1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * R-Car Gen3 Digital Radio Interface (DRIF) driver
4 *
5 * Copyright (C) 2017 Renesas Electronics Corporation
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 */
12
13 /*
14 * The R-Car DRIF is a receive only MSIOF like controller with an
15 * external master device driving the SCK. It receives data into a FIFO,
16 * then this driver uses the SYS-DMAC engine to move the data from
17 * the device to memory.
18 *
19 * Each DRIF channel DRIFx (as per datasheet) contains two internal
20 * channels DRIFx0 & DRIFx1 within itself with each having its own resources
21 * like module clk, register set, irq and dma. These internal channels share
22 * common CLK & SYNC from master. The two data pins D0 & D1 shall be
23 * considered to represent the two internal channels. This internal split
24 * is not visible to the master device.
25 *
26 * Depending on the master device, a DRIF channel can use
27 * (1) both internal channels (D0 & D1) to receive data in parallel (or)
28 * (2) one internal channel (D0 or D1) to receive data
29 *
30 * The primary design goal of this controller is to act as a Digital Radio
31 * Interface that receives digital samples from a tuner device. Hence the
32 * driver exposes the device as a V4L2 SDR device. In order to qualify as
33 * a V4L2 SDR device, it should possess a tuner interface as mandated by the
34 * framework. This driver expects a tuner driver (sub-device) to bind
35 * asynchronously with this device and the combined drivers shall expose
36 * a V4L2 compliant SDR device. The DRIF driver is independent of the
37 * tuner vendor.
38 *
39 * The DRIF h/w can support I2S mode and Frame start synchronization pulse mode.
40 * This driver is tested for I2S mode only because of the availability of
41 * suitable master devices. Hence, not all configurable options of DRIF h/w
42 * like lsb/msb first, syncdl, dtdl etc. are exposed via DT and I2S defaults
43 * are used. These can be exposed later if needed after testing.
44 */
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/dmaengine.h>
49 #include <linux/ioctl.h>
50 #include <linux/iopoll.h>
51 #include <linux/module.h>
52 #include <linux/of_graph.h>
53 #include <linux/of_device.h>
54 #include <linux/platform_device.h>
55 #include <linux/sched.h>
56 #include <media/v4l2-async.h>
57 #include <media/v4l2-ctrls.h>
58 #include <media/v4l2-device.h>
59 #include <media/v4l2-event.h>
60 #include <media/v4l2-fh.h>
61 #include <media/v4l2-ioctl.h>
62 #include <media/videobuf2-v4l2.h>
63 #include <media/videobuf2-vmalloc.h>
64
65 /* DRIF register offsets */
66 #define RCAR_DRIF_SITMDR1 0x00
67 #define RCAR_DRIF_SITMDR2 0x04
68 #define RCAR_DRIF_SITMDR3 0x08
69 #define RCAR_DRIF_SIRMDR1 0x10
70 #define RCAR_DRIF_SIRMDR2 0x14
71 #define RCAR_DRIF_SIRMDR3 0x18
72 #define RCAR_DRIF_SICTR 0x28
73 #define RCAR_DRIF_SIFCTR 0x30
74 #define RCAR_DRIF_SISTR 0x40
75 #define RCAR_DRIF_SIIER 0x44
76 #define RCAR_DRIF_SIRFDR 0x60
77
78 #define RCAR_DRIF_RFOVF BIT(3) /* Receive FIFO overflow */
79 #define RCAR_DRIF_RFUDF BIT(4) /* Receive FIFO underflow */
80 #define RCAR_DRIF_RFSERR BIT(5) /* Receive frame sync error */
81 #define RCAR_DRIF_REOF BIT(7) /* Frame reception end */
82 #define RCAR_DRIF_RDREQ BIT(12) /* Receive data xfer req */
83 #define RCAR_DRIF_RFFUL BIT(13) /* Receive FIFO full */
84
85 /* SIRMDR1 */
86 #define RCAR_DRIF_SIRMDR1_SYNCMD_FRAME (0 << 28)
87 #define RCAR_DRIF_SIRMDR1_SYNCMD_LR (3 << 28)
88
89 #define RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH (0 << 25)
90 #define RCAR_DRIF_SIRMDR1_SYNCAC_POL_LOW (1 << 25)
91
92 #define RCAR_DRIF_SIRMDR1_MSB_FIRST (0 << 24)
93 #define RCAR_DRIF_SIRMDR1_LSB_FIRST (1 << 24)
94
95 #define RCAR_DRIF_SIRMDR1_DTDL_0 (0 << 20)
96 #define RCAR_DRIF_SIRMDR1_DTDL_1 (1 << 20)
97 #define RCAR_DRIF_SIRMDR1_DTDL_2 (2 << 20)
98 #define RCAR_DRIF_SIRMDR1_DTDL_0PT5 (5 << 20)
99 #define RCAR_DRIF_SIRMDR1_DTDL_1PT5 (6 << 20)
100
101 #define RCAR_DRIF_SIRMDR1_SYNCDL_0 (0 << 20)
102 #define RCAR_DRIF_SIRMDR1_SYNCDL_1 (1 << 20)
103 #define RCAR_DRIF_SIRMDR1_SYNCDL_2 (2 << 20)
104 #define RCAR_DRIF_SIRMDR1_SYNCDL_3 (3 << 20)
105 #define RCAR_DRIF_SIRMDR1_SYNCDL_0PT5 (5 << 20)
106 #define RCAR_DRIF_SIRMDR1_SYNCDL_1PT5 (6 << 20)
107
108 #define RCAR_DRIF_MDR_GRPCNT(n) (((n) - 1) << 30)
109 #define RCAR_DRIF_MDR_BITLEN(n) (((n) - 1) << 24)
110 #define RCAR_DRIF_MDR_WDCNT(n) (((n) - 1) << 16)
111
112 /* Hidden Transmit register that controls CLK & SYNC */
113 #define RCAR_DRIF_SITMDR1_PCON BIT(30)
114
115 #define RCAR_DRIF_SICTR_RX_RISING_EDGE BIT(26)
116 #define RCAR_DRIF_SICTR_RX_EN BIT(8)
117 #define RCAR_DRIF_SICTR_RESET BIT(0)
118
119 /* Constants */
120 #define RCAR_DRIF_NUM_HWBUFS 32
121 #define RCAR_DRIF_MAX_DEVS 4
122 #define RCAR_DRIF_DEFAULT_NUM_HWBUFS 16
123 #define RCAR_DRIF_DEFAULT_HWBUF_SIZE (4 * PAGE_SIZE)
124 #define RCAR_DRIF_MAX_CHANNEL 2
125 #define RCAR_SDR_BUFFER_SIZE SZ_64K
126
127 /* Internal buffer status flags */
128 #define RCAR_DRIF_BUF_DONE BIT(0) /* DMA completed */
129 #define RCAR_DRIF_BUF_OVERFLOW BIT(1) /* Overflow detected */
130
131 #define to_rcar_drif_buf_pair(sdr, ch_num, idx) \
132 (&((sdr)->ch[!(ch_num)]->buf[(idx)]))
133
134 #define for_each_rcar_drif_channel(ch, ch_mask) \
135 for_each_set_bit(ch, ch_mask, RCAR_DRIF_MAX_CHANNEL)
136
137 /* Debug */
138 #define rdrif_dbg(sdr, fmt, arg...) \
139 dev_dbg(sdr->v4l2_dev.dev, fmt, ## arg)
140
141 #define rdrif_err(sdr, fmt, arg...) \
142 dev_err(sdr->v4l2_dev.dev, fmt, ## arg)
143
144 /* Stream formats */
145 struct rcar_drif_format {
146 u32 pixelformat;
147 u32 buffersize;
148 u32 bitlen;
149 u32 wdcnt;
150 u32 num_ch;
151 };
152
153 /* Format descriptions for capture */
154 static const struct rcar_drif_format formats[] = {
155 {
156 .pixelformat = V4L2_SDR_FMT_PCU16BE,
157 .buffersize = RCAR_SDR_BUFFER_SIZE,
158 .bitlen = 16,
159 .wdcnt = 1,
160 .num_ch = 2,
161 },
162 {
163 .pixelformat = V4L2_SDR_FMT_PCU18BE,
164 .buffersize = RCAR_SDR_BUFFER_SIZE,
165 .bitlen = 18,
166 .wdcnt = 1,
167 .num_ch = 2,
168 },
169 {
170 .pixelformat = V4L2_SDR_FMT_PCU20BE,
