc_data *data)
603 {
604 int datalen = data->blocks * data->blksz;
605
606 if (data->flags & MMC_DATA_READ)
607 host->flags |= HOST_F_RECV;
608 else
609 host->flags |= HOST_F_XMIT;
610
611 if (host->mrq->stop)
612 host->flags |= HOST_F_STOP;
613
614 host->dma.dir = DMA_BIDIRECTIONAL;
615
616 host->dma.len = dma_map_sg(mmc_dev(host->mmc), data->sg,
617 data->sg_len, host->dma.dir);
618
619 if (host->dma.len == 0)
620 return -ETIMEDOUT;
621
622 __raw_writel(data->blksz - 1, HOST_BLKSIZE(host));
623
624 if (host->flags & (HOST_F_DMA | HOST_F_DBDMA)) {
625 int i;
626 u32 channel = DMA_CHANNEL(host);
627
628 au1xxx_dbdma_stop(channel);
629
630 for (i = 0; i < host->dma.len; i++) {
631 u32 ret = 0, flags = DDMA_FLAGS_NOIE;
632 struct scatterlist *sg = &data->sg[i];
633 int sg_len = sg->length;
634
635 int len = (datalen > sg_len) ? sg_len : datalen;
636
637 if (i == host->dma.len - 1)
638 flags = DDMA_FLAGS_IE;
639
640 if (host->flags & HOST_F_XMIT) {
641 ret = au1xxx_dbdma_put_source(channel,
642 sg_phys(sg), len, flags);
643 } else {
644 ret = au1xxx_dbdma_put_dest(channel,
645 sg_phys(sg), len, flags);
646 }
647
648 if (!ret)
649 goto dataerr;
650
651 datalen -= len;
652 }
653 } else {
654 host->pio.index = 0;
655 host->pio.offset = 0;
656 host->pio.len = datalen;
657
658 if (host->flags & HOST_F_XMIT)
659 IRQ_ON(host, SD_CONFIG_TH);
660 else
661 IRQ_ON(host, SD_CONFIG_NE);
662 /* IRQ_ON(host, SD_CONFIG_RA | SD_CONFIG_RF); */
663 }
664
665 return 0;
666
667 dataerr:
668 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
669 host->dma.dir);
670 return -ETIMEDOUT;
671 }
672
673 /* This actually starts a command or data transaction */
au1xmmc_request(struct mmc_host * mmc,struct mmc_request * mrq)674 static void au1xmmc_request(struct mmc_host* mmc, struct mmc_request* mrq)
675 {
676 struct au1xmmc_host *host = mmc_priv(mmc);
677 int ret = 0;
678
679 WARN_ON(irqs_disabled());
680 WARN_ON(host->status != HOST_S_IDLE);
681
682 host->mrq = mrq;
683 host->status = HOST_S_CMD;
684
685 /* fail request immediately if no card is present */
686 if (0 == au1xmmc_card_inserted(mmc)) {
687 mrq->cmd->error = -ENOMEDIUM;
688 au1xmmc_finish_request(host);
689 return;
690 }
691
692 if (mrq->data) {
693 FLUSH_FIFO(host);
694 ret = au1xmmc_prepare_data(host, mrq->data);
695 }
696
697 if (!ret)
698 ret = au1xmmc_send_command(host, mrq->cmd, mrq->data);
699
700 if (ret) {
701 mrq->cmd->error = ret;
702 au1xmmc_finish_request(host);
703 }
704 }
705
au1xmmc_reset_controller(struct au1xmmc_host * host)706 static void au1xmmc_reset_controller(struct au1xmmc_host *host)
707 {
708 /* Apply the clock */
709 __raw_writel(SD_ENABLE_CE, HOST_ENABLE(host));
710 wmb(); /* drain writebuffer */
711 mdelay(1);
712
713 __raw_writel(SD_ENABLE_R | SD_ENABLE_CE, HOST_ENABLE(host));
714 wmb(); /* drain writebuffer */
715 mdelay(5);
716
717 __raw_writel(~0, HOST_STATUS(host));
