1 /*
2  * Copyright (C) 2013 STMicroelectronics Limited
3  * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  */
10 #include <linux/kernel.h>
11 #include <linux/clk.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/reset.h>
17 #include <media/rc-core.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/pm_wakeirq.h>
20 
21 struct st_rc_device {
22 	struct device			*dev;
23 	int				irq;
24 	int				irq_wake;
25 	struct clk			*sys_clock;
26 	void __iomem			*base;	/* Register base address */
27 	void __iomem			*rx_base;/* RX Register base address */
28 	struct rc_dev			*rdev;
29 	bool				overclocking;
30 	int				sample_mult;
31 	int				sample_div;
32 	bool				rxuhfmode;
33 	struct	reset_control		*rstc;
34 };
35 
36 /* Registers */
37 #define IRB_SAMPLE_RATE_COMM	0x64	/* sample freq divisor*/
38 #define IRB_CLOCK_SEL		0x70	/* clock select       */
39 #define IRB_CLOCK_SEL_STATUS	0x74	/* clock status       */
40 /* IRB IR/UHF receiver registers */
41 #define IRB_RX_ON               0x40	/* pulse time capture */
42 #define IRB_RX_SYS              0X44	/* sym period capture */
43 #define IRB_RX_INT_EN           0x48	/* IRQ enable (R/W)   */
44 #define IRB_RX_INT_STATUS       0x4c	/* IRQ status (R/W)   */
45 #define IRB_RX_EN               0x50	/* Receive enable     */
46 #define IRB_MAX_SYM_PERIOD      0x54	/* max sym value      */
47 #define IRB_RX_INT_CLEAR        0x58	/* overrun status     */
48 #define IRB_RX_STATUS           0x6c	/* receive status     */
49 #define IRB_RX_NOISE_SUPPR      0x5c	/* noise suppression  */
50 #define IRB_RX_POLARITY_INV     0x68	/* polarity inverter  */
51 
52 /*
53  * IRQ set: Enable full FIFO                 1  -> bit  3;
54  *          Enable overrun IRQ               1  -> bit  2;
55  *          Enable last symbol IRQ           1  -> bit  1:
56  *          Enable RX interrupt              1  -> bit  0;
57  */
58 #define IRB_RX_INTS		0x0f
59 #define IRB_RX_OVERRUN_INT	0x04
60  /* maximum symbol period (microsecs),timeout to detect end of symbol train */
61 #define MAX_SYMB_TIME		0x5000
62 #define IRB_SAMPLE_FREQ		10000000
63 #define	IRB_FIFO_NOT_EMPTY	0xff00
64 #define IRB_OVERFLOW		0x4
65 #define IRB_TIMEOUT		0xffff
66 #define IR_ST_NAME "st-rc"
67 
st_rc_send_lirc_timeout(struct rc_dev * rdev)68 static void st_rc_send_lirc_timeout(struct rc_dev *rdev)
69 {
70 	DEFINE_IR_RAW_EVENT(ev);
71 	ev.timeout = true;
72 	ir_raw_event_store(rdev, &ev);
73 }
74 
75 /*
76  * RX graphical example to better understand the difference between ST IR block
77  * output and standard definition used by LIRC (and most of the world!)
78  *
79  *           mark                                     mark
80  *      |-IRB_RX_ON-|                            |-IRB_RX_ON-|
81  *      ___  ___  ___                            ___  ___  ___             _
82  *      | |  | |  | |                            | |  | |  | |             |
83  *      | |  | |  | |         space 0            | |  | |  | |   space 1   |
84  * _____| |__| |__| |____________________________| |__| |__| |_____________|
85  *
86  *      |--------------- IRB_RX_SYS -------------|------ IRB_RX_SYS -------|
87  *
88  *      |------------- encoding bit 0 -----------|---- encoding bit 1 -----|
89  *
90  * ST hardware returns mark (IRB_RX_ON) and total symbol time (IRB_RX_SYS), so
91  * convert to standard mark/space we have to calculate space=(IRB_RX_SYS-mark)
92  * The mark time represents the amount of time the carrier (usually 36-40kHz)
93  * is detected.The above examples shows Pulse Width Modulation encoding where
94  * bit 0 is represented by space>mark.