171 .buffersize = RCAR_SDR_BUFFER_SIZE,
172 .bitlen = 20,
173 .wdcnt = 1,
174 .num_ch = 2,
175 },
176 };
177
178 /* Buffer for a received frame from one or both internal channels */
179 struct rcar_drif_frame_buf {
180 /* Common v4l buffer stuff -- must be first */
181 struct vb2_v4l2_buffer vb;
182 struct list_head list;
183 };
184
185 /* OF graph endpoint's V4L2 async data */
186 struct rcar_drif_graph_ep {
187 struct v4l2_subdev *subdev; /* Async matched subdev */
188 struct v4l2_async_subdev asd; /* Async sub-device descriptor */
189 };
190
191 /* DMA buffer */
192 struct rcar_drif_hwbuf {
193 void *addr; /* CPU-side address */
194 unsigned int status; /* Buffer status flags */
195 };
196
197 /* Internal channel */
198 struct rcar_drif {
199 struct rcar_drif_sdr *sdr; /* Group device */
200 struct platform_device *pdev; /* Channel's pdev */
201 void __iomem *base; /* Base register address */
202 resource_size_t start; /* I/O resource offset */
203 struct dma_chan *dmach; /* Reserved DMA channel */
204 struct clk *clk; /* Module clock */
205 struct rcar_drif_hwbuf buf[RCAR_DRIF_NUM_HWBUFS]; /* H/W bufs */
206 dma_addr_t dma_handle; /* Handle for all bufs */
207 unsigned int num; /* Channel number */
208 bool acting_sdr; /* Channel acting as SDR device */
209 };
210
211 /* DRIF V4L2 SDR */
212 struct rcar_drif_sdr {
213 struct device *dev; /* Platform device */
214 struct video_device *vdev; /* V4L2 SDR device */
215 struct v4l2_device v4l2_dev; /* V4L2 device */
216
217 /* Videobuf2 queue and queued buffers list */
218 struct vb2_queue vb_queue;
219 struct list_head queued_bufs;
220 spinlock_t queued_bufs_lock; /* Protects queued_bufs */
221 spinlock_t dma_lock; /* To serialize DMA cb of channels */
222
223 struct mutex v4l2_mutex; /* To serialize ioctls */
224 struct mutex vb_queue_mutex; /* To serialize streaming ioctls */
225 struct v4l2_ctrl_handler ctrl_hdl; /* SDR control handler */
226 struct v4l2_async_notifier notifier; /* For subdev (tuner) */
227 struct rcar_drif_graph_ep ep; /* Endpoint V4L2 async data */
228
229 /* Current V4L2 SDR format ptr */
230 const struct rcar_drif_format *fmt;
231
232 /* Device tree SYNC properties */
233 u32 mdr1;
234
235 /* Internals */
236 struct rcar_drif *ch[RCAR_DRIF_MAX_CHANNEL]; /* DRIFx0,1 */
237 unsigned long hw_ch_mask; /* Enabled channels per DT */
238 unsigned long cur_ch_mask; /* Used channels for an SDR FMT */
239 u32 num_hw_ch; /* Num of DT enabled channels */
240 u32 num_cur_ch; /* Num of used channels */
241 u32 hwbuf_size; /* Each DMA buffer size */
242 u32 produced; /* Buffers produced by sdr dev */
243 };
244
245 /* Register access functions */
rcar_drif_write(struct rcar_drif * ch,u32 offset,u32 data)246 static void rcar_drif_write(struct rcar_drif *ch, u32 offset, u32 data)
247 {
248 writel(data, ch->base + offset);
249 }
250
rcar_drif_read(struct rcar_drif * ch,u32 offset)251 static u32 rcar_drif_read(struct rcar_drif *ch, u32 offset)
252 {
253 return readl(ch->base + offset);
254 }
255
256 /* Release DMA channels */
rcar_drif_release_dmachannels(struct rcar_drif_sdr * sdr)257 static void rcar_drif_release_dmachannels(struct rcar_drif_sdr *sdr)
258 {
259 unsigned int i;
260
261 for_each_rcar_drif_channel(i, &sdr->cur_ch_mask)
262 if (sdr->ch[i]->dmach) {
263 dma_release_channel(sdr->ch[i]->dmach);
264 sdr->ch[i]->dmach = NULL;
265 }
266 }
267
268 /* Allocate DMA channels */
rcar_drif_alloc_dmachannels(struct rcar_drif_sdr * sdr)269 static int rcar_drif_alloc_dmachannels(struct rcar_drif_sdr *sdr)
270 {
271 struct dma_slave_config dma_cfg;
272 unsigned int i;
273 int ret;
274
275 for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
276 struct rcar_drif *ch = sdr->ch[i];
277
278 ch->dmach = dma_request_slave_channel(&ch->pdev->dev, "rx");
279 if (!ch->dmach) {
280 rdrif_err(sdr, "ch%u: dma channel req failed\n", i);
281 ret = -ENODEV;
282 goto dmach_error;
283 }
284
285 /* Configure slave */
286 memset(&dma_cfg, 0, sizeof(dma_cfg));
287 dma_cfg.src_addr = (phys_addr_t)(ch->start + RCAR_DRIF_SIRFDR);
288 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
289 ret = dmaengine_slave_config(ch->dmach, &dma_cfg);
290 if (ret) {
291 rdrif_err(sdr, "ch%u: dma slave config failed\n", i);
292 goto dmach_error;
293 }
294 }
295 return 0;
296
297 dmach_error:
298 rcar_drif_release_dmachannels(sdr);
299 return ret;
300 }
301
302 /* Release queued vb2 buffers */
rcar_drif_release_queued_bufs(struct rcar_drif_sdr * sdr,enum vb2_buffer_state state)303 static void rcar_drif_release_queued_bufs(struct rcar_drif_sdr *sdr,
304 enum vb2_buffer_state state)
305 {
306 struct rcar_drif_frame_buf *fbuf, *tmp;
307 unsigned long flags;
308
309 spin_lock_irqsave(&sdr->queued_bufs_lock, flags);
310 list_for_each_entry_safe(fbuf, tmp, &sdr->queued_bufs, list) {
311 list_del(&fbuf->list);
312 vb2_buffer_done(&fbuf->vb.vb2_buf, state);
313 }
314 spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
315 }
316
317 /* Set MDR defaults */
rcar_drif_set_mdr1(struct rcar_drif_sdr * sdr)318 static inline void rcar_drif_set_mdr1(struct rcar_drif_sdr *sdr)
319 {
320 unsigned int i;
321
322 /* Set defaults for enabled internal channels */
323 for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
324 /* Refer MSIOF section in manual for this register setting */
325 rcar_drif_write(sdr->ch[i], RCAR_DRIF_SITMDR1,
326 RCAR_DRIF_SITMDR1_PCON);
327
328 /* Setup MDR1 value */
329 rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR1, sdr->mdr1);
330
331 rdrif_dbg(sdr, "ch%u: mdr1 = 0x%08x",
332 i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR1));
333 }
334 }
335
336 /* Set DRIF receive format */
rcar_drif_set_format(struct rcar_drif_sdr * sdr)337 static int rcar_drif_set_format(struct rcar_drif_sdr *sdr)
338 {
339 unsigned int i;
340
341 rdrif_dbg(sdr, "setfmt: bitlen %u wdcnt %u num_ch %u\n",
342 sdr->fmt->bitlen, sdr->fmt->wdcnt, sdr->fmt->num_ch);
343
344 /* Sanity check */
345 if (sdr->fmt->num_ch > sdr->num_cur_ch) {
346 rdrif_err(sdr, "fmt num_ch %u cur_ch %u mismatch\n",
347 sdr->fmt->num_ch, sdr->num_cur_ch);
348 return -EINVAL;
349 }
350
