1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2018 Gateworks Corporation
4 */
5 #include <linux/delay.h>
6 #include <linux/hdmi.h>
7 #include <linux/i2c.h>
8 #include <linux/init.h>
9 #include <linux/interrupt.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/of_graph.h>
13 #include <linux/platform_device.h>
14 #include <linux/regulator/consumer.h>
15 #include <linux/types.h>
16 #include <linux/v4l2-dv-timings.h>
17 #include <linux/videodev2.h>
18
19 #include <media/v4l2-ctrls.h>
20 #include <media/v4l2-device.h>
21 #include <media/v4l2-dv-timings.h>
22 #include <media/v4l2-event.h>
23 #include <media/v4l2-fwnode.h>
24 #include <media/i2c/tda1997x.h>
25
26 #include <sound/core.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/soc.h>
30
31 #include <dt-bindings/media/tda1997x.h>
32
33 #include "tda1997x_regs.h"
34
35 #define TDA1997X_MBUS_CODES 5
36
37 /* debug level */
38 static int debug;
39 module_param(debug, int, 0644);
40 MODULE_PARM_DESC(debug, "debug level (0-2)");
41
42 /* Audio formats */
43 static const char * const audtype_names[] = {
44 "PCM", /* PCM Samples */
45 "HBR", /* High Bit Rate Audio */
46 "OBA", /* One-Bit Audio */
47 "DST" /* Direct Stream Transfer */
48 };
49
50 /* Audio output port formats */
51 enum audfmt_types {
52 AUDFMT_TYPE_DISABLED = 0,
53 AUDFMT_TYPE_I2S,
54 AUDFMT_TYPE_SPDIF,
55 };
56 static const char * const audfmt_names[] = {
57 "Disabled",
58 "I2S",
59 "SPDIF",
60 };
61
62 /* Video input formats */
63 static const char * const hdmi_colorspace_names[] = {
64 "RGB", "YUV422", "YUV444", "YUV420", "", "", "", "",
65 };
66 static const char * const hdmi_colorimetry_names[] = {
67 "", "ITU601", "ITU709", "Extended",
68 };
69 static const char * const v4l2_quantization_names[] = {
70 "Default",
71 "Full Range (0-255)",
72 "Limited Range (16-235)",
73 };
74
75 /* Video output port formats */
76 static const char * const vidfmt_names[] = {
77 "RGB444/YUV444", /* RGB/YUV444 16bit data bus, 8bpp */
78 "YUV422 semi-planar", /* YUV422 16bit data base, 8bpp */
79 "YUV422 CCIR656", /* BT656 (YUV 8bpp 2 clock per pixel) */
80 "Invalid",
81 };
82
83 /*
84 * Colorspace conversion matrices
85 */
86 struct color_matrix_coefs {
87 const char *name;
88 /* Input offsets */
89 s16 offint1;
90 s16 offint2;
91 s16 offint3;
92 /* Coeficients */
93 s16 p11coef;
94 s16 p12coef;
95 s16 p13coef;
96 s16 p21coef;
97 s16 p22coef;
98 s16 p23coef;
99 s16 p31coef;
100 s16 p32coef;
101 s16 p33coef;
102 /* Output offsets */
103 s16 offout1;
104 s16 offout2;
105 s16 offout3;
106 };
107
108 enum {
109 ITU709_RGBFULL,
110 ITU601_RGBFULL,
111 RGBLIMITED_RGBFULL,
112 RGBLIMITED_ITU601,
113 RGBLIMITED_ITU709,
114 RGBFULL_ITU601,
115 RGBFULL_ITU709,
116 };
117
118 /* NB: 4096 is 1.0 using fixed point numbers */
119 static const struct color_matrix_coefs conv_matrix[] = {
120 {
121 "YUV709 -> RGB full",
122 -256, -2048, -2048,
123 4769, -2183, -873,
124 4769, 7343, 0,
125 4769, 0, 8652,
126 0, 0, 0,
127 },
128 {
129 "YUV601 -> RGB full",
130 -256, -2048, -2048,
131 4769, -3330, -1602,
132 4769, 6538, 0,
133 4769, 0, 8264,
134 256, 256, 256,
135 },
136 {
137 "RGB limited -> RGB full",
138 -256, -256, -256,
139 0, 4769, 0,
140 0, 0, 4769,
141 4769, 0, 0,
142 0, 0, 0,
143 },
144 {
145 "RGB limited -> ITU601",
146 -256, -256, -256,
147 2404, 1225, 467,
148 -1754, 2095, -341,
149 -1388, -707, 2095,
150 256, 2048, 2048,
151 },
152 {
153 "RGB limited -> ITU709",
154 -256, -256, -256,
155 2918, 867, 295,
156 -1894, 2087, -190,
157 -1607, -477, 2087,
158 256, 2048, 2048,
159 },
160 {
161 "RGB full -> ITU601",
162 0, 0, 0,
163 2065, 1052, 401,
164 -1506, 1799, -293,
165 -1192, -607, 1799,
166 256, 2048, 2048,
167 },
168 {
169 "RGB full -> ITU709",
170 0, 0, 0,
171 2506, 745, 253,
172 -1627, 1792, -163,
173 -1380, -410, 1792,
174 256, 2048, 2048,
175 },
176 };
177
178 static const struct v4l2_dv_timings_cap tda1997x_dv_timings_cap = {
179 .type = V4L2_DV_BT_656_1120,
180 /* keep this initialization for compatibility with GCC < 4.4.6 */
181 .reserved = { 0 },
182
183 V4L2_INIT_BT_TIMINGS(
184 640, 1920, /* min/max width */
185 350, 1200, /* min/max height */
186 13000000, 165000000, /* min/max pixelclock */
187 /* standards */
188 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
189 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
190 /* capabilities */
191 V4L2_DV_BT_CAP_INTERLACED | V4L2_DV_BT_CAP_PROGRESSIVE |
192 V4L2_DV_BT_CAP_REDUCED_BLANKING |
193 V4L2_DV_BT_CAP_CUSTOM
194 )
195 };
196
197 /* regulator supplies */
198 static const char * const tda1997x_supply_name[] = {
199 "DOVDD", /* Digital I/O supply */
200 "DVDD", /* Digital Core supply */
201 "AVDD", /* Analog supply */
202 };
203
204 #define TDA1997X_NUM_SUPPLIES ARRAY_SIZE(tda1997x_supply_name)
205
206 enum tda1997x_type {
207 TDA19971,
208 TDA19973,
209 };
210
211 enum tda1997x_hdmi_pads {
212 TDA1997X_PAD_SOURCE,
213 TDA1997X_NUM_PADS,
214 };
215
216 struct tda1997x_chip_info {
217 enum tda1997x_type type;
218 const char *name;
219 };
220
221 struct tda1997x_state {
222 const struct tda1997x_chip_info *info;
223 struct tda1997x_platform_data pdata;
224 struct i2c_client *client;
225 struct i2c_client *client_cec;
226 struct v4l2_subdev sd;
227 struct regulator_bulk_data supplies[TDA1997X_NUM_SUPPLIES];
228 struct media_pad pads[TDA1997X_NUM_PADS];
229 struct mutex lock;
230 struct mutex page_lock;
231 char page;
232
233 /* detected info from chip */
234 int chip_revision;
235 char port_30bit;
236 char output_2p5;
237 char tmdsb_clk;
238 char tmdsb_soc;
239
240 /* status info */
241 char hdmi_status;
242 char mptrw_in_progress;
243 char activity_status;
244 char input_detect[2];
245
246 /* video */
247 struct hdmi_avi_infoframe avi_infoframe;
248 struct v4l2_hdmi_colorimetry colorimetry;
249 u32 rgb_quantization_range;
250 struct v4l2_dv_timings timings;
251 int fps;
252 const struct color_matrix_coefs *conv;
253 u32 mbus_codes[TDA1997X_MBUS_CODES]; /* available modes */
254 u32 mbus_code; /* current mode */
255 u8 vid_fmt;
256
257 /* controls */
258 struct v4l2_ctrl_handler hdl;
259 struct v4l2_ctrl *detect_tx_5v_ctrl;
260 struct v4l2_ctrl *rgb_quantization_range_ctrl;
261
262 /* audio */
263 u8 audio_ch_alloc;
264 int audio_samplerate;
265 int audio_channels;
266 int audio_samplesize;
267 int audio_type;
268 struct mutex audio_lock;
269 struct snd_pcm_substream *audio_stream;
270
271 /* EDID */
272 struct {
273 u8 edid[256];
274 u32 present;
275 unsigned int blocks;
276 } edid;
277 struct delayed_work delayed_work_enable_hpd;
278 };
279
280 static const struct v4l2_event tda1997x_ev_fmt = {
281 .type = V4L2_EVENT_SOURCE_CHANGE,
282 .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
283 };
284
285 static const struct tda1997x_chip_info tda1997x_chip_info[] = {
286 [TDA19971] = {
287 .type = TDA19971,
288 .name = "tda19971",
289 },
290 [TDA19973] = {
291 .type = TDA19973,
292 .name = "tda19973",
293 },
294 };
295
to_state(struct v4l2_subdev * sd)296 static inline struct tda1997x_state *to_state(struct v4l2_subdev *sd)
297 {
298 return container_of(sd, struct tda1997x_state, sd);
299 }
300
to_sd(struct v4l2_ctrl * ctrl)301 static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl)
302 {
303 return &container_of(ctrl->handler, struct tda1997x_state, hdl)->sd;
304 }
305
tda1997x_cec_read(struct v4l2_subdev * sd,u8 reg)306 static int tda1997x_cec_read(struct v4l2_subdev *sd, u8 reg)
307 {
308 struct tda1997x_state *state = to_state(sd);
309 int val;
310
311 val = i2c_smbus_read_byte_data(state->client_cec, reg);
312 if (val < 0) {
313 v4l_err(state->client, "read reg error: reg=%2x\n", reg);
314 val = -1;
315 }
316
317 return val;
318 }
319
tda1997x_cec_write(struct v4l2_subdev * sd,u8 reg,u8 val)320 static int tda1997x_cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
321 {
322 struct tda1997x_state *state = to_state(sd);
323 int ret = 0;
324
325 ret = i2c_smbus_write_byte_data(state->client_cec, reg, val);
326 if (ret < 0) {
327 v4l_err(state->client, "write reg error:reg=%2x,val=%2x\n",
328 reg, val);
329 ret = -1;
330 }
331
332 return ret;
333 }
334
335 /* -----------------------------------------------------------------------------
336 * I2C transfer
337 */
338
tda1997x_setpage(struct v4l2_subdev * sd,u8 page)339 static int tda1997x_setpage(struct v4l2_subdev *sd, u8 page)
340 {
341 struct tda1997x_state *state = to_state(sd);
342 int ret;
343
344 if (state->page != page) {
345 ret = i2c_smbus_write_byte_data(state->client,
346 REG_CURPAGE_00H, page);
347 if (ret < 0) {
348 v4l_err(state->client,
349 "write reg error:reg=%2x,val=%2x\n",
350 REG_CURPAGE_00H, page);
351 return ret;
352 }
353 state->page = page;
354 }
355 return 0;
356 }
357
io_read(struct v4l2_subdev * sd,u16 reg)358 static inline int io_read(struct v4l2_subdev *sd, u16 reg)
359 {
360 struct tda1997x_state *state = to_state(sd);
361 int val;
362
363 mutex_lock(&state->page_lock);
364 if (tda1997x_setpage(sd, reg >> 8)) {
365 val = -1;
366 goto out;
367 }
368
369 val = i2c_smbus_read_byte_data(state->client, reg&0xff);
370 if (val < 0) {
371 v4l_err(state->client, "read reg error: reg=%2x\n", reg & 0xff);
372 val = -1;
373 goto out;
374 }
375
376 out:
377 mutex_unlock(&state->page_lock);
378 return val;
379 }
380
io_read16(struct v4l2_subdev * sd,u16 reg)381 static inline long io_read16(struct v4l2_subdev *sd, u16 reg)
382 {
383 int val;
384 long lval = 0;
385
386 val = io_read(sd, reg);
387 if (val < 0)
388 return val;
389 lval |= (val << 8);
390 val = io_read(sd, reg + 1);
391 if (val < 0)
392 return val;
393 lval |= val;
394
395 return lval;
396 }
397
io_read24(struct v4l2_subdev * sd,u16 reg)398 static inline long io_read24(struct v4l2_subdev *sd, u16 reg)
399 {
400 int val;
401 long lval = 0;
402
403 val = io_read(sd, reg);
404 if (val < 0)
405 return val;
406 lval |= (val << 16);
407 val = io_read(sd, reg + 1);
408 if (val < 0)
409 return val;
410 lval |= (val << 8);
411 val = io_read(sd, reg + 2);
412 if (val < 0)
413 return val;
414 lval |= val;
415
416 return lval;
417 }
418
io_readn(struct v4l2_subdev * sd,u16 reg,u8 len,u8 * data)419 static unsigned int io_readn(struct v4l2_subdev *sd, u16 reg, u8 len, u8 *data)
420 {
421 int i;
422 int sz = 0;
423 int val;
424
425 for (i = 0; i < len; i++) {
426 val = io_read(sd, reg + i);
427 if (val < 0)
428 break;
429 data[i] = val;
430 sz++;
431 }
432
433 return sz;
434 }
435
io_write(struct v4l2_subdev * sd,u16 reg,u8 val)436 static int io_write(struct v4l2_subdev *sd, u16 reg, u8 val)
437 {
438 struct tda1997x_state *state = to_state(sd);
439 s32 ret = 0;
440
441 mutex_lock(&state->page_lock);
442 if (tda1997x_setpage(sd, reg >> 8)) {
443 ret = -1;
444 goto out;
445 }
446
447 ret = i2c_smbus_write_byte_data(state->client, reg & 0xff, val);
448 if (ret < 0) {
449 v4l_err(state->client, "write reg error:reg=%2x,val=%2x\n",
450 reg&0xff, val);
451 ret = -1;
452 goto out;
453 }
454
455 out:
456 mutex_unlock(&state->page_lock);
457 return ret;
458 }
459
io_write16(struct v4l2_subdev * sd,u16 reg,u16 val)460 static int io_write16(struct v4l2_subdev *sd, u16 reg, u16 val)
461 {
462 int ret;
463
464 ret = io_write(sd, reg, (val >> 8) & 0xff);
465 if (ret < 0)
466 return ret;
467 ret = io_write(sd, reg + 1, val & 0xff);
468 if (ret < 0)
469 return ret;
470 return 0;
471 }
472
io_write24(struct v4l2_subdev * sd,u16 reg,u32 val)473 static int io_write24(struct v4l2_subdev *sd, u16 reg, u32 val)
