1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2018 Gateworks Corporation
4 */
5 #include <linux/delay.h>
6 #include <linux/hdmi.h>
7 #include <linux/i2c.h>
8 #include <linux/init.h>
9 #include <linux/interrupt.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/of_graph.h>
13 #include <linux/platform_device.h>
14 #include <linux/regulator/consumer.h>
15 #include <linux/types.h>
16 #include <linux/v4l2-dv-timings.h>
17 #include <linux/videodev2.h>
18
19 #include <media/v4l2-ctrls.h>
20 #include <media/v4l2-device.h>
21 #include <media/v4l2-dv-timings.h>
22 #include <media/v4l2-event.h>
23 #include <media/v4l2-fwnode.h>
24 #include <media/i2c/tda1997x.h>
25
26 #include <sound/core.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/soc.h>
30
31 #include <dt-bindings/media/tda1997x.h>
32
33 #include "tda1997x_regs.h"
34
35 #define TDA1997X_MBUS_CODES 5
36
37 /* debug level */
38 static int debug;
39 module_param(debug, int, 0644);
40 MODULE_PARM_DESC(debug, "debug level (0-2)");
41
42 /* Audio formats */
43 static const char * const audtype_names[] = {
44 "PCM", /* PCM Samples */
45 "HBR", /* High Bit Rate Audio */
46 "OBA", /* One-Bit Audio */
47 "DST" /* Direct Stream Transfer */
48 };
49
50 /* Audio output port formats */
51 enum audfmt_types {
52 AUDFMT_TYPE_DISABLED = 0,
53 AUDFMT_TYPE_I2S,
54 AUDFMT_TYPE_SPDIF,
55 };
56 static const char * const audfmt_names[] = {
57 "Disabled",
58 "I2S",
59 "SPDIF",
60 };
61
62 /* Video input formats */
63 static const char * const hdmi_colorspace_names[] = {
64 "RGB", "YUV422", "YUV444", "YUV420", "", "", "", "",
65 };
66 static const char * const hdmi_colorimetry_names[] = {
67 "", "ITU601", "ITU709", "Extended",
68 };
69 static const char * const v4l2_quantization_names[] = {
70 "Default",
71 "Full Range (0-255)",
72 "Limited Range (16-235)",
73 };
74
75 /* Video output port formats */
76 static const char * const vidfmt_names[] = {
77 "RGB444/YUV444", /* RGB/YUV444 16bit data bus, 8bpp */
78 "YUV422 semi-planar", /* YUV422 16bit data base, 8bpp */
79 "YUV422 CCIR656", /* BT656 (YUV 8bpp 2 clock per pixel) */
80 "Invalid",
81 };
82
83 /*
84 * Colorspace conversion matrices
85 */
86 struct color_matrix_coefs {
87 const char *name;
88 /* Input offsets */
89 s16 offint1;
90 s16 offint2;
91 s16 offint3;
92 /* Coeficients */
93 s16 p11coef;
94 s16 p12coef;
95 s16 p13coef;
96 s16 p21coef;
97 s16 p22coef;
98 s16 p23coef;
99 s16 p31coef;
100 s16 p32coef;
101 s16 p33coef;
102 /* Output offsets */
103 s16 offout1;
104 s16 offout2;
105 s16 offout3;
106 };
107
108 enum {
109 ITU709_RGBFULL,
110 ITU601_RGBFULL,
111 RGBLIMITED_RGBFULL,
112 RGBLIMITED_ITU601,
113 RGBLIMITED_ITU709,
114 RGBFULL_ITU601,
115 RGBFULL_ITU709,
116 };
117
118 /* NB: 4096 is 1.0 using fixed point numbers */
119 static const struct color_matrix_coefs conv_matrix[] = {
120 {
121 "YUV709 -> RGB full",
122 -256, -2048, -2048,
123 4769, -2183, -873,
124 4769, 7343, 0,
125 4769, 0, 8652,
126 0, 0, 0,
127 },
128 {
129 "YUV601 -> RGB full",
130 -256, -2048, -2048,
131 4769, -3330, -1602,
132 4769, 6538, 0,
133 4769, 0, 8264,
134 256, 256, 256,
135 },
136 {
137 "RGB limited -> RGB full",
138 -256, -256, -256,
139 0, 4769, 0,
140 0, 0, 4769,
141 4769, 0, 0,
142 0, 0, 0,
143 },
144 {
145 "RGB limited -> ITU601",
146 -256, -256, -256,
147 2404, 1225, 467,
148 -1754, 2095, -341,
149 -1388, -707, 2095,
150 256, 2048, 2048,
151 },
152 {
153 "RGB limited -> ITU709",
154 -256, -256, -256,
155 2918, 867, 295,
156 -1894, 2087, -190,
157 -1607, -477, 2087,
158 256, 2048, 2048,
159 },
160 {
161 "RGB full -> ITU601",
162 0, 0, 0,
163 2065, 1052, 401,
164 -1506, 1799, -293,
165 -1192, -607, 1799,
166 256, 2048, 2048,
167 },
168 {
169 "RGB full -> ITU709",
170 0, 0, 0,
171 2506, 745, 253,
172 -1627, 1792, -163,
173 -1380, -410, 1792,
174 256, 2048, 2048,
175 },
176 };
177
178 static const struct v4l2_dv_timings_cap tda1997x_dv_timings_cap = {
179 .type = V4L2_DV_BT_656_1120,
180 /* keep this initialization for compatibility with GCC < 4.4.6 */
181 .reserved = { 0 },
182
183 V4L2_INIT_BT_TIMINGS(
184 640, 1920, /* min/max width */
185 350, 1200, /* min/max height */
186 13000000, 165000000, /* min/max pixelclock */
187 /* standards */
188 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
189 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
190 /* capabilities */
191 V4L2_DV_BT_CAP_INTERLACED | V4L2_DV_BT_CAP_PROGRESSIVE |
192 V4L2_DV_BT_CAP_REDUCED_BLANKING |
193 V4L2_DV_BT_CAP_CUSTOM
194 )
195 };
196
197 /* regulator supplies */
198 static const char * const tda1997x_supply_name[] = {
199 "DOVDD", /* Digital I/O supply */
200 "DVDD", /* Digital Core supply */
201 "AVDD", /* Analog supply */
202 };
203
204 #define TDA1997X_NUM_SUPPLIES ARRAY_SIZE(tda1997x_supply_name)
205
206 enum tda1997x_type {
207 TDA19971,
208 TDA19973,
209 };
210
211 enum tda1997x_hdmi_pads {
212 TDA1997X_PAD_SOURCE,
213 TDA1997X_NUM_PADS,
214 };
215
216 struct tda1997x_chip_info {
217 enum tda1997x_type type;
218 const char *name;
219 };
220
221 struct tda1997x_state {
222 const struct tda1997x_chip_info *info;
223 struct tda1997x_platform_data pdata;
224 struct i2c_client *client;
225 struct i2c_client *client_cec;
226 struct v4l2_subdev sd;
227 struct regulator_bulk_data supplies[TDA1997X_NUM_SUPPLIES];
228 struct media_pad pads[TDA1997X_NUM_PADS];
229 struct mutex lock;
230 struct mutex page_lock;
231 char page;
232
233 /* detected info from chip */
234 int chip_revision;
235 char port_30bit;
236 char output_2p5;
237 char tmdsb_clk;
238 char tmdsb_soc;
239
240 /* status info */
241 char hdmi_status;
242 char mptrw_in_progress;
243 char activity_status;
244 char input_detect[2];
245
246 /* video */
247 struct hdmi_avi_infoframe avi_infoframe;
248 struct v4l2_hdmi_colorimetry colorimetry;
249 u32 rgb_quantization_range;
250 struct v4l2_dv_timings timings;
251 int fps;
252 const struct color_matrix_coefs *conv;
253 u32 mbus_codes[TDA1997X_MBUS_CODES]; /* available modes */
254 u32 mbus_code; /* current mode */
255 u8 vid_fmt;
256
257 /* controls */
258 struct v4l2_ctrl_handler hdl;
259 struct v4l2_ctrl *detect_tx_5v_ctrl;
260 struct v4l2_ctrl *rgb_quantization_range_ctrl;
261
262 /* audio */
263 u8 audio_ch_alloc;
264 int audio_samplerate;
265 int audio_channels;
266 int audio_samplesize;
267 int audio_type;
268 struct mutex audio_lock;
269 struct snd_pcm_substream *audio_stream;
270
271 /* EDID */
272 struct {
273 u8 edid[256];
274 u32 present;
275 unsigned int blocks;
276 } edid;
277 struct delayed_work delayed_work_enable_hpd;
278 };
279
280 static const struct v4l2_event tda1997x_ev_fmt = {
281 .type = V4L2_EVENT_SOURCE_CHANGE,
282 .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
283 };
284
285 static const struct tda1997x_chip_info tda1997x_chip_info[] = {
286 [TDA19971] = {
287 .type = TDA19971,
288 .name = "tda19971",
289 },
290 [TDA19973] = {
291 .type = TDA19973,
292 .name = "tda19973",
293 },
294 };
295
to_state(struct v4l2_subdev * sd)296 static inline struct tda1997x_state *to_state(struct v4l2_subdev *sd)
297 {
298 return container_of(sd, struct tda1997x_state, sd);
299 }
300
to_sd(struct v4l2_ctrl * ctrl)301 static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl)
302 {
303 return &container_of(ctrl->handler, struct tda1997x_state, hdl)->sd;
304 }
305
tda1997x_cec_read(struct v4l2_subdev * sd,u8 reg)306 static int tda1997x_cec_read(struct v4l2_subdev *sd, u8 reg)
307 {
308 struct tda1997x_state *state = to_state(sd);
309 int val;
310
311 val = i2c_smbus_read_byte_data(state->client_cec, reg);
312 if (val < 0) {
313 v4l_err(state->client, "read reg error: reg=%2x\n", reg);
314 val = -1;
315 }
316
317 return val;
318 }
319
tda1997x_cec_write(struct v4l2_subdev * sd,u8 reg,u8 val)320 static int tda1997x_cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
321 {
322 struct tda1997x_state *state = to_state(sd);
323 int ret = 0;
324
325 ret = i2c_smbus_write_byte_data(state->client_cec, reg, val);
326 if (ret < 0) {
327 v4l_err(state->client, "write reg error:reg=%2x,val=%2x\n",
328 reg, val);
329 ret = -1;
330 }
331
332 return ret;
333 }
334
335 /* -----------------------------------------------------------------------------
336 * I2C transfer
337 */
338
tda1997x_setpage(struct v4l2_subdev * sd,u8 page)339 static int tda1997x_setpage(struct v4l2_subdev *sd, u8 page)
340 {
341 struct tda1997x_state *state = to_state(sd);
342 int ret;
343
344 if (state->page != page) {
345 ret = i2c_smbus_write_byte_data(state->client,
346 REG_CURPAGE_00H, page);
347 if (ret < 0) {
348 v4l_err(state->client,
349 "write reg error:reg=%2x,val=%2x\n",
350 REG_CURPAGE_00H, page);
351 return ret;
352 }
353 state->page = page;
354 }
355 return 0;
356 }
357
io_read(struct v4l2_subdev * sd,u16 reg)358 static inline int io_read(struct v4l2_subdev *sd, u16 reg)
359 {
360 struct tda1997x_state *state = to_state(sd);
361 int val;
362
363 mutex_lock(&state->page_lock);
364 if (tda1997x_setpage(sd, reg >> 8)) {
365 val = -1;
366 goto out;
367 }
368
369 val = i2c_smbus_read_byte_data(state->client, reg&0xff);
370 if (val < 0) {
371 v4l_err(state->client, "read reg error: reg=%2x\n", reg & 0xff);
372 val = -1;
373 goto out;
374 }
375
376 out:
377 mutex_unlock(&state->page_lock);
378 return val;
379 }
380
io_read16(struct v4l2_subdev * sd,u16 reg)381 static inline long io_read16(struct v4l2_subdev *sd, u16 reg)
382 {
383 int val;
384 long lval = 0;
385
386 val = io_read(sd, reg);
387 if (val < 0)
388 return val;
389 lval |= (val << 8);
390 val = io_read(sd, reg + 1);
391 if (val < 0)
392 return val;
393 lval |= val;
394
395 return lval;
396 }
397
io_read24(struct v4l2_subdev * sd,u16 reg)398 static inline long io_read24(struct v4l2_subdev *sd, u16 reg)
399 {
400 int val;
401 long lval = 0;
402
403 val = io_read(sd, reg);
404 if (val < 0)
405 return val;
406 lval |= (val << 16);
407 val = io_read(sd, reg + 1);
408 if (val < 0)
409 return val;
410 lval |= (val << 8);
411 val = io_read(sd, reg + 2);
412 if (val < 0)
413 return val;
414 lval |= val;
415
416 return lval;
417 }
418
io_readn(struct v4l2_subdev * sd,u16 reg,u8 len,u8 * data)419 static unsigned int io_readn(struct v4l2_subdev *sd, u16 reg, u8 len, u8 *data)
420 {
421 int i;
422 int sz = 0;
423 int val;
424
425 for (i = 0; i < len; i++) {
426 val = io_read(sd, reg + i);
427 if (val < 0)
428 break;
429 data[i] = val;
430 sz++;
431 }
432
433 return sz;
434 }
435
io_write(struct v4l2_subdev * sd,u16 reg,u8 val)436 static int io_write(struct v4l2_subdev *sd, u16 reg, u8 val)
437 {
438 struct tda1997x_state *state = to_state(sd);
439 s32 ret = 0;
440
441 mutex_lock(&state->page_lock);
442 if (tda1997x_setpage(sd, reg >> 8)) {
443 ret = -1;
444 goto out;
445 }
446
447 ret = i2c_smbus_write_byte_data(state->client, reg & 0xff, val);
448 if (ret < 0) {
449 v4l_err(state->client, "write reg error:reg=%2x,val=%2x\n",
450 reg&0xff, val);
451 ret = -1;
452 goto out;
453 }
454
455 out:
456 mutex_unlock(&state->page_lock);
457 return ret;
458 }
459
io_write16(struct v4l2_subdev * sd,u16 reg,u16 val)460 static int io_write16(struct v4l2_subdev *sd, u16 reg, u16 val)
461 {
462 int ret;
463
464 ret = io_write(sd, reg, (val >> 8) & 0xff);
465 if (ret < 0)
466 return ret;
467 ret = io_write(sd, reg + 1, val & 0xff);
468 if (ret < 0)
469 return ret;
470 return 0;
471 }
472
io_write24(struct v4l2_subdev * sd,u16 reg,u32 val)473 static int io_write24(struct v4l2_subdev *sd, u16 reg, u32 val)