351 /* Setup group, bitlen & wdcnt */
352 for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
353 u32 mdr;
354
355 /* Two groups */
356 mdr = RCAR_DRIF_MDR_GRPCNT(2) |
357 RCAR_DRIF_MDR_BITLEN(sdr->fmt->bitlen) |
358 RCAR_DRIF_MDR_WDCNT(sdr->fmt->wdcnt);
359 rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR2, mdr);
360
361 mdr = RCAR_DRIF_MDR_BITLEN(sdr->fmt->bitlen) |
362 RCAR_DRIF_MDR_WDCNT(sdr->fmt->wdcnt);
363 rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR3, mdr);
364
365 rdrif_dbg(sdr, "ch%u: new mdr[2,3] = 0x%08x, 0x%08x\n",
366 i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR2),
367 rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR3));
368 }
369 return 0;
370 }
371
372 /* Release DMA buffers */
rcar_drif_release_buf(struct rcar_drif_sdr * sdr)373 static void rcar_drif_release_buf(struct rcar_drif_sdr *sdr)
374 {
375 unsigned int i;
376
377 for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
378 struct rcar_drif *ch = sdr->ch[i];
379
380 /* First entry contains the dma buf ptr */
381 if (ch->buf[0].addr) {
382 dma_free_coherent(&ch->pdev->dev,
383 sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS,
384 ch->buf[0].addr, ch->dma_handle);
385 ch->buf[0].addr = NULL;
386 }
387 }
388 }
389
390 /* Request DMA buffers */
rcar_drif_request_buf(struct rcar_drif_sdr * sdr)391 static int rcar_drif_request_buf(struct rcar_drif_sdr *sdr)
392 {
393 int ret = -ENOMEM;
394 unsigned int i, j;
395 void *addr;
396
397 for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
398 struct rcar_drif *ch = sdr->ch[i];
399
400 /* Allocate DMA buffers */
401 addr = dma_alloc_coherent(&ch->pdev->dev,
402 sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS,
403 &ch->dma_handle, GFP_KERNEL);
404 if (!addr) {
405 rdrif_err(sdr,
406 "ch%u: dma alloc failed. num hwbufs %u size %u\n",
407 i, RCAR_DRIF_NUM_HWBUFS, sdr->hwbuf_size);
408 goto error;
409 }
410
411 /* Split the chunk and populate bufctxt */
412 for (j = 0; j < RCAR_DRIF_NUM_HWBUFS; j++) {
413 ch->buf[j].addr = addr + (j * sdr->hwbuf_size);
414 ch->buf[j].status = 0;
415 }
416 }
417 return 0;
418 error:
419 return ret;
420 }
421
422 /* Setup vb_queue minimum buffer requirements */
rcar_drif_queue_setup(struct vb2_queue * vq,unsigned int * num_buffers,unsigned int * num_planes,unsigned int sizes[],struct device * alloc_devs[])423 static int rcar_drif_queue_setup(struct vb2_queue *vq,
424 unsigned int *num_buffers, unsigned int *num_planes,
425 unsigned int sizes[], struct device *alloc_devs[])
426 {
427 struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq);
428
429 /* Need at least 16 buffers */
430 if (vq->num_buffers + *num_buffers < 16)
431 *num_buffers = 16 - vq->num_buffers;
432
433 *num_planes = 1;
434 sizes[0] = PAGE_ALIGN(sdr->fmt->buffersize);
435 rdrif_dbg(sdr, "num_bufs %d sizes[0] %d\n", *num_buffers, sizes[0]);
436
437 return 0;
438 }
439
440 /* Enqueue buffer */
rcar_drif_buf_queue(struct vb2_buffer * vb)441 static void rcar_drif_buf_queue(struct vb2_buffer *vb)
442 {
443 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
444 struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vb->vb2_queue);
445 struct rcar_drif_frame_buf *fbuf =
446 container_of(vbuf, struct rcar_drif_frame_buf, vb);
447 unsigned long flags;
448
449 rdrif_dbg(sdr, "buf_queue idx %u\n", vb->index);
450 spin_lock_irqsave(&sdr->queued_bufs_lock, flags);
451 list_add_tail(&fbuf->list, &sdr->queued_bufs);
452 spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
453 }
454
455 /* Get a frame buf from list */
456 static struct rcar_drif_frame_buf *
rcar_drif_get_fbuf(struct rcar_drif_sdr * sdr)457 rcar_drif_get_fbuf(struct rcar_drif_sdr *sdr)
458 {
459 struct rcar_drif_frame_buf *fbuf;
460 unsigned long flags;
461
462 spin_lock_irqsave(&sdr->queued_bufs_lock, flags);
463 fbuf = list_first_entry_or_null(&sdr->queued_bufs, struct
464 rcar_drif_frame_buf, list);
465 if (!fbuf) {
466 /*
467 * App is late in enqueing buffers. Samples lost & there will
468 * be a gap in sequence number when app recovers
469 */
470 rdrif_dbg(sdr, "\napp late: prod %u\n", sdr->produced);
471 spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
472 return NULL;
473 }
474 list_del(&fbuf->list);
475 spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
476
477 return fbuf;
478 }
479
480 /* Helpers to set/clear buf pair status */
rcar_drif_bufs_done(struct rcar_drif_hwbuf ** buf)481 static inline bool rcar_drif_bufs_done(struct rcar_drif_hwbuf **buf)
482 {
483 return (buf[0]->status & buf[1]->status & RCAR_DRIF_BUF_DONE);
484 }
485
rcar_drif_bufs_overflow(struct rcar_drif_hwbuf ** buf)486 static inline bool rcar_drif_bufs_overflow(struct rcar_drif_hwbuf **buf)
487 {
488 return ((buf[0]->status | buf[1]->status) & RCAR_DRIF_BUF_OVERFLOW);
489 }
490
rcar_drif_bufs_clear(struct rcar_drif_hwbuf ** buf,unsigned int bit)491 static inline void rcar_drif_bufs_clear(struct rcar_drif_hwbuf **buf,
492 unsigned int bit)
493 {
494 unsigned int i;
495
496 for (i = 0; i < RCAR_DRIF_MAX_CHANNEL; i++)
497 buf[i]->status &= ~bit;
498 }
499
500 /* Channel DMA complete */
rcar_drif_channel_complete(struct rcar_drif * ch,u32 idx)501 static void rcar_drif_channel_complete(struct rcar_drif *ch, u32 idx)
502 {
503 u32 str;
504
505 ch->buf[idx].status |= RCAR_DRIF_BUF_DONE;
506
507 /* Check for DRIF errors */
508 str = rcar_drif_read(ch, RCAR_DRIF_SISTR);
509 if (unlikely(str & RCAR_DRIF_RFOVF)) {
510 /* Writing the same clears it */
511 rcar_drif_write(ch, RCAR_DRIF_SISTR, str);
512
513 /* Overflow: some samples are lost */
514 ch->buf[idx].status |= RCAR_DRIF_BUF_OVERFLOW;
515 }
516 }
517
518 /* DMA callback for each stage */
rcar_drif_dma_complete(void * dma_async_param)519 static void rcar_drif_dma_complete(void *dma_async_param)
520 {
521 struct rcar_drif *ch = dma_async_param;
522 struct rcar_drif_sdr *sdr = ch->sdr;
523 struct rcar_drif_hwbuf *buf[RCAR_DRIF_MAX_CHANNEL];
524 struct rcar_drif_frame_buf *fbuf;
525 bool overflow = false;
526 u32 idx, produced;
527 unsigned int i;
528
529 spin_lock(&sdr->dma_lock);
530
531 /* DMA can be terminated while the callback was waiting on lock */