474 {
475 int ret;
476
477 ret = io_write(sd, reg, (val >> 16) & 0xff);
478 if (ret < 0)
479 return ret;
480 ret = io_write(sd, reg + 1, (val >> 8) & 0xff);
481 if (ret < 0)
482 return ret;
483 ret = io_write(sd, reg + 2, val & 0xff);
484 if (ret < 0)
485 return ret;
486 return 0;
487 }
488
489 /* -----------------------------------------------------------------------------
490 * Hotplug
491 */
492
493 enum hpd_mode {
494 HPD_LOW_BP, /* HPD low and pulse of at least 100ms */
495 HPD_LOW_OTHER, /* HPD low and pulse of at least 100ms */
496 HPD_HIGH_BP, /* HIGH */
497 HPD_HIGH_OTHER,
498 HPD_PULSE, /* HPD low pulse */
499 };
500
501 /* manual HPD (Hot Plug Detect) control */
tda1997x_manual_hpd(struct v4l2_subdev * sd,enum hpd_mode mode)502 static int tda1997x_manual_hpd(struct v4l2_subdev *sd, enum hpd_mode mode)
503 {
504 u8 hpd_auto, hpd_pwr, hpd_man;
505
506 hpd_auto = io_read(sd, REG_HPD_AUTO_CTRL);
507 hpd_pwr = io_read(sd, REG_HPD_POWER);
508 hpd_man = io_read(sd, REG_HPD_MAN_CTRL);
509
510 /* mask out unused bits */
511 hpd_man &= (HPD_MAN_CTRL_HPD_PULSE |
512 HPD_MAN_CTRL_5VEN |
513 HPD_MAN_CTRL_HPD_B |
514 HPD_MAN_CTRL_HPD_A);
515
516 switch (mode) {
517 /* HPD low and pulse of at least 100ms */
518 case HPD_LOW_BP:
519 /* hpd_bp=0 */
520 hpd_pwr &= ~HPD_POWER_BP_MASK;
521 /* disable HPD_A and HPD_B */
522 hpd_man &= ~(HPD_MAN_CTRL_HPD_A | HPD_MAN_CTRL_HPD_B);
523 io_write(sd, REG_HPD_POWER, hpd_pwr);
524 io_write(sd, REG_HPD_MAN_CTRL, hpd_man);
525 break;
526 /* HPD high */
527 case HPD_HIGH_BP:
528 /* hpd_bp=1 */
529 hpd_pwr &= ~HPD_POWER_BP_MASK;
530 hpd_pwr |= 1 << HPD_POWER_BP_SHIFT;
531 io_write(sd, REG_HPD_POWER, hpd_pwr);
532 break;
533 /* HPD low and pulse of at least 100ms */
534 case HPD_LOW_OTHER:
535 /* disable HPD_A and HPD_B */
536 hpd_man &= ~(HPD_MAN_CTRL_HPD_A | HPD_MAN_CTRL_HPD_B);
537 /* hp_other=0 */
538 hpd_auto &= ~HPD_AUTO_HP_OTHER;
539 io_write(sd, REG_HPD_AUTO_CTRL, hpd_auto);
540 io_write(sd, REG_HPD_MAN_CTRL, hpd_man);
541 break;
542 /* HPD high */
543 case HPD_HIGH_OTHER:
544 hpd_auto |= HPD_AUTO_HP_OTHER;
545 io_write(sd, REG_HPD_AUTO_CTRL, hpd_auto);
546 break;
547 /* HPD low pulse */
548 case HPD_PULSE:
549 /* disable HPD_A and HPD_B */
550 hpd_man &= ~(HPD_MAN_CTRL_HPD_A | HPD_MAN_CTRL_HPD_B);
551 io_write(sd, REG_HPD_MAN_CTRL, hpd_man);
552 break;
553 }
554
555 return 0;
556 }
557
tda1997x_delayed_work_enable_hpd(struct work_struct * work)558 static void tda1997x_delayed_work_enable_hpd(struct work_struct *work)
559 {
560 struct delayed_work *dwork = to_delayed_work(work);
561 struct tda1997x_state *state = container_of(dwork,
562 struct tda1997x_state,
563 delayed_work_enable_hpd);
564 struct v4l2_subdev *sd = &state->sd;
565
566 v4l2_dbg(2, debug, sd, "%s\n", __func__);
567
568 /* Set HPD high */
569 tda1997x_manual_hpd(sd, HPD_HIGH_OTHER);
570 tda1997x_manual_hpd(sd, HPD_HIGH_BP);
571
572 state->edid.present = 1;
573 }
574
tda1997x_disable_edid(struct v4l2_subdev * sd)575 static void tda1997x_disable_edid(struct v4l2_subdev *sd)
576 {
577 struct tda1997x_state *state = to_state(sd);
578
579 v4l2_dbg(1, debug, sd, "%s\n", __func__);
580 cancel_delayed_work_sync(&state->delayed_work_enable_hpd);
581
582 /* Set HPD low */
583 tda1997x_manual_hpd(sd, HPD_LOW_BP);
584 }
585
tda1997x_enable_edid(struct v4l2_subdev * sd)586 static void tda1997x_enable_edid(struct v4l2_subdev *sd)
587 {
588 struct tda1997x_state *state = to_state(sd);
589
590 v4l2_dbg(1, debug, sd, "%s\n", __func__);
591
592 /* Enable hotplug after 100ms */
593 schedule_delayed_work(&state->delayed_work_enable_hpd, HZ / 10);
594 }
595
596 /* -----------------------------------------------------------------------------
597 * Signal Control
598 */
599
600 /*
601 * configure vid_fmt based on mbus_code
602 */
603 static int
tda1997x_setup_format(struct tda1997x_state * state,u32 code)604 tda1997x_setup_format(struct tda1997x_state *state, u32 code)
605 {
606 v4l_dbg(1, debug, state->client, "%s code=0x%x\n", __func__, code);
607 switch (code) {
608 case MEDIA_BUS_FMT_RGB121212_1X36:
609 case MEDIA_BUS_FMT_RGB888_1X24:
610 case MEDIA_BUS_FMT_YUV12_1X36:
611 case MEDIA_BUS_FMT_YUV8_1X24:
612 state->vid_fmt = OF_FMT_444;
613 break;
614 case MEDIA_BUS_FMT_UYVY12_1X24:
615 case MEDIA_BUS_FMT_UYVY10_1X20:
616 case MEDIA_BUS_FMT_UYVY8_1X16:
617 state->vid_fmt = OF_FMT_422_SMPT;
618 break;
619 case MEDIA_BUS_FMT_UYVY12_2X12:
620 case MEDIA_BUS_FMT_UYVY10_2X10:
621 case MEDIA_BUS_FMT_UYVY8_2X8:
622 state->vid_fmt = OF_FMT_422_CCIR;
623 break;
624 default:
625 v4l_err(state->client, "incompatible format (0x%x)\n", code);
626 return -EINVAL;
627 }
628 v4l_dbg(1, debug, state->client, "%s code=0x%x fmt=%s\n", __func__,
629 code, vidfmt_names[state->vid_fmt]);
630 state->mbus_code = code;
631
632 return 0;
633 }
634
635 /*
636 * The color conversion matrix will convert between the colorimetry of the
637 * HDMI input to the desired output format RGB|YUV. RGB output is to be
638 * full-range and YUV is to be limited range.
639 *
640 * RGB full-range uses values from 0 to 255 which is recommended on a monitor
641 * and RGB Limited uses values from 16 to 236 (16=black, 235=white) which is
642 * typically recommended on a TV.
643 */
644 static void
tda1997x_configure_csc(struct v4l2_subdev * sd)645 tda1997x_configure_csc(struct v4l2_subdev *sd)
646 {
647 struct tda1997x_state *state = to_state(sd);
648 struct hdmi_avi_infoframe *avi = &state->avi_infoframe;
649 struct v4l2_hdmi_colorimetry *c = &state->colorimetry;
650 /* Blanking code values depend on output colorspace (RGB or YUV) */
651 struct blanking_codes {
652 s16 code_gy;
653 s16 code_bu;
654 s16 code_rv;
655 };
656 static const struct blanking_codes rgb_blanking = { 64, 64, 64 };
657 static const struct blanking_codes yuv_blanking = { 64, 512, 512 };
658 const struct blanking_codes *blanking_codes = NULL;
659 u8 reg;
660
661 v4l_dbg(1, debug, state->client, "input:%s quant:%s output:%s\n",
662 hdmi_colorspace_names[avi->colorspace],
663 v4l2_quantization_names[c->quantization],
664 vidfmt_names[state->vid_fmt]);
665 state->conv = NULL;
666 switch (state->vid_fmt) {
667 /* RGB output */
668 case OF_FMT_444:
669 blanking_codes = &rgb_blanking;
670 if (c->colorspace == V4L2_COLORSPACE_SRGB) {
671 if (c->quantization == V4L2_QUANTIZATION_LIM_RANGE)
672 state->conv = &conv_matrix[RGBLIMITED_RGBFULL];
673 } else {
674 if (c->colorspace == V4L2_COLORSPACE_REC709)
675 state->conv = &conv_matrix[ITU709_RGBFULL];
676 else if (c->colorspace == V4L2_COLORSPACE_SMPTE170M)
677 state->conv = &conv_matrix[ITU601_RGBFULL];
678 }
679 break;
680
681 /* YUV output */
682 case OF_FMT_422_SMPT: /* semi-planar */
683 case OF_FMT_422_CCIR: /* CCIR656 */
684 blanking_codes = &yuv_blanking;
685 if ((c->colorspace == V4L2_COLORSPACE_SRGB) &&
686 (c->quantization == V4L2_QUANTIZATION_FULL_RANGE)) {
687 if (state->timings.bt.height <= 576)
688 state->conv = &conv_matrix[RGBFULL_ITU601];
689 else
690 state->conv = &conv_matrix[RGBFULL_ITU709];
691 } else if ((c->colorspace == V4L2_COLORSPACE_SRGB) &&
692 (c->quantization == V4L2_QUANTIZATION_LIM_RANGE)) {
693 if (state->timings.bt.height <= 576)
694 state->conv = &conv_matrix[RGBLIMITED_ITU601];
695 else
696 state->conv = &conv_matrix[RGBLIMITED_ITU709];
697 }
698 break;
699 }
700
701 if (state->conv) {
702 v4l_dbg(1, debug, state->client, "%s\n",
703 state->conv->name);
704 /* enable matrix conversion */
705 reg = io_read(sd, REG_VDP_CTRL);
706 reg &= ~VDP_CTRL_MATRIX_BP;
707 io_write(sd, REG_VDP_CTRL, reg);
708 /* offset inputs */
709 io_write16(sd, REG_VDP_MATRIX + 0, state->conv->offint1);
710 io_write16(sd, REG_VDP_MATRIX + 2, state->conv->offint2);
711 io_write16(sd, REG_VDP_MATRIX + 4, state->conv->offint3);
712 /* coefficients */
713 io_write16(sd, REG_VDP_MATRIX + 6, state->conv->p11coef);
714 io_write16(sd, REG_VDP_MATRIX + 8, state->conv->p12coef);
715 io_write16(sd, REG_VDP_MATRIX + 10, state->conv->p13coef);
716 io_write16(sd, REG_VDP_MATRIX + 12, state->conv->p21coef);
717 io_write16(sd, REG_VDP_MATRIX + 14, state->conv->p22coef);
718 io_write16(sd, REG_VDP_MATRIX + 16, state->conv->p23coef);
719 io_write16(sd, REG_VDP_MATRIX + 18, state->conv->p31coef);
720 io_write16(sd, REG_VDP_MATRIX + 20, state->conv->p32coef);
721 io_write16(sd, REG_VDP_MATRIX + 22, state->conv->p33coef);
722 /* offset outputs */
723 io_write16(sd, REG_VDP_MATRIX + 24, state->conv->offout1);
724 io_write16(sd, REG_VDP_MATRIX + 26, state->conv->offout2);
725 io_write16(sd, REG_VDP_MATRIX + 28, state->conv->offout3);
726 } else {
727 /* disable matrix conversion */
728 reg = io_read(sd, REG_VDP_CTRL);
729 reg |= VDP_CTRL_MATRIX_BP;
730 io_write(sd, REG_VDP_CTRL, reg);
731 }
732
733 /* SetBlankingCodes */
734 if (blanking_codes) {
735 io_write16(sd, REG_BLK_GY, blanking_codes->code_gy);
736 io_write16(sd, REG_BLK_BU, blanking_codes->code_bu);
737 io_write16(sd, REG_BLK_RV, blanking_codes->code_rv);
738 }
739 }
740
741 /* Configure frame detection window and VHREF timing generator */
742 static void
tda1997x_configure_vhref(struct v4l2_subdev * sd)743 tda1997x_configure_vhref(struct v4l2_subdev *sd)
744 {
745 struct tda1997x_state *state = to_state(sd);
746 const struct v4l2_bt_timings *bt = &state->timings.bt;
747 int width, lines;
748 u16 href_start, href_end;
749 u16 vref_f1_start, vref_f2_start;
750 u8 vref_f1_width, vref_f2_width;
751 u8 field_polarity;
752 u16 fieldref_f1_start, fieldref_f2_start;
753 u8 reg;
754
755 href_start = bt->hbackporch + bt->hsync + 1;
756 href_end = href_start + bt->width;
757 vref_f1_start = bt->height + bt->vbackporch + bt->vsync +
758 bt->il_vbackporch + bt->il_vsync +
759 bt->il_vfrontporch;
760 vref_f1_width = bt->vbackporch + bt->vsync + bt->vfrontporch;
761 vref_f2_start = 0;
762 vref_f2_width = 0;
763 fieldref_f1_start = 0;
764 fieldref_f2_start = 0;
765 if (bt->interlaced) {
766 vref_f2_start = (bt->height / 2) +
767 (bt->il_vbackporch + bt->il_vsync - 1);
768 vref_f2_width = bt->il_vbackporch + bt->il_vsync +
769 bt->il_vfrontporch;
770 fieldref_f2_start = vref_f2_start + bt->il_vfrontporch +
771 fieldref_f1_start;
772 }
773 field_polarity = 0;
774
775 width = V4L2_DV_BT_FRAME_WIDTH(bt);
776 lines = V4L2_DV_BT_FRAME_HEIGHT(bt);
777
778 /*
779 * Configure Frame Detection Window:
780 * horiz area where the VHREF module consider a VSYNC a new frame
781 */
782 io_write16(sd, REG_FDW_S, 0x2ef); /* start position */
783 io_write16(sd, REG_FDW_E, 0x141); /* end position */
784
785 /* Set Pixel And Line Counters */
786 if (state->chip_revision == 0)
787 io_write16(sd, REG_PXCNT_PR, 4);
788 else
789 io_write16(sd, REG_PXCNT_PR, 1);
790 io_write16(sd, REG_PXCNT_NPIX, width & MASK_VHREF);
791 io_write16(sd, REG_LCNT_PR, 1);
792 io_write16(sd, REG_LCNT_NLIN, lines & MASK_VHREF);
793
794 /*
795 * Configure the VHRef timing generator responsible for rebuilding all
796 * horiz and vert synch and ref signals from its input allowing auto
797 * detection algorithms and forcing predefined modes (480i & 576i)
798 */
799 reg = VHREF_STD_DET_OFF << VHREF_STD_DET_SHIFT;
800 io_write(sd, REG_VHREF_CTRL, reg);
801
802 /*
803 * Configure the VHRef timing values. In case the VHREF generator has
804 * been configured in manual mode, this will allow to manually set all
805 * horiz and vert ref values (non-active pixel areas) of the generator
806 * and allows setting the frame reference params.