718 wmb(); /* drain writebuffer */
719
720 __raw_writel(0, HOST_BLKSIZE(host));
721 __raw_writel(0x001fffff, HOST_TIMEOUT(host));
722 wmb(); /* drain writebuffer */
723
724 __raw_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
725 wmb(); /* drain writebuffer */
726
727 __raw_writel(SD_CONFIG2_EN | SD_CONFIG2_FF, HOST_CONFIG2(host));
728 wmb(); /* drain writebuffer */
729 mdelay(1);
730
731 __raw_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
732 wmb(); /* drain writebuffer */
733
734 /* Configure interrupts */
735 __raw_writel(AU1XMMC_INTERRUPTS, HOST_CONFIG(host));
736 wmb(); /* drain writebuffer */
737 }
738
739
au1xmmc_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)740 static void au1xmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
741 {
742 struct au1xmmc_host *host = mmc_priv(mmc);
743 u32 config2;
744
745 if (ios->power_mode == MMC_POWER_OFF)
746 au1xmmc_set_power(host, 0);
747 else if (ios->power_mode == MMC_POWER_ON) {
748 au1xmmc_set_power(host, 1);
749 }
750
751 if (ios->clock && ios->clock != host->clock) {
752 au1xmmc_set_clock(host, ios->clock);
753 host->clock = ios->clock;
754 }
755
756 config2 = __raw_readl(HOST_CONFIG2(host));
757 switch (ios->bus_width) {
758 case MMC_BUS_WIDTH_8:
759 config2 |= SD_CONFIG2_BB;
760 break;
761 case MMC_BUS_WIDTH_4:
762 config2 &= ~SD_CONFIG2_BB;
763 config2 |= SD_CONFIG2_WB;
764 break;
765 case MMC_BUS_WIDTH_1:
766 config2 &= ~(SD_CONFIG2_WB | SD_CONFIG2_BB);
767 break;
768 }
769 __raw_writel(config2, HOST_CONFIG2(host));
770 wmb(); /* drain writebuffer */
771 }
772
773 #define STATUS_TIMEOUT (SD_STATUS_RAT | SD_STATUS_DT)
774 #define STATUS_DATA_IN (SD_STATUS_NE)
775 #define STATUS_DATA_OUT (SD_STATUS_TH)
776
au1xmmc_irq(int irq,void * dev_id)777 static irqreturn_t au1xmmc_irq(int irq, void *dev_id)
778 {
779 struct au1xmmc_host *host = dev_id;
780 u32 status;
781
782 status = __raw_readl(HOST_STATUS(host));
783
784 if (!(status & SD_STATUS_I))
785 return IRQ_NONE; /* not ours */
786
787 if (status & SD_STATUS_SI) /* SDIO */
788 mmc_signal_sdio_irq(host->mmc);
789
790 if (host->mrq && (status & STATUS_TIMEOUT)) {
791 if (status & SD_STATUS_RAT)
792 host->mrq->cmd->error = -ETIMEDOUT;
793 else if (status & SD_STATUS_DT)
794 host->mrq->data->error = -ETIMEDOUT;
795
796 /* In PIO mode, interrupts might still be enabled */
797 IRQ_OFF(host, SD_CONFIG_NE | SD_CONFIG_TH);
798
799 /* IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA | SD_CONFIG_RF); */
800 tasklet_schedule(&host->finish_task);
801 }
802 #if 0
803 else if (status & SD_STATUS_DD) {
804 /* Sometimes we get a DD before a NE in PIO mode */
805 if (!(host->flags & HOST_F_DMA) && (status & SD_STATUS_NE))
806 au1xmmc_receive_pio(host);
807 else {
808 au1xmmc_data_complete(host, status);
809 /* tasklet_schedule(&host->data_task); */
810 }
811 }
812 #endif
813 else if (status & SD_STATUS_CR) {