532 if (!vb2_is_streaming(&sdr->vb_queue)) {
533 spin_unlock(&sdr->dma_lock);
534 return;
535 }
536
537 idx = sdr->produced % RCAR_DRIF_NUM_HWBUFS;
538 rcar_drif_channel_complete(ch, idx);
539
540 if (sdr->num_cur_ch == RCAR_DRIF_MAX_CHANNEL) {
541 buf[0] = ch->num ? to_rcar_drif_buf_pair(sdr, ch->num, idx) :
542 &ch->buf[idx];
543 buf[1] = ch->num ? &ch->buf[idx] :
544 to_rcar_drif_buf_pair(sdr, ch->num, idx);
545
546 /* Check if both DMA buffers are done */
547 if (!rcar_drif_bufs_done(buf)) {
548 spin_unlock(&sdr->dma_lock);
549 return;
550 }
551
552 /* Clear buf done status */
553 rcar_drif_bufs_clear(buf, RCAR_DRIF_BUF_DONE);
554
555 if (rcar_drif_bufs_overflow(buf)) {
556 overflow = true;
557 /* Clear the flag in status */
558 rcar_drif_bufs_clear(buf, RCAR_DRIF_BUF_OVERFLOW);
559 }
560 } else {
561 buf[0] = &ch->buf[idx];
562 if (buf[0]->status & RCAR_DRIF_BUF_OVERFLOW) {
563 overflow = true;
564 /* Clear the flag in status */
565 buf[0]->status &= ~RCAR_DRIF_BUF_OVERFLOW;
566 }
567 }
568
569 /* Buffer produced for consumption */
570 produced = sdr->produced++;
571 spin_unlock(&sdr->dma_lock);
572
573 rdrif_dbg(sdr, "ch%u: prod %u\n", ch->num, produced);
574
575 /* Get fbuf */
576 fbuf = rcar_drif_get_fbuf(sdr);
577 if (!fbuf)
578 return;
579
580 for (i = 0; i < RCAR_DRIF_MAX_CHANNEL; i++)
581 memcpy(vb2_plane_vaddr(&fbuf->vb.vb2_buf, 0) +
582 i * sdr->hwbuf_size, buf[i]->addr, sdr->hwbuf_size);
583
584 fbuf->vb.field = V4L2_FIELD_NONE;
585 fbuf->vb.sequence = produced;
586 fbuf->vb.vb2_buf.timestamp = ktime_get_ns();
587 vb2_set_plane_payload(&fbuf->vb.vb2_buf, 0, sdr->fmt->buffersize);
588
589 /* Set error state on overflow */
590 vb2_buffer_done(&fbuf->vb.vb2_buf,
591 overflow ? VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);
592 }
593
rcar_drif_qbuf(struct rcar_drif * ch)594 static int rcar_drif_qbuf(struct rcar_drif *ch)
595 {
596 struct rcar_drif_sdr *sdr = ch->sdr;
597 dma_addr_t addr = ch->dma_handle;
598 struct dma_async_tx_descriptor *rxd;
599 dma_cookie_t cookie;
600 int ret = -EIO;
601
602 /* Setup cyclic DMA with given buffers */
603 rxd = dmaengine_prep_dma_cyclic(ch->dmach, addr,
604 sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS,
605 sdr->hwbuf_size, DMA_DEV_TO_MEM,
606 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
607 if (!rxd) {
608 rdrif_err(sdr, "ch%u: prep dma cyclic failed\n", ch->num);
609 return ret;
610 }
611
612 /* Submit descriptor */
613 rxd->callback = rcar_drif_dma_complete;
614 rxd->callback_param = ch;
615 cookie = dmaengine_submit(rxd);
616 if (dma_submit_error(cookie)) {
617 rdrif_err(sdr, "ch%u: dma submit failed\n", ch->num);
618 return ret;
619 }
620
621 dma_async_issue_pending(ch->dmach);
622 return 0;
623 }
624
625 /* Enable reception */
rcar_drif_enable_rx(struct rcar_drif_sdr * sdr)626 static int rcar_drif_enable_rx(struct rcar_drif_sdr *sdr)
627 {
628 unsigned int i;
629 u32 ctr;
630 int ret = -EINVAL;
631
632 /*
633 * When both internal channels are enabled, they can be synchronized
634 * only by the master
635 */
636
637 /* Enable receive */
638 for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
639 ctr = rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR);
640 ctr |= (RCAR_DRIF_SICTR_RX_RISING_EDGE |
641 RCAR_DRIF_SICTR_RX_EN);
642 rcar_drif_write(sdr->ch[i], RCAR_DRIF_SICTR, ctr);
643 }
644
645 /* Check receive enabled */
646 for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
647 ret = readl_poll_timeout(sdr->ch[i]->base + RCAR_DRIF_SICTR,
648 ctr, ctr & RCAR_DRIF_SICTR_RX_EN, 7, 100000);
649 if (ret) {
650 rdrif_err(sdr, "ch%u: rx en failed. ctr 0x%08x\n", i,
651 rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR));
652 break;
653 }
654 }
655 return ret;
656 }
657
658 /* Disable reception */
rcar_drif_disable_rx(struct rcar_drif_sdr * sdr)659 static void rcar_drif_disable_rx(struct rcar_drif_sdr *sdr)
660 {
661 unsigned int i;
662 u32 ctr;
663 int ret;
664
665 /* Disable receive */
666 for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
667 ctr = rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR);
668 ctr &= ~RCAR_DRIF_SICTR_RX_EN;
669 rcar_drif_write(sdr->ch[i], RCAR_DRIF_SICTR, ctr);
670 }
671
672 /* Check receive disabled */
673 for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
674 ret = readl_poll_timeout(sdr->ch[i]->base + RCAR_DRIF_SICTR,
675 ctr, !(ctr & RCAR_DRIF_SICTR_RX_EN), 7, 100000);
676 if (ret)
677 dev_warn(&sdr->vdev->dev,
678 "ch%u: failed to disable rx. ctr 0x%08x\n",
679 i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR));
680 }
681 }
682
683 /* Stop channel */
rcar_drif_stop_channel(struct rcar_drif * ch)684 static void rcar_drif_stop_channel(struct rcar_drif *ch)
685 {
686 /* Disable DMA receive interrupt */
687 rcar_drif_write(ch, RCAR_DRIF_SIIER, 0x00000000);
688
689 /* Terminate all DMA transfers */
690 dmaengine_terminate_sync(ch->dmach);
691 }
692
693 /* Stop receive operation */
rcar_drif_stop(struct rcar_drif_sdr * sdr)694 static void rcar_drif_stop(struct rcar_drif_sdr *sdr)
695 {
696 unsigned int i;
697
698 /* Disable Rx */
699 rcar_drif_disable_rx(sdr);
700
701 for_each_rcar_drif_channel(i, &sdr->cur_ch_mask)
702 rcar_drif_stop_channel(sdr->ch[i]);
703 }
704
705 /* Start channel */
rcar_drif_start_channel(struct rcar_drif * ch)706 static int rcar_drif_start_channel(struct rcar_drif *ch)
707 {
708 struct rcar_drif_sdr *sdr = ch->sdr;
709 u32 ctr, str;
710 int ret;
711
712 /* Reset receive */
713 rcar_drif_write(ch, RCAR_DRIF_SICTR, RCAR_DRIF_SICTR_RESET);
714 ret = readl_poll_timeout(ch->base + RCAR_DRIF_SICTR, ctr,
715 !(ctr & RCAR_DRIF_SICTR_RESET), 7, 100000);
716 if (ret) {
717 rdrif_err(sdr, "ch%u: failed to reset rx. ctr 0x%08x\n",
718 ch->num, rcar_drif_read(ch, RCAR_DRIF_SICTR));
719 return ret;
720 }
721
722 /* Queue buffers for DMA */
723 ret = rcar_drif_qbuf(ch);
724 if (ret)
725 return ret;
726
727 /* Clear status register flags */
728 str = RCAR_DRIF_RFFUL | RCAR_DRIF_REOF | RCAR_DRIF_RFSERR |
729 RCAR_DRIF_RFUDF | RCAR_DRIF_RFOVF;
730 rcar_drif_write(ch, RCAR_DRIF_SISTR, str);
731
732 /* Enable DMA receive interrupt */