95  */
96 
st_rc_rx_interrupt(int irq,void * data)97 static irqreturn_t st_rc_rx_interrupt(int irq, void *data)
98 {
99 	unsigned long timeout;
100 	unsigned int symbol, mark = 0;
101 	struct st_rc_device *dev = data;
102 	int last_symbol = 0;
103 	u32 status, int_status;
104 	DEFINE_IR_RAW_EVENT(ev);
105 
106 	if (dev->irq_wake)
107 		pm_wakeup_event(dev->dev, 0);
108 
109 	/* FIXME: is 10ms good enough ? */
110 	timeout = jiffies +  msecs_to_jiffies(10);
111 	do {
112 		status  = readl(dev->rx_base + IRB_RX_STATUS);
113 		if (!(status & (IRB_FIFO_NOT_EMPTY | IRB_OVERFLOW)))
114 			break;
115 
116 		int_status = readl(dev->rx_base + IRB_RX_INT_STATUS);
117 		if (unlikely(int_status & IRB_RX_OVERRUN_INT)) {
118 			/* discard the entire collection in case of errors!  */
119 			ir_raw_event_reset(dev->rdev);
120 			dev_info(dev->dev, "IR RX overrun\n");
121 			writel(IRB_RX_OVERRUN_INT,
122 					dev->rx_base + IRB_RX_INT_CLEAR);
123 			continue;
124 		}
125 
126 		symbol = readl(dev->rx_base + IRB_RX_SYS);
127 		mark = readl(dev->rx_base + IRB_RX_ON);
128 
129 		if (symbol == IRB_TIMEOUT)
130 			last_symbol = 1;
131 
132 		 /* Ignore any noise */
133 		if ((mark > 2) && (symbol > 1)) {
134 			symbol -= mark;
135 			if (dev->overclocking) { /* adjustments to timings */
136 				symbol *= dev->sample_mult;
137 				symbol /= dev->sample_div;
138 				mark *= dev->sample_mult;
139 				mark /= dev->sample_div;
140 			}
141 
142 			ev.duration = US_TO_NS(mark);
143 			ev.pulse = true;
144 			ir_raw_event_store(dev->rdev, &ev);
145 
146 			if (!last_symbol) {
147 				ev.duration = US_TO_NS(symbol);
148 				ev.pulse = false;
149 				ir_raw_event_store(dev->rdev, &ev);
150 			} else  {
151 				st_rc_send_lirc_timeout(dev->rdev);
152 			}
153 
154 		}
155 		last_symbol = 0;
156 	} while (time_is_after_jiffies(timeout));
157 
158 	writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_CLEAR);
159 
160 	/* Empty software fifo */
161 	ir_raw_event_handle(dev->rdev);
162 	return IRQ_HANDLED;
163 }
164 
st_rc_hardware_init(struct st_rc_device * dev)165 static void st_rc_hardware_init(struct st_rc_device *dev)
166 {
167 	int baseclock, freqdiff;
168 	unsigned int rx_max_symbol_per = MAX_SYMB_TIME;
169 	unsigned int rx_sampling_freq_div;
170 
171 	/* Enable the IP */
172 	reset_control_deassert(dev->rstc);
173 
174 	clk_prepare_enable(dev->sys_clock);
175 	baseclock = clk_get_rate(dev->sys_clock);
176 
177 	/* IRB input pins are inverted internally from high to low. */
178 	writel(1, dev->rx_base + IRB_RX_POLARITY_INV);
179 
180 	rx_sampling_freq_div = baseclock / IRB_SAMPLE_FREQ;
181 	writel(rx_sampling_freq_div, dev->base + IRB_SAMPLE_RATE_COMM);
182 
183 	freqdiff = baseclock - (rx_sampling_freq_div * IRB_SAMPLE_FREQ);
184 	if (freqdiff) { /* over clocking, workout the adjustment factors */
185 		dev->overclocking = true;
186 		dev->sample_mult = 1000;
187 		dev->sample_div = baseclock / (10000 * rx_sampling_freq_div);
188 		rx_max_symbol_per = (rx_max_symbol_per * 1000)/dev->sample_div;
189 	}
190 
191 	writel(rx_max_symbol_per, dev->rx_base + IRB_MAX_SYM_PERIOD);
192 }
193 
st_rc_remove(struct platform_device * pdev)194 static int st_rc_remove(struct platform_device *pdev)
195 {
196 	struct st_rc_device *rc_dev = platform_get_drvdata(pdev);
197 
198 	dev_pm_clear_wake_irq(&pdev->dev);
199 	device_init_wakeup(&pdev->dev, false);
200 	clk_disable_unprepare(rc_dev->sys_clock);
201 	rc_unregister_device(rc_dev->rdev);
202 	return 0;
203 }
204 
