1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2011-2013 Freescale Semiconductor, Inc. All Rights Reserved.
4 * Copyright (C) 2014-2017 Mentor Graphics Inc.
5 */
6
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/clkdev.h>
10 #include <linux/ctype.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/i2c.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/slab.h>
20 #include <linux/types.h>
21 #include <media/v4l2-async.h>
22 #include <media/v4l2-ctrls.h>
23 #include <media/v4l2-device.h>
24 #include <media/v4l2-event.h>
25 #include <media/v4l2-fwnode.h>
26 #include <media/v4l2-subdev.h>
27
28 /* min/typical/max system clock (xclk) frequencies */
29 #define OV5640_XCLK_MIN 6000000
30 #define OV5640_XCLK_MAX 54000000
31
32 #define OV5640_DEFAULT_SLAVE_ID 0x3c
33
34 #define OV5640_REG_SYS_RESET02 0x3002
35 #define OV5640_REG_SYS_CLOCK_ENABLE02 0x3006
36 #define OV5640_REG_SYS_CTRL0 0x3008
37 #define OV5640_REG_SYS_CTRL0_SW_PWDN 0x42
38 #define OV5640_REG_SYS_CTRL0_SW_PWUP 0x02
39 #define OV5640_REG_CHIP_ID 0x300a
40 #define OV5640_REG_IO_MIPI_CTRL00 0x300e
41 #define OV5640_REG_PAD_OUTPUT_ENABLE01 0x3017
42 #define OV5640_REG_PAD_OUTPUT_ENABLE02 0x3018
43 #define OV5640_REG_PAD_OUTPUT00 0x3019
44 #define OV5640_REG_SYSTEM_CONTROL1 0x302e
45 #define OV5640_REG_SC_PLL_CTRL0 0x3034
46 #define OV5640_REG_SC_PLL_CTRL1 0x3035
47 #define OV5640_REG_SC_PLL_CTRL2 0x3036
48 #define OV5640_REG_SC_PLL_CTRL3 0x3037
49 #define OV5640_REG_SLAVE_ID 0x3100
50 #define OV5640_REG_SCCB_SYS_CTRL1 0x3103
51 #define OV5640_REG_SYS_ROOT_DIVIDER 0x3108
52 #define OV5640_REG_AWB_R_GAIN 0x3400
53 #define OV5640_REG_AWB_G_GAIN 0x3402
54 #define OV5640_REG_AWB_B_GAIN 0x3404
55 #define OV5640_REG_AWB_MANUAL_CTRL 0x3406
56 #define OV5640_REG_AEC_PK_EXPOSURE_HI 0x3500
57 #define OV5640_REG_AEC_PK_EXPOSURE_MED 0x3501
58 #define OV5640_REG_AEC_PK_EXPOSURE_LO 0x3502
59 #define OV5640_REG_AEC_PK_MANUAL 0x3503
60 #define OV5640_REG_AEC_PK_REAL_GAIN 0x350a
61 #define OV5640_REG_AEC_PK_VTS 0x350c
62 #define OV5640_REG_TIMING_DVPHO 0x3808
63 #define OV5640_REG_TIMING_DVPVO 0x380a
64 #define OV5640_REG_TIMING_HTS 0x380c
65 #define OV5640_REG_TIMING_VTS 0x380e
66 #define OV5640_REG_TIMING_TC_REG20 0x3820
67 #define OV5640_REG_TIMING_TC_REG21 0x3821
68 #define OV5640_REG_AEC_CTRL00 0x3a00
69 #define OV5640_REG_AEC_B50_STEP 0x3a08
70 #define OV5640_REG_AEC_B60_STEP 0x3a0a
71 #define OV5640_REG_AEC_CTRL0D 0x3a0d
72 #define OV5640_REG_AEC_CTRL0E 0x3a0e
73 #define OV5640_REG_AEC_CTRL0F 0x3a0f
74 #define OV5640_REG_AEC_CTRL10 0x3a10
75 #define OV5640_REG_AEC_CTRL11 0x3a11