814 if (host->status == HOST_S_CMD)
815 au1xmmc_cmd_complete(host, status);
816
817 } else if (!(host->flags & HOST_F_DMA)) {
818 if ((host->flags & HOST_F_XMIT) && (status & STATUS_DATA_OUT))
819 au1xmmc_send_pio(host);
820 else if ((host->flags & HOST_F_RECV) && (status & STATUS_DATA_IN))
821 au1xmmc_receive_pio(host);
822
823 } else if (status & 0x203F3C70) {
824 DBG("Unhandled status %8.8x\n", host->pdev->id,
825 status);
826 }
827
828 __raw_writel(status, HOST_STATUS(host));
829 wmb(); /* drain writebuffer */
830
831 return IRQ_HANDLED;
832 }
833
834 /* 8bit memory DMA device */
835 static dbdev_tab_t au1xmmc_mem_dbdev = {
836 .dev_id = DSCR_CMD0_ALWAYS,
837 .dev_flags = DEV_FLAGS_ANYUSE,
838 .dev_tsize = 0,
839 .dev_devwidth = 8,
840 .dev_physaddr = 0x00000000,
841 .dev_intlevel = 0,
842 .dev_intpolarity = 0,
843 };
844 static int memid;
845
au1xmmc_dbdma_callback(int irq,void * dev_id)846 static void au1xmmc_dbdma_callback(int irq, void *dev_id)
847 {
848 struct au1xmmc_host *host = (struct au1xmmc_host *)dev_id;
849
850 /* Avoid spurious interrupts */
851 if (!host->mrq)
852 return;
853
854 if (host->flags & HOST_F_STOP)
855 SEND_STOP(host);
856
857 tasklet_schedule(&host->data_task);
858 }
859
au1xmmc_dbdma_init(struct au1xmmc_host * host)860 static int au1xmmc_dbdma_init(struct au1xmmc_host *host)
861 {
862 struct resource *res;
863 int txid, rxid;
864
865 res = platform_get_resource(host->pdev, IORESOURCE_DMA, 0);
866 if (!res)
867 return -ENODEV;
868 txid = res->start;
869
870 res = platform_get_resource(host->pdev, IORESOURCE_DMA, 1);
871 if (!res)
872 return -ENODEV;
873 rxid = res->start;
874
875 if (!memid)
876 return -ENODEV;
877
878 host->tx_chan = au1xxx_dbdma_chan_alloc(memid, txid,
879 au1xmmc_dbdma_callback, (void *)host);
880 if (!host->tx_chan) {
881 dev_err(&host->pdev->dev, "cannot allocate TX DMA\n");
882 return -ENODEV;
883 }
884
885 host->rx_chan = au1xxx_dbdma_chan_alloc(rxid, memid,
886 au1xmmc_dbdma_callback, (void *)host);
887 if (!host->rx_chan) {
888 dev_err(&host->pdev->dev, "cannot allocate RX DMA\n");
889 au1xxx_dbdma_chan_free(host->tx_chan);
890 return -ENODEV;
891 }
892
893 au1xxx_dbdma_set_devwidth(host->tx_chan, 8);
894 au1xxx_dbdma_set_devwidth(host->rx_chan, 8);
895
896 au1xxx_dbdma_ring_alloc(host->tx_chan, AU1XMMC_DESCRIPTOR_COUNT);
897 au1xxx_dbdma_ring_alloc(host->rx_chan, AU1XMMC_DESCRIPTOR_COUNT);
898
899 /* DBDMA is good to go */
900 host->flags |= HOST_F_DMA | HOST_F_DBDMA;
901
902 return 0;
903 }
904
au1xmmc_dbdma_shutdown(struct au1xmmc_host * host)905 static void au1xmmc_dbdma_shutdown(struct au1xmmc_host *host)
906 {
907 if (host->flags & HOST_F_DMA) {
908 host->flags &= ~HOST_F_DMA;
909 au1xxx_dbdma_chan_free(host->tx_chan);
910 au1xxx_dbdma_chan_free(host->rx_chan);
911 }
912 }
913
au1xmmc_enable_sdio_irq(struct mmc_host * mmc,int en)914 static void au1xmmc_enable_sdio_irq(struct mmc_host *mmc, int en)