st_rc_open(struct rc_dev * rdev)205 static int st_rc_open(struct rc_dev *rdev)
206 {
207 	struct st_rc_device *dev = rdev->priv;
208 	unsigned long flags;
209 	local_irq_save(flags);
210 	/* enable interrupts and receiver */
211 	writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_EN);
212 	writel(0x01, dev->rx_base + IRB_RX_EN);
213 	local_irq_restore(flags);
214 
215 	return 0;
216 }
217 
st_rc_close(struct rc_dev * rdev)218 static void st_rc_close(struct rc_dev *rdev)
219 {
220 	struct st_rc_device *dev = rdev->priv;
221 	/* disable interrupts and receiver */
222 	writel(0x00, dev->rx_base + IRB_RX_EN);
223 	writel(0x00, dev->rx_base + IRB_RX_INT_EN);
224 }
225 
st_rc_probe(struct platform_device * pdev)226 static int st_rc_probe(struct platform_device *pdev)
227 {
228 	int ret = -EINVAL;
229 	struct rc_dev *rdev;
230 	struct device *dev = &pdev->dev;
231 	struct resource *res;
232 	struct st_rc_device *rc_dev;
233 	struct device_node *np = pdev->dev.of_node;
234 	const char *rx_mode;
235 
236 	rc_dev = devm_kzalloc(dev, sizeof(struct st_rc_device), GFP_KERNEL);
237 
238 	if (!rc_dev)
239 		return -ENOMEM;
240 
241 	rdev = rc_allocate_device(RC_DRIVER_IR_RAW);
242 
243 	if (!rdev)
244 		return -ENOMEM;
245 
246 	if (np && !of_property_read_string(np, "rx-mode", &rx_mode)) {
247 
248 		if (!strcmp(rx_mode, "uhf")) {
249 			rc_dev->rxuhfmode = true;
250 		} else if (!strcmp(rx_mode, "infrared")) {
251 			rc_dev->rxuhfmode = false;
252 		} else {
253 			dev_err(dev, "Unsupported rx mode [%s]\n", rx_mode);
254 			goto err;
255 		}
256 
257 	} else {
258 		goto err;
259 	}
260 
261 	rc_dev->sys_clock = devm_clk_get(dev, NULL);
262 	if (IS_ERR(rc_dev->sys_clock)) {
263 		dev_err(dev, "System clock not found\n");
264 		ret = PTR_ERR(rc_dev->sys_clock);
265 		goto err;
266 	}
267 
268 	rc_dev->irq = platform_get_irq(pdev, 0);
269 	if (rc_dev->irq < 0) {
270 		ret = rc_dev->irq;
271 		goto err;
272 	}
273 
274 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
275 
276 	rc_dev->base = devm_ioremap_resource(dev, res);
277 	if (IS_ERR(rc_dev->base)) {
278 		ret = PTR_ERR(rc_dev->base);
279 		goto err;
280 	}
281 
282 	if (rc_dev->rxuhfmode)
283 		rc_dev->rx_base = rc_dev->base + 0x40;
284 	else
285 		rc_dev->rx_base = rc_dev->base;
286 
287 	rc_dev->rstc = reset_control_get_optional_exclusive(dev, NULL);
288 	if (IS_ERR(rc_dev->rstc)) {
289 		ret = PTR_ERR(rc_dev->rstc);
290 		goto err;
291 	}
292 
293 	rc_dev->dev = dev;
294 	platform_set_drvdata(pdev, rc_dev);
295 	st_rc_hardware_init(rc_dev);
296 
297 	rdev->allowed_protocols = RC_PROTO_BIT_ALL_IR_DECODER;
298 	/* rx sampling rate is 10Mhz */
299 	rdev->rx_resolution = 100;
300 	rdev->timeout = US_TO_NS(MAX_SYMB_TIME);
301 	rdev->priv = rc_dev;
302 	rdev->open = st_rc_open;
303 	rdev->close = st_rc_close;
304 	rdev->driver_name = IR_ST_NAME;
305 	rdev->map_name = RC_MAP_EMPTY;
306 	rdev->device_name = "ST Remote Control Receiver";
307 
308 	ret = rc_register_device(rdev);
309 	if (ret < 0)
310 		goto clkerr;
311 
312 	rc_dev->rdev = rdev;
313 	if (devm_request_irq(dev, rc_dev->irq, st_rc_rx_interrupt,
314 			     0, IR_ST_NAME, rc_dev) < 0) {
315 		dev_err(dev, "IRQ %d register failed\n", rc_dev->irq);
316 		ret = -EINVAL;
317 		goto rcerr;
318 	}
319 
320 	/* enable wake via this device */
321 	device_init_wakeup(dev, true);
322 	dev_pm_set_wake_irq(dev, rc_dev->irq);
323 
324 	/*
325 	 * for LIRC_MODE_MODE2 or LIRC_MODE_PULSE or LIRC_MODE_RAW
326 	 * lircd expects a long space first before a signal train to sync.