76 #define OV5640_REG_AEC_CTRL1B 0x3a1b
77 #define OV5640_REG_AEC_CTRL1E 0x3a1e
78 #define OV5640_REG_AEC_CTRL1F 0x3a1f
79 #define OV5640_REG_HZ5060_CTRL00 0x3c00
80 #define OV5640_REG_HZ5060_CTRL01 0x3c01
81 #define OV5640_REG_SIGMADELTA_CTRL0C 0x3c0c
82 #define OV5640_REG_FRAME_CTRL01 0x4202
83 #define OV5640_REG_FORMAT_CONTROL00 0x4300
84 #define OV5640_REG_VFIFO_HSIZE 0x4602
85 #define OV5640_REG_VFIFO_VSIZE 0x4604
86 #define OV5640_REG_JPG_MODE_SELECT 0x4713
87 #define OV5640_REG_CCIR656_CTRL00 0x4730
88 #define OV5640_REG_POLARITY_CTRL00 0x4740
89 #define OV5640_REG_MIPI_CTRL00 0x4800
90 #define OV5640_REG_DEBUG_MODE 0x4814
91 #define OV5640_REG_ISP_FORMAT_MUX_CTRL 0x501f
92 #define OV5640_REG_PRE_ISP_TEST_SET1 0x503d
93 #define OV5640_REG_SDE_CTRL0 0x5580
94 #define OV5640_REG_SDE_CTRL1 0x5581
95 #define OV5640_REG_SDE_CTRL3 0x5583
96 #define OV5640_REG_SDE_CTRL4 0x5584
97 #define OV5640_REG_SDE_CTRL5 0x5585
98 #define OV5640_REG_AVG_READOUT 0x56a1
99
100 enum ov5640_mode_id {
101 OV5640_MODE_QQVGA_160_120 = 0,
102 OV5640_MODE_QCIF_176_144,
103 OV5640_MODE_QVGA_320_240,
104 OV5640_MODE_VGA_640_480,
105 OV5640_MODE_NTSC_720_480,
106 OV5640_MODE_PAL_720_576,
107 OV5640_MODE_XGA_1024_768,
108 OV5640_MODE_720P_1280_720,
109 OV5640_MODE_1080P_1920_1080,
110 OV5640_MODE_QSXGA_2592_1944,
111 OV5640_NUM_MODES,
112 };
113
114 enum ov5640_frame_rate {
115 OV5640_15_FPS = 0,
116 OV5640_30_FPS,
117 OV5640_60_FPS,
118 OV5640_NUM_FRAMERATES,
119 };
120
121 enum ov5640_format_mux {
122 OV5640_FMT_MUX_YUV422 = 0,
123 OV5640_FMT_MUX_RGB,
124 OV5640_FMT_MUX_DITHER,
125 OV5640_FMT_MUX_RAW_DPC,
126 OV5640_FMT_MUX_SNR_RAW,
127 OV5640_FMT_MUX_RAW_CIP,
128 };
129
130 struct ov5640_pixfmt {
131 u32 code;
132 u32 colorspace;
133 };
134
135 static const struct ov5640_pixfmt ov5640_formats[] = {
136 { MEDIA_BUS_FMT_JPEG_1X8, V4L2_COLORSPACE_JPEG, },
137 { MEDIA_BUS_FMT_UYVY8_2X8, V4L2_COLORSPACE_SRGB, },
138 { MEDIA_BUS_FMT_UYVY8_1X16, V4L2_COLORSPACE_SRGB, },
139 { MEDIA_BUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_SRGB, },
140 { MEDIA_BUS_FMT_YUYV8_1X16, V4L2_COLORSPACE_SRGB, },
141 { MEDIA_BUS_FMT_RGB565_2X8_LE, V4L2_COLORSPACE_SRGB, },
142 { MEDIA_BUS_FMT_RGB565_2X8_BE, V4L2_COLORSPACE_SRGB, },
143 { MEDIA_BUS_FMT_SBGGR8_1X8, V4L2_COLORSPACE_SRGB, },
144 { MEDIA_BUS_FMT_SGBRG8_1X8, V4L2_COLORSPACE_SRGB, },
145 { MEDIA_BUS_FMT_SGRBG8_1X8, V4L2_COLORSPACE_SRGB, },
146 { MEDIA_BUS_FMT_SRGGB8_1X8, V4L2_COLORSPACE_SRGB, },
147 };
148
149 /*
150 * FIXME: remove this when a subdev API becomes available
151 * to set the MIPI CSI-2 virtual channel.