807 */
808 /* horizontal reference start/end */
809 io_write16(sd, REG_HREF_S, href_start & MASK_VHREF);
810 io_write16(sd, REG_HREF_E, href_end & MASK_VHREF);
811 /* vertical reference f1 start/end */
812 io_write16(sd, REG_VREF_F1_S, vref_f1_start & MASK_VHREF);
813 io_write(sd, REG_VREF_F1_WIDTH, vref_f1_width);
814 /* vertical reference f2 start/end */
815 io_write16(sd, REG_VREF_F2_S, vref_f2_start & MASK_VHREF);
816 io_write(sd, REG_VREF_F2_WIDTH, vref_f2_width);
817
818 /* F1/F2 FREF, field polarity */
819 reg = fieldref_f1_start & MASK_VHREF;
820 reg |= field_polarity << 8;
821 io_write16(sd, REG_FREF_F1_S, reg);
822 reg = fieldref_f2_start & MASK_VHREF;
823 io_write16(sd, REG_FREF_F2_S, reg);
824 }
825
826 /* Configure Video Output port signals */
827 static int
tda1997x_configure_vidout(struct tda1997x_state * state)828 tda1997x_configure_vidout(struct tda1997x_state *state)
829 {
830 struct v4l2_subdev *sd = &state->sd;
831 struct tda1997x_platform_data *pdata = &state->pdata;
832 u8 prefilter;
833 u8 reg;
834
835 /* Configure pixel clock generator: delay, polarity, rate */
836 reg = (state->vid_fmt == OF_FMT_422_CCIR) ?
837 PCLK_SEL_X2 : PCLK_SEL_X1;
838 reg |= pdata->vidout_delay_pclk << PCLK_DELAY_SHIFT;
839 reg |= pdata->vidout_inv_pclk << PCLK_INV_SHIFT;
840 io_write(sd, REG_PCLK, reg);
841
842 /* Configure pre-filter */
843 prefilter = 0; /* filters off */
844 /* YUV422 mode requires conversion */
845 if ((state->vid_fmt == OF_FMT_422_SMPT) ||
846 (state->vid_fmt == OF_FMT_422_CCIR)) {
847 /* 2/7 taps for Rv and Bu */
848 prefilter = FILTERS_CTRL_2_7TAP << FILTERS_CTRL_BU_SHIFT |
849 FILTERS_CTRL_2_7TAP << FILTERS_CTRL_RV_SHIFT;
850 }
851 io_write(sd, REG_FILTERS_CTRL, prefilter);
852
853 /* Configure video port */
854 reg = state->vid_fmt & OF_FMT_MASK;
855 if (state->vid_fmt == OF_FMT_422_CCIR)
856 reg |= (OF_BLK | OF_TRC);
857 reg |= OF_VP_ENABLE;
858 io_write(sd, REG_OF, reg);
859
860 /* Configure formatter and conversions */
861 reg = io_read(sd, REG_VDP_CTRL);
862 /* pre-filter is needed unless (REG_FILTERS_CTRL == 0) */
863 if (!prefilter)
864 reg |= VDP_CTRL_PREFILTER_BP;
865 else
866 reg &= ~VDP_CTRL_PREFILTER_BP;
867 /* formatter is needed for YUV422 and for trc/blc codes */
868 if (state->vid_fmt == OF_FMT_444)
869 reg |= VDP_CTRL_FORMATTER_BP;
870 /* formatter and compdel needed for timing/blanking codes */
871 else
872 reg &= ~(VDP_CTRL_FORMATTER_BP | VDP_CTRL_COMPDEL_BP);
873 /* activate compdel for small sync delays */
874 if ((pdata->vidout_delay_vs < 4) || (pdata->vidout_delay_hs < 4))
875 reg &= ~VDP_CTRL_COMPDEL_BP;
876 io_write(sd, REG_VDP_CTRL, reg);
877
878 /* Configure DE output signal: delay, polarity, and source */
879 reg = pdata->vidout_delay_de << DE_FREF_DELAY_SHIFT |
880 pdata->vidout_inv_de << DE_FREF_INV_SHIFT |
881 pdata->vidout_sel_de << DE_FREF_SEL_SHIFT;
882 io_write(sd, REG_DE_FREF, reg);
883
884 /* Configure HS/HREF output signal: delay, polarity, and source */
885 if (state->vid_fmt != OF_FMT_422_CCIR) {
886 reg = pdata->vidout_delay_hs << HS_HREF_DELAY_SHIFT |
887 pdata->vidout_inv_hs << HS_HREF_INV_SHIFT |
888 pdata->vidout_sel_hs << HS_HREF_SEL_SHIFT;
889 } else
890 reg = HS_HREF_SEL_NONE << HS_HREF_SEL_SHIFT;
891 io_write(sd, REG_HS_HREF, reg);
892
893 /* Configure VS/VREF output signal: delay, polarity, and source */
894 if (state->vid_fmt != OF_FMT_422_CCIR) {
895 reg = pdata->vidout_delay_vs << VS_VREF_DELAY_SHIFT |
896 pdata->vidout_inv_vs << VS_VREF_INV_SHIFT |
897 pdata->vidout_sel_vs << VS_VREF_SEL_SHIFT;
898 } else
899 reg = VS_VREF_SEL_NONE << VS_VREF_SEL_SHIFT;
900 io_write(sd, REG_VS_VREF, reg);
901
902 return 0;
903 }
904
905 /* Configure Audio output port signals */
906 static int
tda1997x_configure_audout(struct v4l2_subdev * sd,u8 channel_assignment)907 tda1997x_configure_audout(struct v4l2_subdev *sd, u8 channel_assignment)
908 {
909 struct tda1997x_state *state = to_state(sd);
910 struct tda1997x_platform_data *pdata = &state->pdata;
911 bool sp_used_by_fifo = true;
912 u8 reg;
913
914 if (!pdata->audout_format)
915 return 0;
916
917 /* channel assignment (CEA-861-D Table 20) */
918 io_write(sd, REG_AUDIO_PATH, channel_assignment);
919
920 /* Audio output configuration */
921 reg = 0;
922 switch (pdata->audout_format) {
923 case AUDFMT_TYPE_I2S:
924 reg |= AUDCFG_BUS_I2S << AUDCFG_BUS_SHIFT;
925 break;
926 case AUDFMT_TYPE_SPDIF:
927 reg |= AUDCFG_BUS_SPDIF << AUDCFG_BUS_SHIFT;
928 break;
929 }
930 switch (state->audio_type) {
931 case AUDCFG_TYPE_PCM:
932 reg |= AUDCFG_TYPE_PCM << AUDCFG_TYPE_SHIFT;
933 break;
934 case AUDCFG_TYPE_OBA:
935 reg |= AUDCFG_TYPE_OBA << AUDCFG_TYPE_SHIFT;
936 break;
937 case AUDCFG_TYPE_DST:
938 reg |= AUDCFG_TYPE_DST << AUDCFG_TYPE_SHIFT;
939 sp_used_by_fifo = false;
940 break;
941 case AUDCFG_TYPE_HBR:
942 reg |= AUDCFG_TYPE_HBR << AUDCFG_TYPE_SHIFT;
943 if (pdata->audout_layout == 1) {
944 /* demuxed via AP0:AP3 */
945 reg |= AUDCFG_HBR_DEMUX << AUDCFG_HBR_SHIFT;
946 if (pdata->audout_format == AUDFMT_TYPE_SPDIF)
947 sp_used_by_fifo = false;
948 } else {
949 /* straight via AP0 */
950 reg |= AUDCFG_HBR_STRAIGHT << AUDCFG_HBR_SHIFT;
951 }
952 break;
953 }
954 if (pdata->audout_width == 32)
955 reg |= AUDCFG_I2SW_32 << AUDCFG_I2SW_SHIFT;
956 else
957 reg |= AUDCFG_I2SW_16 << AUDCFG_I2SW_SHIFT;
958
959 /* automatic hardware mute */
960 if (pdata->audio_auto_mute)
961 reg |= AUDCFG_AUTO_MUTE_EN;
962 /* clock polarity */
963 if (pdata->audout_invert_clk)
964 reg |= AUDCFG_CLK_INVERT;
965 io_write(sd, REG_AUDCFG, reg);
966
967 /* audio layout */
968 reg = (pdata->audout_layout) ? AUDIO_LAYOUT_LAYOUT1 : 0;
969 if (!pdata->audout_layoutauto)
970 reg |= AUDIO_LAYOUT_MANUAL;
971 if (sp_used_by_fifo)
972 reg |= AUDIO_LAYOUT_SP_FLAG;
973 io_write(sd, REG_AUDIO_LAYOUT, reg);
974
975 /* FIFO Latency value */
976 io_write(sd, REG_FIFO_LATENCY_VAL, 0x80);
977
978 /* Audio output port config */
979 if (sp_used_by_fifo) {
980 reg = AUDIO_OUT_ENABLE_AP0;
981 if (channel_assignment >= 0x01)
982 reg |= AUDIO_OUT_ENABLE_AP1;
983 if (channel_assignment >= 0x04)
984 reg |= AUDIO_OUT_ENABLE_AP2;
985 if (channel_assignment >= 0x0c)
986 reg |= AUDIO_OUT_ENABLE_AP3;
987 /* specific cases where AP1 is not used */
988 if ((channel_assignment == 0x04)
989 || (channel_assignment == 0x08)
990 || (channel_assignment == 0x0c)
991 || (channel_assignment == 0x10)
992 || (channel_assignment == 0x14)
993 || (channel_assignment == 0x18)
994 || (channel_assignment == 0x1c))
995 reg &= ~AUDIO_OUT_ENABLE_AP1;
996 /* specific cases where AP2 is not used */
997 if ((channel_assignment >= 0x14)
998 && (channel_assignment <= 0x17))
999 reg &= ~AUDIO_OUT_ENABLE_AP2;
1000 } else {
1001 reg = AUDIO_OUT_ENABLE_AP3 |
1002 AUDIO_OUT_ENABLE_AP2 |
1003 AUDIO_OUT_ENABLE_AP1 |
1004 AUDIO_OUT_ENABLE_AP0;
1005 }
1006 if (pdata->audout_format == AUDFMT_TYPE_I2S)
1007 reg |= (AUDIO_OUT_ENABLE_ACLK | AUDIO_OUT_ENABLE_WS);
1008 io_write(sd, REG_AUDIO_OUT_ENABLE, reg);
1009
1010 /* reset test mode to normal audio freq auto selection */
1011 io_write(sd, REG_TEST_MODE, 0x00);
1012
1013 return 0;
1014 }
1015
1016 /* Soft Reset of specific hdmi info */
1017 static int
tda1997x_hdmi_info_reset(struct v4l2_subdev * sd,u8 info_rst,bool reset_sus)1018 tda1997x_hdmi_info_reset(struct v4l2_subdev *sd, u8 info_rst, bool reset_sus)
1019 {
1020 u8 reg;
1021
1022 /* reset infoframe engine packets */
1023 reg = io_read(sd, REG_HDMI_INFO_RST);
1024 io_write(sd, REG_HDMI_INFO_RST, info_rst);
1025
1026 /* if infoframe engine has been reset clear INT_FLG_MODE */
1027 if (reg & RESET_IF) {
1028 reg = io_read(sd, REG_INT_FLG_CLR_MODE);
1029 io_write(sd, REG_INT_FLG_CLR_MODE, reg);
1030 }
1031
1032 /* Disable REFTIM to restart start-up-sequencer (SUS) */
1033 reg = io_read(sd, REG_RATE_CTRL);
1034 reg &= ~RATE_REFTIM_ENABLE;
1035 if (!reset_sus)
1036 reg |= RATE_REFTIM_ENABLE;
1037 reg = io_write(sd, REG_RATE_CTRL, reg);
1038
1039 return 0;
1040 }
1041
1042 static void
tda1997x_power_mode(struct tda1997x_state * state,bool enable)1043 tda1997x_power_mode(struct tda1997x_state *state, bool enable)
1044 {
1045 struct v4l2_subdev *sd = &state->sd;
1046 u8 reg;
1047
1048 if (enable) {
1049 /* Automatic control of TMDS */
1050 io_write(sd, REG_PON_OVR_EN, PON_DIS);
1051 /* Enable current bias unit */
1052 io_write(sd, REG_CFG1, PON_EN);
1053 /* Enable deep color PLL */
1054 io_write(sd, REG_DEEP_PLL7_BYP, PON_DIS);
1055 /* Output buffers active */
1056 reg = io_read(sd, REG_OF);
1057 reg &= ~OF_VP_ENABLE;
1058 io_write(sd, REG_OF, reg);
1059 } else {
1060 /* Power down EDID mode sequence */
1061 /* Output buffers in HiZ */
1062 reg = io_read(sd, REG_OF);
1063 reg |= OF_VP_ENABLE;
1064 io_write(sd, REG_OF, reg);
1065 /* Disable deep color PLL */
1066 io_write(sd, REG_DEEP_PLL7_BYP, PON_EN);
1067 /* Disable current bias unit */
1068 io_write(sd, REG_CFG1, PON_DIS);
1069 /* Manual control of TMDS */
1070 io_write(sd, REG_PON_OVR_EN, PON_EN);
1071 }
1072 }
1073
1074 static bool
tda1997x_detect_tx_5v(struct v4l2_subdev * sd)1075 tda1997x_detect_tx_5v(struct v4l2_subdev *sd)
1076 {
1077 u8 reg = io_read(sd, REG_DETECT_5V);
1078
1079 return ((reg & DETECT_5V_SEL) ? 1 : 0);
1080 }
1081
1082 static bool
tda1997x_detect_tx_hpd(struct v4l2_subdev * sd)1083 tda1997x_detect_tx_hpd(struct v4l2_subdev *sd)
1084 {
1085 u8 reg = io_read(sd, REG_DETECT_5V);
1086
1087 return ((reg & DETECT_HPD) ? 1 : 0);
1088 }
1089
1090 static int
tda1997x_detect_std(struct tda1997x_state * state,struct v4l2_dv_timings * timings)1091 tda1997x_detect_std(struct tda1997x_state *state,
1092 struct v4l2_dv_timings *timings)
1093 {
1094 struct v4l2_subdev *sd = &state->sd;
1095
1096 /*
1097 * Read the FMT registers
1098 * REG_V_PER: Period of a frame (or field) in MCLK (27MHz) cycles
1099 * REG_H_PER: Period of a line in MCLK (27MHz) cycles
1100 * REG_HS_WIDTH: Period of horiz sync pulse in MCLK (27MHz) cycles
1101 */
1102 u32 vper, vsync_pos;
1103 u16 hper, hsync_pos, hsper, interlaced;
1104 u16 htot, hact, hfront, hsync, hback;
1105 u16 vtot, vact, vfront1, vfront2, vsync, vback1, vback2;
1106
1107 if (!state->input_detect[0] && !state->input_detect[1])
1108 return -ENOLINK;
1109
1110 vper = io_read24(sd, REG_V_PER);
1111 hper = io_read16(sd, REG_H_PER);
1112 hsper = io_read16(sd, REG_HS_WIDTH);
1113 vsync_pos = vper & MASK_VPER_SYNC_POS;
1114 hsync_pos = hper & MASK_HPER_SYNC_POS;
1115 interlaced = hsper & MASK_HSWIDTH_INTERLACED;
1116 vper &= MASK_VPER;
1117 hper &= MASK_HPER;
1118 hsper &= MASK_HSWIDTH;
1119 v4l2_dbg(1, debug, sd, "Signal Timings: %u/%u/%u\n", vper, hper, hsper);
1120
1121 htot = io_read16(sd, REG_FMT_H_TOT);
1122 hact = io_read16(sd, REG_FMT_H_ACT);
1123 hfront = io_read16(sd, REG_FMT_H_FRONT);
1124 hsync = io_read16(sd, REG_FMT_H_SYNC);
1125 hback = io_read16(sd, REG_FMT_H_BACK);
1126
1127 vtot = io_read16(sd, REG_FMT_V_TOT);
1128 vact = io_read16(sd, REG_FMT_V_ACT);
1129 vfront1 = io_read(sd, REG_FMT_V_FRONT_F1);