474 {
475 int ret;
476
477 ret = io_write(sd, reg, (val >> 16) & 0xff);
478 if (ret < 0)
479 return ret;
480 ret = io_write(sd, reg + 1, (val >> 8) & 0xff);
481 if (ret < 0)
482 return ret;
483 ret = io_write(sd, reg + 2, val & 0xff);
484 if (ret < 0)
485 return ret;
486 return 0;
487 }
488
489 /* -----------------------------------------------------------------------------
490 * Hotplug
491 */
492
493 enum hpd_mode {
494 HPD_LOW_BP, /* HPD low and pulse of at least 100ms */
495 HPD_LOW_OTHER, /* HPD low and pulse of at least 100ms */
496 HPD_HIGH_BP, /* HIGH */
497 HPD_HIGH_OTHER,
498 HPD_PULSE, /* HPD low pulse */
499 };
500
501 /* manual HPD (Hot Plug Detect) control */
tda1997x_manual_hpd(struct v4l2_subdev * sd,enum hpd_mode mode)502 static int tda1997x_manual_hpd(struct v4l2_subdev *sd, enum hpd_mode mode)
503 {
504 u8 hpd_auto, hpd_pwr, hpd_man;
505
506 hpd_auto = io_read(sd, REG_HPD_AUTO_CTRL);
507 hpd_pwr = io_read(sd, REG_HPD_POWER);
508 hpd_man = io_read(sd, REG_HPD_MAN_CTRL);
509
510 /* mask out unused bits */
511 hpd_man &= (HPD_MAN_CTRL_HPD_PULSE |
512 HPD_MAN_CTRL_5VEN |
513 HPD_MAN_CTRL_HPD_B |
514 HPD_MAN_CTRL_HPD_A);
515
516 switch (mode) {
517 /* HPD low and pulse of at least 100ms */
518 case HPD_LOW_BP:
519 /* hpd_bp=0 */
520 hpd_pwr &= ~HPD_POWER_BP_MASK;
521 /* disable HPD_A and HPD_B */
522 hpd_man &= ~(HPD_MAN_CTRL_HPD_A | HPD_MAN_CTRL_HPD_B);
523 io_write(sd, REG_HPD_POWER, hpd_pwr);
524 io_write(sd, REG_HPD_MAN_CTRL, hpd_man);
525 break;
526 /* HPD high */
527 case HPD_HIGH_BP:
528 /* hpd_bp=1 */
529 hpd_pwr &= ~HPD_POWER_BP_MASK;
530 hpd_pwr |= 1 << HPD_POWER_BP_SHIFT;
531 io_write(sd, REG_HPD_POWER, hpd_pwr);
532 break;
533 /* HPD low and pulse of at least 100ms */
534 case HPD_LOW_OTHER:
535 /* disable HPD_A and HPD_B */
536 hpd_man &= ~(HPD_MAN_CTRL_HPD_A | HPD_MAN_CTRL_HPD_B);
537 /* hp_other=0 */
538 hpd_auto &= ~HPD_AUTO_HP_OTHER;
539 io_write(sd, REG_HPD_AUTO_CTRL, hpd_auto);
540 io_write(sd, REG_HPD_MAN_CTRL, hpd_man);
541 break;
542 /* HPD high */
543 case HPD_HIGH_OTHER:
544 hpd_auto |= HPD_AUTO_HP_OTHER;
545 io_write(sd, REG_HPD_AUTO_CTRL, hpd_auto);
546 break;
547 /* HPD low pulse */
548 case HPD_PULSE:
549 /* disable HPD_A and HPD_B */
550 hpd_man &= ~(HPD_MAN_CTRL_HPD_A | HPD_MAN_CTRL_HPD_B);
551 io_write(sd, REG_HPD_MAN_CTRL, hpd_man);
552 break;
553 }
554
555 return 0;
556 }
557
tda1997x_delayed_work_enable_hpd(struct work_struct * work)558 static void tda1997x_delayed_work_enable_hpd(struct work_struct *work)
559 {
560 struct delayed_work *dwork = to_delayed_work(work);
561 struct tda1997x_state *state = container_of(dwork,
562 struct tda1997x_state,
563 delayed_work_enable_hpd);
564 struct v4l2_subdev *sd = &state->sd;
565
566 v4l2_dbg(2, debug, sd, "%s\n", __func__);
567
568 /* Set HPD high */
569 tda1997x_manual_hpd(sd, HPD_HIGH_OTHER);
570 tda1997x_manual_hpd(sd, HPD_HIGH_BP);
571
572 state->edid.present = 1;
573 }
574
tda1997x_disable_edid(struct v4l2_subdev * sd)575 static void tda1997x_disable_edid(struct v4l2_subdev *sd)
576 {
577 struct tda1997x_state *state = to_state(sd);
578
579 v4l2_dbg(1, debug, sd, "%s\n", __func__);
580 cancel_delayed_work_sync(&state->delayed_work_enable_hpd);
581
582 /* Set HPD low */
583 tda1997x_manual_hpd(sd, HPD_LOW_BP);
584 }
585
tda1997x_enable_edid(struct v4l2_subdev * sd)586 static void tda1997x_enable_edid(struct v4l2_subdev *sd)
587 {
588 struct tda1997x_state *state = to_state(sd);
589
590 v4l2_dbg(1, debug, sd, "%s\n", __func__);
591
592 /* Enable hotplug after 100ms */
593 schedule_delayed_work(&state->delayed_work_enable_hpd, HZ / 10);
594 }
595
596 /* -----------------------------------------------------------------------------
597 * Signal Control
598 */
599
600 /*
601 * configure vid_fmt based on mbus_code
602 */
603 static int
tda1997x_setup_format(struct tda1997x_state * state,u32 code)604 tda1997x_setup_format(struct tda1997x_state *state, u32 code)
605 {
606 v4l_dbg(1, debug, state->client, "%s code=0x%x\n", __func__, code);
607 switch (code) {
608 case MEDIA_BUS_FMT_RGB121212_1X36:
609 case MEDIA_BUS_FMT_RGB888_1X24:
610 case MEDIA_BUS_FMT_YUV12_1X36:
611 case MEDIA_BUS_FMT_YUV8_1X24:
612 state->vid_fmt = OF_FMT_444;
613 break;
614 case MEDIA_BUS_FMT_UYVY12_1X24:
615 case MEDIA_BUS_FMT_UYVY10_1X20:
616 case MEDIA_BUS_FMT_UYVY8_1X16:
617 state->vid_fmt = OF_FMT_422_SMPT;
618 break;
619 case MEDIA_BUS_FMT_UYVY12_2X12:
620 case MEDIA_BUS_FMT_UYVY10_2X10:
621 case MEDIA_BUS_FMT_UYVY8_2X8:
622 state->vid_fmt = OF_FMT_422_CCIR;
623 break;
624 default:
625 v4l_err(state->client, "incompatible format (0x%x)\n", code);
626 return -EINVAL;
627 }
628 v4l_dbg(1, debug, state->client, "%s code=0x%x fmt=%s\n", __func__,
629 code, vidfmt_names[state->vid_fmt]);
630 state->mbus_code = code;
631
632 return 0;
633 }
634
635 /*
636 * The color conversion matrix will convert between the colorimetry of the
637 * HDMI input to the desired output format RGB|YUV. RGB output is to be
638 * full-range and YUV is to be limited range.
639 *
640 * RGB full-range uses values from 0 to 255 which is recommended on a monitor
641 * and RGB Limited uses values from 16 to 236 (16=black, 235=white) which is
642 * typically recommended on a TV.
643 */
644 static void
tda1997x_configure_csc(struct v4l2_subdev * sd)645 tda1997x_configure_csc(struct v4l2_subdev *sd)
646 {
647 struct tda1997x_state *state = to_state(sd);
648 struct hdmi_avi_infoframe *avi = &state->avi_infoframe;
649 struct v4l2_hdmi_colorimetry *c = &state->colorimetry;
650 /* Blanking code values depend on output colorspace (RGB or YUV) */
651 struct blanking_codes {
652 s16 code_gy;
653 s16 code_bu;
654 s16 code_rv;
655 };
656 static const struct blanking_codes rgb_blanking = { 64, 64, 64 };
657 static const struct blanking_codes yuv_blanking = { 64, 512, 512 };
658 const struct blanking_codes *blanking_codes = NULL;
659 u8 reg;
660
661 v4l_dbg(1, debug, state->client, "input:%s quant:%s output:%s\n",
662 hdmi_colorspace_names[avi->colorspace],
663 v4l2_quantization_names[c->quantization],
664 vidfmt_names[state->vid_fmt]);
665 state->conv = NULL;
666 switch (state->vid_fmt) {
667 /* RGB output */
668 case OF_FMT_444:
669 blanking_codes = &rgb_blanking;
670 if (c->colorspace == V4L2_COLORSPACE_SRGB) {
671 if (c->quantization == V4L2_QUANTIZATION_LIM_RANGE)
672 state->conv = &conv_matrix[RGBLIMITED_RGBFULL];
673 } else {
674 if (c->colorspace == V4L2_COLORSPACE_REC709)
675 state->conv = &conv_matrix[ITU709_RGBFULL];
676 else if (c->colorspace == V4L2_COLORSPACE_SMPTE170M)
677 state->conv = &conv_matrix[ITU601_RGBFULL];
678 }
679 break;
680
681 /* YUV output */
682 case OF_FMT_422_SMPT: /* semi-planar */
683 case OF_FMT_422_CCIR: /* CCIR656 */
684 blanking_codes = &yuv_blanking;
685 if ((c->colorspace == V4L2_COLORSPACE_SRGB) &&
686 (c->quantization == V4L2_QUANTIZATION_FULL_RANGE)) {
687 if (state->timings.bt.height <= 576)
688 state->conv = &conv_matrix[RGBFULL_ITU601];
689 else
690 state->conv = &conv_matrix[RGBFULL_ITU709];
691 } else if ((c->colorspace == V4L2_COLORSPACE_SRGB) &&
692 (c->quantization == V4L2_QUANTIZATION_LIM_RANGE)) {
693 if (state->timings.bt.height <= 576)
694 state->conv = &conv_matrix[RGBLIMITED_ITU601];
695 else
696 state->conv = &conv_matrix[RGBLIMITED_ITU709];
697 }
698 break;
699 }
700
701 if (state->conv) {
702 v4l_dbg(1, debug, state->client, "%s\n",
703 state->conv->name);
704 /* enable matrix conversion */
705 reg = io_read(sd, REG_VDP_CTRL);
706 reg &= ~VDP_CTRL_MATRIX_BP;
707 io_write(sd, REG_VDP_CTRL, reg);
708 /* offset inputs */
709 io_write16(sd, REG_VDP_MATRIX + 0, state->conv->offint1);
710 io_write16(sd, REG_VDP_MATRIX + 2, state->conv->offint2);
711 io_write16(sd, REG_VDP_MATRIX + 4, state->conv->offint3);
712 /* coefficients */
713 io_write16(sd, REG_VDP_MATRIX + 6, state->conv->p11coef);
714 io_write16(sd, REG_VDP_MATRIX + 8, state->conv->p12coef);
715 io_write16(sd, REG_VDP_MATRIX + 10, state->conv->p13coef);
716 io_write16(sd, REG_VDP_MATRIX + 12, state->conv->p21coef);
717 io_write16(sd, REG_VDP_MATRIX + 14, state->conv->p22coef);
718 io_write16(sd, REG_VDP_MATRIX + 16, state->conv->p23coef);
719 io_write16(sd, REG_VDP_MATRIX + 18, state->conv->p31coef);
720 io_write16(sd, REG_VDP_MATRIX + 20, state->conv->p32coef);
721 io_write16(sd, REG_VDP_MATRIX + 22, state->conv->p33coef);
722 /* offset outputs */
723 io_write16(sd, REG_VDP_MATRIX + 24, state->conv->offout1);
724 io_write16(sd, REG_VDP_MATRIX + 26, state->conv->offout2);
725 io_write16(sd, REG_VDP_MATRIX + 28, state->conv->offout3);
726 } else {
727 /* disable matrix conversion */
728 reg = io_read(sd, REG_VDP_CTRL);
729 reg |= VDP_CTRL_MATRIX_BP;
730 io_write(sd, REG_VDP_CTRL, reg);
731 }
732
733 /* SetBlankingCodes */
734 if (blanking_codes) {
735 io_write16(sd, REG_BLK_GY, blanking_codes->code_gy);
736 io_write16(sd, REG_BLK_BU, blanking_codes->code_bu);
737 io_write16(sd, REG_BLK_RV, blanking_codes->code_rv);
738 }
739 }
740
741 /* Configure frame detection window and VHREF timing generator */
742 static void
tda1997x_configure_vhref(struct v4l2_subdev * sd)743 tda1997x_configure_vhref(struct v4l2_subdev *sd)
744 {
745 struct tda1997x_state *state = to_state(sd);
746 const struct v4l2_bt_timings *bt = &state->timings.bt;
747 int width, lines;
748 u16 href_start, href_end;
749 u16 vref_f1_start, vref_f2_start;
750 u8 vref_f1_width, vref_f2_width;
751 u8 field_polarity;
752 u16 fieldref_f1_start, fieldref_f2_start;
753 u8 reg;
754
755 href_start = bt->hbackporch + bt->hsync + 1;
756 href_end = href_start + bt->width;
757 vref_f1_start = bt->height + bt->vbackporch + bt->vsync +
758 bt->il_vbackporch + bt->il_vsync +
759 bt->il_vfrontporch;
760 vref_f1_width = bt->vbackporch + bt->vsync + bt->vfrontporch;
761 vref_f2_start = 0;
762 vref_f2_width = 0;
763 fieldref_f1_start = 0;
764 fieldref_f2_start = 0;
765 if (bt->interlaced) {
766 vref_f2_start = (bt->height / 2) +
767 (bt->il_vbackporch + bt->il_vsync - 1);
768 vref_f2_width = bt->il_vbackporch + bt->il_vsync +
769 bt->il_vfrontporch;
770 fieldref_f2_start = vref_f2_start + bt->il_vfrontporch +
771 fieldref_f1_start;
772 }
773 field_polarity = 0;
774
775 width = V4L2_DV_BT_FRAME_WIDTH(bt);
776 lines = V4L2_DV_BT_FRAME_HEIGHT(bt);
777
778 /*
779 * Configure Frame Detection Window:
780 * horiz area where the VHREF module consider a VSYNC a new frame
781 */
782 io_write16(sd, REG_FDW_S, 0x2ef); /* start position */
783 io_write16(sd, REG_FDW_E, 0x141); /* end position */
784
785 /* Set Pixel And Line Counters */
786 if (state->chip_revision == 0)
787 io_write16(sd, REG_PXCNT_PR, 4);
788 else
789 io_write16(sd, REG_PXCNT_PR, 1);
790 io_write16(sd, REG_PXCNT_NPIX, width & MASK_VHREF);
791 io_write16(sd, REG_LCNT_PR, 1);
792 io_write16(sd, REG_LCNT_NLIN, lines & MASK_VHREF);
793
794 /*
795 * Configure the VHRef timing generator responsible for rebuilding all
796 * horiz and vert synch and ref signals from its input allowing auto
797 * detection algorithms and forcing predefined modes (480i & 576i)
798 */
799 reg = VHREF_STD_DET_OFF << VHREF_STD_DET_SHIFT;
800 io_write(sd, REG_VHREF_CTRL, reg);
801
802 /*
803 * Configure the VHRef timing values. In case the VHREF generator has
804 * been configured in manual mode, this will allow to manually set all
805 * horiz and vert ref values (non-active pixel areas) of the generator
806 * and allows setting the frame reference params.