152 */
153 static unsigned int virtual_channel;
154 module_param(virtual_channel, uint, 0444);
155 MODULE_PARM_DESC(virtual_channel,
156 "MIPI CSI-2 virtual channel (0..3), default 0");
157
158 static const int ov5640_framerates[] = {
159 [OV5640_15_FPS] = 15,
160 [OV5640_30_FPS] = 30,
161 [OV5640_60_FPS] = 60,
162 };
163
164 /* regulator supplies */
165 static const char * const ov5640_supply_name[] = {
166 "DOVDD", /* Digital I/O (1.8V) supply */
167 "AVDD", /* Analog (2.8V) supply */
168 "DVDD", /* Digital Core (1.5V) supply */
169 };
170
171 #define OV5640_NUM_SUPPLIES ARRAY_SIZE(ov5640_supply_name)
172
173 /*
174 * Image size under 1280 * 960 are SUBSAMPLING
175 * Image size upper 1280 * 960 are SCALING
176 */
177 enum ov5640_downsize_mode {
178 SUBSAMPLING,
179 SCALING,
180 };
181
182 struct reg_value {
183 u16 reg_addr;
184 u8 val;
185 u8 mask;
186 u32 delay_ms;
187 };
188
189 struct ov5640_mode_info {
190 enum ov5640_mode_id id;
191 enum ov5640_downsize_mode dn_mode;
192 u32 hact;
193 u32 htot;
194 u32 vact;
195 u32 vtot;
196 const struct reg_value *reg_data;
197 u32 reg_data_size;
198 u32 max_fps;
199 };
200
201 struct ov5640_ctrls {
202 struct v4l2_ctrl_handler handler;
203 struct v4l2_ctrl *pixel_rate;
204 struct {
205 struct v4l2_ctrl *auto_exp;
206 struct v4l2_ctrl *exposure;
207 };
208 struct {
209 struct v4l2_ctrl *auto_wb;
210 struct v4l2_ctrl *blue_balance;
211 struct v4l2_ctrl *red_balance;
212 };
213 struct {
214 struct v4l2_ctrl *auto_gain;
215 struct v4l2_ctrl *gain;
216 };
217 struct v4l2_ctrl *brightness;
218 struct v4l2_ctrl *light_freq;
219 struct v4l2_ctrl *saturation;
220 struct v4l2_ctrl *contrast;
221 struct v4l2_ctrl *hue;
222 struct v4l2_ctrl *test_pattern;
223 struct v4l2_ctrl *hflip;
224 struct v4l2_ctrl *vflip;
225 };
226
227 struct ov5640_dev {
228 struct i2c_client *i2c_client;
229 struct v4l2_subdev sd;
230 struct media_pad pad;
231 struct v4l2_fwnode_endpoint ep; /* the parsed DT endpoint info */
232 struct clk *xclk; /* system clock to OV5640 */
233 u32 xclk_freq;
234
235 struct regulator_bulk_data supplies[OV5640_NUM_SUPPLIES];
236 struct gpio_desc *reset_gpio;
237 struct gpio_desc *pwdn_gpio;
238 bool upside_down;
239
240 /* lock to protect all members below */
241 struct mutex lock;
242
243 int power_count;
244
245 struct v4l2_mbus_framefmt fmt;
246 bool pending_fmt_change;
247
248 const struct ov5640_mode_info *current_mode;
249 const struct ov5640_mode_info *last_mode;
250 enum ov5640_frame_rate current_fr;
251 struct v4l2_fract frame_interval;
252
253 struct ov5640_ctrls ctrls;
254
255 u32 prev_sysclk, prev_hts;
256 u32 ae_low, ae_high, ae_target;
257
258 bool pending_mode_change;
259 bool streaming;
260 };
261
to_ov5640_dev(struct v4l2_subdev * sd)262 static inline struct ov5640_dev *to_ov5640_dev(struct v4l2_subdev *sd)
263 {
264 return container_of(sd, struct ov5640_dev, sd);
265 }
266
ctrl_to_sd(struct v4l2_ctrl * ctrl)267 static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl)
268 {
269 return &container_of(ctrl->handler, struct ov5640_dev,
270 ctrls.handler)->sd;
271 }
272
273 /*
274 * FIXME: all of these register tables are likely filled with
275 * entries that set the register to their power-on default values,
276 * and which are otherwise not touched by this driver. Those entries
277 * should be identified and removed to speed register load time
278 * over i2c.