733 rcar_drif_write(ch, RCAR_DRIF_SIIER, 0x00009000);
734
735 return ret;
736 }
737
738 /* Start receive operation */
rcar_drif_start(struct rcar_drif_sdr * sdr)739 static int rcar_drif_start(struct rcar_drif_sdr *sdr)
740 {
741 unsigned long enabled = 0;
742 unsigned int i;
743 int ret;
744
745 for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
746 ret = rcar_drif_start_channel(sdr->ch[i]);
747 if (ret)
748 goto start_error;
749 enabled |= BIT(i);
750 }
751
752 ret = rcar_drif_enable_rx(sdr);
753 if (ret)
754 goto enable_error;
755
756 sdr->produced = 0;
757 return ret;
758
759 enable_error:
760 rcar_drif_disable_rx(sdr);
761 start_error:
762 for_each_rcar_drif_channel(i, &enabled)
763 rcar_drif_stop_channel(sdr->ch[i]);
764
765 return ret;
766 }
767
768 /* Start streaming */
rcar_drif_start_streaming(struct vb2_queue * vq,unsigned int count)769 static int rcar_drif_start_streaming(struct vb2_queue *vq, unsigned int count)
770 {
771 struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq);
772 unsigned long enabled = 0;
773 unsigned int i;
774 int ret;
775
776 mutex_lock(&sdr->v4l2_mutex);
777
778 for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
779 ret = clk_prepare_enable(sdr->ch[i]->clk);
780 if (ret)
781 goto error;
782 enabled |= BIT(i);
783 }
784
785 /* Set default MDRx settings */
786 rcar_drif_set_mdr1(sdr);
787
788 /* Set new format */
789 ret = rcar_drif_set_format(sdr);
790 if (ret)
791 goto error;
792
793 if (sdr->num_cur_ch == RCAR_DRIF_MAX_CHANNEL)
794 sdr->hwbuf_size = sdr->fmt->buffersize / RCAR_DRIF_MAX_CHANNEL;
795 else
796 sdr->hwbuf_size = sdr->fmt->buffersize;
797
798 rdrif_dbg(sdr, "num hwbufs %u, hwbuf_size %u\n",
799 RCAR_DRIF_NUM_HWBUFS, sdr->hwbuf_size);
800
801 /* Alloc DMA channel */
802 ret = rcar_drif_alloc_dmachannels(sdr);
803 if (ret)
804 goto error;
805
806 /* Request buffers */
807 ret = rcar_drif_request_buf(sdr);
808 if (ret)
809 goto error;
810
811 /* Start Rx */
812 ret = rcar_drif_start(sdr);
813 if (ret)
814 goto error;
815
816 mutex_unlock(&sdr->v4l2_mutex);
817
818 return ret;
819
820 error:
821 rcar_drif_release_queued_bufs(sdr, VB2_BUF_STATE_QUEUED);
822 rcar_drif_release_buf(sdr);
823 rcar_drif_release_dmachannels(sdr);
824 for_each_rcar_drif_channel(i, &enabled)
825 clk_disable_unprepare(sdr->ch[i]->clk);
826
827 mutex_unlock(&sdr->v4l2_mutex);
828
829 return ret;
830 }
831
832 /* Stop streaming */
rcar_drif_stop_streaming(struct vb2_queue * vq)833 static void rcar_drif_stop_streaming(struct vb2_queue *vq)
834 {
835 struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq);
836 unsigned int i;
837
838 mutex_lock(&sdr->v4l2_mutex);
839
840 /* Stop hardware streaming */
841 rcar_drif_stop(sdr);
842
843 /* Return all queued buffers to vb2 */
844 rcar_drif_release_queued_bufs(sdr, VB2_BUF_STATE_ERROR);
845
846 /* Release buf */
847 rcar_drif_release_buf(sdr);
848
849 /* Release DMA channel resources */
850 rcar_drif_release_dmachannels(sdr);
851
852 for_each_rcar_drif_channel(i, &sdr->cur_ch_mask)
853 clk_disable_unprepare(sdr->ch[i]->clk);
854
855 mutex_unlock(&sdr->v4l2_mutex);
856 }
857
858 /* Vb2 ops */
859 static const struct vb2_ops rcar_drif_vb2_ops = {
860 .queue_setup = rcar_drif_queue_setup,
861 .buf_queue = rcar_drif_buf_queue,
862 .start_streaming = rcar_drif_start_streaming,
863 .stop_streaming = rcar_drif_stop_streaming,
864 .wait_prepare = vb2_ops_wait_prepare,
865 .wait_finish = vb2_ops_wait_finish,
866 };
867
rcar_drif_querycap(struct file * file,void * fh,struct v4l2_capability * cap)868 static int rcar_drif_querycap(struct file *file, void *fh,
869 struct v4l2_capability *cap)
870 {
871 struct rcar_drif_sdr *sdr = video_drvdata(file);
872
873 strlcpy(cap->driver, KBUILD_MODNAME, sizeof(cap->driver));
874 strlcpy(cap->card, sdr->vdev->name, sizeof(cap->card));
875 snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
876 sdr->vdev->name);
877
878 return 0;
879 }
880
rcar_drif_set_default_format(struct rcar_drif_sdr * sdr)881 static int rcar_drif_set_default_format(struct rcar_drif_sdr *sdr)
882 {
883 unsigned int i;
884
885 for (i = 0; i < ARRAY_SIZE(formats); i++) {
886 /* Matching fmt based on required channels is set as default */
887 if (sdr->num_hw_ch == formats[i].num_ch) {
888 sdr->fmt = &formats[i];
889 sdr->cur_ch_mask = sdr->hw_ch_mask;
890 sdr->num_cur_ch = sdr->num_hw_ch;
891 dev_dbg(sdr->dev, "default fmt[%u]: mask %lu num %u\n",
892 i, sdr->cur_ch_mask, sdr->num_cur_ch);
893 return 0;
894 }
895 }
896 return -EINVAL;
897 }
898
rcar_drif_enum_fmt_sdr_cap(struct file * file,void * priv,struct v4l2_fmtdesc * f)899 static int rcar_drif_enum_fmt_sdr_cap(struct file *file, void *priv,
900 struct v4l2_fmtdesc *f)
901 {
902 if (f->index >= ARRAY_SIZE(formats))
903 return -EINVAL;
904
905 f->pixelformat = formats[f->index].pixelformat;
906
907 return 0;
908 }
909
rcar_drif_g_fmt_sdr_cap(struct file * file,void * priv,struct v4l2_format * f)910 static int rcar_drif_g_fmt_sdr_cap(struct file *file, void *priv,
911 struct v4l2_format *f)
912 {
913 struct rcar_drif_sdr *sdr = video_drvdata(file);
914
915 f->fmt.sdr.pixelformat = sdr->fmt->pixelformat;
916 f->fmt.sdr.buffersize = sdr->fmt->buffersize;
917
918 return 0;
919 }
920
rcar_drif_s_fmt_sdr_cap(struct file * file,void * priv,struct v4l2_format * f)921 static int rcar_drif_s_fmt_sdr_cap(struct file *file, void *priv,
922 struct v4l2_format *f)
923 {
924 struct rcar_drif_sdr *sdr = video_drvdata(file);
925 struct vb2_queue *q = &sdr->vb_queue;
926 unsigned int i;
927
928 if (vb2_is_busy(q))
929 return -EBUSY;
930
931 for (i = 0; i < ARRAY_SIZE(formats); i++) {
932 if (formats[i].pixelformat == f->fmt.sdr.pixelformat)
933 break;
934 }
935
936 if (i == ARRAY_SIZE(formats))
937 i = 0; /* Set the 1st format as default on no match */
938
939 sdr->fmt = &formats[i];
940 f->fmt.sdr.pixelformat = sdr->fmt->pixelformat;
941 f->fmt.sdr.buffersize = formats[i].buffersize;
942 memset(f->fmt.sdr.reserved, 0, sizeof(f->fmt.sdr.reserved));
943
944 /*
945 * If a format demands one channel only out of two
946 * enabled channels, pick the 0th channel.