807 */
808 /* horizontal reference start/end */
809 io_write16(sd, REG_HREF_S, href_start & MASK_VHREF);
810 io_write16(sd, REG_HREF_E, href_end & MASK_VHREF);
811 /* vertical reference f1 start/end */
812 io_write16(sd, REG_VREF_F1_S, vref_f1_start & MASK_VHREF);
813 io_write(sd, REG_VREF_F1_WIDTH, vref_f1_width);
814 /* vertical reference f2 start/end */
815 io_write16(sd, REG_VREF_F2_S, vref_f2_start & MASK_VHREF);
816 io_write(sd, REG_VREF_F2_WIDTH, vref_f2_width);
817
818 /* F1/F2 FREF, field polarity */
819 reg = fieldref_f1_start & MASK_VHREF;
820 reg |= field_polarity << 8;
821 io_write16(sd, REG_FREF_F1_S, reg);
822 reg = fieldref_f2_start & MASK_VHREF;
823 io_write16(sd, REG_FREF_F2_S, reg);
824 }
825
826 /* Configure Video Output port signals */
827 static int
tda1997x_configure_vidout(struct tda1997x_state * state)828 tda1997x_configure_vidout(struct tda1997x_state *state)
829 {
830 struct v4l2_subdev *sd = &state->sd;
831 struct tda1997x_platform_data *pdata = &state->pdata;
832 u8 prefilter;
833 u8 reg;
834
835 /* Configure pixel clock generator: delay, polarity, rate */
836 reg = (state->vid_fmt == OF_FMT_422_CCIR) ?
837 PCLK_SEL_X2 : PCLK_SEL_X1;
838 reg |= pdata->vidout_delay_pclk << PCLK_DELAY_SHIFT;
839 reg |= pdata->vidout_inv_pclk << PCLK_INV_SHIFT;
840 io_write(sd, REG_PCLK, reg);
841
842 /* Configure pre-filter */
843 prefilter = 0; /* filters off */
844 /* YUV422 mode requires conversion */
845 if ((state->vid_fmt == OF_FMT_422_SMPT) ||
846 (state->vid_fmt == OF_FMT_422_CCIR)) {
847 /* 2/7 taps for Rv and Bu */
848 prefilter = FILTERS_CTRL_2_7TAP << FILTERS_CTRL_BU_SHIFT |
849 FILTERS_CTRL_2_7TAP << FILTERS_CTRL_RV_SHIFT;
850 }
851 io_write(sd, REG_FILTERS_CTRL, prefilter);
852
853 /* Configure video port */
854 reg = state->vid_fmt & OF_FMT_MASK;
855 if (state->vid_fmt == OF_FMT_422_CCIR)
856 reg |= (OF_BLK | OF_TRC);
857 reg |= OF_VP_ENABLE;
858 io_write(sd, REG_OF, reg);
859
860 /* Configure formatter and conversions */
861 reg = io_read(sd, REG_VDP_CTRL);
862 /* pre-filter is needed unless (REG_FILTERS_CTRL == 0) */
863 if (!prefilter)
864 reg |= VDP_CTRL_PREFILTER_BP;
865 else
866 reg &= ~VDP_CTRL_PREFILTER_BP;
867 /* formatter is needed for YUV422 and for trc/blc codes */
868 if (state->vid_fmt == OF_FMT_444)
869 reg |= VDP_CTRL_FORMATTER_BP;
870 /* formatter and compdel needed for timing/blanking codes */
871 else
872 reg &= ~(VDP_CTRL_FORMATTER_BP | VDP_CTRL_COMPDEL_BP);
873 /* activate compdel for small sync delays */
874 if ((pdata->vidout_delay_vs < 4) || (pdata->vidout_delay_hs < 4))
875 reg &= ~VDP_CTRL_COMPDEL_BP;
876 io_write(sd, REG_VDP_CTRL, reg);
877
878 /* Configure DE output signal: delay, polarity, and source */
879 reg = pdata->vidout_delay_de << DE_FREF_DELAY_SHIFT |
880 pdata->vidout_inv_de << DE_FREF_INV_SHIFT |
881 pdata->vidout_sel_de << DE_FREF_SEL_SHIFT;
882 io_write(sd, REG_DE_FREF, reg);
883
884 /* Configure HS/HREF output signal: delay, polarity, and source */
885 if (state->vid_fmt != OF_FMT_422_CCIR) {
886 reg = pdata->vidout_delay_hs << HS_HREF_DELAY_SHIFT |
887 pdata->vidout_inv_hs << HS_HREF_INV_SHIFT |
888 pdata->vidout_sel_hs << HS_HREF_SEL_SHIFT;
889 } else
890 reg = HS_HREF_SEL_NONE << HS_HREF_SEL_SHIFT;
891 io_write(sd, REG_HS_HREF, reg);
892
893 /* Configure VS/VREF output signal: delay, polarity, and source */
894 if (state->vid_fmt != OF_FMT_422_CCIR) {
895 reg = pdata->vidout_delay_vs << VS_VREF_DELAY_SHIFT |
896 pdata->vidout_inv_vs << VS_VREF_INV_SHIFT |
897 pdata->vidout_sel_vs << VS_VREF_SEL_SHIFT;
898 } else
899 reg = VS_VREF_SEL_NONE << VS_VREF_SEL_SHIFT;
900 io_write(sd, REG_VS_VREF, reg);
901
902 return 0;
903 }
904
905 /* Configure Audio output port signals */
906 static int
tda1997x_configure_audout(struct v4l2_subdev * sd,u8 channel_assignment)907 tda1997x_configure_audout(struct v4l2_subdev *sd, u8 channel_assignment)
908 {
909 struct tda1997x_state *state = to_state(sd);
910 struct tda1997x_platform_data *pdata = &state->pdata;
911 bool sp_used_by_fifo = true;
912 u8 reg;
913
914 if (!pdata->audout_format)
915 return 0;
916
917 /* channel assignment (CEA-861-D Table 20) */
918 io_write(sd, REG_AUDIO_PATH, channel_assignment);
919
920 /* Audio output configuration */
921 reg = 0;
922 switch (pdata->audout_format) {
923 case AUDFMT_TYPE_I2S:
924 reg |= AUDCFG_BUS_I2S << AUDCFG_BUS_SHIFT;
925 break;
926 case AUDFMT_TYPE_SPDIF:
927 reg |= AUDCFG_BUS_SPDIF << AUDCFG_BUS_SHIFT;
928 break;
929 }
930 switch (state->audio_type) {
931 case AUDCFG_TYPE_PCM:
932 reg |= AUDCFG_TYPE_PCM << AUDCFG_TYPE_SHIFT;
933 break;
934 case AUDCFG_TYPE_OBA:
935 reg |= AUDCFG_TYPE_OBA << AUDCFG_TYPE_SHIFT;
936 break;
937 case AUDCFG_TYPE_DST:
938 reg |= AUDCFG_TYPE_DST << AUDCFG_TYPE_SHIFT;
939 sp_used_by_fifo = false;
940 break;
941 case AUDCFG_TYPE_HBR:
942 reg |= AUDCFG_TYPE_HBR << AUDCFG_TYPE_SHIFT;
943 if (pdata->audout_layout == 1) {
944 /* demuxed via AP0:AP3 */
945 reg |= AUDCFG_HBR_DEMUX << AUDCFG_HBR_SHIFT;
946 if (pdata->audout_format == AUDFMT_TYPE_SPDIF)
947 sp_used_by_fifo = false;
948 } else {
949 /* straight via AP0 */
950 reg |= AUDCFG_HBR_STRAIGHT << AUDCFG_HBR_SHIFT;
951 }
952 break;
953 }
954 if (pdata->audout_width == 32)
955 reg |= AUDCFG_I2SW_32 << AUDCFG_I2SW_SHIFT;
956 else
957 reg |= AUDCFG_I2SW_16 << AUDCFG_I2SW_SHIFT;
958
959 /* automatic hardware mute */
960 if (pdata->audio_auto_mute)
961 reg |= AUDCFG_AUTO_MUTE_EN;
962 /* clock polarity */
963 if (pdata->audout_invert_clk)
964 reg |= AUDCFG_CLK_INVERT;
965 io_write(sd, REG_AUDCFG, reg);
966
967 /* audio layout */
968 reg = (pdata->audout_layout) ? AUDIO_LAYOUT_LAYOUT1 : 0;
969 if (!pdata->audout_layoutauto)
970 reg |= AUDIO_LAYOUT_MANUAL;
971 if (sp_used_by_fifo)
972 reg |= AUDIO_LAYOUT_SP_FLAG;
973 io_write(sd, REG_AUDIO_LAYOUT, reg);
974
975 /* FIFO Latency value */
976 io_write(sd, REG_FIFO_LATENCY_VAL, 0x80);
977
978 /* Audio output port config */
979 if (sp_used_by_fifo) {
980 reg = AUDIO_OUT_ENABLE_AP0;
981 if (channel_assignment >= 0x01)
982 reg |= AUDIO_OUT_ENABLE_AP1;
983 if (channel_assignment >= 0x04)
984 reg |= AUDIO_OUT_ENABLE_AP2;
985 if (channel_assignment >= 0x0c)
986 reg |= AUDIO_OUT_ENABLE_AP3;
987 /* specific cases where AP1 is not used */
988 if ((channel_assignment == 0x04)
989 || (channel_assignment == 0x08)
990 || (channel_assignment == 0x0c)
991 || (channel_assignment == 0x10)
992 || (channel_assignment == 0x14)
993 || (channel_assignment == 0x18)
994 || (channel_assignment == 0x1c))
995 reg &= ~AUDIO_OUT_ENABLE_AP1;
996 /* specific cases where AP2 is not used */
997 if ((channel_assignment >= 0x14)
998 && (channel_assignment <= 0x17))
999 reg &= ~AUDIO_OUT_ENABLE_AP2;
1000 } else {
1001 reg = AUDIO_OUT_ENABLE_AP3 |
1002 AUDIO_OUT_ENABLE_AP2 |
1003 AUDIO_OUT_ENABLE_AP1 |
1004 AUDIO_OUT_ENABLE_AP0;
1005 }
1006 if (pdata->audout_format == AUDFMT_TYPE_I2S)
1007 reg |= (AUDIO_OUT_ENABLE_ACLK | AUDIO_OUT_ENABLE_WS);
1008 io_write(sd, REG_AUDIO_OUT_ENABLE, reg);
1009
1010 /* reset test mode to normal audio freq auto selection */
1011 io_write(sd, REG_TEST_MODE, 0x00);
1012
1013 return 0;
1014 }
1015
1016 /* Soft Reset of specific hdmi info */
1017 static int
tda1997x_hdmi_info_reset(struct v4l2_subdev * sd,u8 info_rst,bool reset_sus)1018 tda1997x_hdmi_info_reset(struct v4l2_subdev *sd, u8 info_rst, bool reset_sus)
1019 {
1020 u8 reg;
1021
1022 /* reset infoframe engine packets */
1023 reg = io_read(sd, REG_HDMI_INFO_RST);
1024 io_write(sd, REG_HDMI_INFO_RST, info_rst);
1025
1026 /* if infoframe engine has been reset clear INT_FLG_MODE */
1027 if (reg & RESET_IF) {
1028 reg = io_read(sd, REG_INT_FLG_CLR_MODE);
1029 io_write(sd, REG_INT_FLG_CLR_MODE, reg);
1030 }
1031
1032 /* Disable REFTIM to restart start-up-sequencer (SUS) */
1033 reg = io_read(sd, REG_RATE_CTRL);
1034 reg &= ~RATE_REFTIM_ENABLE;
1035 if (!reset_sus)
1036 reg |= RATE_REFTIM_ENABLE;
1037 reg = io_write(sd, REG_RATE_CTRL, reg);
1038
1039 return 0;
1040 }
1041
1042 static void
tda1997x_power_mode(struct tda1997x_state * state,bool enable)1043 tda1997x_power_mode(struct tda1997x_state *state, bool enable)
1044 {
1045 struct v4l2_subdev *sd = &state->sd;
1046 u8 reg;
1047
1048 if (enable) {
1049 /* Automatic control of TMDS */
1050 io_write(sd, REG_PON_OVR_EN, PON_DIS);
1051 /* Enable current bias unit */
1052 io_write(sd, REG_CFG1, PON_EN);
1053 /* Enable deep color PLL */
1054 io_write(sd, REG_DEEP_PLL7_BYP, PON_DIS);
1055 /* Output buffers active */
1056 reg = io_read(sd, REG_OF);
1057 reg &= ~OF_VP_ENABLE;
1058 io_write(sd, REG_OF, reg);
1059 } else {
1060 /* Power down EDID mode sequence */
1061 /* Output buffers in HiZ */
1062 reg = io_read(sd, REG_OF);
1063 reg |= OF_VP_ENABLE;
1064 io_write(sd, REG_OF, reg);
1065 /* Disable deep color PLL */
1066 io_write(sd, REG_DEEP_PLL7_BYP, PON_EN);
1067 /* Disable current bias unit */
1068 io_write(sd, REG_CFG1, PON_DIS);
1069 /* Manual control of TMDS */
1070 io_write(sd, REG_PON_OVR_EN, PON_EN);
1071 }
1072 }
1073
1074 static bool
tda1997x_detect_tx_5v(struct v4l2_subdev * sd)1075 tda1997x_detect_tx_5v(struct v4l2_subdev *sd)
1076 {
1077 u8 reg = io_read(sd, REG_DETECT_5V);
1078
1079 return ((reg & DETECT_5V_SEL) ? 1 : 0);
1080 }
1081
1082 static bool
tda1997x_detect_tx_hpd(struct v4l2_subdev * sd)1083 tda1997x_detect_tx_hpd(struct v4l2_subdev *sd)
1084 {
1085 u8 reg = io_read(sd, REG_DETECT_5V);
1086
1087 return ((reg & DETECT_HPD) ? 1 : 0);
1088 }
1089
1090 static int
tda1997x_detect_std(struct tda1997x_state * state,struct v4l2_dv_timings * timings)1091 tda1997x_detect_std(struct tda1997x_state *state,
1092 struct v4l2_dv_timings *timings)
1093 {
1094 struct v4l2_subdev *sd = &state->sd;
1095 u32 vper;
1096 u16 hper;
1097 u16 hsper;
1098 int i;
1099
1100 /*
1101 * Read the FMT registers
1102 * REG_V_PER: Period of a frame (or two fields) in MCLK(27MHz) cycles
1103 * REG_H_PER: Period of a line in MCLK(27MHz) cycles
1104 * REG_HS_WIDTH: Period of horiz sync pulse in MCLK(27MHz) cycles
1105 */
1106 vper = io_read24(sd, REG_V_PER) & MASK_VPER;
1107 hper = io_read16(sd, REG_H_PER) & MASK_HPER;
1108 hsper = io_read16(sd, REG_HS_WIDTH) & MASK_HSWIDTH;
1109 v4l2_dbg(1, debug, sd, "Signal Timings: %u/%u/%u\n", vper, hper, hsper);
1110
1111 if (!state->input_detect[0] && !state->input_detect[1])
1112 return -ENOLINK;
1113
1114 for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1115 const struct v4l2_bt_timings *bt;
1116 u32 lines, width, _hper, _hsper;
1117 u32 vmin, vmax, hmin, hmax, hsmin, hsmax;
1118 bool vmatch, hmatch, hsmatch;
1119
1120 bt = &v4l2_dv_timings_presets[i].bt;
1121 width = V4L2_DV_BT_FRAME_WIDTH(bt);
1122 lines = V4L2_DV_BT_FRAME_HEIGHT(bt);
