1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for Mediatek IR Receiver Controller
4  *
5  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/platform_device.h>
13 #include <linux/reset.h>
14 #include <media/rc-core.h>
15 
16 #define MTK_IR_DEV KBUILD_MODNAME
17 
18 /* Register to enable PWM and IR */
19 #define MTK_CONFIG_HIGH_REG       0x0c
20 
21 /* Bit to enable IR pulse width detection */
22 #define MTK_PWM_EN		  BIT(13)
23 
24 /*
25  * Register to setting ok count whose unit based on hardware sampling period
26  * indicating IR receiving completion and then making IRQ fires
27  */
28 #define MTK_OK_COUNT_MASK	  (GENMASK(22, 16))
29 #define MTK_OK_COUNT(x)		  ((x) << 16)
30 
31 /* Bit to enable IR hardware function */
32 #define MTK_IR_EN		  BIT(0)
33 
34 /* Bit to restart IR receiving */
35 #define MTK_IRCLR		  BIT(0)
36 
37 /* Fields containing pulse width data */
38 #define MTK_WIDTH_MASK		  (GENMASK(7, 0))
39 
40 /* IR threshold */
41 #define MTK_IRTHD		 0x14
42 #define MTK_DG_CNT_MASK		 (GENMASK(12, 8))
43 #define MTK_DG_CNT(x)		 ((x) << 8)
44 
45 /* Bit to enable interrupt */
46 #define MTK_IRINT_EN		  BIT(0)
47 
48 /* Bit to clear interrupt status */
49 #define MTK_IRINT_CLR		  BIT(0)
50 
51 /* Maximum count of samples */
52 #define MTK_MAX_SAMPLES		  0xff
53 /* Indicate the end of IR message */
54 #define MTK_IR_END(v, p)	  ((v) == MTK_MAX_SAMPLES && (p) == 0)
55 /* Number of registers to record the pulse width */
56 #define MTK_CHKDATA_SZ		  17
57 /* Sample period in us */
58 #define MTK_IR_SAMPLE		  46
59 
60 enum mtk_fields {
61 	/* Register to setting software sampling period */
62 	MTK_CHK_PERIOD,
63 	/* Register to setting hardware sampling period */
64 	MTK_HW_PERIOD,
65 };
66 
67 enum mtk_regs {
68 	/* Register to clear state of state machine */
69 	MTK_IRCLR_REG,
70 	/* Register containing pulse width data */
71 	MTK_CHKDATA_REG,
72 	/* Register to enable IR interrupt */
73 	MTK_IRINT_EN_REG,
74 	/* Register to ack IR interrupt */
75 	MTK_IRINT_CLR_REG
76 };
77 
78 static const u32 mt7623_regs[] = {
79 	[MTK_IRCLR_REG] =	0x20,
80 	[MTK_CHKDATA_REG] =	0x88,
81 	[MTK_IRINT_EN_REG] =	0xcc,
82 	[MTK_IRINT_CLR_REG] =	0xd0,
83 };
84 
85 static const u32 mt7622_regs[] = {
86 	[MTK_IRCLR_REG] =	0x18,
87 	[MTK_CHKDATA_REG] =	0x30,
88 	[MTK_IRINT_EN_REG] =	0x1c,
89 	[MTK_IRINT_CLR_REG] =	0x20,
90 };
91 
92 struct mtk_field_type {
93 	u32 reg;
94 	u8 offset;
95 	u32 mask;
96 };
97 
98 /*
99  * struct mtk_ir_data -	This is the structure holding all differences among
100 			various hardwares
101  * @regs:		The pointer to the array holding registers offset
102  * @fields:		The pointer to the array holding fields location
103  * @div:		The internal divisor for the based reference clock
104  * @ok_count:		The count indicating the completion of IR data
105  *			receiving when count is reached
106  * @hw_period:		The value indicating the hardware sampling period
107  */
108 struct mtk_ir_data {
109 	const u32 *regs;
110 	const struct mtk_field_type *fields;
111 	u8 div;
112 	u8 ok_count;
113 	u32 hw_period;
114 };
115 
116 static const struct mtk_field_type mt7623_fields[] = {
117 	[MTK_CHK_PERIOD] = {0x10, 8, GENMASK(20, 8)},
118 	[MTK_HW_PERIOD] = {0x10, 0, GENMASK(7, 0)},
119 };
120 
121 static const struct mtk_field_type mt7622_fields[] = {
122 	[MTK_CHK_PERIOD] = {0x24, 0, GENMASK(24, 0)},