1130 vfront2 = io_read(sd, REG_FMT_V_FRONT_F2);
1131 vsync = io_read(sd, REG_FMT_V_SYNC);
1132 vback1 = io_read(sd, REG_FMT_V_BACK_F1);
1133 vback2 = io_read(sd, REG_FMT_V_BACK_F2);
1134
1135 v4l2_dbg(1, debug, sd, "Geometry: H %u %u %u %u %u Sync%c V %u %u %u %u %u %u %u Sync%c\n",
1136 htot, hact, hfront, hsync, hback, hsync_pos ? '+' : '-',
1137 vtot, vact, vfront1, vfront2, vsync, vback1, vback2, vsync_pos ? '+' : '-');
1138
1139 if (!timings)
1140 return 0;
1141
1142 timings->type = V4L2_DV_BT_656_1120;
1143 timings->bt.width = hact;
1144 timings->bt.hfrontporch = hfront;
1145 timings->bt.hsync = hsync;
1146 timings->bt.hbackporch = hback;
1147 timings->bt.height = vact;
1148 timings->bt.vfrontporch = vfront1;
1149 timings->bt.vsync = vsync;
1150 timings->bt.vbackporch = vback1;
1151 timings->bt.interlaced = interlaced ? V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1152 timings->bt.polarities = vsync_pos ? V4L2_DV_VSYNC_POS_POL : 0;
1153 timings->bt.polarities |= hsync_pos ? V4L2_DV_HSYNC_POS_POL : 0;
1154
1155 timings->bt.pixelclock = (u64)htot * vtot * 27000000;
1156 if (interlaced) {
1157 timings->bt.il_vfrontporch = vfront2;
1158 timings->bt.il_vsync = timings->bt.vsync;
1159 timings->bt.il_vbackporch = vback2;
1160 do_div(timings->bt.pixelclock, vper * 2 /* full frame */);
1161 } else {
1162 timings->bt.il_vfrontporch = 0;
1163 timings->bt.il_vsync = 0;
1164 timings->bt.il_vbackporch = 0;
1165 do_div(timings->bt.pixelclock, vper);
1166 }
1167 v4l2_find_dv_timings_cap(timings, &tda1997x_dv_timings_cap,
1168 (u32)timings->bt.pixelclock / 500, NULL, NULL);
1169 v4l2_print_dv_timings(sd->name, "Detected format: ", timings, false);
1170 return 0;
1171 }
1172
1173 /* some sort of errata workaround for chip revision 0 (N1) */
tda1997x_reset_n1(struct tda1997x_state * state)1174 static void tda1997x_reset_n1(struct tda1997x_state *state)
1175 {
1176 struct v4l2_subdev *sd = &state->sd;
1177 u8 reg;
1178
1179 /* clear HDMI mode flag in BCAPS */
1180 io_write(sd, REG_CLK_CFG, CLK_CFG_SEL_ACLK_EN | CLK_CFG_SEL_ACLK);
1181 io_write(sd, REG_PON_OVR_EN, PON_EN);
1182 io_write(sd, REG_PON_CBIAS, PON_EN);
1183 io_write(sd, REG_PON_PLL, PON_EN);
1184
1185 reg = io_read(sd, REG_MODE_REC_CFG1);
1186 reg &= ~0x06;
1187 reg |= 0x02;
1188 io_write(sd, REG_MODE_REC_CFG1, reg);
1189 io_write(sd, REG_CLK_CFG, CLK_CFG_DIS);
1190 io_write(sd, REG_PON_OVR_EN, PON_DIS);
1191 reg = io_read(sd, REG_MODE_REC_CFG1);
1192 reg &= ~0x06;
1193 io_write(sd, REG_MODE_REC_CFG1, reg);
1194 }
1195
1196 /*
1197 * Activity detection must only be notified when stable_clk_x AND active_x
1198 * bits are set to 1. If only stable_clk_x bit is set to 1 but not
1199 * active_x, it means that the TMDS clock is not in the defined range
1200 * and activity detection must not be notified.
1201 */
1202 static u8
tda1997x_read_activity_status_regs(struct v4l2_subdev * sd)1203 tda1997x_read_activity_status_regs(struct v4l2_subdev *sd)
1204 {
1205 u8 reg, status = 0;
1206
1207 /* Read CLK_A_STATUS register */
1208 reg = io_read(sd, REG_CLK_A_STATUS);
1209 /* ignore if not active */
1210 if ((reg & MASK_CLK_STABLE) && !(reg & MASK_CLK_ACTIVE))
1211 reg &= ~MASK_CLK_STABLE;
1212 status |= ((reg & MASK_CLK_STABLE) >> 2);
1213
1214 /* Read CLK_B_STATUS register */
1215 reg = io_read(sd, REG_CLK_B_STATUS);
1216 /* ignore if not active */
1217 if ((reg & MASK_CLK_STABLE) && !(reg & MASK_CLK_ACTIVE))
1218 reg &= ~MASK_CLK_STABLE;
1219 status |= ((reg & MASK_CLK_STABLE) >> 1);
1220
1221 /* Read the SUS_STATUS register */
1222 reg = io_read(sd, REG_SUS_STATUS);
1223
1224 /* If state = 5 => TMDS is locked */
1225 if ((reg & MASK_SUS_STATUS) == LAST_STATE_REACHED)
1226 status |= MASK_SUS_STATE;
1227 else
1228 status &= ~MASK_SUS_STATE;
1229
1230 return status;
1231 }
1232
1233 static void
set_rgb_quantization_range(struct tda1997x_state * state)1234 set_rgb_quantization_range(struct tda1997x_state *state)
1235 {
1236 struct v4l2_hdmi_colorimetry *c = &state->colorimetry;
1237
1238 state->colorimetry = v4l2_hdmi_rx_colorimetry(&state->avi_infoframe,
1239 NULL,
1240 state->timings.bt.height);
1241 /* If ycbcr_enc is V4L2_YCBCR_ENC_DEFAULT, we receive RGB */
1242 if (c->ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT) {
1243 switch (state->rgb_quantization_range) {
1244 case V4L2_DV_RGB_RANGE_LIMITED:
1245 c->quantization = V4L2_QUANTIZATION_FULL_RANGE;
1246 break;
1247 case V4L2_DV_RGB_RANGE_FULL:
1248 c->quantization = V4L2_QUANTIZATION_LIM_RANGE;
1249 break;
1250 }
1251 }
1252 v4l_dbg(1, debug, state->client,
1253 "colorspace=%d/%d colorimetry=%d range=%s content=%d\n",
1254 state->avi_infoframe.colorspace, c->colorspace,
1255 state->avi_infoframe.colorimetry,
1256 v4l2_quantization_names[c->quantization],
1257 state->avi_infoframe.content_type);
1258 }
1259
1260 /* parse an infoframe and do some sanity checks on it */
1261 static unsigned int
tda1997x_parse_infoframe(struct tda1997x_state * state,u16 addr)1262 tda1997x_parse_infoframe(struct tda1997x_state *state, u16 addr)
1263 {
1264 struct v4l2_subdev *sd = &state->sd;
1265 union hdmi_infoframe frame;
1266 u8 buffer[40] = { 0 };
1267 u8 reg;
1268 int len, err;
1269
1270 /* read data */
1271 len = io_readn(sd, addr, sizeof(buffer), buffer);
1272 err = hdmi_infoframe_unpack(&frame, buffer, len);
1273 if (err) {
1274 v4l_err(state->client,
1275 "failed parsing %d byte infoframe: 0x%04x/0x%02x\n",
1276 len, addr, buffer[0]);
1277 return err;
1278 }
1279 hdmi_infoframe_log(KERN_INFO, &state->client->dev, &frame);
1280 switch (frame.any.type) {
1281 /* Audio InfoFrame: see HDMI spec 8.2.2 */
1282 case HDMI_INFOFRAME_TYPE_AUDIO:
1283 /* sample rate */
1284 switch (frame.audio.sample_frequency) {
1285 case HDMI_AUDIO_SAMPLE_FREQUENCY_32000:
1286 state->audio_samplerate = 32000;
1287 break;
1288 case HDMI_AUDIO_SAMPLE_FREQUENCY_44100:
1289 state->audio_samplerate = 44100;
1290 break;
1291 case HDMI_AUDIO_SAMPLE_FREQUENCY_48000:
1292 state->audio_samplerate = 48000;
1293 break;
1294 case HDMI_AUDIO_SAMPLE_FREQUENCY_88200:
1295 state->audio_samplerate = 88200;
1296 break;
1297 case HDMI_AUDIO_SAMPLE_FREQUENCY_96000:
1298 state->audio_samplerate = 96000;
1299 break;
1300 case HDMI_AUDIO_SAMPLE_FREQUENCY_176400:
1301 state->audio_samplerate = 176400;
1302 break;
1303 case HDMI_AUDIO_SAMPLE_FREQUENCY_192000:
1304 state->audio_samplerate = 192000;
1305 break;
1306 default:
1307 case HDMI_AUDIO_SAMPLE_FREQUENCY_STREAM:
1308 break;
1309 }
1310
1311 /* sample size */
1312 switch (frame.audio.sample_size) {
1313 case HDMI_AUDIO_SAMPLE_SIZE_16:
1314 state->audio_samplesize = 16;
1315 break;
1316 case HDMI_AUDIO_SAMPLE_SIZE_20:
1317 state->audio_samplesize = 20;
1318 break;
1319 case HDMI_AUDIO_SAMPLE_SIZE_24:
1320 state->audio_samplesize = 24;
1321 break;
1322 case HDMI_AUDIO_SAMPLE_SIZE_STREAM:
1323 default:
1324 break;
1325 }
1326
1327 /* Channel Count */
1328 state->audio_channels = frame.audio.channels;
1329 if (frame.audio.channel_allocation &&
1330 frame.audio.channel_allocation != state->audio_ch_alloc) {
1331 /* use the channel assignment from the infoframe */
1332 state->audio_ch_alloc = frame.audio.channel_allocation;
1333 tda1997x_configure_audout(sd, state->audio_ch_alloc);
1334 /* reset the audio FIFO */
1335 tda1997x_hdmi_info_reset(sd, RESET_AUDIO, false);
1336 }
1337 break;
1338
1339 /* Auxiliary Video information (AVI) InfoFrame: see HDMI spec 8.2.1 */
1340 case HDMI_INFOFRAME_TYPE_AVI:
1341 state->avi_infoframe = frame.avi;
1342 set_rgb_quantization_range(state);
1343
1344 /* configure upsampler: 0=bypass 1=repeatchroma 2=interpolate */
1345 reg = io_read(sd, REG_PIX_REPEAT);
1346 reg &= ~PIX_REPEAT_MASK_UP_SEL;
1347 if (frame.avi.colorspace == HDMI_COLORSPACE_YUV422)
1348 reg |= (PIX_REPEAT_CHROMA << PIX_REPEAT_SHIFT);
1349 io_write(sd, REG_PIX_REPEAT, reg);
1350
1351 /* ConfigurePixelRepeater: repeat n-times each pixel */
1352 reg = io_read(sd, REG_PIX_REPEAT);
1353 reg &= ~PIX_REPEAT_MASK_REP;
1354 reg |= frame.avi.pixel_repeat;
1355 io_write(sd, REG_PIX_REPEAT, reg);
1356
1357 /* configure the receiver with the new colorspace */
1358 tda1997x_configure_csc(sd);
1359 break;
1360 default:
1361 break;
1362 }
1363 return 0;
1364 }
1365
tda1997x_irq_sus(struct tda1997x_state * state,u8 * flags)1366 static void tda1997x_irq_sus(struct tda1997x_state *state, u8 *flags)
1367 {
1368 struct v4l2_subdev *sd = &state->sd;
1369 u8 reg, source;
1370
1371 source = io_read(sd, REG_INT_FLG_CLR_SUS);
1372 io_write(sd, REG_INT_FLG_CLR_SUS, source);
1373
1374 if (source & MASK_MPT) {
1375 /* reset MTP in use flag if set */
1376 if (state->mptrw_in_progress)
1377 state->mptrw_in_progress = 0;
1378 }
1379
1380 if (source & MASK_SUS_END) {
1381 /* reset audio FIFO */
1382 reg = io_read(sd, REG_HDMI_INFO_RST);
1383 reg |= MASK_SR_FIFO_FIFO_CTRL;
1384 io_write(sd, REG_HDMI_INFO_RST, reg);
1385 reg &= ~MASK_SR_FIFO_FIFO_CTRL;
1386 io_write(sd, REG_HDMI_INFO_RST, reg);
1387
1388 /* reset HDMI flags */
1389 state->hdmi_status = 0;
1390 }
1391
1392 /* filter FMT interrupt based on SUS state */
1393 reg = io_read(sd, REG_SUS_STATUS);
1394 if (((reg & MASK_SUS_STATUS) != LAST_STATE_REACHED)
1395 || (source & MASK_MPT)) {
1396 source &= ~MASK_FMT;
1397 }
1398
1399 if (source & (MASK_FMT | MASK_SUS_END)) {
1400 reg = io_read(sd, REG_SUS_STATUS);
1401 if ((reg & MASK_SUS_STATUS) != LAST_STATE_REACHED) {
1402 v4l_err(state->client, "BAD SUS STATUS\n");
1403 return;
1404 }
1405 if (debug)
1406 tda1997x_detect_std(state, NULL);
1407 /* notify user of change in resolution */
1408 v4l2_subdev_notify_event(&state->sd, &tda1997x_ev_fmt);
1409 }
1410 }
1411
tda1997x_irq_ddc(struct tda1997x_state * state,u8 * flags)1412 static void tda1997x_irq_ddc(struct tda1997x_state *state, u8 *flags)
1413 {
1414 struct v4l2_subdev *sd = &state->sd;
1415 u8 source;
1416
1417 source = io_read(sd, REG_INT_FLG_CLR_DDC);
1418 io_write(sd, REG_INT_FLG_CLR_DDC, source);
1419 if (source & MASK_EDID_MTP) {
1420 /* reset MTP in use flag if set */
1421 if (state->mptrw_in_progress)
1422 state->mptrw_in_progress = 0;
1423 }
1424
1425 /* Detection of +5V */
1426 if (source & MASK_DET_5V) {
1427 v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
1428 tda1997x_detect_tx_5v(sd));
1429 }
1430 }
1431
tda1997x_irq_rate(struct tda1997x_state * state,u8 * flags)1432 static void tda1997x_irq_rate(struct tda1997x_state *state, u8 *flags)
1433 {
1434 struct v4l2_subdev *sd = &state->sd;
1435 u8 reg, source;
1436
1437 u8 irq_status;
1438
1439 source = io_read(sd, REG_INT_FLG_CLR_RATE);
1440 io_write(sd, REG_INT_FLG_CLR_RATE, source);
1441
1442 /* read status regs */
1443 irq_status = tda1997x_read_activity_status_regs(sd);
1444
1445 /*
1446 * read clock status reg until INT_FLG_CLR_RATE is still 0
1447 * after the read to make sure its the last one
1448 */
1449 reg = source;
1450 while (reg != 0) {
1451 irq_status = tda1997x_read_activity_status_regs(sd);