1123 _hper = (u32)bt->pixelclock / width;
1124 if (bt->interlaced)
1125 lines /= 2;
1126 /* vper +/- 0.7% */
1127 vmin = ((27000000 / 1000) * 993) / _hper * lines;
1128 vmax = ((27000000 / 1000) * 1007) / _hper * lines;
1129 /* hper +/- 1.0% */
1130 hmin = ((27000000 / 100) * 99) / _hper;
1131 hmax = ((27000000 / 100) * 101) / _hper;
1132 /* hsper +/- 2 (take care to avoid 32bit overflow) */
1133 _hsper = 27000 * bt->hsync / ((u32)bt->pixelclock/1000);
1134 hsmin = _hsper - 2;
1135 hsmax = _hsper + 2;
1136
1137 /* vmatch matches the framerate */
1138 vmatch = ((vper <= vmax) && (vper >= vmin)) ? 1 : 0;
1139 /* hmatch matches the width */
1140 hmatch = ((hper <= hmax) && (hper >= hmin)) ? 1 : 0;
1141 /* hsmatch matches the hswidth */
1142 hsmatch = ((hsper <= hsmax) && (hsper >= hsmin)) ? 1 : 0;
1143 if (hmatch && vmatch && hsmatch) {
1144 v4l2_print_dv_timings(sd->name, "Detected format: ",
1145 &v4l2_dv_timings_presets[i],
1146 false);
1147 if (timings)
1148 *timings = v4l2_dv_timings_presets[i];
1149 return 0;
1150 }
1151 }
1152
1153 v4l_err(state->client, "no resolution match for timings: %d/%d/%d\n",
1154 vper, hper, hsper);
1155 return -ERANGE;
1156 }
1157
1158 /* some sort of errata workaround for chip revision 0 (N1) */
tda1997x_reset_n1(struct tda1997x_state * state)1159 static void tda1997x_reset_n1(struct tda1997x_state *state)
1160 {
1161 struct v4l2_subdev *sd = &state->sd;
1162 u8 reg;
1163
1164 /* clear HDMI mode flag in BCAPS */
1165 io_write(sd, REG_CLK_CFG, CLK_CFG_SEL_ACLK_EN | CLK_CFG_SEL_ACLK);
1166 io_write(sd, REG_PON_OVR_EN, PON_EN);
1167 io_write(sd, REG_PON_CBIAS, PON_EN);
1168 io_write(sd, REG_PON_PLL, PON_EN);
1169
1170 reg = io_read(sd, REG_MODE_REC_CFG1);
1171 reg &= ~0x06;
1172 reg |= 0x02;
1173 io_write(sd, REG_MODE_REC_CFG1, reg);
1174 io_write(sd, REG_CLK_CFG, CLK_CFG_DIS);
1175 io_write(sd, REG_PON_OVR_EN, PON_DIS);
1176 reg = io_read(sd, REG_MODE_REC_CFG1);
1177 reg &= ~0x06;
1178 io_write(sd, REG_MODE_REC_CFG1, reg);
1179 }
1180
1181 /*
1182 * Activity detection must only be notified when stable_clk_x AND active_x
1183 * bits are set to 1. If only stable_clk_x bit is set to 1 but not
1184 * active_x, it means that the TMDS clock is not in the defined range
1185 * and activity detection must not be notified.
1186 */
1187 static u8
tda1997x_read_activity_status_regs(struct v4l2_subdev * sd)1188 tda1997x_read_activity_status_regs(struct v4l2_subdev *sd)
1189 {
1190 u8 reg, status = 0;
1191
1192 /* Read CLK_A_STATUS register */
1193 reg = io_read(sd, REG_CLK_A_STATUS);
1194 /* ignore if not active */
1195 if ((reg & MASK_CLK_STABLE) && !(reg & MASK_CLK_ACTIVE))
1196 reg &= ~MASK_CLK_STABLE;
1197 status |= ((reg & MASK_CLK_STABLE) >> 2);
1198
1199 /* Read CLK_B_STATUS register */
1200 reg = io_read(sd, REG_CLK_B_STATUS);
1201 /* ignore if not active */
1202 if ((reg & MASK_CLK_STABLE) && !(reg & MASK_CLK_ACTIVE))
1203 reg &= ~MASK_CLK_STABLE;
1204 status |= ((reg & MASK_CLK_STABLE) >> 1);
1205
1206 /* Read the SUS_STATUS register */
1207 reg = io_read(sd, REG_SUS_STATUS);
1208
1209 /* If state = 5 => TMDS is locked */
1210 if ((reg & MASK_SUS_STATUS) == LAST_STATE_REACHED)
1211 status |= MASK_SUS_STATE;
1212 else
1213 status &= ~MASK_SUS_STATE;
1214
1215 return status;
1216 }
1217
1218 static void
set_rgb_quantization_range(struct tda1997x_state * state)1219 set_rgb_quantization_range(struct tda1997x_state *state)
1220 {
1221 struct v4l2_hdmi_colorimetry *c = &state->colorimetry;
1222
1223 state->colorimetry = v4l2_hdmi_rx_colorimetry(&state->avi_infoframe,
1224 NULL,
1225 state->timings.bt.height);
1226 /* If ycbcr_enc is V4L2_YCBCR_ENC_DEFAULT, we receive RGB */
1227 if (c->ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT) {
1228 switch (state->rgb_quantization_range) {
1229 case V4L2_DV_RGB_RANGE_LIMITED:
1230 c->quantization = V4L2_QUANTIZATION_FULL_RANGE;
1231 break;
1232 case V4L2_DV_RGB_RANGE_FULL:
1233 c->quantization = V4L2_QUANTIZATION_LIM_RANGE;
1234 break;
1235 }
1236 }
1237 v4l_dbg(1, debug, state->client,
1238 "colorspace=%d/%d colorimetry=%d range=%s content=%d\n",
1239 state->avi_infoframe.colorspace, c->colorspace,
1240 state->avi_infoframe.colorimetry,
1241 v4l2_quantization_names[c->quantization],
1242 state->avi_infoframe.content_type);
1243 }
1244
1245 /* parse an infoframe and do some sanity checks on it */
1246 static unsigned int
tda1997x_parse_infoframe(struct tda1997x_state * state,u16 addr)1247 tda1997x_parse_infoframe(struct tda1997x_state *state, u16 addr)
1248 {
1249 struct v4l2_subdev *sd = &state->sd;
1250 union hdmi_infoframe frame;
1251 u8 buffer[40];
1252 u8 reg;
1253 int len, err;
1254
1255 /* read data */
1256 len = io_readn(sd, addr, sizeof(buffer), buffer);
1257 err = hdmi_infoframe_unpack(&frame, buffer, sizeof(buffer));
1258 if (err) {
1259 v4l_err(state->client,
1260 "failed parsing %d byte infoframe: 0x%04x/0x%02x\n",
1261 len, addr, buffer[0]);
1262 return err;
1263 }
1264 hdmi_infoframe_log(KERN_INFO, &state->client->dev, &frame);
1265 switch (frame.any.type) {
1266 /* Audio InfoFrame: see HDMI spec 8.2.2 */
1267 case HDMI_INFOFRAME_TYPE_AUDIO:
1268 /* sample rate */
1269 switch (frame.audio.sample_frequency) {
1270 case HDMI_AUDIO_SAMPLE_FREQUENCY_32000:
1271 state->audio_samplerate = 32000;
1272 break;
1273 case HDMI_AUDIO_SAMPLE_FREQUENCY_44100:
1274 state->audio_samplerate = 44100;
1275 break;
1276 case HDMI_AUDIO_SAMPLE_FREQUENCY_48000:
1277 state->audio_samplerate = 48000;
1278 break;
1279 case HDMI_AUDIO_SAMPLE_FREQUENCY_88200:
1280 state->audio_samplerate = 88200;
1281 break;
1282 case HDMI_AUDIO_SAMPLE_FREQUENCY_96000:
1283 state->audio_samplerate = 96000;
1284 break;
1285 case HDMI_AUDIO_SAMPLE_FREQUENCY_176400:
1286 state->audio_samplerate = 176400;
1287 break;
1288 case HDMI_AUDIO_SAMPLE_FREQUENCY_192000:
1289 state->audio_samplerate = 192000;
1290 break;
1291 default:
1292 case HDMI_AUDIO_SAMPLE_FREQUENCY_STREAM:
1293 break;
1294 }
1295
1296 /* sample size */
1297 switch (frame.audio.sample_size) {
1298 case HDMI_AUDIO_SAMPLE_SIZE_16:
1299 state->audio_samplesize = 16;
1300 break;
1301 case HDMI_AUDIO_SAMPLE_SIZE_20:
1302 state->audio_samplesize = 20;
1303 break;
1304 case HDMI_AUDIO_SAMPLE_SIZE_24:
1305 state->audio_samplesize = 24;
1306 break;
1307 case HDMI_AUDIO_SAMPLE_SIZE_STREAM:
1308 default:
1309 break;
1310 }
1311
1312 /* Channel Count */
1313 state->audio_channels = frame.audio.channels;
1314 if (frame.audio.channel_allocation &&
1315 frame.audio.channel_allocation != state->audio_ch_alloc) {
1316 /* use the channel assignment from the infoframe */
1317 state->audio_ch_alloc = frame.audio.channel_allocation;
1318 tda1997x_configure_audout(sd, state->audio_ch_alloc);
1319 /* reset the audio FIFO */
1320 tda1997x_hdmi_info_reset(sd, RESET_AUDIO, false);
1321 }
1322 break;
1323
1324 /* Auxiliary Video information (AVI) InfoFrame: see HDMI spec 8.2.1 */
1325 case HDMI_INFOFRAME_TYPE_AVI:
1326 state->avi_infoframe = frame.avi;
1327 set_rgb_quantization_range(state);
1328
1329 /* configure upsampler: 0=bypass 1=repeatchroma 2=interpolate */
1330 reg = io_read(sd, REG_PIX_REPEAT);
1331 reg &= ~PIX_REPEAT_MASK_UP_SEL;
1332 if (frame.avi.colorspace == HDMI_COLORSPACE_YUV422)
1333 reg |= (PIX_REPEAT_CHROMA << PIX_REPEAT_SHIFT);
1334 io_write(sd, REG_PIX_REPEAT, reg);
1335
1336 /* ConfigurePixelRepeater: repeat n-times each pixel */
1337 reg = io_read(sd, REG_PIX_REPEAT);
1338 reg &= ~PIX_REPEAT_MASK_REP;
1339 reg |= frame.avi.pixel_repeat;
1340 io_write(sd, REG_PIX_REPEAT, reg);
1341
1342 /* configure the receiver with the new colorspace */
1343 tda1997x_configure_csc(sd);
1344 break;
1345 default:
1346 break;
1347 }
1348 return 0;
1349 }
1350
tda1997x_irq_sus(struct tda1997x_state * state,u8 * flags)1351 static void tda1997x_irq_sus(struct tda1997x_state *state, u8 *flags)
1352 {
1353 struct v4l2_subdev *sd = &state->sd;
1354 u8 reg, source;
1355
1356 source = io_read(sd, REG_INT_FLG_CLR_SUS);
1357 io_write(sd, REG_INT_FLG_CLR_SUS, source);
1358
1359 if (source & MASK_MPT) {
1360 /* reset MTP in use flag if set */
1361 if (state->mptrw_in_progress)
1362 state->mptrw_in_progress = 0;
1363 }
1364
1365 if (source & MASK_SUS_END) {
1366 /* reset audio FIFO */
1367 reg = io_read(sd, REG_HDMI_INFO_RST);
1368 reg |= MASK_SR_FIFO_FIFO_CTRL;
1369 io_write(sd, REG_HDMI_INFO_RST, reg);
1370 reg &= ~MASK_SR_FIFO_FIFO_CTRL;
1371 io_write(sd, REG_HDMI_INFO_RST, reg);
1372
1373 /* reset HDMI flags */
1374 state->hdmi_status = 0;
1375 }
1376
1377 /* filter FMT interrupt based on SUS state */
1378 reg = io_read(sd, REG_SUS_STATUS);
1379 if (((reg & MASK_SUS_STATUS) != LAST_STATE_REACHED)
1380 || (source & MASK_MPT)) {
1381 source &= ~MASK_FMT;
1382 }
1383
1384 if (source & (MASK_FMT | MASK_SUS_END)) {
1385 reg = io_read(sd, REG_SUS_STATUS);
1386 if ((reg & MASK_SUS_STATUS) != LAST_STATE_REACHED) {
1387 v4l_err(state->client, "BAD SUS STATUS\n");
1388 return;
1389 }
1390 if (debug)
1391 tda1997x_detect_std(state, NULL);
1392 /* notify user of change in resolution */
1393 v4l2_subdev_notify_event(&state->sd, &tda1997x_ev_fmt);
1394 }
1395 }
1396
tda1997x_irq_ddc(struct tda1997x_state * state,u8 * flags)1397 static void tda1997x_irq_ddc(struct tda1997x_state *state, u8 *flags)
1398 {
1399 struct v4l2_subdev *sd = &state->sd;
1400 u8 source;
1401
1402 source = io_read(sd, REG_INT_FLG_CLR_DDC);
1403 io_write(sd, REG_INT_FLG_CLR_DDC, source);
1404 if (source & MASK_EDID_MTP) {
1405 /* reset MTP in use flag if set */
1406 if (state->mptrw_in_progress)
1407 state->mptrw_in_progress = 0;
1408 }
1409
1410 /* Detection of +5V */
1411 if (source & MASK_DET_5V) {
1412 v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
1413 tda1997x_detect_tx_5v(sd));
1414 }
1415 }
1416
tda1997x_irq_rate(struct tda1997x_state * state,u8 * flags)1417 static void tda1997x_irq_rate(struct tda1997x_state *state, u8 *flags)
1418 {
1419 struct v4l2_subdev *sd = &state->sd;
1420 u8 reg, source;
1421
1422 u8 irq_status;
1423
1424 source = io_read(sd, REG_INT_FLG_CLR_RATE);
1425 io_write(sd, REG_INT_FLG_CLR_RATE, source);
1426
1427 /* read status regs */
1428 irq_status = tda1997x_read_activity_status_regs(sd);
1429
1430 /*
1431 * read clock status reg until INT_FLG_CLR_RATE is still 0
1432 * after the read to make sure its the last one
1433 */
1434 reg = source;
1435 while (reg != 0) {
1436 irq_status = tda1997x_read_activity_status_regs(sd);
1437 reg = io_read(sd, REG_INT_FLG_CLR_RATE);
1438 io_write(sd, REG_INT_FLG_CLR_RATE, reg);
1439 source |= reg;
1440 }
1441
1442 /* we only pay attention to stability change events */
1443 if (source & (MASK_RATE_A_ST | MASK_RATE_B_ST)) {
1444 int input = (source & MASK_RATE_A_ST)?0:1;