947 */
948 if (formats[i].num_ch < sdr->num_hw_ch) {
949 sdr->cur_ch_mask = BIT(0);
950 sdr->num_cur_ch = formats[i].num_ch;
951 } else {
952 sdr->cur_ch_mask = sdr->hw_ch_mask;
953 sdr->num_cur_ch = sdr->num_hw_ch;
954 }
955
956 rdrif_dbg(sdr, "cur: idx %u mask %lu num %u\n",
957 i, sdr->cur_ch_mask, sdr->num_cur_ch);
958
959 return 0;
960 }
961
rcar_drif_try_fmt_sdr_cap(struct file * file,void * priv,struct v4l2_format * f)962 static int rcar_drif_try_fmt_sdr_cap(struct file *file, void *priv,
963 struct v4l2_format *f)
964 {
965 unsigned int i;
966
967 for (i = 0; i < ARRAY_SIZE(formats); i++) {
968 if (formats[i].pixelformat == f->fmt.sdr.pixelformat) {
969 f->fmt.sdr.buffersize = formats[i].buffersize;
970 return 0;
971 }
972 }
973
974 f->fmt.sdr.pixelformat = formats[0].pixelformat;
975 f->fmt.sdr.buffersize = formats[0].buffersize;
976 memset(f->fmt.sdr.reserved, 0, sizeof(f->fmt.sdr.reserved));
977
978 return 0;
979 }
980
981 /* Tuner subdev ioctls */
rcar_drif_enum_freq_bands(struct file * file,void * priv,struct v4l2_frequency_band * band)982 static int rcar_drif_enum_freq_bands(struct file *file, void *priv,
983 struct v4l2_frequency_band *band)
984 {
985 struct rcar_drif_sdr *sdr = video_drvdata(file);
986
987 return v4l2_subdev_call(sdr->ep.subdev, tuner, enum_freq_bands, band);
988 }
989
rcar_drif_g_frequency(struct file * file,void * priv,struct v4l2_frequency * f)990 static int rcar_drif_g_frequency(struct file *file, void *priv,
991 struct v4l2_frequency *f)
992 {
993 struct rcar_drif_sdr *sdr = video_drvdata(file);
994
995 return v4l2_subdev_call(sdr->ep.subdev, tuner, g_frequency, f);
996 }
997
rcar_drif_s_frequency(struct file * file,void * priv,const struct v4l2_frequency * f)998 static int rcar_drif_s_frequency(struct file *file, void *priv,
999 const struct v4l2_frequency *f)
1000 {
1001 struct rcar_drif_sdr *sdr = video_drvdata(file);
1002
1003 return v4l2_subdev_call(sdr->ep.subdev, tuner, s_frequency, f);
1004 }
1005
rcar_drif_g_tuner(struct file * file,void * priv,struct v4l2_tuner * vt)1006 static int rcar_drif_g_tuner(struct file *file, void *priv,
1007 struct v4l2_tuner *vt)
1008 {
1009 struct rcar_drif_sdr *sdr = video_drvdata(file);
1010
1011 return v4l2_subdev_call(sdr->ep.subdev, tuner, g_tuner, vt);
1012 }
1013
rcar_drif_s_tuner(struct file * file,void * priv,const struct v4l2_tuner * vt)1014 static int rcar_drif_s_tuner(struct file *file, void *priv,
1015 const struct v4l2_tuner *vt)
1016 {
1017 struct rcar_drif_sdr *sdr = video_drvdata(file);
1018
1019 return v4l2_subdev_call(sdr->ep.subdev, tuner, s_tuner, vt);
1020 }
1021
1022 static const struct v4l2_ioctl_ops rcar_drif_ioctl_ops = {
1023 .vidioc_querycap = rcar_drif_querycap,
1024
1025 .vidioc_enum_fmt_sdr_cap = rcar_drif_enum_fmt_sdr_cap,
1026 .vidioc_g_fmt_sdr_cap = rcar_drif_g_fmt_sdr_cap,
1027 .vidioc_s_fmt_sdr_cap = rcar_drif_s_fmt_sdr_cap,
1028 .vidioc_try_fmt_sdr_cap = rcar_drif_try_fmt_sdr_cap,
1029
1030 .vidioc_reqbufs = vb2_ioctl_reqbufs,
1031 .vidioc_create_bufs = vb2_ioctl_create_bufs,
1032 .vidioc_prepare_buf = vb2_ioctl_prepare_buf,
1033 .vidioc_querybuf = vb2_ioctl_querybuf,
1034 .vidioc_qbuf = vb2_ioctl_qbuf,
1035 .vidioc_dqbuf = vb2_ioctl_dqbuf,
1036
1037 .vidioc_streamon = vb2_ioctl_streamon,
1038 .vidioc_streamoff = vb2_ioctl_streamoff,
1039
1040 .vidioc_s_frequency = rcar_drif_s_frequency,
1041 .vidioc_g_frequency = rcar_drif_g_frequency,
1042 .vidioc_s_tuner = rcar_drif_s_tuner,
1043 .vidioc_g_tuner = rcar_drif_g_tuner,
1044 .vidioc_enum_freq_bands = rcar_drif_enum_freq_bands,
1045 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
1046 .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
1047 .vidioc_log_status = v4l2_ctrl_log_status,
1048 };
1049
1050 static const struct v4l2_file_operations rcar_drif_fops = {
1051 .owner = THIS_MODULE,
1052 .open = v4l2_fh_open,
1053 .release = vb2_fop_release,
1054 .read = vb2_fop_read,
1055 .poll = vb2_fop_poll,
1056 .mmap = vb2_fop_mmap,
1057 .unlocked_ioctl = video_ioctl2,
1058 };
1059
rcar_drif_sdr_register(struct rcar_drif_sdr * sdr)1060 static int rcar_drif_sdr_register(struct rcar_drif_sdr *sdr)
1061 {
1062 int ret;
1063
1064 /* Init video_device structure */
1065 sdr->vdev = video_device_alloc();
1066 if (!sdr->vdev)
1067 return -ENOMEM;
1068
1069 snprintf(sdr->vdev->name, sizeof(sdr->vdev->name), "R-Car DRIF");
1070 sdr->vdev->fops = &rcar_drif_fops;
1071 sdr->vdev->ioctl_ops = &rcar_drif_ioctl_ops;
1072 sdr->vdev->release = video_device_release;
1073 sdr->vdev->lock = &sdr->v4l2_mutex;
1074 sdr->vdev->queue = &sdr->vb_queue;
1075 sdr->vdev->queue->lock = &sdr->vb_queue_mutex;
1076 sdr->vdev->ctrl_handler = &sdr->ctrl_hdl;
1077 sdr->vdev->v4l2_dev = &sdr->v4l2_dev;
1078 sdr->vdev->device_caps = V4L2_CAP_SDR_CAPTURE | V4L2_CAP_TUNER |
1079 V4L2_CAP_STREAMING | V4L2_CAP_READWRITE;
1080 video_set_drvdata(sdr->vdev, sdr);
1081
1082 /* Register V4L2 SDR device */
1083 ret = video_register_device(sdr->vdev, VFL_TYPE_SDR, -1);
1084 if (ret) {
1085 video_device_release(sdr->vdev);
1086 sdr->vdev = NULL;
1087 dev_err(sdr->dev, "failed video_register_device (%d)\n", ret);
1088 }
1089
1090 return ret;
1091 }
1092
rcar_drif_sdr_unregister(struct rcar_drif_sdr * sdr)1093 static void rcar_drif_sdr_unregister(struct rcar_drif_sdr *sdr)
1094 {
1095 video_unregister_device(sdr->vdev);
1096 sdr->vdev = NULL;
1097 }
1098
1099 /* Sub-device bound callback */
rcar_drif_notify_bound(struct v4l2_async_notifier * notifier,struct v4l2_subdev * subdev,struct v4l2_async_subdev * asd)1100 static int rcar_drif_notify_bound(struct v4l2_async_notifier *notifier,
1101 struct v4l2_subdev *subdev,
1102 struct v4l2_async_subdev *asd)
1103 {
1104 struct rcar_drif_sdr *sdr =
1105 container_of(notifier, struct rcar_drif_sdr, notifier);
1106
1107 if (sdr->ep.asd.match.fwnode !=
1108 of_fwnode_handle(subdev->dev->of_node)) {
1109 rdrif_err(sdr, "subdev %s cannot bind\n", subdev->name);
1110 return -EINVAL;
1111 }
1112
1113 v4l2_set_subdev_hostdata(subdev, sdr);
1114 sdr->ep.subdev = subdev;
1115 rdrif_dbg(sdr, "bound asd %s\n", subdev->name);
1116
1117 return 0;
1118 }
1119
1120 /* Sub-device unbind callback */
rcar_drif_notify_unbind(struct v4l2_async_notifier * notifier,struct v4l2_subdev * subdev,struct v4l2_async_subdev * asd)1121 static void rcar_drif_notify_unbind(struct v4l2_async_notifier *notifier,
1122 struct v4l2_subdev *subdev,
1123 struct v4l2_async_subdev *asd)
1124 {
1125 struct rcar_drif_sdr *sdr =
1126 container_of(notifier, struct rcar_drif_sdr, notifier);
1127
1128 if (sdr->ep.subdev != subdev) {
1129 rdrif_err(sdr, "subdev %s is not bound\n", subdev->name);
1130 return;
1131 }
1132
1133 /* Free ctrl handler if initialized */
1134 v4l2_ctrl_handler_free(&sdr->ctrl_hdl);
1135 sdr->v4l2_dev.ctrl_handler = NULL;
1136 sdr->ep.subdev = NULL;
1137
1138 rcar_drif_sdr_unregister(sdr);
1139 rdrif_dbg(sdr, "unbind asd %s\n", subdev->name);
1140 }
1141
1142 /* Sub-device registered notification callback */
rcar_drif_notify_complete(struct v4l2_async_notifier * notifier)1143 static int rcar_drif_notify_complete(struct v4l2_async_notifier *notifier)
1144 {
1145 struct rcar_drif_sdr *sdr =
1146 container_of(notifier, struct rcar_drif_sdr, notifier);
1147 int ret;
1148
1149 /*
1150 * The subdev tested at this point uses 4 controls. Using 10 as a worst
1151 * case scenario hint. When less controls are needed there will be some
1152 * unused memory and when more controls are needed the framework uses
1153 * hash to manage controls within this number.