279 */
280 /* YUV422 UYVY VGA@30fps */
281 static const struct reg_value ov5640_init_setting_30fps_VGA[] = {
282 {0x3103, 0x11, 0, 0}, {0x3008, 0x82, 0, 5}, {0x3008, 0x42, 0, 0},
283 {0x3103, 0x03, 0, 0}, {0x3630, 0x36, 0, 0},
284 {0x3631, 0x0e, 0, 0}, {0x3632, 0xe2, 0, 0}, {0x3633, 0x12, 0, 0},
285 {0x3621, 0xe0, 0, 0}, {0x3704, 0xa0, 0, 0}, {0x3703, 0x5a, 0, 0},
286 {0x3715, 0x78, 0, 0}, {0x3717, 0x01, 0, 0}, {0x370b, 0x60, 0, 0},
287 {0x3705, 0x1a, 0, 0}, {0x3905, 0x02, 0, 0}, {0x3906, 0x10, 0, 0},
288 {0x3901, 0x0a, 0, 0}, {0x3731, 0x12, 0, 0}, {0x3600, 0x08, 0, 0},
289 {0x3601, 0x33, 0, 0}, {0x302d, 0x60, 0, 0}, {0x3620, 0x52, 0, 0},
290 {0x371b, 0x20, 0, 0}, {0x471c, 0x50, 0, 0}, {0x3a13, 0x43, 0, 0},
291 {0x3a18, 0x00, 0, 0}, {0x3a19, 0xf8, 0, 0}, {0x3635, 0x13, 0, 0},
292 {0x3636, 0x03, 0, 0}, {0x3634, 0x40, 0, 0}, {0x3622, 0x01, 0, 0},
293 {0x3c01, 0xa4, 0, 0}, {0x3c04, 0x28, 0, 0}, {0x3c05, 0x98, 0, 0},
294 {0x3c06, 0x00, 0, 0}, {0x3c07, 0x08, 0, 0}, {0x3c08, 0x00, 0, 0},
295 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
296 {0x3820, 0x41, 0, 0}, {0x3821, 0x07, 0, 0}, {0x3814, 0x31, 0, 0},
297 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
298 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
299 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
300 {0x3810, 0x00, 0, 0},
301 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
302 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
303 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
304 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
305 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
306 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
307 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x3000, 0x00, 0, 0},
308 {0x3002, 0x1c, 0, 0}, {0x3004, 0xff, 0, 0}, {0x3006, 0xc3, 0, 0},
309 {0x302e, 0x08, 0, 0}, {0x4300, 0x3f, 0, 0},
310 {0x501f, 0x00, 0, 0}, {0x4407, 0x04, 0, 0},
311 {0x440e, 0x00, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
312 {0x4837, 0x0a, 0, 0}, {0x3824, 0x02, 0, 0},
313 {0x5000, 0xa7, 0, 0}, {0x5001, 0xa3, 0, 0}, {0x5180, 0xff, 0, 0},
314 {0x5181, 0xf2, 0, 0}, {0x5182, 0x00, 0, 0}, {0x5183, 0x14, 0, 0},
315 {0x5184, 0x25, 0, 0}, {0x5185, 0x24, 0, 0}, {0x5186, 0x09, 0, 0},
316 {0x5187, 0x09, 0, 0}, {0x5188, 0x09, 0, 0}, {0x5189, 0x88, 0, 0},
317 {0x518a, 0x54, 0, 0}, {0x518b, 0xee, 0, 0}, {0x518c, 0xb2, 0, 0},
318 {0x518d, 0x50, 0, 0}, {0x518e, 0x34, 0, 0}, {0x518f, 0x6b, 0, 0},
319 {0x5190, 0x46, 0, 0}, {0x5191, 0xf8, 0, 0}, {0x5192, 0x04, 0, 0},
320 {0x5193, 0x70, 0, 0}, {0x5194, 0xf0, 0, 0}, {0x5195, 0xf0, 0, 0},
321 {0x5196, 0x03, 0, 0}, {0x5197, 0x01, 0, 0}, {0x5198, 0x04, 0, 0},
322 {0x5199, 0x6c, 0, 0}, {0x519a, 0x04, 0, 0}, {0x519b, 0x00, 0, 0},
323 {0x519c, 0x09, 0, 0}, {0x519d, 0x2b, 0, 0}, {0x519e, 0x38, 0, 0},
324 {0x5381, 0x1e, 0, 0}, {0x5382, 0x5b, 0, 0}, {0x5383, 0x08, 0, 0},
325 {0x5384, 0x0a, 0, 0}, {0x5385, 0x7e, 0, 0}, {0x5386, 0x88, 0, 0},
326 {0x5387, 0x7c, 0, 0}, {0x5388, 0x6c, 0, 0}, {0x5389, 0x10, 0, 0},
327 {0x538a, 0x01, 0, 0}, {0x538b, 0x98, 0, 0}, {0x5300, 0x08, 0, 0},
328 {0x5301, 0x30, 0, 0}, {0x5302, 0x10, 0, 0}, {0x5303, 0x00, 0, 0},
329 {0x5304, 0x08, 0, 0}, {0x5305, 0x30, 0, 0}, {0x5306, 0x08, 0, 0},
330 {0x5307, 0x16, 0, 0}, {0x5309, 0x08, 0, 0}, {0x530a, 0x30, 0, 0},
331 {0x530b, 0x04, 0, 0}, {0x530c, 0x06, 0, 0}, {0x5480, 0x01, 0, 0},
332 {0x5481, 0x08, 0, 0}, {0x5482, 0x14, 0, 0}, {0x5483, 0x28, 0, 0},
333 {0x5484, 0x51, 0, 0}, {0x5485, 0x65, 0, 0}, {0x5486, 0x71, 0, 0},
334 {0x5487, 0x7d, 0, 0}, {0x5488, 0x87, 0, 0}, {0x5489, 0x91, 0, 0},
335 {0x548a, 0x9a, 0, 0}, {0x548b, 0xaa, 0, 0}, {0x548c, 0xb8, 0, 0},
336 {0x548d, 0xcd, 0, 0}, {0x548e, 0xdd, 0, 0}, {0x548f, 0xea, 0, 0},
337 {0x5490, 0x1d, 0, 0}, {0x5580, 0x02, 0, 0}, {0x5583, 0x40, 0, 0},
338 {0x5584, 0x10, 0, 0}, {0x5589, 0x10, 0, 0}, {0x558a, 0x00, 0, 0},
339 {0x558b, 0xf8, 0, 0}, {0x5800, 0x23, 0, 0}, {0x5801, 0x14, 0, 0},
340 {0x5802, 0x0f, 0, 0}, {0x5803, 0x0f, 0, 0}, {0x5804, 0x12, 0, 0},
341 {0x5805, 0x26, 0, 0}, {0x5806, 0x0c, 0, 0}, {0x5807, 0x08, 0, 0},