123 	[MTK_HW_PERIOD] = {0x10, 0, GENMASK(24, 0)},
124 };
125 
126 /*
127  * struct mtk_ir -	This is the main datasructure for holding the state
128  *			of the driver
129  * @dev:		The device pointer
130  * @rc:			The rc instrance
131  * @base:		The mapped register i/o base
132  * @irq:		The IRQ that we are using
133  * @clk:		The clock that IR internal is using
134  * @bus:		The clock that software decoder is using
135  * @data:		Holding specific data for vaious platform
136  */
137 struct mtk_ir {
138 	struct device	*dev;
139 	struct rc_dev	*rc;
140 	void __iomem	*base;
141 	int		irq;
142 	struct clk	*clk;
143 	struct clk	*bus;
144 	const struct mtk_ir_data *data;
145 };
146 
mtk_chkdata_reg(struct mtk_ir * ir,u32 i)147 static inline u32 mtk_chkdata_reg(struct mtk_ir *ir, u32 i)
148 {
149 	return ir->data->regs[MTK_CHKDATA_REG] + 4 * i;
150 }
151 
mtk_chk_period(struct mtk_ir * ir)152 static inline u32 mtk_chk_period(struct mtk_ir *ir)
153 {
154 	u32 val;
155 
156 	/*
157 	 * Period for software decoder used in the
158 	 * unit of raw software sampling
159 	 */
160 	val = DIV_ROUND_CLOSEST(clk_get_rate(ir->bus),
161 				USEC_PER_SEC * ir->data->div / MTK_IR_SAMPLE);
162 
163 	dev_dbg(ir->dev, "@pwm clk  = \t%lu\n",
164 		clk_get_rate(ir->bus) / ir->data->div);
165 	dev_dbg(ir->dev, "@chkperiod = %08x\n", val);
166 
167 	return val;
168 }
169 
mtk_w32_mask(struct mtk_ir * ir,u32 val,u32 mask,unsigned int reg)170 static void mtk_w32_mask(struct mtk_ir *ir, u32 val, u32 mask, unsigned int reg)
171 {
172 	u32 tmp;
173 
174 	tmp = __raw_readl(ir->base + reg);
175 	tmp = (tmp & ~mask) | val;
176 	__raw_writel(tmp, ir->base + reg);
177 }
178 
mtk_w32(struct mtk_ir * ir,u32 val,unsigned int reg)179 static void mtk_w32(struct mtk_ir *ir, u32 val, unsigned int reg)
180 {
181 	__raw_writel(val, ir->base + reg);
182 }
183 
mtk_r32(struct mtk_ir * ir,unsigned int reg)184 static u32 mtk_r32(struct mtk_ir *ir, unsigned int reg)
185 {
186 	return __raw_readl(ir->base + reg);
187 }
188 
mtk_irq_disable(struct mtk_ir * ir,u32 mask)189 static inline void mtk_irq_disable(struct mtk_ir *ir, u32 mask)
190 {
191 	u32 val;
192 
193 	val = mtk_r32(ir, ir->data->regs[MTK_IRINT_EN_REG]);
194 	mtk_w32(ir, val & ~mask, ir->data->regs[MTK_IRINT_EN_REG]);
195 }
196 
mtk_irq_enable(struct mtk_ir * ir,u32 mask)197 static inline void mtk_irq_enable(struct mtk_ir *ir, u32 mask)
198 {
199 	u32 val;
200 
201 	val = mtk_r32(ir, ir->data->regs[MTK_IRINT_EN_REG]);
202 	mtk_w32(ir, val | mask, ir->data->regs[MTK_IRINT_EN_REG]);
203 }
204 
mtk_ir_irq(int irqno,void * dev_id)205 static irqreturn_t mtk_ir_irq(int irqno, void *dev_id)
206 {
207 	struct ir_raw_event rawir = {};
208 	struct mtk_ir *ir = dev_id;
209 	u32 i, j, val;
210 	u8 wid;
211 
212 	/*
213 	 * Each pulse and space is encoded as a single byte, each byte
214 	 * alternating between pulse and space. If a pulse or space is longer
215 	 * than can be encoded in a single byte, it is encoded as the maximum
216 	 * value 0xff.
217 	 *
218 	 * If a space is longer than ok_count (about 23ms), the value is
219 	 * encoded as zero, and all following bytes are zero. Any IR that
220 	 * follows will be presented in the next interrupt.
221 	 *
222 	 * If there are more than 68 (=MTK_CHKDATA_SZ * 4) pulses and spaces,
223 	 * then the only the first 68 will be presented; the rest is lost.