1452 reg = io_read(sd, REG_INT_FLG_CLR_RATE);
1453 io_write(sd, REG_INT_FLG_CLR_RATE, reg);
1454 source |= reg;
1455 }
1456
1457 /* we only pay attention to stability change events */
1458 if (source & (MASK_RATE_A_ST | MASK_RATE_B_ST)) {
1459 int input = (source & MASK_RATE_A_ST)?0:1;
1460 u8 mask = 1<<input;
1461
1462 /* state change */
1463 if ((irq_status & mask) != (state->activity_status & mask)) {
1464 /* activity lost */
1465 if ((irq_status & mask) == 0) {
1466 v4l_info(state->client,
1467 "HDMI-%c: Digital Activity Lost\n",
1468 input+'A');
1469
1470 /* bypass up/down sampler and pixel repeater */
1471 reg = io_read(sd, REG_PIX_REPEAT);
1472 reg &= ~PIX_REPEAT_MASK_UP_SEL;
1473 reg &= ~PIX_REPEAT_MASK_REP;
1474 io_write(sd, REG_PIX_REPEAT, reg);
1475
1476 if (state->chip_revision == 0)
1477 tda1997x_reset_n1(state);
1478
1479 state->input_detect[input] = 0;
1480 v4l2_subdev_notify_event(sd, &tda1997x_ev_fmt);
1481 }
1482
1483 /* activity detected */
1484 else {
1485 v4l_info(state->client,
1486 "HDMI-%c: Digital Activity Detected\n",
1487 input+'A');
1488 state->input_detect[input] = 1;
1489 }
1490
1491 /* hold onto current state */
1492 state->activity_status = (irq_status & mask);
1493 }
1494 }
1495 }
1496
tda1997x_irq_info(struct tda1997x_state * state,u8 * flags)1497 static void tda1997x_irq_info(struct tda1997x_state *state, u8 *flags)
1498 {
1499 struct v4l2_subdev *sd = &state->sd;
1500 u8 source;
1501
1502 source = io_read(sd, REG_INT_FLG_CLR_INFO);
1503 io_write(sd, REG_INT_FLG_CLR_INFO, source);
1504
1505 /* Audio infoframe */
1506 if (source & MASK_AUD_IF) {
1507 tda1997x_parse_infoframe(state, AUD_IF);
1508 source &= ~MASK_AUD_IF;
1509 }
1510
1511 /* Source Product Descriptor infoframe change */
1512 if (source & MASK_SPD_IF) {
1513 tda1997x_parse_infoframe(state, SPD_IF);
1514 source &= ~MASK_SPD_IF;
1515 }
1516
1517 /* Auxiliary Video Information infoframe */
1518 if (source & MASK_AVI_IF) {
1519 tda1997x_parse_infoframe(state, AVI_IF);
1520 source &= ~MASK_AVI_IF;
1521 }
1522 }
1523
tda1997x_irq_audio(struct tda1997x_state * state,u8 * flags)1524 static void tda1997x_irq_audio(struct tda1997x_state *state, u8 *flags)
1525 {
1526 struct v4l2_subdev *sd = &state->sd;
1527 u8 reg, source;
1528
1529 source = io_read(sd, REG_INT_FLG_CLR_AUDIO);
1530 io_write(sd, REG_INT_FLG_CLR_AUDIO, source);
1531
1532 /* reset audio FIFO on FIFO pointer error or audio mute */
1533 if (source & MASK_ERROR_FIFO_PT ||
1534 source & MASK_MUTE_FLG) {
1535 /* audio reset audio FIFO */
1536 reg = io_read(sd, REG_SUS_STATUS);
1537 if ((reg & MASK_SUS_STATUS) == LAST_STATE_REACHED) {
1538 reg = io_read(sd, REG_HDMI_INFO_RST);
1539 reg |= MASK_SR_FIFO_FIFO_CTRL;
1540 io_write(sd, REG_HDMI_INFO_RST, reg);
1541 reg &= ~MASK_SR_FIFO_FIFO_CTRL;
1542 io_write(sd, REG_HDMI_INFO_RST, reg);
1543 /* reset channel status IT if present */
1544 source &= ~(MASK_CH_STATE);
1545 }
1546 }
1547 if (source & MASK_AUDIO_FREQ_FLG) {
1548 static const int freq[] = {
1549 0, 32000, 44100, 48000, 88200, 96000, 176400, 192000
1550 };
1551
1552 reg = io_read(sd, REG_AUDIO_FREQ);
1553 state->audio_samplerate = freq[reg & 7];
1554 v4l_info(state->client, "Audio Frequency Change: %dHz\n",
1555 state->audio_samplerate);
1556 }
1557 if (source & MASK_AUDIO_FLG) {
1558 reg = io_read(sd, REG_AUDIO_FLAGS);
1559 if (reg & BIT(AUDCFG_TYPE_DST))
1560 state->audio_type = AUDCFG_TYPE_DST;
1561 if (reg & BIT(AUDCFG_TYPE_OBA))
1562 state->audio_type = AUDCFG_TYPE_OBA;
1563 if (reg & BIT(AUDCFG_TYPE_HBR))
1564 state->audio_type = AUDCFG_TYPE_HBR;
1565 if (reg & BIT(AUDCFG_TYPE_PCM))
1566 state->audio_type = AUDCFG_TYPE_PCM;
1567 v4l_info(state->client, "Audio Type: %s\n",
1568 audtype_names[state->audio_type]);
1569 }
1570 }
1571
tda1997x_irq_hdcp(struct tda1997x_state * state,u8 * flags)1572 static void tda1997x_irq_hdcp(struct tda1997x_state *state, u8 *flags)
1573 {
1574 struct v4l2_subdev *sd = &state->sd;
1575 u8 reg, source;
1576
1577 source = io_read(sd, REG_INT_FLG_CLR_HDCP);
1578 io_write(sd, REG_INT_FLG_CLR_HDCP, source);
1579
1580 /* reset MTP in use flag if set */
1581 if (source & MASK_HDCP_MTP)
1582 state->mptrw_in_progress = 0;
1583 if (source & MASK_STATE_C5) {
1584 /* REPEATER: mask AUDIO and IF irqs to avoid IF during auth */
1585 reg = io_read(sd, REG_INT_MASK_TOP);
1586 reg &= ~(INTERRUPT_AUDIO | INTERRUPT_INFO);
1587 io_write(sd, REG_INT_MASK_TOP, reg);
1588 *flags &= (INTERRUPT_AUDIO | INTERRUPT_INFO);
1589 }
1590 }
1591
tda1997x_isr_thread(int irq,void * d)1592 static irqreturn_t tda1997x_isr_thread(int irq, void *d)
1593 {
1594 struct tda1997x_state *state = d;
1595 struct v4l2_subdev *sd = &state->sd;
1596 u8 flags;
1597
1598 mutex_lock(&state->lock);
1599 do {
1600 /* read interrupt flags */
1601 flags = io_read(sd, REG_INT_FLG_CLR_TOP);
1602 if (flags == 0)
1603 break;
1604
1605 /* SUS interrupt source (Input activity events) */
1606 if (flags & INTERRUPT_SUS)
1607 tda1997x_irq_sus(state, &flags);
1608 /* DDC interrupt source (Display Data Channel) */
1609 else if (flags & INTERRUPT_DDC)
1610 tda1997x_irq_ddc(state, &flags);
1611 /* RATE interrupt source (Digital Input activity) */
1612 else if (flags & INTERRUPT_RATE)
1613 tda1997x_irq_rate(state, &flags);
1614 /* Infoframe change interrupt */
1615 else if (flags & INTERRUPT_INFO)
1616 tda1997x_irq_info(state, &flags);
1617 /* Audio interrupt source:
1618 * freq change, DST,OBA,HBR,ASP flags, mute, FIFO err
1619 */
1620 else if (flags & INTERRUPT_AUDIO)
1621 tda1997x_irq_audio(state, &flags);
1622 /* HDCP interrupt source (content protection) */
1623 if (flags & INTERRUPT_HDCP)
1624 tda1997x_irq_hdcp(state, &flags);
1625 } while (flags != 0);
1626 mutex_unlock(&state->lock);
1627
1628 return IRQ_HANDLED;
1629 }
1630
1631 /* -----------------------------------------------------------------------------
1632 * v4l2_subdev_video_ops
1633 */
1634
1635 static int
tda1997x_g_input_status(struct v4l2_subdev * sd,u32 * status)1636 tda1997x_g_input_status(struct v4l2_subdev *sd, u32 *status)
1637 {
1638 struct tda1997x_state *state = to_state(sd);
1639 u32 vper;
1640 u16 hper;
1641 u16 hsper;
1642
1643 mutex_lock(&state->lock);
1644 vper = io_read24(sd, REG_V_PER) & MASK_VPER;
1645 hper = io_read16(sd, REG_H_PER) & MASK_HPER;
1646 hsper = io_read16(sd, REG_HS_WIDTH) & MASK_HSWIDTH;
1647 /*
1648 * The tda1997x supports A/B inputs but only a single output.
1649 * The irq handler monitors for timing changes on both inputs and
1650 * sets the input_detect array to 0|1 depending on signal presence.
1651 * I believe selection of A vs B is automatic.
1652 *
1653 * The vper/hper/hsper registers provide the frame period, line period
1654 * and horiz sync period (units of MCLK clock cycles (27MHz)) and
1655 * testing shows these values to be random if no signal is present
1656 * or locked.
1657 */
1658 v4l2_dbg(1, debug, sd, "inputs:%d/%d timings:%d/%d/%d\n",
1659 state->input_detect[0], state->input_detect[1],
1660 vper, hper, hsper);
1661 if (!state->input_detect[0] && !state->input_detect[1])
1662 *status = V4L2_IN_ST_NO_SIGNAL;
1663 else if (!vper || !hper || !hsper)
1664 *status = V4L2_IN_ST_NO_SYNC;
1665 else
1666 *status = 0;
1667 mutex_unlock(&state->lock);
1668
1669 return 0;
1670 };
1671
tda1997x_s_dv_timings(struct v4l2_subdev * sd,struct v4l2_dv_timings * timings)1672 static int tda1997x_s_dv_timings(struct v4l2_subdev *sd,
1673 struct v4l2_dv_timings *timings)
1674 {
1675 struct tda1997x_state *state = to_state(sd);
1676
1677 v4l_dbg(1, debug, state->client, "%s\n", __func__);
1678
1679 if (v4l2_match_dv_timings(&state->timings, timings, 0, false))
1680 return 0; /* no changes */
1681
1682 if (!v4l2_valid_dv_timings(timings, &tda1997x_dv_timings_cap,
1683 NULL, NULL))
1684 return -ERANGE;
1685
1686 mutex_lock(&state->lock);
1687 state->timings = *timings;
1688 /* setup frame detection window and VHREF timing generator */
1689 tda1997x_configure_vhref(sd);
1690 /* configure colorspace conversion */
1691 tda1997x_configure_csc(sd);
1692 mutex_unlock(&state->lock);
1693
1694 return 0;
1695 }
1696
tda1997x_g_dv_timings(struct v4l2_subdev * sd,struct v4l2_dv_timings * timings)1697 static int tda1997x_g_dv_timings(struct v4l2_subdev *sd,
1698 struct v4l2_dv_timings *timings)
1699 {
1700 struct tda1997x_state *state = to_state(sd);
1701
1702 v4l_dbg(1, debug, state->client, "%s\n", __func__);
1703 mutex_lock(&state->lock);
1704 *timings = state->timings;
1705 mutex_unlock(&state->lock);
1706
1707 return 0;
1708 }
1709
tda1997x_query_dv_timings(struct v4l2_subdev * sd,struct v4l2_dv_timings * timings)1710 static int tda1997x_query_dv_timings(struct v4l2_subdev *sd,
1711 struct v4l2_dv_timings *timings)
1712 {
1713 struct tda1997x_state *state = to_state(sd);
1714 int ret;
1715
1716 v4l_dbg(1, debug, state->client, "%s\n", __func__);
1717 memset(timings, 0, sizeof(struct v4l2_dv_timings));
1718 mutex_lock(&state->lock);
1719 ret = tda1997x_detect_std(state, timings);
1720 mutex_unlock(&state->lock);
1721
1722 return ret;
1723 }
1724
1725 static const struct v4l2_subdev_video_ops tda1997x_video_ops = {
1726 .g_input_status = tda1997x_g_input_status,
1727 .s_dv_timings = tda1997x_s_dv_timings,
1728 .g_dv_timings = tda1997x_g_dv_timings,
1729 .query_dv_timings = tda1997x_query_dv_timings,
1730 };
1731
1732
1733 /* -----------------------------------------------------------------------------
1734 * v4l2_subdev_pad_ops
1735 */
1736
tda1997x_init_cfg(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state)1737 static int tda1997x_init_cfg(struct v4l2_subdev *sd,
1738 struct v4l2_subdev_state *sd_state)
1739 {
1740 struct tda1997x_state *state = to_state(sd);
1741 struct v4l2_mbus_framefmt *mf;
1742
1743 mf = v4l2_subdev_get_try_format(sd, sd_state, 0);
1744 mf->code = state->mbus_codes[0];
1745
1746 return 0;
1747 }
1748
tda1997x_enum_mbus_code(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_mbus_code_enum * code)1749 static int tda1997x_enum_mbus_code(struct v4l2_subdev *sd,
1750 struct v4l2_subdev_state *sd_state,
1751 struct v4l2_subdev_mbus_code_enum *code)
1752 {
1753 struct tda1997x_state *state = to_state(sd);
1754
1755 v4l_dbg(1, debug, state->client, "%s %d\n", __func__, code->index);
1756 if (code->index >= ARRAY_SIZE(state->mbus_codes))
1757 return -EINVAL;
1758
1759 if (!state->mbus_codes[code->index])
1760 return -EINVAL;
1761
1762 code->code = state->mbus_codes[code->index];
1763
1764 return 0;
1765 }
1766
tda1997x_fill_format(struct tda1997x_state * state,struct v4l2_mbus_framefmt * format)1767 static void tda1997x_fill_format(struct tda1997x_state *state,
1768 struct v4l2_mbus_framefmt *format)
1769 {
1770 const struct v4l2_bt_timings *bt;
1771
1772 memset(format, 0, sizeof(*format));
1773 bt = &state->timings.bt;
1774 format->width = bt->width;
1775 format->height = bt->height;
1776 format->colorspace = state->colorimetry.colorspace;
1777 format->field = (bt->interlaced) ?