342 {0x5808, 0x05, 0, 0}, {0x5809, 0x05, 0, 0}, {0x580a, 0x08, 0, 0},
343 {0x580b, 0x0d, 0, 0}, {0x580c, 0x08, 0, 0}, {0x580d, 0x03, 0, 0},
344 {0x580e, 0x00, 0, 0}, {0x580f, 0x00, 0, 0}, {0x5810, 0x03, 0, 0},
345 {0x5811, 0x09, 0, 0}, {0x5812, 0x07, 0, 0}, {0x5813, 0x03, 0, 0},
346 {0x5814, 0x00, 0, 0}, {0x5815, 0x01, 0, 0}, {0x5816, 0x03, 0, 0},
347 {0x5817, 0x08, 0, 0}, {0x5818, 0x0d, 0, 0}, {0x5819, 0x08, 0, 0},
348 {0x581a, 0x05, 0, 0}, {0x581b, 0x06, 0, 0}, {0x581c, 0x08, 0, 0},
349 {0x581d, 0x0e, 0, 0}, {0x581e, 0x29, 0, 0}, {0x581f, 0x17, 0, 0},
350 {0x5820, 0x11, 0, 0}, {0x5821, 0x11, 0, 0}, {0x5822, 0x15, 0, 0},
351 {0x5823, 0x28, 0, 0}, {0x5824, 0x46, 0, 0}, {0x5825, 0x26, 0, 0},
352 {0x5826, 0x08, 0, 0}, {0x5827, 0x26, 0, 0}, {0x5828, 0x64, 0, 0},
353 {0x5829, 0x26, 0, 0}, {0x582a, 0x24, 0, 0}, {0x582b, 0x22, 0, 0},
354 {0x582c, 0x24, 0, 0}, {0x582d, 0x24, 0, 0}, {0x582e, 0x06, 0, 0},
355 {0x582f, 0x22, 0, 0}, {0x5830, 0x40, 0, 0}, {0x5831, 0x42, 0, 0},
356 {0x5832, 0x24, 0, 0}, {0x5833, 0x26, 0, 0}, {0x5834, 0x24, 0, 0},
357 {0x5835, 0x22, 0, 0}, {0x5836, 0x22, 0, 0}, {0x5837, 0x26, 0, 0},
358 {0x5838, 0x44, 0, 0}, {0x5839, 0x24, 0, 0}, {0x583a, 0x26, 0, 0},
359 {0x583b, 0x28, 0, 0}, {0x583c, 0x42, 0, 0}, {0x583d, 0xce, 0, 0},
360 {0x5025, 0x00, 0, 0}, {0x3a0f, 0x30, 0, 0}, {0x3a10, 0x28, 0, 0},
361 {0x3a1b, 0x30, 0, 0}, {0x3a1e, 0x26, 0, 0}, {0x3a11, 0x60, 0, 0},
362 {0x3a1f, 0x14, 0, 0}, {0x3008, 0x02, 0, 0}, {0x3c00, 0x04, 0, 300},
363 };
364
365 static const struct reg_value ov5640_setting_VGA_640_480[] = {
366 {0x3c07, 0x08, 0, 0},
367 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
368 {0x3814, 0x31, 0, 0},
369 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
370 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
371 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
372 {0x3810, 0x00, 0, 0},
373 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
374 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
375 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
376 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
377 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
378 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
379 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
380 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
381 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
382 };
383
384 static const struct reg_value ov5640_setting_XGA_1024_768[] = {
385 {0x3c07, 0x08, 0, 0},
386 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
387 {0x3814, 0x31, 0, 0},
388 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
389 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
390 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
391 {0x3810, 0x00, 0, 0},
392 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
393 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
394 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
395 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
396 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
397 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
398 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
399 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
400 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
401 };
402
403 static const struct reg_value ov5640_setting_QVGA_320_240[] = {
404 {0x3c07, 0x08, 0, 0},
405 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
406 {0x3814, 0x31, 0, 0},
407 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
408 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
409 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
410 {0x3810, 0x00, 0, 0},
411 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
412 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
413 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
414 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
415 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
416 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