1445 u8 mask = 1<<input;
1446
1447 /* state change */
1448 if ((irq_status & mask) != (state->activity_status & mask)) {
1449 /* activity lost */
1450 if ((irq_status & mask) == 0) {
1451 v4l_info(state->client,
1452 "HDMI-%c: Digital Activity Lost\n",
1453 input+'A');
1454
1455 /* bypass up/down sampler and pixel repeater */
1456 reg = io_read(sd, REG_PIX_REPEAT);
1457 reg &= ~PIX_REPEAT_MASK_UP_SEL;
1458 reg &= ~PIX_REPEAT_MASK_REP;
1459 io_write(sd, REG_PIX_REPEAT, reg);
1460
1461 if (state->chip_revision == 0)
1462 tda1997x_reset_n1(state);
1463
1464 state->input_detect[input] = 0;
1465 v4l2_subdev_notify_event(sd, &tda1997x_ev_fmt);
1466 }
1467
1468 /* activity detected */
1469 else {
1470 v4l_info(state->client,
1471 "HDMI-%c: Digital Activity Detected\n",
1472 input+'A');
1473 state->input_detect[input] = 1;
1474 }
1475
1476 /* hold onto current state */
1477 state->activity_status = (irq_status & mask);
1478 }
1479 }
1480 }
1481
tda1997x_irq_info(struct tda1997x_state * state,u8 * flags)1482 static void tda1997x_irq_info(struct tda1997x_state *state, u8 *flags)
1483 {
1484 struct v4l2_subdev *sd = &state->sd;
1485 u8 source;
1486
1487 source = io_read(sd, REG_INT_FLG_CLR_INFO);
1488 io_write(sd, REG_INT_FLG_CLR_INFO, source);
1489
1490 /* Audio infoframe */
1491 if (source & MASK_AUD_IF) {
1492 tda1997x_parse_infoframe(state, AUD_IF);
1493 source &= ~MASK_AUD_IF;
1494 }
1495
1496 /* Source Product Descriptor infoframe change */
1497 if (source & MASK_SPD_IF) {
1498 tda1997x_parse_infoframe(state, SPD_IF);
1499 source &= ~MASK_SPD_IF;
1500 }
1501
1502 /* Auxiliary Video Information infoframe */
1503 if (source & MASK_AVI_IF) {
1504 tda1997x_parse_infoframe(state, AVI_IF);
1505 source &= ~MASK_AVI_IF;
1506 }
1507 }
1508
tda1997x_irq_audio(struct tda1997x_state * state,u8 * flags)1509 static void tda1997x_irq_audio(struct tda1997x_state *state, u8 *flags)
1510 {
1511 struct v4l2_subdev *sd = &state->sd;
1512 u8 reg, source;
1513
1514 source = io_read(sd, REG_INT_FLG_CLR_AUDIO);
1515 io_write(sd, REG_INT_FLG_CLR_AUDIO, source);
1516
1517 /* reset audio FIFO on FIFO pointer error or audio mute */
1518 if (source & MASK_ERROR_FIFO_PT ||
1519 source & MASK_MUTE_FLG) {
1520 /* audio reset audio FIFO */
1521 reg = io_read(sd, REG_SUS_STATUS);
1522 if ((reg & MASK_SUS_STATUS) == LAST_STATE_REACHED) {
1523 reg = io_read(sd, REG_HDMI_INFO_RST);
1524 reg |= MASK_SR_FIFO_FIFO_CTRL;
1525 io_write(sd, REG_HDMI_INFO_RST, reg);
1526 reg &= ~MASK_SR_FIFO_FIFO_CTRL;
1527 io_write(sd, REG_HDMI_INFO_RST, reg);
1528 /* reset channel status IT if present */
1529 source &= ~(MASK_CH_STATE);
1530 }
1531 }
1532 if (source & MASK_AUDIO_FREQ_FLG) {
1533 static const int freq[] = {
1534 0, 32000, 44100, 48000, 88200, 96000, 176400, 192000
1535 };
1536
1537 reg = io_read(sd, REG_AUDIO_FREQ);
1538 state->audio_samplerate = freq[reg & 7];
1539 v4l_info(state->client, "Audio Frequency Change: %dHz\n",
1540 state->audio_samplerate);
1541 }
1542 if (source & MASK_AUDIO_FLG) {
1543 reg = io_read(sd, REG_AUDIO_FLAGS);
1544 if (reg & BIT(AUDCFG_TYPE_DST))
1545 state->audio_type = AUDCFG_TYPE_DST;
1546 if (reg & BIT(AUDCFG_TYPE_OBA))
1547 state->audio_type = AUDCFG_TYPE_OBA;
1548 if (reg & BIT(AUDCFG_TYPE_HBR))
1549 state->audio_type = AUDCFG_TYPE_HBR;
1550 if (reg & BIT(AUDCFG_TYPE_PCM))
1551 state->audio_type = AUDCFG_TYPE_PCM;
1552 v4l_info(state->client, "Audio Type: %s\n",
1553 audtype_names[state->audio_type]);
1554 }
1555 }
1556
tda1997x_irq_hdcp(struct tda1997x_state * state,u8 * flags)1557 static void tda1997x_irq_hdcp(struct tda1997x_state *state, u8 *flags)
1558 {
1559 struct v4l2_subdev *sd = &state->sd;
1560 u8 reg, source;
1561
1562 source = io_read(sd, REG_INT_FLG_CLR_HDCP);
1563 io_write(sd, REG_INT_FLG_CLR_HDCP, source);
1564
1565 /* reset MTP in use flag if set */
1566 if (source & MASK_HDCP_MTP)
1567 state->mptrw_in_progress = 0;
1568 if (source & MASK_STATE_C5) {
1569 /* REPEATER: mask AUDIO and IF irqs to avoid IF during auth */
1570 reg = io_read(sd, REG_INT_MASK_TOP);
1571 reg &= ~(INTERRUPT_AUDIO | INTERRUPT_INFO);
1572 io_write(sd, REG_INT_MASK_TOP, reg);
1573 *flags &= (INTERRUPT_AUDIO | INTERRUPT_INFO);
1574 }
1575 }
1576
tda1997x_isr_thread(int irq,void * d)1577 static irqreturn_t tda1997x_isr_thread(int irq, void *d)
1578 {
1579 struct tda1997x_state *state = d;
1580 struct v4l2_subdev *sd = &state->sd;
1581 u8 flags;
1582
1583 mutex_lock(&state->lock);
1584 do {
1585 /* read interrupt flags */
1586 flags = io_read(sd, REG_INT_FLG_CLR_TOP);
1587 if (flags == 0)
1588 break;
1589
1590 /* SUS interrupt source (Input activity events) */
1591 if (flags & INTERRUPT_SUS)
1592 tda1997x_irq_sus(state, &flags);
1593 /* DDC interrupt source (Display Data Channel) */
1594 else if (flags & INTERRUPT_DDC)
1595 tda1997x_irq_ddc(state, &flags);
1596 /* RATE interrupt source (Digital Input activity) */
1597 else if (flags & INTERRUPT_RATE)
1598 tda1997x_irq_rate(state, &flags);
1599 /* Infoframe change interrupt */
1600 else if (flags & INTERRUPT_INFO)
1601 tda1997x_irq_info(state, &flags);
1602 /* Audio interrupt source:
1603 * freq change, DST,OBA,HBR,ASP flags, mute, FIFO err
1604 */
1605 else if (flags & INTERRUPT_AUDIO)
1606 tda1997x_irq_audio(state, &flags);
1607 /* HDCP interrupt source (content protection) */
1608 if (flags & INTERRUPT_HDCP)
1609 tda1997x_irq_hdcp(state, &flags);
1610 } while (flags != 0);
1611 mutex_unlock(&state->lock);
1612
1613 return IRQ_HANDLED;
1614 }
1615
1616 /* -----------------------------------------------------------------------------
1617 * v4l2_subdev_video_ops
1618 */
1619
1620 static int
tda1997x_g_input_status(struct v4l2_subdev * sd,u32 * status)1621 tda1997x_g_input_status(struct v4l2_subdev *sd, u32 *status)
1622 {
1623 struct tda1997x_state *state = to_state(sd);
1624 u32 vper;
1625 u16 hper;
1626 u16 hsper;
1627
1628 mutex_lock(&state->lock);
1629 vper = io_read24(sd, REG_V_PER) & MASK_VPER;
1630 hper = io_read16(sd, REG_H_PER) & MASK_HPER;
1631 hsper = io_read16(sd, REG_HS_WIDTH) & MASK_HSWIDTH;
1632 /*
1633 * The tda1997x supports A/B inputs but only a single output.
1634 * The irq handler monitors for timing changes on both inputs and
1635 * sets the input_detect array to 0|1 depending on signal presence.
1636 * I believe selection of A vs B is automatic.
1637 *
1638 * The vper/hper/hsper registers provide the frame period, line period
1639 * and horiz sync period (units of MCLK clock cycles (27MHz)) and
1640 * testing shows these values to be random if no signal is present
1641 * or locked.
1642 */
1643 v4l2_dbg(1, debug, sd, "inputs:%d/%d timings:%d/%d/%d\n",
1644 state->input_detect[0], state->input_detect[1],
1645 vper, hper, hsper);
1646 if (!state->input_detect[0] && !state->input_detect[1])
1647 *status = V4L2_IN_ST_NO_SIGNAL;
1648 else if (!vper || !hper || !hsper)
1649 *status = V4L2_IN_ST_NO_SYNC;
1650 else
1651 *status = 0;
1652 mutex_unlock(&state->lock);
1653
1654 return 0;
1655 };
1656
tda1997x_s_dv_timings(struct v4l2_subdev * sd,struct v4l2_dv_timings * timings)1657 static int tda1997x_s_dv_timings(struct v4l2_subdev *sd,
1658 struct v4l2_dv_timings *timings)
1659 {
1660 struct tda1997x_state *state = to_state(sd);
1661
1662 v4l_dbg(1, debug, state->client, "%s\n", __func__);
1663
1664 if (v4l2_match_dv_timings(&state->timings, timings, 0, false))
1665 return 0; /* no changes */
1666
1667 if (!v4l2_valid_dv_timings(timings, &tda1997x_dv_timings_cap,
1668 NULL, NULL))
1669 return -ERANGE;
1670
1671 mutex_lock(&state->lock);
1672 state->timings = *timings;
1673 /* setup frame detection window and VHREF timing generator */
1674 tda1997x_configure_vhref(sd);
1675 /* configure colorspace conversion */
1676 tda1997x_configure_csc(sd);
1677 mutex_unlock(&state->lock);
1678
1679 return 0;
1680 }
1681
tda1997x_g_dv_timings(struct v4l2_subdev * sd,struct v4l2_dv_timings * timings)1682 static int tda1997x_g_dv_timings(struct v4l2_subdev *sd,
1683 struct v4l2_dv_timings *timings)
1684 {
1685 struct tda1997x_state *state = to_state(sd);
1686
1687 v4l_dbg(1, debug, state->client, "%s\n", __func__);
1688 mutex_lock(&state->lock);
1689 *timings = state->timings;
1690 mutex_unlock(&state->lock);
1691
1692 return 0;
1693 }
1694
tda1997x_query_dv_timings(struct v4l2_subdev * sd,struct v4l2_dv_timings * timings)1695 static int tda1997x_query_dv_timings(struct v4l2_subdev *sd,
1696 struct v4l2_dv_timings *timings)
1697 {
1698 struct tda1997x_state *state = to_state(sd);
1699 int ret;
1700
1701 v4l_dbg(1, debug, state->client, "%s\n", __func__);
1702 memset(timings, 0, sizeof(struct v4l2_dv_timings));
1703 mutex_lock(&state->lock);
1704 ret = tda1997x_detect_std(state, timings);
1705 mutex_unlock(&state->lock);
1706
1707 return ret;
1708 }
1709
1710 static const struct v4l2_subdev_video_ops tda1997x_video_ops = {
1711 .g_input_status = tda1997x_g_input_status,
1712 .s_dv_timings = tda1997x_s_dv_timings,
1713 .g_dv_timings = tda1997x_g_dv_timings,
1714 .query_dv_timings = tda1997x_query_dv_timings,
1715 };
1716
1717
1718 /* -----------------------------------------------------------------------------
1719 * v4l2_subdev_pad_ops
1720 */
1721
tda1997x_init_cfg(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state)1722 static int tda1997x_init_cfg(struct v4l2_subdev *sd,
1723 struct v4l2_subdev_state *sd_state)
1724 {
1725 struct tda1997x_state *state = to_state(sd);
1726 struct v4l2_mbus_framefmt *mf;
1727
1728 mf = v4l2_subdev_get_try_format(sd, sd_state, 0);
1729 mf->code = state->mbus_codes[0];
1730
1731 return 0;
1732 }
1733
tda1997x_enum_mbus_code(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_mbus_code_enum * code)1734 static int tda1997x_enum_mbus_code(struct v4l2_subdev *sd,
1735 struct v4l2_subdev_state *sd_state,
1736 struct v4l2_subdev_mbus_code_enum *code)
1737 {
1738 struct tda1997x_state *state = to_state(sd);
1739
1740 v4l_dbg(1, debug, state->client, "%s %d\n", __func__, code->index);
1741 if (code->index >= ARRAY_SIZE(state->mbus_codes))
1742 return -EINVAL;
1743
1744 if (!state->mbus_codes[code->index])
1745 return -EINVAL;
1746
1747 code->code = state->mbus_codes[code->index];
1748
1749 return 0;
1750 }
1751
tda1997x_fill_format(struct tda1997x_state * state,struct v4l2_mbus_framefmt * format)1752 static void tda1997x_fill_format(struct tda1997x_state *state,
1753 struct v4l2_mbus_framefmt *format)
1754 {
1755 const struct v4l2_bt_timings *bt;
1756
1757 memset(format, 0, sizeof(*format));
1758 bt = &state->timings.bt;
1759 format->width = bt->width;
1760 format->height = bt->height;
1761 format->colorspace = state->colorimetry.colorspace;
1762 format->field = (bt->interlaced) ?