1778 V4L2_FIELD_SEQ_TB : V4L2_FIELD_NONE;
1779 }
1780
tda1997x_get_format(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)1781 static int tda1997x_get_format(struct v4l2_subdev *sd,
1782 struct v4l2_subdev_state *sd_state,
1783 struct v4l2_subdev_format *format)
1784 {
1785 struct tda1997x_state *state = to_state(sd);
1786
1787 v4l_dbg(1, debug, state->client, "%s pad=%d which=%d\n",
1788 __func__, format->pad, format->which);
1789
1790 tda1997x_fill_format(state, &format->format);
1791
1792 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1793 struct v4l2_mbus_framefmt *fmt;
1794
1795 fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad);
1796 format->format.code = fmt->code;
1797 } else
1798 format->format.code = state->mbus_code;
1799
1800 return 0;
1801 }
1802
tda1997x_set_format(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)1803 static int tda1997x_set_format(struct v4l2_subdev *sd,
1804 struct v4l2_subdev_state *sd_state,
1805 struct v4l2_subdev_format *format)
1806 {
1807 struct tda1997x_state *state = to_state(sd);
1808 u32 code = 0;
1809 int i;
1810
1811 v4l_dbg(1, debug, state->client, "%s pad=%d which=%d fmt=0x%x\n",
1812 __func__, format->pad, format->which, format->format.code);
1813
1814 for (i = 0; i < ARRAY_SIZE(state->mbus_codes); i++) {
1815 if (format->format.code == state->mbus_codes[i]) {
1816 code = state->mbus_codes[i];
1817 break;
1818 }
1819 }
1820 if (!code)
1821 code = state->mbus_codes[0];
1822
1823 tda1997x_fill_format(state, &format->format);
1824 format->format.code = code;
1825
1826 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1827 struct v4l2_mbus_framefmt *fmt;
1828
1829 fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad);
1830 *fmt = format->format;
1831 } else {
1832 int ret = tda1997x_setup_format(state, format->format.code);
1833
1834 if (ret)
1835 return ret;
1836 /* mbus_code has changed - re-configure csc/vidout */
1837 tda1997x_configure_csc(sd);
1838 tda1997x_configure_vidout(state);
1839 }
1840
1841 return 0;
1842 }
1843
tda1997x_get_edid(struct v4l2_subdev * sd,struct v4l2_edid * edid)1844 static int tda1997x_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1845 {
1846 struct tda1997x_state *state = to_state(sd);
1847
1848 v4l_dbg(1, debug, state->client, "%s pad=%d\n", __func__, edid->pad);
1849 memset(edid->reserved, 0, sizeof(edid->reserved));
1850
1851 if (edid->start_block == 0 && edid->blocks == 0) {
1852 edid->blocks = state->edid.blocks;
1853 return 0;
1854 }
1855
1856 if (!state->edid.present)
1857 return -ENODATA;
1858
1859 if (edid->start_block >= state->edid.blocks)
1860 return -EINVAL;
1861
1862 if (edid->start_block + edid->blocks > state->edid.blocks)
1863 edid->blocks = state->edid.blocks - edid->start_block;
1864
1865 memcpy(edid->edid, state->edid.edid + edid->start_block * 128,
1866 edid->blocks * 128);
1867
1868 return 0;
1869 }
1870
tda1997x_set_edid(struct v4l2_subdev * sd,struct v4l2_edid * edid)1871 static int tda1997x_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1872 {
1873 struct tda1997x_state *state = to_state(sd);
1874 int i;
1875
1876 v4l_dbg(1, debug, state->client, "%s pad=%d\n", __func__, edid->pad);
1877 memset(edid->reserved, 0, sizeof(edid->reserved));
1878
1879 if (edid->start_block != 0)
1880 return -EINVAL;
1881
1882 if (edid->blocks == 0) {
1883 state->edid.blocks = 0;
1884 state->edid.present = 0;
1885 tda1997x_disable_edid(sd);
1886 return 0;
1887 }
1888
1889 if (edid->blocks > 2) {
1890 edid->blocks = 2;
1891 return -E2BIG;
1892 }
1893
1894 tda1997x_disable_edid(sd);
1895
1896 /* write base EDID */
1897 for (i = 0; i < 128; i++)
1898 io_write(sd, REG_EDID_IN_BYTE0 + i, edid->edid[i]);
1899
1900 /* write CEA Extension */
1901 for (i = 0; i < 128; i++)
1902 io_write(sd, REG_EDID_IN_BYTE128 + i, edid->edid[i+128]);
1903
1904 /* store state */
1905 memcpy(state->edid.edid, edid->edid, 256);
1906 state->edid.blocks = edid->blocks;
1907
1908 tda1997x_enable_edid(sd);
1909
1910 return 0;
1911 }
1912
tda1997x_get_dv_timings_cap(struct v4l2_subdev * sd,struct v4l2_dv_timings_cap * cap)1913 static int tda1997x_get_dv_timings_cap(struct v4l2_subdev *sd,
1914 struct v4l2_dv_timings_cap *cap)
1915 {
1916 *cap = tda1997x_dv_timings_cap;
1917 return 0;
1918 }
1919
tda1997x_enum_dv_timings(struct v4l2_subdev * sd,struct v4l2_enum_dv_timings * timings)1920 static int tda1997x_enum_dv_timings(struct v4l2_subdev *sd,
1921 struct v4l2_enum_dv_timings *timings)
1922 {
1923 return v4l2_enum_dv_timings_cap(timings, &tda1997x_dv_timings_cap,
1924 NULL, NULL);
1925 }
1926
1927 static const struct v4l2_subdev_pad_ops tda1997x_pad_ops = {
1928 .init_cfg = tda1997x_init_cfg,
1929 .enum_mbus_code = tda1997x_enum_mbus_code,
1930 .get_fmt = tda1997x_get_format,
1931 .set_fmt = tda1997x_set_format,
1932 .get_edid = tda1997x_get_edid,
1933 .set_edid = tda1997x_set_edid,
1934 .dv_timings_cap = tda1997x_get_dv_timings_cap,
1935 .enum_dv_timings = tda1997x_enum_dv_timings,
1936 };
1937
1938 /* -----------------------------------------------------------------------------
1939 * v4l2_subdev_core_ops
1940 */
1941
tda1997x_log_infoframe(struct v4l2_subdev * sd,int addr)1942 static int tda1997x_log_infoframe(struct v4l2_subdev *sd, int addr)
1943 {
1944 struct tda1997x_state *state = to_state(sd);
1945 union hdmi_infoframe frame;
1946 u8 buffer[40] = { 0 };
1947 int len, err;
1948
1949 /* read data */
1950 len = io_readn(sd, addr, sizeof(buffer), buffer);
1951 v4l2_dbg(1, debug, sd, "infoframe: addr=%d len=%d\n", addr, len);
1952 err = hdmi_infoframe_unpack(&frame, buffer, len);
1953 if (err) {
1954 v4l_err(state->client,
1955 "failed parsing %d byte infoframe: 0x%04x/0x%02x\n",
1956 len, addr, buffer[0]);
1957 return err;
1958 }
1959 hdmi_infoframe_log(KERN_INFO, &state->client->dev, &frame);
1960
1961 return 0;
1962 }
1963
tda1997x_log_status(struct v4l2_subdev * sd)1964 static int tda1997x_log_status(struct v4l2_subdev *sd)
1965 {
1966 struct tda1997x_state *state = to_state(sd);
1967 struct v4l2_dv_timings timings;
1968 struct hdmi_avi_infoframe *avi = &state->avi_infoframe;
1969
1970 v4l2_info(sd, "-----Chip status-----\n");
1971 v4l2_info(sd, "Chip: %s N%d\n", state->info->name,
1972 state->chip_revision + 1);
1973 v4l2_info(sd, "EDID Enabled: %s\n", state->edid.present ? "yes" : "no");
1974
1975 v4l2_info(sd, "-----Signal status-----\n");
1976 v4l2_info(sd, "Cable detected (+5V power): %s\n",
1977 tda1997x_detect_tx_5v(sd) ? "yes" : "no");
1978 v4l2_info(sd, "HPD detected: %s\n",
1979 tda1997x_detect_tx_hpd(sd) ? "yes" : "no");
1980
1981 v4l2_info(sd, "-----Video Timings-----\n");
1982 switch (tda1997x_detect_std(state, &timings)) {
1983 case -ENOLINK:
1984 v4l2_info(sd, "No video detected\n");
1985 break;
1986 case -ERANGE:
1987 v4l2_info(sd, "Invalid signal detected\n");
1988 break;
1989 }
1990 v4l2_print_dv_timings(sd->name, "Configured format: ",
1991 &state->timings, true);
1992
1993 v4l2_info(sd, "-----Color space-----\n");
1994 v4l2_info(sd, "Input color space: %s %s %s",
1995 hdmi_colorspace_names[avi->colorspace],
1996 (avi->colorspace == HDMI_COLORSPACE_RGB) ? "" :
1997 hdmi_colorimetry_names[avi->colorimetry],
1998 v4l2_quantization_names[state->colorimetry.quantization]);
1999 v4l2_info(sd, "Output color space: %s",
2000 vidfmt_names[state->vid_fmt]);
2001 v4l2_info(sd, "Color space conversion: %s", state->conv ?
2002 state->conv->name : "None");
2003
2004 v4l2_info(sd, "-----Audio-----\n");
2005 if (state->audio_channels) {
2006 v4l2_info(sd, "audio: %dch %dHz\n", state->audio_channels,
2007 state->audio_samplerate);
2008 } else {
2009 v4l2_info(sd, "audio: none\n");
2010 }
2011
2012 v4l2_info(sd, "-----Infoframes-----\n");
2013 tda1997x_log_infoframe(sd, AUD_IF);
2014 tda1997x_log_infoframe(sd, SPD_IF);
2015 tda1997x_log_infoframe(sd, AVI_IF);
2016
2017 return 0;
2018 }
2019
tda1997x_subscribe_event(struct v4l2_subdev * sd,struct v4l2_fh * fh,struct v4l2_event_subscription * sub)2020 static int tda1997x_subscribe_event(struct v4l2_subdev *sd,
2021 struct v4l2_fh *fh,
2022 struct v4l2_event_subscription *sub)
2023 {
2024 switch (sub->type) {
2025 case V4L2_EVENT_SOURCE_CHANGE:
2026 return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2027 case V4L2_EVENT_CTRL:
2028 return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2029 default:
2030 return -EINVAL;
2031 }
2032 }
2033
2034 static const struct v4l2_subdev_core_ops tda1997x_core_ops = {
2035 .log_status = tda1997x_log_status,
2036 .subscribe_event = tda1997x_subscribe_event,
2037 .unsubscribe_event = v4l2_event_subdev_unsubscribe,
2038 };
2039
2040 /* -----------------------------------------------------------------------------
2041 * v4l2_subdev_ops
2042 */
2043
2044 static const struct v4l2_subdev_ops tda1997x_subdev_ops = {
2045 .core = &tda1997x_core_ops,
2046 .video = &tda1997x_video_ops,
2047 .pad = &tda1997x_pad_ops,
2048 };
2049
2050 /* -----------------------------------------------------------------------------
2051 * v4l2_controls
2052 */
2053
tda1997x_s_ctrl(struct v4l2_ctrl * ctrl)2054 static int tda1997x_s_ctrl(struct v4l2_ctrl *ctrl)
2055 {
2056 struct v4l2_subdev *sd = to_sd(ctrl);
2057 struct tda1997x_state *state = to_state(sd);
2058
2059 switch (ctrl->id) {
2060 /* allow overriding the default RGB quantization range */
2061 case V4L2_CID_DV_RX_RGB_RANGE:
2062 state->rgb_quantization_range = ctrl->val;
2063 set_rgb_quantization_range(state);
2064 tda1997x_configure_csc(sd);
2065 return 0;
2066 }
2067
2068 return -EINVAL;
2069 };
2070
tda1997x_g_volatile_ctrl(struct v4l2_ctrl * ctrl)2071 static int tda1997x_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
2072 {
2073 struct v4l2_subdev *sd = to_sd(ctrl);
2074 struct tda1997x_state *state = to_state(sd);
2075
2076 if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
2077 ctrl->val = state->avi_infoframe.content_type;
2078 return 0;
2079 }
2080 return -EINVAL;
2081 };
2082
2083 static const struct v4l2_ctrl_ops tda1997x_ctrl_ops = {
2084 .s_ctrl = tda1997x_s_ctrl,
2085 .g_volatile_ctrl = tda1997x_g_volatile_ctrl,
2086 };
2087
tda1997x_core_init(struct v4l2_subdev * sd)2088 static int tda1997x_core_init(struct v4l2_subdev *sd)
2089 {
2090 struct tda1997x_state *state = to_state(sd);
2091 struct tda1997x_platform_data *pdata = &state->pdata;
2092 u8 reg;
2093 int i;
2094
2095 /* disable HPD */
2096 io_write(sd, REG_HPD_AUTO_CTRL, HPD_AUTO_HPD_UNSEL);
2097 if (state->chip_revision == 0) {
2098 io_write(sd, REG_MAN_SUS_HDMI_SEL, MAN_DIS_HDCP | MAN_RST_HDCP);
2099 io_write(sd, REG_CGU_DBG_SEL, 1 << CGU_DBG_CLK_SEL_SHIFT);
2100 }
2101
2102 /* reset infoframe at end of start-up-sequencer */
2103 io_write(sd, REG_SUS_SET_RGB2, 0x06);
2104 io_write(sd, REG_SUS_SET_RGB3, 0x06);
2105
2106 /* Enable TMDS pull-ups */
2107 io_write(sd, REG_RT_MAN_CTRL, RT_MAN_CTRL_RT |
2108 RT_MAN_CTRL_RT_B | RT_MAN_CTRL_RT_A);
2109
2110 /* enable sync measurement timing */
2111 tda1997x_cec_write(sd, REG_PWR_CONTROL & 0xff, 0x04);
2112 /* adjust CEC clock divider */
2113 tda1997x_cec_write(sd, REG_OSC_DIVIDER & 0xff, 0x03);
2114 tda1997x_cec_write(sd, REG_EN_OSC_PERIOD_LSB & 0xff, 0xa0);
2115 io_write(sd, REG_TIMER_D, 0x54);
2116 /* enable power switch */
2117 reg = tda1997x_cec_read(sd, REG_CONTROL & 0xff);
2118 reg |= 0x20;
2119 tda1997x_cec_write(sd, REG_CONTROL & 0xff, reg);