417 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
418 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
419 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
420 };
421
422 static const struct reg_value ov5640_setting_QQVGA_160_120[] = {
423 {0x3c07, 0x08, 0, 0},
424 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
425 {0x3814, 0x31, 0, 0},
426 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
427 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
428 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
429 {0x3810, 0x00, 0, 0},
430 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
431 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
432 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
433 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
434 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
435 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
436 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
437 {0x4407, 0x04, 0, 0}, {0x5001, 0xa3, 0, 0},
438 };
439
440 static const struct reg_value ov5640_setting_QCIF_176_144[] = {
441 {0x3c07, 0x08, 0, 0},
442 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
443 {0x3814, 0x31, 0, 0},
444 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
445 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
446 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
447 {0x3810, 0x00, 0, 0},
448 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
449 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
450 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
451 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
452 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
453 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
454 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
455 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
456 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
457 };
458
459 static const struct reg_value ov5640_setting_NTSC_720_480[] = {
460 {0x3c07, 0x08, 0, 0},
461 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
462 {0x3814, 0x31, 0, 0},
463 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
464 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
465 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
466 {0x3810, 0x00, 0, 0},
467 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x3c, 0, 0},
468 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
469 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
470 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
471 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
472 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
473 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
474 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
475 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
476 };
477
478 static const struct reg_value ov5640_setting_PAL_720_576[] = {
479 {0x3c07, 0x08, 0, 0},
480 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
481 {0x3814, 0x31, 0, 0},
482 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
483 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
484 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
485 {0x3810, 0x00, 0, 0},
486 {0x3811, 0x38, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
487 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
488 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
489 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
490 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
491 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
492 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
493 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
494 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
495 };
496
497 static const struct reg_value ov5640_setting_720P_1280_720[] = {
498 {0x3c07, 0x07, 0, 0},
499 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
500 {0x3814, 0x31, 0, 0},
501 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