915 {
916 struct au1xmmc_host *host = mmc_priv(mmc);
917
918 if (en)
919 IRQ_ON(host, SD_CONFIG_SI);
920 else
921 IRQ_OFF(host, SD_CONFIG_SI);
922 }
923
924 static const struct mmc_host_ops au1xmmc_ops = {
925 .request = au1xmmc_request,
926 .set_ios = au1xmmc_set_ios,
927 .get_ro = au1xmmc_card_readonly,
928 .get_cd = au1xmmc_card_inserted,
929 .enable_sdio_irq = au1xmmc_enable_sdio_irq,
930 };
931
au1xmmc_probe(struct platform_device * pdev)932 static int au1xmmc_probe(struct platform_device *pdev)
933 {
934 struct mmc_host *mmc;
935 struct au1xmmc_host *host;
936 struct resource *r;
937 int ret, iflag;
938
939 mmc = mmc_alloc_host(sizeof(struct au1xmmc_host), &pdev->dev);
940 if (!mmc) {
941 dev_err(&pdev->dev, "no memory for mmc_host\n");
942 ret = -ENOMEM;
943 goto out0;
944 }
945
946 host = mmc_priv(mmc);
947 host->mmc = mmc;
948 host->platdata = pdev->dev.platform_data;
949 host->pdev = pdev;
950
951 ret = -ENODEV;
952 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
953 if (!r) {
954 dev_err(&pdev->dev, "no mmio defined\n");
955 goto out1;
956 }
957
958 host->ioarea = request_mem_region(r->start, resource_size(r),
959 pdev->name);
960 if (!host->ioarea) {
961 dev_err(&pdev->dev, "mmio already in use\n");
962 goto out1;
963 }
964
965 host->iobase = ioremap(r->start, 0x3c);
966 if (!host->iobase) {
967 dev_err(&pdev->dev, "cannot remap mmio\n");
968 goto out2;
969 }
970
971 host->irq = platform_get_irq(pdev, 0);
972 if (host->irq < 0) {
973 ret = host->irq;
974 goto out3;
975 }
976
977 mmc->ops = &au1xmmc_ops;
978
979 mmc->f_min = 450000;
980 mmc->f_max = 24000000;
981
982 mmc->max_blk_size = 2048;
983 mmc->max_blk_count = 512;
984
985 mmc->ocr_avail = AU1XMMC_OCR;
986 mmc->caps = MMC_CAP_4_BIT_DATA | MMC_CAP_SDIO_IRQ;
987 mmc->max_segs = AU1XMMC_DESCRIPTOR_COUNT;
988
989 iflag = IRQF_SHARED; /* Au1100/Au1200: one int for both ctrls */
990
991 switch (alchemy_get_cputype()) {
992 case ALCHEMY_CPU_AU1100:
993 mmc->max_seg_size = AU1100_MMC_DESCRIPTOR_SIZE;
994 break;
995 case ALCHEMY_CPU_AU1200:
996 mmc->max_seg_size = AU1200_MMC_DESCRIPTOR_SIZE;
997 break;
998 case ALCHEMY_CPU_AU1300:
999 iflag = 0; /* nothing is shared */
1000 mmc->max_seg_size = AU1200_MMC_DESCRIPTOR_SIZE;
1001 mmc->f_max = 52000000;
1002 if (host->ioarea->start == AU1100_SD0_PHYS_ADDR)
1003 mmc->caps |= MMC_CAP_8_BIT_DATA;
1004 break;
1005 }
1006
1007 ret = request_irq(host->irq, au1xmmc_irq, iflag, DRIVER_NAME, host);
1008 if (ret) {
1009 dev_err(&pdev->dev, "cannot grab IRQ\n");
1010 goto out3;
1011 }
1012
1013 host->clk = clk_get(&pdev->dev, ALCHEMY_PERIPH_CLK);
1014 if (IS_ERR(host->clk)) {
1015 dev_err(&pdev->dev, "cannot find clock\n");
1016 ret = PTR_ERR(host->clk);
1017 goto out_irq;
1018 }
1019
1020 ret = clk_prepare_enable(host->clk);
1021 if (ret) {
1022 dev_err(&pdev->dev, "cannot enable clock\n");