1154 */
1155 ret = v4l2_ctrl_handler_init(&sdr->ctrl_hdl, 10);
1156 if (ret)
1157 return -ENOMEM;
1158
1159 sdr->v4l2_dev.ctrl_handler = &sdr->ctrl_hdl;
1160 ret = v4l2_device_register_subdev_nodes(&sdr->v4l2_dev);
1161 if (ret) {
1162 rdrif_err(sdr, "failed: register subdev nodes ret %d\n", ret);
1163 goto error;
1164 }
1165
1166 ret = v4l2_ctrl_add_handler(&sdr->ctrl_hdl,
1167 sdr->ep.subdev->ctrl_handler, NULL);
1168 if (ret) {
1169 rdrif_err(sdr, "failed: ctrl add hdlr ret %d\n", ret);
1170 goto error;
1171 }
1172
1173 ret = rcar_drif_sdr_register(sdr);
1174 if (ret)
1175 goto error;
1176
1177 return ret;
1178
1179 error:
1180 v4l2_ctrl_handler_free(&sdr->ctrl_hdl);
1181
1182 return ret;
1183 }
1184
1185 static const struct v4l2_async_notifier_operations rcar_drif_notify_ops = {
1186 .bound = rcar_drif_notify_bound,
1187 .unbind = rcar_drif_notify_unbind,
1188 .complete = rcar_drif_notify_complete,
1189 };
1190
1191 /* Read endpoint properties */
rcar_drif_get_ep_properties(struct rcar_drif_sdr * sdr,struct fwnode_handle * fwnode)1192 static void rcar_drif_get_ep_properties(struct rcar_drif_sdr *sdr,
1193 struct fwnode_handle *fwnode)
1194 {
1195 u32 val;
1196
1197 /* Set the I2S defaults for SIRMDR1*/
1198 sdr->mdr1 = RCAR_DRIF_SIRMDR1_SYNCMD_LR | RCAR_DRIF_SIRMDR1_MSB_FIRST |
1199 RCAR_DRIF_SIRMDR1_DTDL_1 | RCAR_DRIF_SIRMDR1_SYNCDL_0;
1200
1201 /* Parse sync polarity from endpoint */
1202 if (!fwnode_property_read_u32(fwnode, "sync-active", &val))
1203 sdr->mdr1 |= val ? RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH :
1204 RCAR_DRIF_SIRMDR1_SYNCAC_POL_LOW;
1205 else
1206 sdr->mdr1 |= RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH; /* default */
1207
1208 dev_dbg(sdr->dev, "mdr1 0x%08x\n", sdr->mdr1);
1209 }
1210
1211 /* Parse sub-devs (tuner) to find a matching device */
rcar_drif_parse_subdevs(struct rcar_drif_sdr * sdr)1212 static int rcar_drif_parse_subdevs(struct rcar_drif_sdr *sdr)
1213 {
1214 struct v4l2_async_notifier *notifier = &sdr->notifier;
1215 struct fwnode_handle *fwnode, *ep;
1216
1217 notifier->subdevs = devm_kzalloc(sdr->dev, sizeof(*notifier->subdevs),
1218 GFP_KERNEL);
1219 if (!notifier->subdevs)
1220 return -ENOMEM;
1221
1222 ep = fwnode_graph_get_next_endpoint(of_fwnode_handle(sdr->dev->of_node),
1223 NULL);
1224 if (!ep)
1225 return 0;
1226
1227 notifier->subdevs[notifier->num_subdevs] = &sdr->ep.asd;
1228 fwnode = fwnode_graph_get_remote_port_parent(ep);
1229 if (!fwnode) {
1230 dev_warn(sdr->dev, "bad remote port parent\n");
1231 fwnode_handle_put(ep);
1232 return -EINVAL;
1233 }
1234
1235 sdr->ep.asd.match.fwnode = fwnode;
1236 sdr->ep.asd.match_type = V4L2_ASYNC_MATCH_FWNODE;
1237 notifier->num_subdevs++;
1238
1239 /* Get the endpoint properties */
1240 rcar_drif_get_ep_properties(sdr, ep);
1241
1242 fwnode_handle_put(fwnode);
1243 fwnode_handle_put(ep);
1244
1245 return 0;
1246 }
1247
1248 /* Check if the given device is the primary bond */
rcar_drif_primary_bond(struct platform_device * pdev)1249 static bool rcar_drif_primary_bond(struct platform_device *pdev)
1250 {
1251 return of_property_read_bool(pdev->dev.of_node, "renesas,primary-bond");
1252 }
1253
1254 /* Check if both devices of the bond are enabled */
rcar_drif_bond_enabled(struct platform_device * p)1255 static struct device_node *rcar_drif_bond_enabled(struct platform_device *p)
1256 {
1257 struct device_node *np;
1258
1259 np = of_parse_phandle(p->dev.of_node, "renesas,bonding", 0);
1260 if (np && of_device_is_available(np))
1261 return np;
1262
1263 return NULL;
1264 }
1265
1266 /* Check if the bonded device is probed */
rcar_drif_bond_available(struct rcar_drif_sdr * sdr,struct device_node * np)1267 static int rcar_drif_bond_available(struct rcar_drif_sdr *sdr,
1268 struct device_node *np)
1269 {
1270 struct platform_device *pdev;
1271 struct rcar_drif *ch;
1272 int ret = 0;
1273
1274 pdev = of_find_device_by_node(np);
1275 if (!pdev) {
1276 dev_err(sdr->dev, "failed to get bonded device from node\n");
1277 return -ENODEV;
1278 }
1279
1280 device_lock(&pdev->dev);
1281 ch = platform_get_drvdata(pdev);
1282 if (ch) {
1283 /* Update sdr data in the bonded device */
1284 ch->sdr = sdr;
1285
1286 /* Update sdr with bonded device data */
1287 sdr->ch[ch->num] = ch;
1288 sdr->hw_ch_mask |= BIT(ch->num);
1289 } else {
1290 /* Defer */
1291 dev_info(sdr->dev, "defer probe\n");
1292 ret = -EPROBE_DEFER;
1293 }
1294 device_unlock(&pdev->dev);
1295
1296 put_device(&pdev->dev);
1297
1298 return ret;
1299 }
1300
1301 /* V4L2 SDR device probe */
rcar_drif_sdr_probe(struct rcar_drif_sdr * sdr)1302 static int rcar_drif_sdr_probe(struct rcar_drif_sdr *sdr)
1303 {
1304 int ret;
1305
1306 /* Validate any supported format for enabled channels */
1307 ret = rcar_drif_set_default_format(sdr);
1308 if (ret) {
1309 dev_err(sdr->dev, "failed to set default format\n");
1310 return ret;
1311 }
1312
1313 /* Set defaults */
1314 sdr->hwbuf_size = RCAR_DRIF_DEFAULT_HWBUF_SIZE;
1315
1316 mutex_init(&sdr->v4l2_mutex);
1317 mutex_init(&sdr->vb_queue_mutex);
1318 spin_lock_init(&sdr->queued_bufs_lock);
1319 spin_lock_init(&sdr->dma_lock);
1320 INIT_LIST_HEAD(&sdr->queued_bufs);
1321
1322 /* Init videobuf2 queue structure */