1763 V4L2_FIELD_SEQ_TB : V4L2_FIELD_NONE;
1764 }
1765
tda1997x_get_format(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)1766 static int tda1997x_get_format(struct v4l2_subdev *sd,
1767 struct v4l2_subdev_state *sd_state,
1768 struct v4l2_subdev_format *format)
1769 {
1770 struct tda1997x_state *state = to_state(sd);
1771
1772 v4l_dbg(1, debug, state->client, "%s pad=%d which=%d\n",
1773 __func__, format->pad, format->which);
1774
1775 tda1997x_fill_format(state, &format->format);
1776
1777 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1778 struct v4l2_mbus_framefmt *fmt;
1779
1780 fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad);
1781 format->format.code = fmt->code;
1782 } else
1783 format->format.code = state->mbus_code;
1784
1785 return 0;
1786 }
1787
tda1997x_set_format(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)1788 static int tda1997x_set_format(struct v4l2_subdev *sd,
1789 struct v4l2_subdev_state *sd_state,
1790 struct v4l2_subdev_format *format)
1791 {
1792 struct tda1997x_state *state = to_state(sd);
1793 u32 code = 0;
1794 int i;
1795
1796 v4l_dbg(1, debug, state->client, "%s pad=%d which=%d fmt=0x%x\n",
1797 __func__, format->pad, format->which, format->format.code);
1798
1799 for (i = 0; i < ARRAY_SIZE(state->mbus_codes); i++) {
1800 if (format->format.code == state->mbus_codes[i]) {
1801 code = state->mbus_codes[i];
1802 break;
1803 }
1804 }
1805 if (!code)
1806 code = state->mbus_codes[0];
1807
1808 tda1997x_fill_format(state, &format->format);
1809 format->format.code = code;
1810
1811 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1812 struct v4l2_mbus_framefmt *fmt;
1813
1814 fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad);
1815 *fmt = format->format;
1816 } else {
1817 int ret = tda1997x_setup_format(state, format->format.code);
1818
1819 if (ret)
1820 return ret;
1821 /* mbus_code has changed - re-configure csc/vidout */
1822 tda1997x_configure_csc(sd);
1823 tda1997x_configure_vidout(state);
1824 }
1825
1826 return 0;
1827 }
1828
tda1997x_get_edid(struct v4l2_subdev * sd,struct v4l2_edid * edid)1829 static int tda1997x_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1830 {
1831 struct tda1997x_state *state = to_state(sd);
1832
1833 v4l_dbg(1, debug, state->client, "%s pad=%d\n", __func__, edid->pad);
1834 memset(edid->reserved, 0, sizeof(edid->reserved));
1835
1836 if (edid->start_block == 0 && edid->blocks == 0) {
1837 edid->blocks = state->edid.blocks;
1838 return 0;
1839 }
1840
1841 if (!state->edid.present)
1842 return -ENODATA;
1843
1844 if (edid->start_block >= state->edid.blocks)
1845 return -EINVAL;
1846
1847 if (edid->start_block + edid->blocks > state->edid.blocks)
1848 edid->blocks = state->edid.blocks - edid->start_block;
1849
1850 memcpy(edid->edid, state->edid.edid + edid->start_block * 128,
1851 edid->blocks * 128);
1852
1853 return 0;
1854 }
1855
tda1997x_set_edid(struct v4l2_subdev * sd,struct v4l2_edid * edid)1856 static int tda1997x_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1857 {
1858 struct tda1997x_state *state = to_state(sd);
1859 int i;
1860
1861 v4l_dbg(1, debug, state->client, "%s pad=%d\n", __func__, edid->pad);
1862 memset(edid->reserved, 0, sizeof(edid->reserved));
1863
1864 if (edid->start_block != 0)
1865 return -EINVAL;
1866
1867 if (edid->blocks == 0) {
1868 state->edid.blocks = 0;
1869 state->edid.present = 0;
1870 tda1997x_disable_edid(sd);
1871 return 0;
1872 }
1873
1874 if (edid->blocks > 2) {
1875 edid->blocks = 2;
1876 return -E2BIG;
1877 }
1878
1879 tda1997x_disable_edid(sd);
1880
1881 /* write base EDID */
1882 for (i = 0; i < 128; i++)
1883 io_write(sd, REG_EDID_IN_BYTE0 + i, edid->edid[i]);
1884
1885 /* write CEA Extension */
1886 for (i = 0; i < 128; i++)
1887 io_write(sd, REG_EDID_IN_BYTE128 + i, edid->edid[i+128]);
1888
1889 /* store state */
1890 memcpy(state->edid.edid, edid->edid, 256);
1891 state->edid.blocks = edid->blocks;
1892
1893 tda1997x_enable_edid(sd);
1894
1895 return 0;
1896 }
1897
tda1997x_get_dv_timings_cap(struct v4l2_subdev * sd,struct v4l2_dv_timings_cap * cap)1898 static int tda1997x_get_dv_timings_cap(struct v4l2_subdev *sd,
1899 struct v4l2_dv_timings_cap *cap)
1900 {
1901 *cap = tda1997x_dv_timings_cap;
1902 return 0;
1903 }
1904
tda1997x_enum_dv_timings(struct v4l2_subdev * sd,struct v4l2_enum_dv_timings * timings)1905 static int tda1997x_enum_dv_timings(struct v4l2_subdev *sd,
1906 struct v4l2_enum_dv_timings *timings)
1907 {
1908 return v4l2_enum_dv_timings_cap(timings, &tda1997x_dv_timings_cap,
1909 NULL, NULL);
1910 }
1911
1912 static const struct v4l2_subdev_pad_ops tda1997x_pad_ops = {
1913 .init_cfg = tda1997x_init_cfg,
1914 .enum_mbus_code = tda1997x_enum_mbus_code,
1915 .get_fmt = tda1997x_get_format,
1916 .set_fmt = tda1997x_set_format,
1917 .get_edid = tda1997x_get_edid,
1918 .set_edid = tda1997x_set_edid,
1919 .dv_timings_cap = tda1997x_get_dv_timings_cap,
1920 .enum_dv_timings = tda1997x_enum_dv_timings,
1921 };
1922
1923 /* -----------------------------------------------------------------------------
1924 * v4l2_subdev_core_ops
1925 */
1926
tda1997x_log_infoframe(struct v4l2_subdev * sd,int addr)1927 static int tda1997x_log_infoframe(struct v4l2_subdev *sd, int addr)
1928 {
1929 struct tda1997x_state *state = to_state(sd);
1930 union hdmi_infoframe frame;
1931 u8 buffer[40];
1932 int len, err;
1933
1934 /* read data */
1935 len = io_readn(sd, addr, sizeof(buffer), buffer);
1936 v4l2_dbg(1, debug, sd, "infoframe: addr=%d len=%d\n", addr, len);
1937 err = hdmi_infoframe_unpack(&frame, buffer, sizeof(buffer));
1938 if (err) {
1939 v4l_err(state->client,
1940 "failed parsing %d byte infoframe: 0x%04x/0x%02x\n",
1941 len, addr, buffer[0]);
1942 return err;
1943 }
1944 hdmi_infoframe_log(KERN_INFO, &state->client->dev, &frame);
1945
1946 return 0;
1947 }
1948
tda1997x_log_status(struct v4l2_subdev * sd)1949 static int tda1997x_log_status(struct v4l2_subdev *sd)
1950 {
1951 struct tda1997x_state *state = to_state(sd);
1952 struct v4l2_dv_timings timings;
1953 struct hdmi_avi_infoframe *avi = &state->avi_infoframe;
1954
1955 v4l2_info(sd, "-----Chip status-----\n");
1956 v4l2_info(sd, "Chip: %s N%d\n", state->info->name,
1957 state->chip_revision + 1);
1958 v4l2_info(sd, "EDID Enabled: %s\n", state->edid.present ? "yes" : "no");
1959
1960 v4l2_info(sd, "-----Signal status-----\n");
1961 v4l2_info(sd, "Cable detected (+5V power): %s\n",
1962 tda1997x_detect_tx_5v(sd) ? "yes" : "no");
1963 v4l2_info(sd, "HPD detected: %s\n",
1964 tda1997x_detect_tx_hpd(sd) ? "yes" : "no");
1965
1966 v4l2_info(sd, "-----Video Timings-----\n");
1967 switch (tda1997x_detect_std(state, &timings)) {
1968 case -ENOLINK:
1969 v4l2_info(sd, "No video detected\n");
1970 break;
1971 case -ERANGE:
1972 v4l2_info(sd, "Invalid signal detected\n");
1973 break;
1974 }
1975 v4l2_print_dv_timings(sd->name, "Configured format: ",
1976 &state->timings, true);
1977
1978 v4l2_info(sd, "-----Color space-----\n");
1979 v4l2_info(sd, "Input color space: %s %s %s",
1980 hdmi_colorspace_names[avi->colorspace],
1981 (avi->colorspace == HDMI_COLORSPACE_RGB) ? "" :
1982 hdmi_colorimetry_names[avi->colorimetry],
1983 v4l2_quantization_names[state->colorimetry.quantization]);
1984 v4l2_info(sd, "Output color space: %s",
1985 vidfmt_names[state->vid_fmt]);
1986 v4l2_info(sd, "Color space conversion: %s", state->conv ?
1987 state->conv->name : "None");
1988
1989 v4l2_info(sd, "-----Audio-----\n");
1990 if (state->audio_channels) {
1991 v4l2_info(sd, "audio: %dch %dHz\n", state->audio_channels,
1992 state->audio_samplerate);
1993 } else {
1994 v4l2_info(sd, "audio: none\n");
1995 }
1996
1997 v4l2_info(sd, "-----Infoframes-----\n");
1998 tda1997x_log_infoframe(sd, AUD_IF);
1999 tda1997x_log_infoframe(sd, SPD_IF);
2000 tda1997x_log_infoframe(sd, AVI_IF);
2001
2002 return 0;
2003 }
2004
tda1997x_subscribe_event(struct v4l2_subdev * sd,struct v4l2_fh * fh,struct v4l2_event_subscription * sub)2005 static int tda1997x_subscribe_event(struct v4l2_subdev *sd,
2006 struct v4l2_fh *fh,
2007 struct v4l2_event_subscription *sub)
2008 {
2009 switch (sub->type) {
2010 case V4L2_EVENT_SOURCE_CHANGE:
2011 return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2012 case V4L2_EVENT_CTRL:
2013 return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2014 default:
2015 return -EINVAL;
2016 }
2017 }
2018
2019 static const struct v4l2_subdev_core_ops tda1997x_core_ops = {
2020 .log_status = tda1997x_log_status,
2021 .subscribe_event = tda1997x_subscribe_event,
2022 .unsubscribe_event = v4l2_event_subdev_unsubscribe,
2023 };
2024
2025 /* -----------------------------------------------------------------------------
2026 * v4l2_subdev_ops
2027 */
2028
2029 static const struct v4l2_subdev_ops tda1997x_subdev_ops = {
2030 .core = &tda1997x_core_ops,
2031 .video = &tda1997x_video_ops,
2032 .pad = &tda1997x_pad_ops,
2033 };
2034
2035 /* -----------------------------------------------------------------------------
2036 * v4l2_controls
2037 */
2038
tda1997x_s_ctrl(struct v4l2_ctrl * ctrl)2039 static int tda1997x_s_ctrl(struct v4l2_ctrl *ctrl)
2040 {
2041 struct v4l2_subdev *sd = to_sd(ctrl);
2042 struct tda1997x_state *state = to_state(sd);
2043
2044 switch (ctrl->id) {
2045 /* allow overriding the default RGB quantization range */
2046 case V4L2_CID_DV_RX_RGB_RANGE:
2047 state->rgb_quantization_range = ctrl->val;
2048 set_rgb_quantization_range(state);
2049 tda1997x_configure_csc(sd);
2050 return 0;
2051 }
2052
2053 return -EINVAL;
2054 };
2055
tda1997x_g_volatile_ctrl(struct v4l2_ctrl * ctrl)2056 static int tda1997x_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
2057 {
2058 struct v4l2_subdev *sd = to_sd(ctrl);
2059 struct tda1997x_state *state = to_state(sd);
2060
2061 if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
2062 ctrl->val = state->avi_infoframe.content_type;
2063 return 0;
2064 }
2065 return -EINVAL;
2066 };
2067
2068 static const struct v4l2_ctrl_ops tda1997x_ctrl_ops = {
2069 .s_ctrl = tda1997x_s_ctrl,
2070 .g_volatile_ctrl = tda1997x_g_volatile_ctrl,
2071 };
2072
tda1997x_core_init(struct v4l2_subdev * sd)2073 static int tda1997x_core_init(struct v4l2_subdev *sd)
2074 {
2075 struct tda1997x_state *state = to_state(sd);
2076 struct tda1997x_platform_data *pdata = &state->pdata;
2077 u8 reg;
2078 int i;
2079
2080 /* disable HPD */
2081 io_write(sd, REG_HPD_AUTO_CTRL, HPD_AUTO_HPD_UNSEL);
2082 if (state->chip_revision == 0) {
2083 io_write(sd, REG_MAN_SUS_HDMI_SEL, MAN_DIS_HDCP | MAN_RST_HDCP);
2084 io_write(sd, REG_CGU_DBG_SEL, 1 << CGU_DBG_CLK_SEL_SHIFT);
2085 }
2086
2087 /* reset infoframe at end of start-up-sequencer */
2088 io_write(sd, REG_SUS_SET_RGB2, 0x06);
2089 io_write(sd, REG_SUS_SET_RGB3, 0x06);
2090
2091 /* Enable TMDS pull-ups */
2092 io_write(sd, REG_RT_MAN_CTRL, RT_MAN_CTRL_RT |
2093 RT_MAN_CTRL_RT_B | RT_MAN_CTRL_RT_A);
2094
2095 /* enable sync measurement timing */
2096 tda1997x_cec_write(sd, REG_PWR_CONTROL & 0xff, 0x04);
2097 /* adjust CEC clock divider */
2098 tda1997x_cec_write(sd, REG_OSC_DIVIDER & 0xff, 0x03);
2099 tda1997x_cec_write(sd, REG_EN_OSC_PERIOD_LSB & 0xff, 0xa0);
2100 io_write(sd, REG_TIMER_D, 0x54);
2101 /* enable power switch */
2102 reg = tda1997x_cec_read(sd, REG_CONTROL & 0xff);
2103 reg |= 0x20;
2104 tda1997x_cec_write(sd, REG_CONTROL & 0xff, reg);
2105 mdelay(50);