1023 goto out_clk;
1024 }
1025
1026 host->status = HOST_S_IDLE;
1027
1028 /* board-specific carddetect setup, if any */
1029 if (host->platdata && host->platdata->cd_setup) {
1030 ret = host->platdata->cd_setup(mmc, 1);
1031 if (ret) {
1032 dev_warn(&pdev->dev, "board CD setup failed\n");
1033 mmc->caps |= MMC_CAP_NEEDS_POLL;
1034 }
1035 } else
1036 mmc->caps |= MMC_CAP_NEEDS_POLL;
1037
1038 /* platform may not be able to use all advertised caps */
1039 if (host->platdata)
1040 mmc->caps &= ~(host->platdata->mask_host_caps);
1041
1042 tasklet_setup(&host->data_task, au1xmmc_tasklet_data);
1043
1044 tasklet_setup(&host->finish_task, au1xmmc_tasklet_finish);
1045
1046 if (has_dbdma()) {
1047 ret = au1xmmc_dbdma_init(host);
1048 if (ret)
1049 pr_info(DRIVER_NAME ": DBDMA init failed; using PIO\n");
1050 }
1051
1052 #ifdef CONFIG_LEDS_CLASS
1053 if (host->platdata && host->platdata->led) {
1054 struct led_classdev *led = host->platdata->led;
1055 led->name = mmc_hostname(mmc);
1056 led->brightness = LED_OFF;
1057 led->default_trigger = mmc_hostname(mmc);
1058 ret = led_classdev_register(mmc_dev(mmc), led);
1059 if (ret)
1060 goto out5;
1061 }
1062 #endif
1063
1064 au1xmmc_reset_controller(host);
1065
1066 ret = mmc_add_host(mmc);
1067 if (ret) {
1068 dev_err(&pdev->dev, "cannot add mmc host\n");
1069 goto out6;
1070 }
1071
1072 platform_set_drvdata(pdev, host);
1073
1074 pr_info(DRIVER_NAME ": MMC Controller %d set up at %p"
1075 " (mode=%s)\n", pdev->id, host->iobase,
1076 host->flags & HOST_F_DMA ? "dma" : "pio");
1077
1078 return 0; /* all ok */
1079
1080 out6:
1081 #ifdef CONFIG_LEDS_CLASS
1082 if (host->platdata && host->platdata->led)
1083 led_classdev_unregister(host->platdata->led);
1084 out5:
1085 #endif
1086 __raw_writel(0, HOST_ENABLE(host));
1087 __raw_writel(0, HOST_CONFIG(host));
1088 __raw_writel(0, HOST_CONFIG2(host));
1089 wmb(); /* drain writebuffer */
1090
1091 if (host->flags & HOST_F_DBDMA)
1092 au1xmmc_dbdma_shutdown(host);
1093
1094 tasklet_kill(&host->data_task);
1095 tasklet_kill(&host->finish_task);
1096
1097 if (host->platdata && host->platdata->cd_setup &&
1098 !(mmc->caps & MMC_CAP_NEEDS_POLL))
1099 host->platdata->cd_setup(mmc, 0);
1100
1101 clk_disable_unprepare(host->clk);
1102 out_clk:
1103 clk_put(host->clk);
1104 out_irq:
1105 free_irq(host->irq, host);
1106 out3:
1107 iounmap((void *)host->iobase);
1108 out2:
1109 release_resource(host->ioarea);
1110 kfree(host->ioarea);
1111 out1:
1112 mmc_free_host(mmc);
1113 out0:
1114 return ret;
1115 }
1116
au1xmmc_remove(struct platform_device * pdev)1117 static int au1xmmc_remove(struct platform_device *pdev)
1118 {
1119 struct au1xmmc_host *host = platform_get_drvdata(pdev);
1120
1121 if (host) {
1122 mmc_remove_host(host->mmc);
1123
1124 #ifdef CONFIG_LEDS_CLASS
1125 if (host->platdata && host->platdata->led)
1126 led_classdev_unregister(host->platdata->led);