502 {0x3802, 0x00, 0, 0}, {0x3803, 0xfa, 0, 0}, {0x3804, 0x0a, 0, 0},
503 {0x3805, 0x3f, 0, 0}, {0x3806, 0x06, 0, 0}, {0x3807, 0xa9, 0, 0},
504 {0x3810, 0x00, 0, 0},
505 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
506 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
507 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x02, 0, 0},
508 {0x3a03, 0xe4, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0xbc, 0, 0},
509 {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x72, 0, 0}, {0x3a0e, 0x01, 0, 0},
510 {0x3a0d, 0x02, 0, 0}, {0x3a14, 0x02, 0, 0}, {0x3a15, 0xe4, 0, 0},
511 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
512 {0x4407, 0x04, 0, 0}, {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0},
513 {0x3824, 0x04, 0, 0}, {0x5001, 0x83, 0, 0},
514 };
515
516 static const struct reg_value ov5640_setting_1080P_1920_1080[] = {
517 {0x3c07, 0x08, 0, 0},
518 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
519 {0x3814, 0x11, 0, 0},
520 {0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
521 {0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0},
522 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0},
523 {0x3810, 0x00, 0, 0},
524 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
525 {0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0},
526 {0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0},
527 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
528 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
529 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
530 {0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0},
531 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
532 {0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 0},
533 {0x3c07, 0x07, 0, 0}, {0x3c08, 0x00, 0, 0},
534 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
535 {0x3800, 0x01, 0, 0}, {0x3801, 0x50, 0, 0}, {0x3802, 0x01, 0, 0},
536 {0x3803, 0xb2, 0, 0}, {0x3804, 0x08, 0, 0}, {0x3805, 0xef, 0, 0},
537 {0x3806, 0x05, 0, 0}, {0x3807, 0xf1, 0, 0},
538 {0x3612, 0x2b, 0, 0}, {0x3708, 0x64, 0, 0},
539 {0x3a02, 0x04, 0, 0}, {0x3a03, 0x60, 0, 0}, {0x3a08, 0x01, 0, 0},
540 {0x3a09, 0x50, 0, 0}, {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x18, 0, 0},
541 {0x3a0e, 0x03, 0, 0}, {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x04, 0, 0},
542 {0x3a15, 0x60, 0, 0}, {0x4407, 0x04, 0, 0},
543 {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, {0x3824, 0x04, 0, 0},
544 {0x4005, 0x1a, 0, 0},
545 };
546
547 static const struct reg_value ov5640_setting_QSXGA_2592_1944[] = {
548 {0x3c07, 0x08, 0, 0},
549 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
550 {0x3814, 0x11, 0, 0},
551 {0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
552 {0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0},
553 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0},
554 {0x3810, 0x00, 0, 0},
555 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
556 {0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0},
557 {0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0},
558 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
559 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
560 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
561 {0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0},
562 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
563 {0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 70},
564 };
565
566 /* power-on sensor init reg table */
567 static const struct ov5640_mode_info ov5640_mode_init_data = {
568 0, SUBSAMPLING, 640, 1896, 480, 984,
569 ov5640_init_setting_30fps_VGA,
570 ARRAY_SIZE(ov5640_init_setting_30fps_VGA),
571 OV5640_30_FPS,
572 };
573
574 static const struct ov5640_mode_info
575 ov5640_mode_data[OV5640_NUM_MODES] = {
576 {OV5640_MODE_QQVGA_160_120, SUBSAMPLING,
577 160, 1896, 120, 984,
578 ov5640_setting_QQVGA_160_120,
579 ARRAY_SIZE(ov5640_setting_QQVGA_160_120),
580 OV5640_30_FPS},
581 {OV5640_MODE_QCIF_176_144, SUBSAMPLING,
582 176, 1896, 144, 984,
583 ov5640_setting_QCIF_176_144,