2120 mdelay(50);
2121
2122 /* read the chip version */
2123 reg = io_read(sd, REG_VERSION);
2124 /* get the chip configuration */
2125 reg = io_read(sd, REG_CMTP_REG10);
2126
2127 /* enable interrupts we care about */
2128 io_write(sd, REG_INT_MASK_TOP,
2129 INTERRUPT_HDCP | INTERRUPT_AUDIO | INTERRUPT_INFO |
2130 INTERRUPT_RATE | INTERRUPT_SUS);
2131 /* config_mtp,fmt,sus_end,sus_st */
2132 io_write(sd, REG_INT_MASK_SUS, MASK_MPT | MASK_FMT | MASK_SUS_END);
2133 /* rate stability change for inputs A/B */
2134 io_write(sd, REG_INT_MASK_RATE, MASK_RATE_B_ST | MASK_RATE_A_ST);
2135 /* aud,spd,avi*/
2136 io_write(sd, REG_INT_MASK_INFO,
2137 MASK_AUD_IF | MASK_SPD_IF | MASK_AVI_IF);
2138 /* audio_freq,audio_flg,mute_flg,fifo_err */
2139 io_write(sd, REG_INT_MASK_AUDIO,
2140 MASK_AUDIO_FREQ_FLG | MASK_AUDIO_FLG | MASK_MUTE_FLG |
2141 MASK_ERROR_FIFO_PT);
2142 /* HDCP C5 state reached */
2143 io_write(sd, REG_INT_MASK_HDCP, MASK_STATE_C5);
2144 /* 5V detect and HDP pulse end */
2145 io_write(sd, REG_INT_MASK_DDC, MASK_DET_5V);
2146 /* don't care about AFE/MODE */
2147 io_write(sd, REG_INT_MASK_AFE, 0);
2148 io_write(sd, REG_INT_MASK_MODE, 0);
2149
2150 /* clear all interrupts */
2151 io_write(sd, REG_INT_FLG_CLR_TOP, 0xff);
2152 io_write(sd, REG_INT_FLG_CLR_SUS, 0xff);
2153 io_write(sd, REG_INT_FLG_CLR_DDC, 0xff);
2154 io_write(sd, REG_INT_FLG_CLR_RATE, 0xff);
2155 io_write(sd, REG_INT_FLG_CLR_MODE, 0xff);
2156 io_write(sd, REG_INT_FLG_CLR_INFO, 0xff);
2157 io_write(sd, REG_INT_FLG_CLR_AUDIO, 0xff);
2158 io_write(sd, REG_INT_FLG_CLR_HDCP, 0xff);
2159 io_write(sd, REG_INT_FLG_CLR_AFE, 0xff);
2160
2161 /* init TMDS equalizer */
2162 if (state->chip_revision == 0)
2163 io_write(sd, REG_CGU_DBG_SEL, 1 << CGU_DBG_CLK_SEL_SHIFT);
2164 io_write24(sd, REG_CLK_MIN_RATE, CLK_MIN_RATE);
2165 io_write24(sd, REG_CLK_MAX_RATE, CLK_MAX_RATE);
2166 if (state->chip_revision == 0)
2167 io_write(sd, REG_WDL_CFG, WDL_CFG_VAL);
2168 /* DC filter */
2169 io_write(sd, REG_DEEP_COLOR_CTRL, DC_FILTER_VAL);
2170 /* disable test pattern */
2171 io_write(sd, REG_SVC_MODE, 0x00);
2172 /* update HDMI INFO CTRL */
2173 io_write(sd, REG_INFO_CTRL, 0xff);
2174 /* write HDMI INFO EXCEED value */
2175 io_write(sd, REG_INFO_EXCEED, 3);
2176
2177 if (state->chip_revision == 0)
2178 tda1997x_reset_n1(state);
2179
2180 /*
2181 * No HDCP acknowledge when HDCP is disabled
2182 * and reset SUS to force format detection
2183 */
2184 tda1997x_hdmi_info_reset(sd, NACK_HDCP, true);
2185
2186 /* Set HPD low */
2187 tda1997x_manual_hpd(sd, HPD_LOW_BP);
2188
2189 /* Configure receiver capabilities */
2190 io_write(sd, REG_HDCP_BCAPS, HDCP_HDMI | HDCP_FAST_REAUTH);
2191
2192 /* Configure HDMI: Auto HDCP mode, packet controlled mute */
2193 reg = HDMI_CTRL_MUTE_AUTO << HDMI_CTRL_MUTE_SHIFT;
2194 reg |= HDMI_CTRL_HDCP_AUTO << HDMI_CTRL_HDCP_SHIFT;
2195 io_write(sd, REG_HDMI_CTRL, reg);
2196
2197 /* reset start-up-sequencer to force format detection */
2198 tda1997x_hdmi_info_reset(sd, 0, true);
2199
2200 /* disable matrix conversion */
2201 reg = io_read(sd, REG_VDP_CTRL);
2202 reg |= VDP_CTRL_MATRIX_BP;
2203 io_write(sd, REG_VDP_CTRL, reg);
2204
2205 /* set video output mode */
2206 tda1997x_configure_vidout(state);
2207
2208 /* configure video output port */
2209 for (i = 0; i < 9; i++) {
2210 v4l_dbg(1, debug, state->client, "vidout_cfg[%d]=0x%02x\n", i,
2211 pdata->vidout_port_cfg[i]);
2212 io_write(sd, REG_VP35_32_CTRL + i, pdata->vidout_port_cfg[i]);
2213 }
2214
2215 /* configure audio output port */
2216 tda1997x_configure_audout(sd, 0);
2217
2218 /* configure audio clock freq */
2219 switch (pdata->audout_mclk_fs) {
2220 case 512:
2221 reg = AUDIO_CLOCK_SEL_512FS;
2222 break;
2223 case 256:
2224 reg = AUDIO_CLOCK_SEL_256FS;
2225 break;
2226 case 128:
2227 reg = AUDIO_CLOCK_SEL_128FS;
2228 break;
2229 case 64:
2230 reg = AUDIO_CLOCK_SEL_64FS;
2231 break;
2232 case 32:
2233 reg = AUDIO_CLOCK_SEL_32FS;
2234 break;
2235 default:
2236 reg = AUDIO_CLOCK_SEL_16FS;
2237 break;
2238 }
2239 io_write(sd, REG_AUDIO_CLOCK, reg);
2240
2241 /* reset advanced infoframes (ISRC1/ISRC2/ACP) */
2242 tda1997x_hdmi_info_reset(sd, RESET_AI, false);
2243 /* reset infoframe */
2244 tda1997x_hdmi_info_reset(sd, RESET_IF, false);
2245 /* reset audio infoframes */
2246 tda1997x_hdmi_info_reset(sd, RESET_AUDIO, false);
2247 /* reset gamut */
2248 tda1997x_hdmi_info_reset(sd, RESET_GAMUT, false);
2249
2250 /* get initial HDMI status */
2251 state->hdmi_status = io_read(sd, REG_HDMI_FLAGS);
2252
2253 io_write(sd, REG_EDID_ENABLE, EDID_ENABLE_A_EN | EDID_ENABLE_B_EN);
2254 return 0;
2255 }
2256
tda1997x_set_power(struct tda1997x_state * state,bool on)2257 static int tda1997x_set_power(struct tda1997x_state *state, bool on)
2258 {
2259 int ret = 0;
2260
2261 if (on) {
2262 ret = regulator_bulk_enable(TDA1997X_NUM_SUPPLIES,
2263 state->supplies);
2264 msleep(300);
2265 } else {
2266 ret = regulator_bulk_disable(TDA1997X_NUM_SUPPLIES,
2267 state->supplies);
2268 }
2269
2270 return ret;
2271 }
2272
2273 static const struct i2c_device_id tda1997x_i2c_id[] = {
2274 {"tda19971", (kernel_ulong_t)&tda1997x_chip_info[TDA19971]},
2275 {"tda19973", (kernel_ulong_t)&tda1997x_chip_info[TDA19973]},
2276 { },
2277 };
2278 MODULE_DEVICE_TABLE(i2c, tda1997x_i2c_id);
2279
2280 static const struct of_device_id tda1997x_of_id[] __maybe_unused = {
2281 { .compatible = "nxp,tda19971", .data = &tda1997x_chip_info[TDA19971] },
2282 { .compatible = "nxp,tda19973", .data = &tda1997x_chip_info[TDA19973] },
2283 { },
2284 };
2285 MODULE_DEVICE_TABLE(of, tda1997x_of_id);
2286
tda1997x_parse_dt(struct tda1997x_state * state)2287 static int tda1997x_parse_dt(struct tda1997x_state *state)
2288 {
2289 struct tda1997x_platform_data *pdata = &state->pdata;
2290 struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
2291 struct device_node *ep;
2292 struct device_node *np;
2293 unsigned int flags;
2294 const char *str;
2295 int ret;
2296 u32 v;
2297
2298 /*
2299 * setup default values:
2300 * - HREF: active high from start to end of row
2301 * - VS: Vertical Sync active high at beginning of frame
2302 * - DE: Active high when data valid
2303 * - A_CLK: 128*Fs
2304 */
2305 pdata->vidout_sel_hs = HS_HREF_SEL_HREF_VHREF;
2306 pdata->vidout_sel_vs = VS_VREF_SEL_VREF_HDMI;
2307 pdata->vidout_sel_de = DE_FREF_SEL_DE_VHREF;
2308
2309 np = state->client->dev.of_node;
2310 ep = of_graph_get_next_endpoint(np, NULL);
2311 if (!ep)
2312 return -EINVAL;
2313
2314 ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep), &bus_cfg);
2315 if (ret) {
2316 of_node_put(ep);
2317 return ret;
2318 }
2319 of_node_put(ep);
2320 pdata->vidout_bus_type = bus_cfg.bus_type;
2321
2322 /* polarity of HS/VS/DE */
2323 flags = bus_cfg.bus.parallel.flags;
2324 if (flags & V4L2_MBUS_HSYNC_ACTIVE_LOW)
2325 pdata->vidout_inv_hs = 1;
2326 if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW)
2327 pdata->vidout_inv_vs = 1;
2328 if (flags & V4L2_MBUS_DATA_ACTIVE_LOW)
2329 pdata->vidout_inv_de = 1;
2330 pdata->vidout_bus_width = bus_cfg.bus.parallel.bus_width;
2331
2332 /* video output port config */
2333 ret = of_property_count_u32_elems(np, "nxp,vidout-portcfg");
2334 if (ret > 0) {
2335 u32 reg, val, i;
2336
2337 for (i = 0; i < ret / 2 && i < 9; i++) {
2338 of_property_read_u32_index(np, "nxp,vidout-portcfg",
2339 i * 2, ®);
2340 of_property_read_u32_index(np, "nxp,vidout-portcfg",
2341 i * 2 + 1, &val);
2342 if (reg < 9)
2343 pdata->vidout_port_cfg[reg] = val;
2344 }
2345 } else {
2346 v4l_err(state->client, "nxp,vidout-portcfg missing\n");
2347 return -EINVAL;
2348 }
2349
2350 /* default to channel layout dictated by packet header */
2351 pdata->audout_layoutauto = true;
2352
2353 pdata->audout_format = AUDFMT_TYPE_DISABLED;
2354 if (!of_property_read_string(np, "nxp,audout-format", &str)) {
2355 if (strcmp(str, "i2s") == 0)
2356 pdata->audout_format = AUDFMT_TYPE_I2S;
2357 else if (strcmp(str, "spdif") == 0)
2358 pdata->audout_format = AUDFMT_TYPE_SPDIF;
2359 else {
2360 v4l_err(state->client, "nxp,audout-format invalid\n");
2361 return -EINVAL;
2362 }
2363 if (!of_property_read_u32(np, "nxp,audout-layout", &v)) {
2364 switch (v) {
2365 case 0:
2366 case 1:
2367 break;
2368 default:
2369 v4l_err(state->client,
2370 "nxp,audout-layout invalid\n");
2371 return -EINVAL;
2372 }
2373 pdata->audout_layout = v;
2374 }
2375 if (!of_property_read_u32(np, "nxp,audout-width", &v)) {
2376 switch (v) {
2377 case 16:
2378 case 32:
2379 break;
2380 default:
2381 v4l_err(state->client,
2382 "nxp,audout-width invalid\n");
2383 return -EINVAL;
2384 }
2385 pdata->audout_width = v;
2386 }
2387 if (!of_property_read_u32(np, "nxp,audout-mclk-fs", &v)) {
2388 switch (v) {
2389 case 512:
2390 case 256:
2391 case 128:
2392 case 64:
2393 case 32:
2394 case 16:
2395 break;
2396 default:
2397 v4l_err(state->client,
2398 "nxp,audout-mclk-fs invalid\n");
2399 return -EINVAL;
2400 }
2401 pdata->audout_mclk_fs = v;
2402 }
2403 }
2404
2405 return 0;
2406 }
2407
tda1997x_get_regulators(struct tda1997x_state * state)2408 static int tda1997x_get_regulators(struct tda1997x_state *state)
2409 {
2410 int i;
2411
2412 for (i = 0; i < TDA1997X_NUM_SUPPLIES; i++)
2413 state->supplies[i].supply = tda1997x_supply_name[i];
2414
2415 return devm_regulator_bulk_get(&state->client->dev,
2416 TDA1997X_NUM_SUPPLIES,
2417 state->supplies);
2418 }
2419
tda1997x_identify_module(struct tda1997x_state * state)2420 static int tda1997x_identify_module(struct tda1997x_state *state)
2421 {
2422 struct v4l2_subdev *sd = &state->sd;
2423 enum tda1997x_type type;
2424 u8 reg;
2425
2426 /* Read chip configuration*/
2427 reg = io_read(sd, REG_CMTP_REG10);
2428 state->tmdsb_clk = (reg >> 6) & 0x01; /* use tmds clock B_inv for B */
2429 state->tmdsb_soc = (reg >> 5) & 0x01; /* tmds of input B */
2430 state->port_30bit = (reg >> 2) & 0x03; /* 30bit vs 24bit */
2431 state->output_2p5 = (reg >> 1) & 0x01; /* output supply 2.5v */
2432 switch ((reg >> 4) & 0x03) {
2433 case 0x00:
2434 type = TDA19971;
2435 break;
2436 case 0x02:
2437 case 0x03:
2438 type = TDA19973;
2439 break;
2440 default:
2441 dev_err(&state->client->dev, "unsupported chip ID\n");
2442 return -EIO;
2443 }
2444 if (state->info->type != type) {
2445 dev_err(&state->client->dev, "chip id mismatch\n");
2446 return -EIO;
2447 }
2448
2449 /* read chip revision */
2450 state->chip_revision = io_read(sd, REG_CMTP_REG11);
2451
2452 return 0;
2453 }
2454
2455 static const struct media_entity_operations tda1997x_media_ops = {
2456 .link_validate = v4l2_subdev_link_validate,
2457 };
2458
2459
2460 /* -----------------------------------------------------------------------------
2461 * HDMI Audio Codec
2462 */
2463
2464 /* refine sample-rate based on HDMI source */
tda1997x_pcm_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * dai)2465 static int tda1997x_pcm_startup(struct snd_pcm_substream *substream,
2466 struct snd_soc_dai *dai)
2467 {
2468 struct v4l2_subdev *sd = snd_soc_dai_get_drvdata(dai);
2469 struct tda1997x_state *state = to_state(sd);
2470 struct snd_soc_component *component = dai->component;
2471 struct snd_pcm_runtime *rtd = substream->runtime;
2472 int rate, err;
2473
2474 rate = state->audio_samplerate;
2475 err = snd_pcm_hw_constraint_minmax(rtd, SNDRV_PCM_HW_PARAM_RATE,
2476 rate, rate);
2477 if (err < 0) {