2106
2107 /* read the chip version */
2108 reg = io_read(sd, REG_VERSION);
2109 /* get the chip configuration */
2110 reg = io_read(sd, REG_CMTP_REG10);
2111
2112 /* enable interrupts we care about */
2113 io_write(sd, REG_INT_MASK_TOP,
2114 INTERRUPT_HDCP | INTERRUPT_AUDIO | INTERRUPT_INFO |
2115 INTERRUPT_RATE | INTERRUPT_SUS);
2116 /* config_mtp,fmt,sus_end,sus_st */
2117 io_write(sd, REG_INT_MASK_SUS, MASK_MPT | MASK_FMT | MASK_SUS_END);
2118 /* rate stability change for inputs A/B */
2119 io_write(sd, REG_INT_MASK_RATE, MASK_RATE_B_ST | MASK_RATE_A_ST);
2120 /* aud,spd,avi*/
2121 io_write(sd, REG_INT_MASK_INFO,
2122 MASK_AUD_IF | MASK_SPD_IF | MASK_AVI_IF);
2123 /* audio_freq,audio_flg,mute_flg,fifo_err */
2124 io_write(sd, REG_INT_MASK_AUDIO,
2125 MASK_AUDIO_FREQ_FLG | MASK_AUDIO_FLG | MASK_MUTE_FLG |
2126 MASK_ERROR_FIFO_PT);
2127 /* HDCP C5 state reached */
2128 io_write(sd, REG_INT_MASK_HDCP, MASK_STATE_C5);
2129 /* 5V detect and HDP pulse end */
2130 io_write(sd, REG_INT_MASK_DDC, MASK_DET_5V);
2131 /* don't care about AFE/MODE */
2132 io_write(sd, REG_INT_MASK_AFE, 0);
2133 io_write(sd, REG_INT_MASK_MODE, 0);
2134
2135 /* clear all interrupts */
2136 io_write(sd, REG_INT_FLG_CLR_TOP, 0xff);
2137 io_write(sd, REG_INT_FLG_CLR_SUS, 0xff);
2138 io_write(sd, REG_INT_FLG_CLR_DDC, 0xff);
2139 io_write(sd, REG_INT_FLG_CLR_RATE, 0xff);
2140 io_write(sd, REG_INT_FLG_CLR_MODE, 0xff);
2141 io_write(sd, REG_INT_FLG_CLR_INFO, 0xff);
2142 io_write(sd, REG_INT_FLG_CLR_AUDIO, 0xff);
2143 io_write(sd, REG_INT_FLG_CLR_HDCP, 0xff);
2144 io_write(sd, REG_INT_FLG_CLR_AFE, 0xff);
2145
2146 /* init TMDS equalizer */
2147 if (state->chip_revision == 0)
2148 io_write(sd, REG_CGU_DBG_SEL, 1 << CGU_DBG_CLK_SEL_SHIFT);
2149 io_write24(sd, REG_CLK_MIN_RATE, CLK_MIN_RATE);
2150 io_write24(sd, REG_CLK_MAX_RATE, CLK_MAX_RATE);
2151 if (state->chip_revision == 0)
2152 io_write(sd, REG_WDL_CFG, WDL_CFG_VAL);
2153 /* DC filter */
2154 io_write(sd, REG_DEEP_COLOR_CTRL, DC_FILTER_VAL);
2155 /* disable test pattern */
2156 io_write(sd, REG_SVC_MODE, 0x00);
2157 /* update HDMI INFO CTRL */
2158 io_write(sd, REG_INFO_CTRL, 0xff);
2159 /* write HDMI INFO EXCEED value */
2160 io_write(sd, REG_INFO_EXCEED, 3);
2161
2162 if (state->chip_revision == 0)
2163 tda1997x_reset_n1(state);
2164
2165 /*
2166 * No HDCP acknowledge when HDCP is disabled
2167 * and reset SUS to force format detection
2168 */
2169 tda1997x_hdmi_info_reset(sd, NACK_HDCP, true);
2170
2171 /* Set HPD low */
2172 tda1997x_manual_hpd(sd, HPD_LOW_BP);
2173
2174 /* Configure receiver capabilities */
2175 io_write(sd, REG_HDCP_BCAPS, HDCP_HDMI | HDCP_FAST_REAUTH);
2176
2177 /* Configure HDMI: Auto HDCP mode, packet controlled mute */
2178 reg = HDMI_CTRL_MUTE_AUTO << HDMI_CTRL_MUTE_SHIFT;
2179 reg |= HDMI_CTRL_HDCP_AUTO << HDMI_CTRL_HDCP_SHIFT;
2180 io_write(sd, REG_HDMI_CTRL, reg);
2181
2182 /* reset start-up-sequencer to force format detection */
2183 tda1997x_hdmi_info_reset(sd, 0, true);
2184
2185 /* disable matrix conversion */
2186 reg = io_read(sd, REG_VDP_CTRL);
2187 reg |= VDP_CTRL_MATRIX_BP;
2188 io_write(sd, REG_VDP_CTRL, reg);
2189
2190 /* set video output mode */
2191 tda1997x_configure_vidout(state);
2192
2193 /* configure video output port */
2194 for (i = 0; i < 9; i++) {
2195 v4l_dbg(1, debug, state->client, "vidout_cfg[%d]=0x%02x\n", i,
2196 pdata->vidout_port_cfg[i]);
2197 io_write(sd, REG_VP35_32_CTRL + i, pdata->vidout_port_cfg[i]);
2198 }
2199
2200 /* configure audio output port */
2201 tda1997x_configure_audout(sd, 0);
2202
2203 /* configure audio clock freq */
2204 switch (pdata->audout_mclk_fs) {
2205 case 512:
2206 reg = AUDIO_CLOCK_SEL_512FS;
2207 break;
2208 case 256:
2209 reg = AUDIO_CLOCK_SEL_256FS;
2210 break;
2211 case 128:
2212 reg = AUDIO_CLOCK_SEL_128FS;
2213 break;
2214 case 64:
2215 reg = AUDIO_CLOCK_SEL_64FS;
2216 break;
2217 case 32:
2218 reg = AUDIO_CLOCK_SEL_32FS;
2219 break;
2220 default:
2221 reg = AUDIO_CLOCK_SEL_16FS;
2222 break;
2223 }
2224 io_write(sd, REG_AUDIO_CLOCK, reg);
2225
2226 /* reset advanced infoframes (ISRC1/ISRC2/ACP) */
2227 tda1997x_hdmi_info_reset(sd, RESET_AI, false);
2228 /* reset infoframe */
2229 tda1997x_hdmi_info_reset(sd, RESET_IF, false);
2230 /* reset audio infoframes */
2231 tda1997x_hdmi_info_reset(sd, RESET_AUDIO, false);
2232 /* reset gamut */
2233 tda1997x_hdmi_info_reset(sd, RESET_GAMUT, false);
2234
2235 /* get initial HDMI status */
2236 state->hdmi_status = io_read(sd, REG_HDMI_FLAGS);
2237
2238 io_write(sd, REG_EDID_ENABLE, EDID_ENABLE_A_EN | EDID_ENABLE_B_EN);
2239 return 0;
2240 }
2241
tda1997x_set_power(struct tda1997x_state * state,bool on)2242 static int tda1997x_set_power(struct tda1997x_state *state, bool on)
2243 {
2244 int ret = 0;
2245
2246 if (on) {
2247 ret = regulator_bulk_enable(TDA1997X_NUM_SUPPLIES,
2248 state->supplies);
2249 msleep(300);
2250 } else {
2251 ret = regulator_bulk_disable(TDA1997X_NUM_SUPPLIES,
2252 state->supplies);
2253 }
2254
2255 return ret;
2256 }
2257
2258 static const struct i2c_device_id tda1997x_i2c_id[] = {
2259 {"tda19971", (kernel_ulong_t)&tda1997x_chip_info[TDA19971]},
2260 {"tda19973", (kernel_ulong_t)&tda1997x_chip_info[TDA19973]},
2261 { },
2262 };
2263 MODULE_DEVICE_TABLE(i2c, tda1997x_i2c_id);
2264
2265 static const struct of_device_id tda1997x_of_id[] __maybe_unused = {
2266 { .compatible = "nxp,tda19971", .data = &tda1997x_chip_info[TDA19971] },
2267 { .compatible = "nxp,tda19973", .data = &tda1997x_chip_info[TDA19973] },
2268 { },
2269 };
2270 MODULE_DEVICE_TABLE(of, tda1997x_of_id);
2271
tda1997x_parse_dt(struct tda1997x_state * state)2272 static int tda1997x_parse_dt(struct tda1997x_state *state)
2273 {
2274 struct tda1997x_platform_data *pdata = &state->pdata;
2275 struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
2276 struct device_node *ep;
2277 struct device_node *np;
2278 unsigned int flags;
2279 const char *str;
2280 int ret;
2281 u32 v;
2282
2283 /*
2284 * setup default values:
2285 * - HREF: active high from start to end of row
2286 * - VS: Vertical Sync active high at beginning of frame
2287 * - DE: Active high when data valid
2288 * - A_CLK: 128*Fs
2289 */
2290 pdata->vidout_sel_hs = HS_HREF_SEL_HREF_VHREF;
2291 pdata->vidout_sel_vs = VS_VREF_SEL_VREF_HDMI;
2292 pdata->vidout_sel_de = DE_FREF_SEL_DE_VHREF;
2293
2294 np = state->client->dev.of_node;
2295 ep = of_graph_get_next_endpoint(np, NULL);
2296 if (!ep)
2297 return -EINVAL;
2298
2299 ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep), &bus_cfg);
2300 if (ret) {
2301 of_node_put(ep);
2302 return ret;
2303 }
2304 of_node_put(ep);
2305 pdata->vidout_bus_type = bus_cfg.bus_type;
2306
2307 /* polarity of HS/VS/DE */
2308 flags = bus_cfg.bus.parallel.flags;
2309 if (flags & V4L2_MBUS_HSYNC_ACTIVE_LOW)
2310 pdata->vidout_inv_hs = 1;
2311 if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW)
2312 pdata->vidout_inv_vs = 1;
2313 if (flags & V4L2_MBUS_DATA_ACTIVE_LOW)
2314 pdata->vidout_inv_de = 1;
2315 pdata->vidout_bus_width = bus_cfg.bus.parallel.bus_width;
2316
2317 /* video output port config */
2318 ret = of_property_count_u32_elems(np, "nxp,vidout-portcfg");
2319 if (ret > 0) {
2320 u32 reg, val, i;
2321
2322 for (i = 0; i < ret / 2 && i < 9; i++) {
2323 of_property_read_u32_index(np, "nxp,vidout-portcfg",
2324 i * 2, ®);
2325 of_property_read_u32_index(np, "nxp,vidout-portcfg",
2326 i * 2 + 1, &val);
2327 if (reg < 9)
2328 pdata->vidout_port_cfg[reg] = val;
2329 }
2330 } else {
2331 v4l_err(state->client, "nxp,vidout-portcfg missing\n");
2332 return -EINVAL;
2333 }
2334
2335 /* default to channel layout dictated by packet header */
2336 pdata->audout_layoutauto = true;
2337
2338 pdata->audout_format = AUDFMT_TYPE_DISABLED;
2339 if (!of_property_read_string(np, "nxp,audout-format", &str)) {
2340 if (strcmp(str, "i2s") == 0)
2341 pdata->audout_format = AUDFMT_TYPE_I2S;
2342 else if (strcmp(str, "spdif") == 0)
2343 pdata->audout_format = AUDFMT_TYPE_SPDIF;
2344 else {
2345 v4l_err(state->client, "nxp,audout-format invalid\n");
2346 return -EINVAL;
2347 }
2348 if (!of_property_read_u32(np, "nxp,audout-layout", &v)) {
2349 switch (v) {
2350 case 0:
2351 case 1:
2352 break;
2353 default:
2354 v4l_err(state->client,
2355 "nxp,audout-layout invalid\n");
2356 return -EINVAL;
2357 }
2358 pdata->audout_layout = v;
2359 }
2360 if (!of_property_read_u32(np, "nxp,audout-width", &v)) {
2361 switch (v) {
2362 case 16:
2363 case 32:
2364 break;
2365 default:
2366 v4l_err(state->client,
2367 "nxp,audout-width invalid\n");
2368 return -EINVAL;
2369 }
2370 pdata->audout_width = v;
2371 }
2372 if (!of_property_read_u32(np, "nxp,audout-mclk-fs", &v)) {
2373 switch (v) {
2374 case 512:
2375 case 256:
2376 case 128:
2377 case 64:
2378 case 32:
2379 case 16:
2380 break;
2381 default:
2382 v4l_err(state->client,
2383 "nxp,audout-mclk-fs invalid\n");
2384 return -EINVAL;
2385 }
2386 pdata->audout_mclk_fs = v;
2387 }
2388 }
2389
2390 return 0;
2391 }
2392
tda1997x_get_regulators(struct tda1997x_state * state)2393 static int tda1997x_get_regulators(struct tda1997x_state *state)
2394 {
2395 int i;
2396
2397 for (i = 0; i < TDA1997X_NUM_SUPPLIES; i++)
2398 state->supplies[i].supply = tda1997x_supply_name[i];
2399
2400 return devm_regulator_bulk_get(&state->client->dev,
2401 TDA1997X_NUM_SUPPLIES,
2402 state->supplies);
2403 }
2404
tda1997x_identify_module(struct tda1997x_state * state)2405 static int tda1997x_identify_module(struct tda1997x_state *state)
2406 {
2407 struct v4l2_subdev *sd = &state->sd;
2408 enum tda1997x_type type;
2409 u8 reg;
2410
2411 /* Read chip configuration*/
2412 reg = io_read(sd, REG_CMTP_REG10);
2413 state->tmdsb_clk = (reg >> 6) & 0x01; /* use tmds clock B_inv for B */
2414 state->tmdsb_soc = (reg >> 5) & 0x01; /* tmds of input B */
2415 state->port_30bit = (reg >> 2) & 0x03; /* 30bit vs 24bit */
2416 state->output_2p5 = (reg >> 1) & 0x01; /* output supply 2.5v */
2417 switch ((reg >> 4) & 0x03) {
2418 case 0x00:
2419 type = TDA19971;
2420 break;
2421 case 0x02:
2422 case 0x03:
2423 type = TDA19973;
2424 break;
2425 default:
2426 dev_err(&state->client->dev, "unsupported chip ID\n");
2427 return -EIO;
2428 }
2429 if (state->info->type != type) {
2430 dev_err(&state->client->dev, "chip id mismatch\n");
2431 return -EIO;
2432 }
2433
2434 /* read chip revision */
2435 state->chip_revision = io_read(sd, REG_CMTP_REG11);
2436
2437 return 0;
2438 }
2439
2440 static const struct media_entity_operations tda1997x_media_ops = {
2441 .link_validate = v4l2_subdev_link_validate,
2442 };
2443
2444
2445 /* -----------------------------------------------------------------------------
2446 * HDMI Audio Codec
2447 */
2448
2449 /* refine sample-rate based on HDMI source */
tda1997x_pcm_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * dai)2450 static int tda1997x_pcm_startup(struct snd_pcm_substream *substream,
2451 struct snd_soc_dai *dai)
2452 {
2453 struct tda1997x_state *state = snd_soc_dai_get_drvdata(dai);
2454 struct snd_soc_component *component = dai->component;
2455 struct snd_pcm_runtime *rtd = substream->runtime;
2456 int rate, err;
2457
2458 rate = state->audio_samplerate;
2459 err = snd_pcm_hw_constraint_minmax(rtd, SNDRV_PCM_HW_PARAM_RATE,
2460 rate, rate);
2461 if (err < 0) {
2462 dev_err(component->dev, "failed to constrain samplerate to %dHz\n",
2463 rate);