327 	 */
328 	st_rc_send_lirc_timeout(rdev);
329 
330 	dev_info(dev, "setup in %s mode\n", rc_dev->rxuhfmode ? "UHF" : "IR");
331 
332 	return ret;
333 rcerr:
334 	rc_unregister_device(rdev);
335 	rdev = NULL;
336 clkerr:
337 	clk_disable_unprepare(rc_dev->sys_clock);
338 err:
339 	rc_free_device(rdev);
340 	dev_err(dev, "Unable to register device (%d)\n", ret);
341 	return ret;
342 }
343 
344 #ifdef CONFIG_PM_SLEEP
st_rc_suspend(struct device * dev)345 static int st_rc_suspend(struct device *dev)
346 {
347 	struct st_rc_device *rc_dev = dev_get_drvdata(dev);
348 
349 	if (device_may_wakeup(dev)) {
350 		if (!enable_irq_wake(rc_dev->irq))
351 			rc_dev->irq_wake = 1;
352 		else
353 			return -EINVAL;
354 	} else {
355 		pinctrl_pm_select_sleep_state(dev);
356 		writel(0x00, rc_dev->rx_base + IRB_RX_EN);
357 		writel(0x00, rc_dev->rx_base + IRB_RX_INT_EN);
358 		clk_disable_unprepare(rc_dev->sys_clock);
359 		reset_control_assert(rc_dev->rstc);
360 	}
361 
362 	return 0;
363 }
364 
st_rc_resume(struct device * dev)365 static int st_rc_resume(struct device *dev)
366 {
367 	struct st_rc_device *rc_dev = dev_get_drvdata(dev);
368 	struct rc_dev	*rdev = rc_dev->rdev;
369 
370 	if (rc_dev->irq_wake) {
371 		disable_irq_wake(rc_dev->irq);
372 		rc_dev->irq_wake = 0;
373 	} else {
374 		pinctrl_pm_select_default_state(dev);
375 		st_rc_hardware_init(rc_dev);
376 		if (rdev->users) {
377 			writel(IRB_RX_INTS, rc_dev->rx_base + IRB_RX_INT_EN);
378 			writel(0x01, rc_dev->rx_base + IRB_RX_EN);
379 		}
380 	}
381 
382 	return 0;
383 }
384 
385 #endif
386 
387 static SIMPLE_DEV_PM_OPS(st_rc_pm_ops, st_rc_suspend, st_rc_resume);
388 
389 #ifdef CONFIG_OF
390 static const struct of_device_id st_rc_match[] = {
391 	{ .compatible = "st,comms-irb", },
392 	{},
393 };
394 
395 MODULE_DEVICE_TABLE(of, st_rc_match);
396 #endif
397 
398 static struct platform_driver st_rc_driver = {
399 	.driver = {
400 		.name = IR_ST_NAME,
401 		.of_match_table = of_match_ptr(st_rc_match),
402 		.pm     = &st_rc_pm_ops,
403 	},
404 	.probe = st_rc_probe,
405 	.remove = st_rc_remove,
406 };
407 
408 module_platform_driver(st_rc_driver);
409 
410 MODULE_DESCRIPTION("RC Transceiver driver for STMicroelectronics platforms");
411 MODULE_AUTHOR("STMicroelectronics (R&D) Ltd");
412 MODULE_LICENSE("GPL");
413