1127 #endif
1128
1129 if (host->platdata && host->platdata->cd_setup &&
1130 !(host->mmc->caps & MMC_CAP_NEEDS_POLL))
1131 host->platdata->cd_setup(host->mmc, 0);
1132
1133 __raw_writel(0, HOST_ENABLE(host));
1134 __raw_writel(0, HOST_CONFIG(host));
1135 __raw_writel(0, HOST_CONFIG2(host));
1136 wmb(); /* drain writebuffer */
1137
1138 tasklet_kill(&host->data_task);
1139 tasklet_kill(&host->finish_task);
1140
1141 if (host->flags & HOST_F_DBDMA)
1142 au1xmmc_dbdma_shutdown(host);
1143
1144 au1xmmc_set_power(host, 0);
1145
1146 clk_disable_unprepare(host->clk);
1147 clk_put(host->clk);
1148
1149 free_irq(host->irq, host);
1150 iounmap((void *)host->iobase);
1151 release_resource(host->ioarea);
1152 kfree(host->ioarea);
1153
1154 mmc_free_host(host->mmc);
1155 }
1156 return 0;
1157 }
1158
1159 #ifdef CONFIG_PM
au1xmmc_suspend(struct platform_device * pdev,pm_message_t state)1160 static int au1xmmc_suspend(struct platform_device *pdev, pm_message_t state)
1161 {
1162 struct au1xmmc_host *host = platform_get_drvdata(pdev);
1163
1164 __raw_writel(0, HOST_CONFIG2(host));
1165 __raw_writel(0, HOST_CONFIG(host));
1166 __raw_writel(0xffffffff, HOST_STATUS(host));
1167 __raw_writel(0, HOST_ENABLE(host));
1168 wmb(); /* drain writebuffer */
1169
1170 return 0;
1171 }
1172
au1xmmc_resume(struct platform_device * pdev)1173 static int au1xmmc_resume(struct platform_device *pdev)
1174 {
1175 struct au1xmmc_host *host = platform_get_drvdata(pdev);
1176
1177 au1xmmc_reset_controller(host);
1178
1179 return 0;
1180 }
1181 #else
1182 #define au1xmmc_suspend NULL
1183 #define au1xmmc_resume NULL
1184 #endif
1185
1186 static struct platform_driver au1xmmc_driver = {
1187 .probe = au1xmmc_probe,
1188 .remove = au1xmmc_remove,
1189 .suspend = au1xmmc_suspend,
1190 .resume = au1xmmc_resume,
1191 .driver = {
1192 .name = DRIVER_NAME,
1193 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1194 },
1195 };
1196
au1xmmc_init(void)1197 static int __init au1xmmc_init(void)
1198 {
1199 if (has_dbdma()) {
1200 /* DSCR_CMD0_ALWAYS has a stride of 32 bits, we need a stride
1201 * of 8 bits. And since devices are shared, we need to create
1202 * our own to avoid freaking out other devices.
1203 */
1204 memid = au1xxx_ddma_add_device(&au1xmmc_mem_dbdev);
1205 if (!memid)
1206 pr_err("au1xmmc: cannot add memory dbdma\n");
1207 }
1208 return platform_driver_register(&au1xmmc_driver);
1209 }
1210
au1xmmc_exit(void)1211 static void __exit au1xmmc_exit(void)
1212 {
1213 if (has_dbdma() && memid)
1214 au1xxx_ddma_del_device(memid);
1215
1216 platform_driver_unregister(&au1xmmc_driver);
1217 }
1218
1219 module_init(au1xmmc_init);
1220 module_exit(au1xmmc_exit);
1221
1222 MODULE_AUTHOR("Advanced Micro Devices, Inc");
1223 MODULE_DESCRIPTION("MMC/SD driver for the Alchemy Au1XXX");
1224 MODULE_LICENSE("GPL");
1225 MODULE_ALIAS("platform:au1xxx-mmc");
1226