1323 sdr->vb_queue.type = V4L2_BUF_TYPE_SDR_CAPTURE;
1324 sdr->vb_queue.io_modes = VB2_READ | VB2_MMAP | VB2_DMABUF;
1325 sdr->vb_queue.drv_priv = sdr;
1326 sdr->vb_queue.buf_struct_size = sizeof(struct rcar_drif_frame_buf);
1327 sdr->vb_queue.ops = &rcar_drif_vb2_ops;
1328 sdr->vb_queue.mem_ops = &vb2_vmalloc_memops;
1329 sdr->vb_queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
1330
1331 /* Init videobuf2 queue */
1332 ret = vb2_queue_init(&sdr->vb_queue);
1333 if (ret) {
1334 dev_err(sdr->dev, "failed: vb2_queue_init ret %d\n", ret);
1335 return ret;
1336 }
1337
1338 /* Register the v4l2_device */
1339 ret = v4l2_device_register(sdr->dev, &sdr->v4l2_dev);
1340 if (ret) {
1341 dev_err(sdr->dev, "failed: v4l2_device_register ret %d\n", ret);
1342 return ret;
1343 }
1344
1345 /*
1346 * Parse subdevs after v4l2_device_register because if the subdev
1347 * is already probed, bound and complete will be called immediately
1348 */
1349 ret = rcar_drif_parse_subdevs(sdr);
1350 if (ret)
1351 goto error;
1352
1353 sdr->notifier.ops = &rcar_drif_notify_ops;
1354
1355 /* Register notifier */
1356 ret = v4l2_async_notifier_register(&sdr->v4l2_dev, &sdr->notifier);
1357 if (ret < 0) {
1358 dev_err(sdr->dev, "failed: notifier register ret %d\n", ret);
1359 goto error;
1360 }
1361
1362 return ret;
1363
1364 error:
1365 v4l2_device_unregister(&sdr->v4l2_dev);
1366
1367 return ret;
1368 }
1369
1370 /* V4L2 SDR device remove */
rcar_drif_sdr_remove(struct rcar_drif_sdr * sdr)1371 static void rcar_drif_sdr_remove(struct rcar_drif_sdr *sdr)
1372 {
1373 v4l2_async_notifier_unregister(&sdr->notifier);
1374 v4l2_device_unregister(&sdr->v4l2_dev);
1375 }
1376
1377 /* DRIF channel probe */
rcar_drif_probe(struct platform_device * pdev)1378 static int rcar_drif_probe(struct platform_device *pdev)
1379 {
1380 struct rcar_drif_sdr *sdr;
1381 struct device_node *np;
1382 struct rcar_drif *ch;
1383 struct resource *res;
1384 int ret;
1385
1386 /* Reserve memory for enabled channel */
1387 ch = devm_kzalloc(&pdev->dev, sizeof(*ch), GFP_KERNEL);
1388 if (!ch)
1389 return -ENOMEM;
1390
1391 ch->pdev = pdev;
1392
1393 /* Module clock */
1394 ch->clk = devm_clk_get(&pdev->dev, "fck");
1395 if (IS_ERR(ch->clk)) {
1396 ret = PTR_ERR(ch->clk);
1397 dev_err(&pdev->dev, "clk get failed (%d)\n", ret);
1398 return ret;
1399 }
1400
1401 /* Register map */
1402 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1403 ch->base = devm_ioremap_resource(&pdev->dev, res);
1404 if (IS_ERR(ch->base)) {
1405 ret = PTR_ERR(ch->base);
1406 dev_err(&pdev->dev, "ioremap failed (%d)\n", ret);
1407 return ret;
1408 }
1409 ch->start = res->start;
1410 platform_set_drvdata(pdev, ch);
1411
1412 /* Check if both channels of the bond are enabled */
1413 np = rcar_drif_bond_enabled(pdev);
1414 if (np) {
1415 /* Check if current channel acting as primary-bond */
1416 if (!rcar_drif_primary_bond(pdev)) {
1417 ch->num = 1; /* Primary bond is channel 0 always */
1418 of_node_put(np);
1419 return 0;
1420 }
1421 }
1422
1423 /* Reserve memory for SDR structure */
1424 sdr = devm_kzalloc(&pdev->dev, sizeof(*sdr), GFP_KERNEL);
1425 if (!sdr) {
1426 of_node_put(np);
1427 return -ENOMEM;
1428 }
1429 ch->sdr = sdr;
1430 sdr->dev = &pdev->dev;
1431
1432 /* Establish links between SDR and channel(s) */
1433 sdr->ch[ch->num] = ch;
1434 sdr->hw_ch_mask = BIT(ch->num);
1435 if (np) {
1436 /* Check if bonded device is ready */
1437 ret = rcar_drif_bond_available(sdr, np);
1438 of_node_put(np);
1439 if (ret)
1440 return ret;
1441 }
1442 sdr->num_hw_ch = hweight_long(sdr->hw_ch_mask);
1443
1444 return rcar_drif_sdr_probe(sdr);
1445 }
1446
1447 /* DRIF channel remove */
rcar_drif_remove(struct platform_device * pdev)1448 static int rcar_drif_remove(struct platform_device *pdev)
1449 {
1450 struct rcar_drif *ch = platform_get_drvdata(pdev);
1451 struct rcar_drif_sdr *sdr = ch->sdr;
1452
1453 /* Channel 0 will be the SDR instance */
1454 if (ch->num)
1455 return 0;
1456
1457 /* SDR instance */
1458 rcar_drif_sdr_remove(sdr);
1459
1460 return 0;
1461 }
1462
1463 /* FIXME: Implement suspend/resume support */
rcar_drif_suspend(struct device * dev)1464 static int __maybe_unused rcar_drif_suspend(struct device *dev)
1465 {
1466 return 0;
1467 }
1468
rcar_drif_resume(struct device * dev)1469 static int __maybe_unused rcar_drif_resume(struct device *dev)
1470 {
1471 return 0;
1472 }
1473
1474 static SIMPLE_DEV_PM_OPS(rcar_drif_pm_ops, rcar_drif_suspend,
1475 rcar_drif_resume);
1476
1477 static const struct of_device_id rcar_drif_of_table[] = {
1478 { .compatible = "renesas,rcar-gen3-drif" },
1479 { }
1480 };
1481 MODULE_DEVICE_TABLE(of, rcar_drif_of_table);
1482
1483 #define RCAR_DRIF_DRV_NAME "rcar_drif"
1484 static struct platform_driver rcar_drif_driver = {
1485 .driver = {
1486 .name = RCAR_DRIF_DRV_NAME,
1487 .of_match_table = of_match_ptr(rcar_drif_of_table),
1488 .pm = &rcar_drif_pm_ops,
1489 },
1490 .probe = rcar_drif_probe,
1491 .remove = rcar_drif_remove,
1492 };
1493
1494 module_platform_driver(rcar_drif_driver);
1495
1496 MODULE_DESCRIPTION("Renesas R-Car Gen3 DRIF driver");
1497 MODULE_ALIAS("platform:" RCAR_DRIF_DRV_NAME);
1498 MODULE_LICENSE("GPL");
1499 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
1500