224 	 */
225 
226 	/* Handle all pulse and space IR controller captures */
227 	for (i = 0 ; i < MTK_CHKDATA_SZ ; i++) {
228 		val = mtk_r32(ir, mtk_chkdata_reg(ir, i));
229 		dev_dbg(ir->dev, "@reg%d=0x%08x\n", i, val);
230 
231 		for (j = 0 ; j < 4 ; j++) {
232 			wid = val & MTK_WIDTH_MASK;
233 			val >>= 8;
234 			rawir.pulse = !rawir.pulse;
235 			rawir.duration = wid * (MTK_IR_SAMPLE + 1);
236 			ir_raw_event_store_with_filter(ir->rc, &rawir);
237 		}
238 	}
239 
240 	/*
241 	 * The maximum number of edges the IR controller can
242 	 * hold is MTK_CHKDATA_SZ * 4. So if received IR messages
243 	 * is over the limit, the last incomplete IR message would
244 	 * be appended trailing space and still would be sent into
245 	 * ir-rc-raw to decode. That helps it is possible that it
246 	 * has enough information to decode a scancode even if the
247 	 * trailing end of the message is missing.
248 	 */
249 	if (!MTK_IR_END(wid, rawir.pulse)) {
250 		rawir.pulse = false;
251 		rawir.duration = MTK_MAX_SAMPLES * (MTK_IR_SAMPLE + 1);
252 		ir_raw_event_store_with_filter(ir->rc, &rawir);
253 	}
254 
255 	ir_raw_event_handle(ir->rc);
256 
257 	/*
258 	 * Restart controller for the next receive that would
259 	 * clear up all CHKDATA registers
260 	 */
261 	mtk_w32_mask(ir, 0x1, MTK_IRCLR, ir->data->regs[MTK_IRCLR_REG]);
262 
263 	/* Clear interrupt status */
264 	mtk_w32_mask(ir, 0x1, MTK_IRINT_CLR,
265 		     ir->data->regs[MTK_IRINT_CLR_REG]);
266 
267 	return IRQ_HANDLED;
268 }
269 
270 static const struct mtk_ir_data mt7623_data = {
271 	.regs = mt7623_regs,
272 	.fields = mt7623_fields,
273 	.ok_count = 3,
274 	.hw_period = 0xff,
275 	.div	= 4,
276 };
277 
278 static const struct mtk_ir_data mt7622_data = {
279 	.regs = mt7622_regs,
280 	.fields = mt7622_fields,
281 	.ok_count = 3,
282 	.hw_period = 0xffff,
283 	.div	= 32,
284 };
285 
286 static const struct of_device_id mtk_ir_match[] = {
287 	{ .compatible = "mediatek,mt7623-cir", .data = &mt7623_data},
288 	{ .compatible = "mediatek,mt7622-cir", .data = &mt7622_data},
289 	{},
290 };
291 MODULE_DEVICE_TABLE(of, mtk_ir_match);
292 
mtk_ir_probe(struct platform_device * pdev)293 static int mtk_ir_probe(struct platform_device *pdev)
294 {
295 	struct device *dev = &pdev->dev;
296 	struct device_node *dn = dev->of_node;
297 	struct mtk_ir *ir;
298 	u32 val;
299 	int ret = 0;
300 	const char *map_name;
301 
302 	ir = devm_kzalloc(dev, sizeof(struct mtk_ir), GFP_KERNEL);
303 	if (!ir)
304 		return -ENOMEM;
305 
306 	ir->dev = dev;
307 	ir->data = of_device_get_match_data(dev);
308 
309 	ir->clk = devm_clk_get(dev, "clk");
310 	if (IS_ERR(ir->clk)) {
311 		dev_err(dev, "failed to get a ir clock.\n");
312 		return PTR_ERR(ir->clk);
313 	}
314 
315 	ir->bus = devm_clk_get(dev, "bus");
316 	if (IS_ERR(ir->bus)) {
317 		/*
318 		 * For compatibility with older device trees try unnamed
319 		 * ir->bus uses the same clock as ir->clock.