2478 dev_err(component->dev, "failed to constrain samplerate to %dHz\n",
2479 rate);
2480 return err;
2481 }
2482 dev_info(component->dev, "set samplerate constraint to %dHz\n", rate);
2483
2484 return 0;
2485 }
2486
2487 static const struct snd_soc_dai_ops tda1997x_dai_ops = {
2488 .startup = tda1997x_pcm_startup,
2489 };
2490
2491 static struct snd_soc_dai_driver tda1997x_audio_dai = {
2492 .name = "tda1997x",
2493 .capture = {
2494 .stream_name = "Capture",
2495 .channels_min = 2,
2496 .channels_max = 8,
2497 .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 |
2498 SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 |
2499 SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 |
2500 SNDRV_PCM_RATE_192000,
2501 },
2502 .ops = &tda1997x_dai_ops,
2503 };
2504
tda1997x_codec_probe(struct snd_soc_component * component)2505 static int tda1997x_codec_probe(struct snd_soc_component *component)
2506 {
2507 return 0;
2508 }
2509
tda1997x_codec_remove(struct snd_soc_component * component)2510 static void tda1997x_codec_remove(struct snd_soc_component *component)
2511 {
2512 }
2513
2514 static struct snd_soc_component_driver tda1997x_codec_driver = {
2515 .probe = tda1997x_codec_probe,
2516 .remove = tda1997x_codec_remove,
2517 .idle_bias_on = 1,
2518 .use_pmdown_time = 1,
2519 .endianness = 1,
2520 };
2521
tda1997x_probe(struct i2c_client * client,const struct i2c_device_id * id)2522 static int tda1997x_probe(struct i2c_client *client,
2523 const struct i2c_device_id *id)
2524 {
2525 struct tda1997x_state *state;
2526 struct tda1997x_platform_data *pdata;
2527 struct v4l2_subdev *sd;
2528 struct v4l2_ctrl_handler *hdl;
2529 struct v4l2_ctrl *ctrl;
2530 static const struct v4l2_dv_timings cea1920x1080 =
2531 V4L2_DV_BT_CEA_1920X1080P60;
2532 u32 *mbus_codes;
2533 int i, ret;
2534
2535 /* Check if the adapter supports the needed features */
2536 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
2537 return -EIO;
2538
2539 state = kzalloc(sizeof(struct tda1997x_state), GFP_KERNEL);
2540 if (!state)
2541 return -ENOMEM;
2542
2543 state->client = client;
2544 pdata = &state->pdata;
2545 if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
2546 const struct of_device_id *oid;
2547
2548 oid = of_match_node(tda1997x_of_id, client->dev.of_node);
2549 state->info = oid->data;
2550
2551 ret = tda1997x_parse_dt(state);
2552 if (ret < 0) {
2553 v4l_err(client, "DT parsing error\n");
2554 goto err_free_state;
2555 }
2556 } else if (client->dev.platform_data) {
2557 struct tda1997x_platform_data *pdata =
2558 client->dev.platform_data;
2559 state->info =
2560 (const struct tda1997x_chip_info *)id->driver_data;
2561 state->pdata = *pdata;
2562 } else {
2563 v4l_err(client, "No platform data\n");
2564 ret = -ENODEV;
2565 goto err_free_state;
2566 }
2567
2568 ret = tda1997x_get_regulators(state);
2569 if (ret)
2570 goto err_free_state;
2571
2572 ret = tda1997x_set_power(state, 1);
2573 if (ret)
2574 goto err_free_state;
2575
2576 mutex_init(&state->page_lock);
2577 mutex_init(&state->lock);
2578 state->page = 0xff;
2579
2580 INIT_DELAYED_WORK(&state->delayed_work_enable_hpd,
2581 tda1997x_delayed_work_enable_hpd);
2582
2583 /* set video format based on chip and bus width */
2584 ret = tda1997x_identify_module(state);
2585 if (ret)
2586 goto err_free_mutex;
2587
2588 /* initialize subdev */
2589 sd = &state->sd;
2590 v4l2_i2c_subdev_init(sd, client, &tda1997x_subdev_ops);
2591 snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
2592 id->name, i2c_adapter_id(client->adapter),
2593 client->addr);
2594 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
2595 sd->entity.function = MEDIA_ENT_F_DV_DECODER;
2596 sd->entity.ops = &tda1997x_media_ops;
2597
2598 /* set allowed mbus modes based on chip, bus-type, and bus-width */
2599 i = 0;
2600 mbus_codes = state->mbus_codes;
2601 switch (state->info->type) {
2602 case TDA19973:
2603 switch (pdata->vidout_bus_type) {
2604 case V4L2_MBUS_PARALLEL:
2605 switch (pdata->vidout_bus_width) {
2606 case 36:
2607 mbus_codes[i++] = MEDIA_BUS_FMT_RGB121212_1X36;
2608 mbus_codes[i++] = MEDIA_BUS_FMT_YUV12_1X36;
2609 fallthrough;
2610 case 24:
2611 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_1X24;
2612 break;
2613 }
2614 break;
2615 case V4L2_MBUS_BT656:
2616 switch (pdata->vidout_bus_width) {
2617 case 36:
2618 case 24:
2619 case 12:
2620 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_2X12;
2621 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY10_2X10;
2622 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY8_2X8;
2623 break;
2624 }
2625 break;
2626 default:
2627 break;
2628 }
2629 break;
2630 case TDA19971:
2631 switch (pdata->vidout_bus_type) {
2632 case V4L2_MBUS_PARALLEL:
2633 switch (pdata->vidout_bus_width) {
2634 case 24:
2635 mbus_codes[i++] = MEDIA_BUS_FMT_RGB888_1X24;
2636 mbus_codes[i++] = MEDIA_BUS_FMT_YUV8_1X24;
2637 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_1X24;
2638 fallthrough;
2639 case 20:
2640 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY10_1X20;
2641 fallthrough;
2642 case 16:
2643 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY8_1X16;
2644 break;
2645 }
2646 break;
2647 case V4L2_MBUS_BT656:
2648 switch (pdata->vidout_bus_width) {
2649 case 24:
2650 case 20:
2651 case 16:
2652 case 12:
2653 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_2X12;
2654 fallthrough;
2655 case 10:
2656 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY10_2X10;
2657 fallthrough;
2658 case 8:
2659 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY8_2X8;
2660 break;
2661 }
2662 break;
2663 default:
2664 break;
2665 }
2666 break;
2667 }
2668 if (WARN_ON(i > ARRAY_SIZE(state->mbus_codes))) {
2669 ret = -EINVAL;
2670 goto err_free_mutex;
2671 }
2672
2673 /* default format */
2674 tda1997x_setup_format(state, state->mbus_codes[0]);
2675 state->timings = cea1920x1080;
2676
2677 /*
2678 * default to SRGB full range quantization
2679 * (in case we don't get an infoframe such as DVI signal
2680 */
2681 state->colorimetry.colorspace = V4L2_COLORSPACE_SRGB;
2682 state->colorimetry.quantization = V4L2_QUANTIZATION_FULL_RANGE;
2683
2684 /* disable/reset HDCP to get correct I2C access to Rx HDMI */
2685 io_write(sd, REG_MAN_SUS_HDMI_SEL, MAN_RST_HDCP | MAN_DIS_HDCP);
2686
2687 /*
2688 * if N2 version, reset compdel_bp as it may generate some small pixel
2689 * shifts in case of embedded sync/or delay lower than 4
2690 */
2691 if (state->chip_revision != 0) {
2692 io_write(sd, REG_MAN_SUS_HDMI_SEL, 0x00);
2693 io_write(sd, REG_VDP_CTRL, 0x1f);
2694 }
2695
2696 v4l_info(client, "NXP %s N%d detected\n", state->info->name,
2697 state->chip_revision + 1);
2698 v4l_info(client, "video: %dbit %s %d formats available\n",
2699 pdata->vidout_bus_width,
2700 (pdata->vidout_bus_type == V4L2_MBUS_PARALLEL) ?
2701 "parallel" : "BT656",
2702 i);
2703 if (pdata->audout_format) {
2704 v4l_info(client, "audio: %dch %s layout%d sysclk=%d*fs\n",
2705 pdata->audout_layout ? 2 : 8,
2706 audfmt_names[pdata->audout_format],
2707 pdata->audout_layout,
2708 pdata->audout_mclk_fs);
2709 }
2710
2711 ret = 0x34 + ((io_read(sd, REG_SLAVE_ADDR)>>4) & 0x03);
2712 state->client_cec = devm_i2c_new_dummy_device(&client->dev,
2713 client->adapter, ret);
2714 if (IS_ERR(state->client_cec)) {
2715 ret = PTR_ERR(state->client_cec);
2716 goto err_free_mutex;
2717 }
2718
2719 v4l_info(client, "CEC slave address 0x%02x\n", ret);
2720
2721 ret = tda1997x_core_init(sd);
2722 if (ret)
2723 goto err_free_mutex;
2724
2725 /* control handlers */
2726 hdl = &state->hdl;
2727 v4l2_ctrl_handler_init(hdl, 3);
2728 ctrl = v4l2_ctrl_new_std_menu(hdl, &tda1997x_ctrl_ops,
2729 V4L2_CID_DV_RX_IT_CONTENT_TYPE,
2730 V4L2_DV_IT_CONTENT_TYPE_NO_ITC, 0,
2731 V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
2732 if (ctrl)
2733 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
2734 /* custom controls */
2735 state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
2736 V4L2_CID_DV_RX_POWER_PRESENT, 0, 1, 0, 0);
2737 state->rgb_quantization_range_ctrl = v4l2_ctrl_new_std_menu(hdl,
2738 &tda1997x_ctrl_ops,
2739 V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 0,
2740 V4L2_DV_RGB_RANGE_AUTO);
2741 state->sd.ctrl_handler = hdl;
2742 if (hdl->error) {
2743 ret = hdl->error;
2744 goto err_free_handler;
2745 }
2746 v4l2_ctrl_handler_setup(hdl);
2747
2748 /* initialize source pads */
2749 state->pads[TDA1997X_PAD_SOURCE].flags = MEDIA_PAD_FL_SOURCE;
2750 ret = media_entity_pads_init(&sd->entity, TDA1997X_NUM_PADS,
2751 state->pads);
2752 if (ret) {
2753 v4l_err(client, "failed entity_init: %d", ret);
2754 goto err_free_handler;
2755 }
2756
2757 ret = v4l2_async_register_subdev(sd);
2758 if (ret)
2759 goto err_free_media;
2760
2761 /* register audio DAI */
2762 if (pdata->audout_format) {
2763 u64 formats;
2764
2765 if (pdata->audout_width == 32)
2766 formats = SNDRV_PCM_FMTBIT_S32_LE;
2767 else
2768 formats = SNDRV_PCM_FMTBIT_S16_LE;
2769 tda1997x_audio_dai.capture.formats = formats;
2770 ret = devm_snd_soc_register_component(&state->client->dev,
2771 &tda1997x_codec_driver,
2772 &tda1997x_audio_dai, 1);
2773 if (ret) {
2774 dev_err(&client->dev, "register audio codec failed\n");
2775 goto err_free_media;
2776 }
2777 v4l_info(state->client, "registered audio codec\n");
2778 }
2779
2780 /* request irq */
2781 ret = devm_request_threaded_irq(&client->dev, client->irq,
2782 NULL, tda1997x_isr_thread,
2783 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
2784 KBUILD_MODNAME, state);
2785 if (ret) {
2786 v4l_err(client, "irq%d reg failed: %d\n", client->irq, ret);
2787 goto err_free_media;
2788 }
2789
2790 return 0;
2791
2792 err_free_media:
2793 media_entity_cleanup(&sd->entity);
2794 err_free_handler:
2795 v4l2_ctrl_handler_free(&state->hdl);
2796 err_free_mutex:
2797 cancel_delayed_work(&state->delayed_work_enable_hpd);
2798 mutex_destroy(&state->page_lock);
2799 mutex_destroy(&state->lock);
2800 tda1997x_set_power(state, 0);
2801 err_free_state:
2802 kfree(state);
2803 dev_err(&client->dev, "%s failed: %d\n", __func__, ret);
2804
2805 return ret;
2806 }
2807
tda1997x_remove(struct i2c_client * client)2808 static void tda1997x_remove(struct i2c_client *client)
2809 {
2810 struct v4l2_subdev *sd = i2c_get_clientdata(client);
2811 struct tda1997x_state *state = to_state(sd);
2812 struct tda1997x_platform_data *pdata = &state->pdata;
2813
2814 if (pdata->audout_format) {
2815 mutex_destroy(&state->audio_lock);
2816 }
2817
2818 disable_irq(state->client->irq);
2819 tda1997x_power_mode(state, 0);
2820
2821 v4l2_async_unregister_subdev(sd);
2822 media_entity_cleanup(&sd->entity);
2823 v4l2_ctrl_handler_free(&state->hdl);
2824 regulator_bulk_disable(TDA1997X_NUM_SUPPLIES, state->supplies);
2825 cancel_delayed_work_sync(&state->delayed_work_enable_hpd);
2826 mutex_destroy(&state->page_lock);
2827 mutex_destroy(&state->lock);
2828
2829 kfree(state);
2830 }
2831
2832 static struct i2c_driver tda1997x_i2c_driver = {
2833 .driver = {
2834 .name = "tda1997x",
2835 .of_match_table = of_match_ptr(tda1997x_of_id),
2836 },
2837 .probe = tda1997x_probe,
2838 .remove = tda1997x_remove,
2839 .id_table = tda1997x_i2c_id,
2840 };
2841
2842 module_i2c_driver(tda1997x_i2c_driver);
2843
2844 MODULE_AUTHOR("Tim Harvey <tharvey@gateworks.com>");
2845 MODULE_DESCRIPTION("TDA1997X HDMI Receiver driver");
2846 MODULE_LICENSE("GPL v2");
2847