2464 return err;
2465 }
2466 dev_info(component->dev, "set samplerate constraint to %dHz\n", rate);
2467
2468 return 0;
2469 }
2470
2471 static const struct snd_soc_dai_ops tda1997x_dai_ops = {
2472 .startup = tda1997x_pcm_startup,
2473 };
2474
2475 static struct snd_soc_dai_driver tda1997x_audio_dai = {
2476 .name = "tda1997x",
2477 .capture = {
2478 .stream_name = "Capture",
2479 .channels_min = 2,
2480 .channels_max = 8,
2481 .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 |
2482 SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 |
2483 SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 |
2484 SNDRV_PCM_RATE_192000,
2485 },
2486 .ops = &tda1997x_dai_ops,
2487 };
2488
tda1997x_codec_probe(struct snd_soc_component * component)2489 static int tda1997x_codec_probe(struct snd_soc_component *component)
2490 {
2491 return 0;
2492 }
2493
tda1997x_codec_remove(struct snd_soc_component * component)2494 static void tda1997x_codec_remove(struct snd_soc_component *component)
2495 {
2496 }
2497
2498 static struct snd_soc_component_driver tda1997x_codec_driver = {
2499 .probe = tda1997x_codec_probe,
2500 .remove = tda1997x_codec_remove,
2501 .idle_bias_on = 1,
2502 .use_pmdown_time = 1,
2503 .endianness = 1,
2504 .non_legacy_dai_naming = 1,
2505 };
2506
tda1997x_probe(struct i2c_client * client,const struct i2c_device_id * id)2507 static int tda1997x_probe(struct i2c_client *client,
2508 const struct i2c_device_id *id)
2509 {
2510 struct tda1997x_state *state;
2511 struct tda1997x_platform_data *pdata;
2512 struct v4l2_subdev *sd;
2513 struct v4l2_ctrl_handler *hdl;
2514 struct v4l2_ctrl *ctrl;
2515 static const struct v4l2_dv_timings cea1920x1080 =
2516 V4L2_DV_BT_CEA_1920X1080P60;
2517 u32 *mbus_codes;
2518 int i, ret;
2519
2520 /* Check if the adapter supports the needed features */
2521 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
2522 return -EIO;
2523
2524 state = kzalloc(sizeof(struct tda1997x_state), GFP_KERNEL);
2525 if (!state)
2526 return -ENOMEM;
2527
2528 state->client = client;
2529 pdata = &state->pdata;
2530 if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
2531 const struct of_device_id *oid;
2532
2533 oid = of_match_node(tda1997x_of_id, client->dev.of_node);
2534 state->info = oid->data;
2535
2536 ret = tda1997x_parse_dt(state);
2537 if (ret < 0) {
2538 v4l_err(client, "DT parsing error\n");
2539 goto err_free_state;
2540 }
2541 } else if (client->dev.platform_data) {
2542 struct tda1997x_platform_data *pdata =
2543 client->dev.platform_data;
2544 state->info =
2545 (const struct tda1997x_chip_info *)id->driver_data;
2546 state->pdata = *pdata;
2547 } else {
2548 v4l_err(client, "No platform data\n");
2549 ret = -ENODEV;
2550 goto err_free_state;
2551 }
2552
2553 ret = tda1997x_get_regulators(state);
2554 if (ret)
2555 goto err_free_state;
2556
2557 ret = tda1997x_set_power(state, 1);
2558 if (ret)
2559 goto err_free_state;
2560
2561 mutex_init(&state->page_lock);
2562 mutex_init(&state->lock);
2563 state->page = 0xff;
2564
2565 INIT_DELAYED_WORK(&state->delayed_work_enable_hpd,
2566 tda1997x_delayed_work_enable_hpd);
2567
2568 /* set video format based on chip and bus width */
2569 ret = tda1997x_identify_module(state);
2570 if (ret)
2571 goto err_free_mutex;
2572
2573 /* initialize subdev */
2574 sd = &state->sd;
2575 v4l2_i2c_subdev_init(sd, client, &tda1997x_subdev_ops);
2576 snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
2577 id->name, i2c_adapter_id(client->adapter),
2578 client->addr);
2579 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
2580 sd->entity.function = MEDIA_ENT_F_DV_DECODER;
2581 sd->entity.ops = &tda1997x_media_ops;
2582
2583 /* set allowed mbus modes based on chip, bus-type, and bus-width */
2584 i = 0;
2585 mbus_codes = state->mbus_codes;
2586 switch (state->info->type) {
2587 case TDA19973:
2588 switch (pdata->vidout_bus_type) {
2589 case V4L2_MBUS_PARALLEL:
2590 switch (pdata->vidout_bus_width) {
2591 case 36:
2592 mbus_codes[i++] = MEDIA_BUS_FMT_RGB121212_1X36;
2593 mbus_codes[i++] = MEDIA_BUS_FMT_YUV12_1X36;
2594 fallthrough;
2595 case 24:
2596 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_1X24;
2597 break;
2598 }
2599 break;
2600 case V4L2_MBUS_BT656:
2601 switch (pdata->vidout_bus_width) {
2602 case 36:
2603 case 24:
2604 case 12:
2605 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_2X12;
2606 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY10_2X10;
2607 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY8_2X8;
2608 break;
2609 }
2610 break;
2611 default:
2612 break;
2613 }
2614 break;
2615 case TDA19971:
2616 switch (pdata->vidout_bus_type) {
2617 case V4L2_MBUS_PARALLEL:
2618 switch (pdata->vidout_bus_width) {
2619 case 24:
2620 mbus_codes[i++] = MEDIA_BUS_FMT_RGB888_1X24;
2621 mbus_codes[i++] = MEDIA_BUS_FMT_YUV8_1X24;
2622 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_1X24;
2623 fallthrough;
2624 case 20:
2625 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY10_1X20;
2626 fallthrough;
2627 case 16:
2628 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY8_1X16;
2629 break;
2630 }
2631 break;
2632 case V4L2_MBUS_BT656:
2633 switch (pdata->vidout_bus_width) {
2634 case 24:
2635 case 20:
2636 case 16:
2637 case 12:
2638 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_2X12;
2639 fallthrough;
2640 case 10:
2641 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY10_2X10;
2642 fallthrough;
2643 case 8:
2644 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY8_2X8;
2645 break;
2646 }
2647 break;
2648 default:
2649 break;
2650 }
2651 break;
2652 }
2653 if (WARN_ON(i > ARRAY_SIZE(state->mbus_codes))) {
2654 ret = -EINVAL;
2655 goto err_free_mutex;
2656 }
2657
2658 /* default format */
2659 tda1997x_setup_format(state, state->mbus_codes[0]);
2660 state->timings = cea1920x1080;
2661
2662 /*
2663 * default to SRGB full range quantization
2664 * (in case we don't get an infoframe such as DVI signal
2665 */
2666 state->colorimetry.colorspace = V4L2_COLORSPACE_SRGB;
2667 state->colorimetry.quantization = V4L2_QUANTIZATION_FULL_RANGE;
2668
2669 /* disable/reset HDCP to get correct I2C access to Rx HDMI */
2670 io_write(sd, REG_MAN_SUS_HDMI_SEL, MAN_RST_HDCP | MAN_DIS_HDCP);
2671
2672 /*
2673 * if N2 version, reset compdel_bp as it may generate some small pixel
2674 * shifts in case of embedded sync/or delay lower than 4
2675 */
2676 if (state->chip_revision != 0) {
2677 io_write(sd, REG_MAN_SUS_HDMI_SEL, 0x00);
2678 io_write(sd, REG_VDP_CTRL, 0x1f);
2679 }
2680
2681 v4l_info(client, "NXP %s N%d detected\n", state->info->name,
2682 state->chip_revision + 1);
2683 v4l_info(client, "video: %dbit %s %d formats available\n",
2684 pdata->vidout_bus_width,
2685 (pdata->vidout_bus_type == V4L2_MBUS_PARALLEL) ?
2686 "parallel" : "BT656",
2687 i);
2688 if (pdata->audout_format) {
2689 v4l_info(client, "audio: %dch %s layout%d sysclk=%d*fs\n",
2690 pdata->audout_layout ? 2 : 8,
2691 audfmt_names[pdata->audout_format],
2692 pdata->audout_layout,
2693 pdata->audout_mclk_fs);
2694 }
2695
2696 ret = 0x34 + ((io_read(sd, REG_SLAVE_ADDR)>>4) & 0x03);
2697 state->client_cec = devm_i2c_new_dummy_device(&client->dev,
2698 client->adapter, ret);
2699 if (IS_ERR(state->client_cec)) {
2700 ret = PTR_ERR(state->client_cec);
2701 goto err_free_mutex;
2702 }
2703
2704 v4l_info(client, "CEC slave address 0x%02x\n", ret);
2705
2706 ret = tda1997x_core_init(sd);
2707 if (ret)
2708 goto err_free_mutex;
2709
2710 /* control handlers */
2711 hdl = &state->hdl;
2712 v4l2_ctrl_handler_init(hdl, 3);
2713 ctrl = v4l2_ctrl_new_std_menu(hdl, &tda1997x_ctrl_ops,
2714 V4L2_CID_DV_RX_IT_CONTENT_TYPE,
2715 V4L2_DV_IT_CONTENT_TYPE_NO_ITC, 0,
2716 V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
2717 if (ctrl)
2718 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
2719 /* custom controls */
2720 state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
2721 V4L2_CID_DV_RX_POWER_PRESENT, 0, 1, 0, 0);
2722 state->rgb_quantization_range_ctrl = v4l2_ctrl_new_std_menu(hdl,
2723 &tda1997x_ctrl_ops,
2724 V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 0,
2725 V4L2_DV_RGB_RANGE_AUTO);
2726 state->sd.ctrl_handler = hdl;
2727 if (hdl->error) {
2728 ret = hdl->error;
2729 goto err_free_handler;
2730 }
2731 v4l2_ctrl_handler_setup(hdl);
2732
2733 /* initialize source pads */
2734 state->pads[TDA1997X_PAD_SOURCE].flags = MEDIA_PAD_FL_SOURCE;
2735 ret = media_entity_pads_init(&sd->entity, TDA1997X_NUM_PADS,
2736 state->pads);
2737 if (ret) {
2738 v4l_err(client, "failed entity_init: %d", ret);
2739 goto err_free_handler;
2740 }
2741
2742 ret = v4l2_async_register_subdev(sd);
2743 if (ret)
2744 goto err_free_media;
2745
2746 /* register audio DAI */
2747 if (pdata->audout_format) {
2748 u64 formats;
2749
2750 if (pdata->audout_width == 32)
2751 formats = SNDRV_PCM_FMTBIT_S32_LE;
2752 else
2753 formats = SNDRV_PCM_FMTBIT_S16_LE;
2754 tda1997x_audio_dai.capture.formats = formats;
2755 ret = devm_snd_soc_register_component(&state->client->dev,
2756 &tda1997x_codec_driver,
2757 &tda1997x_audio_dai, 1);
2758 if (ret) {
2759 dev_err(&client->dev, "register audio codec failed\n");
2760 goto err_free_media;
2761 }
2762 dev_set_drvdata(&state->client->dev, state);
2763 v4l_info(state->client, "registered audio codec\n");
2764 }
2765
2766 /* request irq */
2767 ret = devm_request_threaded_irq(&client->dev, client->irq,
2768 NULL, tda1997x_isr_thread,
2769 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
2770 KBUILD_MODNAME, state);
2771 if (ret) {
2772 v4l_err(client, "irq%d reg failed: %d\n", client->irq, ret);
2773 goto err_free_media;
2774 }
2775
2776 return 0;
2777
2778 err_free_media:
2779 media_entity_cleanup(&sd->entity);
2780 err_free_handler:
2781 v4l2_ctrl_handler_free(&state->hdl);
2782 err_free_mutex:
2783 cancel_delayed_work(&state->delayed_work_enable_hpd);
2784 mutex_destroy(&state->page_lock);
2785 mutex_destroy(&state->lock);
2786 err_free_state:
2787 kfree(state);
2788 dev_err(&client->dev, "%s failed: %d\n", __func__, ret);
2789
2790 return ret;
2791 }
2792
tda1997x_remove(struct i2c_client * client)2793 static int tda1997x_remove(struct i2c_client *client)
2794 {
2795 struct v4l2_subdev *sd = i2c_get_clientdata(client);
2796 struct tda1997x_state *state = to_state(sd);
2797 struct tda1997x_platform_data *pdata = &state->pdata;
2798
2799 if (pdata->audout_format) {
2800 mutex_destroy(&state->audio_lock);
2801 }
2802
2803 disable_irq(state->client->irq);
2804 tda1997x_power_mode(state, 0);
2805
2806 v4l2_async_unregister_subdev(sd);
2807 media_entity_cleanup(&sd->entity);
2808 v4l2_ctrl_handler_free(&state->hdl);
2809 regulator_bulk_disable(TDA1997X_NUM_SUPPLIES, state->supplies);
2810 cancel_delayed_work_sync(&state->delayed_work_enable_hpd);
2811 mutex_destroy(&state->page_lock);
2812 mutex_destroy(&state->lock);
2813
2814 kfree(state);
2815
2816 return 0;
2817 }
2818
2819 static struct i2c_driver tda1997x_i2c_driver = {
2820 .driver = {
2821 .name = "tda1997x",
2822 .of_match_table = of_match_ptr(tda1997x_of_id),
2823 },
2824 .probe = tda1997x_probe,
2825 .remove = tda1997x_remove,
2826 .id_table = tda1997x_i2c_id,
2827 };
2828
2829 module_i2c_driver(tda1997x_i2c_driver);
2830
2831 MODULE_AUTHOR("Tim Harvey <tharvey@gateworks.com>");
2832 MODULE_DESCRIPTION("TDA1997X HDMI Receiver driver");
2833 MODULE_LICENSE("GPL v2");
2834