320 		 */
321 		ir->bus = ir->clk;
322 	}
323 
324 	ir->base = devm_platform_ioremap_resource(pdev, 0);
325 	if (IS_ERR(ir->base))
326 		return PTR_ERR(ir->base);
327 
328 	ir->rc = devm_rc_allocate_device(dev, RC_DRIVER_IR_RAW);
329 	if (!ir->rc) {
330 		dev_err(dev, "failed to allocate device\n");
331 		return -ENOMEM;
332 	}
333 
334 	ir->rc->priv = ir;
335 	ir->rc->device_name = MTK_IR_DEV;
336 	ir->rc->input_phys = MTK_IR_DEV "/input0";
337 	ir->rc->input_id.bustype = BUS_HOST;
338 	ir->rc->input_id.vendor = 0x0001;
339 	ir->rc->input_id.product = 0x0001;
340 	ir->rc->input_id.version = 0x0001;
341 	map_name = of_get_property(dn, "linux,rc-map-name", NULL);
342 	ir->rc->map_name = map_name ?: RC_MAP_EMPTY;
343 	ir->rc->dev.parent = dev;
344 	ir->rc->driver_name = MTK_IR_DEV;
345 	ir->rc->allowed_protocols = RC_PROTO_BIT_ALL_IR_DECODER;
346 	ir->rc->rx_resolution = MTK_IR_SAMPLE;
347 	ir->rc->timeout = MTK_MAX_SAMPLES * (MTK_IR_SAMPLE + 1);
348 
349 	ret = devm_rc_register_device(dev, ir->rc);
350 	if (ret) {
351 		dev_err(dev, "failed to register rc device\n");
352 		return ret;
353 	}
354 
355 	platform_set_drvdata(pdev, ir);
356 
357 	ir->irq = platform_get_irq(pdev, 0);
358 	if (ir->irq < 0)
359 		return -ENODEV;
360 
361 	if (clk_prepare_enable(ir->clk)) {
362 		dev_err(dev, "try to enable ir_clk failed\n");
363 		return -EINVAL;
364 	}
365 
366 	if (clk_prepare_enable(ir->bus)) {
367 		dev_err(dev, "try to enable ir_clk failed\n");
368 		ret = -EINVAL;
369 		goto exit_clkdisable_clk;
370 	}
371 
372 	/*
373 	 * Enable interrupt after proper hardware
374 	 * setup and IRQ handler registration
375 	 */
376 	mtk_irq_disable(ir, MTK_IRINT_EN);
377 
378 	ret = devm_request_irq(dev, ir->irq, mtk_ir_irq, 0, MTK_IR_DEV, ir);
379 	if (ret) {
380 		dev_err(dev, "failed request irq\n");
381 		goto exit_clkdisable_bus;
382 	}
383 
384 	/*
385 	 * Setup software sample period as the reference of software decoder
386 	 */
387 	val = (mtk_chk_period(ir) << ir->data->fields[MTK_CHK_PERIOD].offset) &
388 	       ir->data->fields[MTK_CHK_PERIOD].mask;
389 	mtk_w32_mask(ir, val, ir->data->fields[MTK_CHK_PERIOD].mask,
390 		     ir->data->fields[MTK_CHK_PERIOD].reg);
391 
392 	/*
393 	 * Setup hardware sampling period used to setup the proper timeout for
394 	 * indicating end of IR receiving completion
395 	 */
396 	val = (ir->data->hw_period << ir->data->fields[MTK_HW_PERIOD].offset) &
397 	       ir->data->fields[MTK_HW_PERIOD].mask;
398 	mtk_w32_mask(ir, val, ir->data->fields[MTK_HW_PERIOD].mask,
399 		     ir->data->fields[MTK_HW_PERIOD].reg);
400 
401 	/* Set de-glitch counter */
402 	mtk_w32_mask(ir, MTK_DG_CNT(1), MTK_DG_CNT_MASK, MTK_IRTHD);
403 
404 	/* Enable IR and PWM */
405 	val = mtk_r32(ir, MTK_CONFIG_HIGH_REG) & ~MTK_OK_COUNT_MASK;
406 	val |= MTK_OK_COUNT(ir->data->ok_count) |  MTK_PWM_EN | MTK_IR_EN;
407 	mtk_w32(ir, val, MTK_CONFIG_HIGH_REG);
408 
409 	mtk_irq_enable(ir, MTK_IRINT_EN);
410 
411 	dev_info(dev, "Initialized MT7623 IR driver, sample period = %dus\n",
412 		 MTK_IR_SAMPLE);
413 
414 	return 0;
415 
416 exit_clkdisable_bus:
417 	clk_disable_unprepare(ir->bus);
418 exit_clkdisable_clk:
419 	clk_disable_unprepare(ir->clk);
420 
421 	return ret;
422 }
423 
mtk_ir_remove(struct platform_device * pdev)424 static void mtk_ir_remove(struct platform_device *pdev)
425 {
426 	struct mtk_ir *ir = platform_get_drvdata(pdev);
427 
428 	/*
429 	 * Avoid contention between remove handler and
430 	 * IRQ handler so that disabling IR interrupt and
431 	 * waiting for pending IRQ handler to complete
432 	 */
433 	mtk_irq_disable(ir, MTK_IRINT_EN);
434 	synchronize_irq(ir->irq);
435 
436 	clk_disable_unprepare(ir->bus);
437 	clk_disable_unprepare(ir->clk);
438 }
439 
440 static struct platform_driver mtk_ir_driver = {
441 	.probe          = mtk_ir_probe,
442 	.remove_new     = mtk_ir_remove,
443 	.driver = {
444 		.name = MTK_IR_DEV,
445 		.of_match_table = mtk_ir_match,
446 	},
447 };
448 
449 module_platform_driver(mtk_ir_driver);
450 
451 MODULE_DESCRIPTION("Mediatek IR Receiver Controller Driver");
452 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
453 MODULE_LICENSE("GPL");
454