584 ARRAY_SIZE(ov5640_setting_QCIF_176_144),
585 OV5640_30_FPS},
586 {OV5640_MODE_QVGA_320_240, SUBSAMPLING,
587 320, 1896, 240, 984,
588 ov5640_setting_QVGA_320_240,
589 ARRAY_SIZE(ov5640_setting_QVGA_320_240),
590 OV5640_30_FPS},
591 {OV5640_MODE_VGA_640_480, SUBSAMPLING,
592 640, 1896, 480, 1080,
593 ov5640_setting_VGA_640_480,
594 ARRAY_SIZE(ov5640_setting_VGA_640_480),
595 OV5640_60_FPS},
596 {OV5640_MODE_NTSC_720_480, SUBSAMPLING,
597 720, 1896, 480, 984,
598 ov5640_setting_NTSC_720_480,
599 ARRAY_SIZE(ov5640_setting_NTSC_720_480),
600 OV5640_30_FPS},
601 {OV5640_MODE_PAL_720_576, SUBSAMPLING,
602 720, 1896, 576, 984,
603 ov5640_setting_PAL_720_576,
604 ARRAY_SIZE(ov5640_setting_PAL_720_576),
605 OV5640_30_FPS},
606 {OV5640_MODE_XGA_1024_768, SUBSAMPLING,
607 1024, 1896, 768, 1080,
608 ov5640_setting_XGA_1024_768,
609 ARRAY_SIZE(ov5640_setting_XGA_1024_768),
610 OV5640_30_FPS},
611 {OV5640_MODE_720P_1280_720, SUBSAMPLING,
612 1280, 1892, 720, 740,
613 ov5640_setting_720P_1280_720,
614 ARRAY_SIZE(ov5640_setting_720P_1280_720),
615 OV5640_30_FPS},
616 {OV5640_MODE_1080P_1920_1080, SCALING,
617 1920, 2500, 1080, 1120,
618 ov5640_setting_1080P_1920_1080,
619 ARRAY_SIZE(ov5640_setting_1080P_1920_1080),
620 OV5640_30_FPS},
621 {OV5640_MODE_QSXGA_2592_1944, SCALING,
622 2592, 2844, 1944, 1968,
623 ov5640_setting_QSXGA_2592_1944,
624 ARRAY_SIZE(ov5640_setting_QSXGA_2592_1944),
625 OV5640_15_FPS},
626 };
627
ov5640_init_slave_id(struct ov5640_dev * sensor)628 static int ov5640_init_slave_id(struct ov5640_dev *sensor)
629 {
630 struct i2c_client *client = sensor->i2c_client;
631 struct i2c_msg msg;
632 u8 buf[3];
633 int ret;
634
635 if (client->addr == OV5640_DEFAULT_SLAVE_ID)
636 return 0;
637
638 buf[0] = OV5640_REG_SLAVE_ID >> 8;
639 buf[1] = OV5640_REG_SLAVE_ID & 0xff;
640 buf[2] = client->addr << 1;
641
642 msg.addr = OV5640_DEFAULT_SLAVE_ID;
643 msg.flags = 0;
644 msg.buf = buf;
645 msg.len = sizeof(buf);
646
647 ret = i2c_transfer(client->adapter, &msg, 1);
648 if (ret < 0) {
649 dev_err(&client->dev, "%s: failed with %d\n", __func__, ret);
650 return ret;
651 }
652
653 return 0;
654 }
655
ov5640_write_reg(struct ov5640_dev * sensor,u16 reg,u8 val)656 static int ov5640_write_reg(struct ov5640_dev *sensor, u16 reg, u8 val)
657 {
658 struct i2c_client *client = sensor->i2c_client;
659 struct i2c_msg msg;
660 u8 buf[3];
661 int ret;
662
663 buf[0] = reg >> 8;
664 buf[1] = reg & 0xff;
665 buf[2] = val;
666
667 msg.addr = client->addr;
668 msg.flags = client->flags;
669 msg.buf = buf;
670 msg.len = sizeof(buf);
671
672 ret = i2c_transfer(client->adapter, &msg, 1);
673 if (ret < 0) {
674 dev_err(&client->dev, "%s: error: reg=%x, val=%x\n",
675 __func__, reg, val);
676 return ret;
677 }
678
679 return 0;
680 }
681
ov5640_read_reg(struct ov5640_dev * sensor,u16 reg,u8 * val)682 static int ov5640_read_reg(struct ov5640_dev *sensor, u16 reg, u8 *val)
683 {
684 struct i2c_client *client = sensor->i2c_client;
685 struct i2c_msg msg[2];
686 u8 buf[2];
687 int ret;
688
689 buf[0] = reg >> 8;
690 buf[1] = reg & 0xff;
691
692 msg[0].addr = client->addr;
693 msg[0].flags = client->flags;
694 msg[0].buf = buf;
695 msg[0].len = sizeof(buf);
696
697 msg[1].addr = client->addr;
698 msg[1].flags = client->flags | I2C_M_RD;
699 msg[1].buf = buf;
700 msg[1].len = 1;
701
702 ret = i2c_transfer(client->adapter, msg, 2);
703 if (ret < 0) {
704 dev_err(&client->dev, "%s: error: reg=%x\n",
705 __func__, reg);
706 return ret;
707 }
708
709 *val = buf[0];
710 return 0;
711 }
712
ov5640_read_reg16(struct ov5640_dev * sensor,u16 reg,u16 * val)713 static int ov5640_read_reg16(struct ov5640_dev *sensor, u16 reg, u16 *val)
714 {
715 u8 hi, lo;
716 int ret;
717
718 ret = ov5640_read_reg(sensor, reg, &hi);
719 if (ret)
720 return ret;
721 ret = ov5640_read_reg(sensor, reg + 1, &lo);
722 if (ret)
723 return ret;
724
725 *val = ((u16)hi << 8) | (u16)lo;
726 return 0;
727 }
728
ov5640_write_reg16(struct ov5640_dev * sensor,u16 reg,u16 val)729 static int ov5640_write_reg16(struct ov5640_dev *sensor, u16 reg, u16 val)
730 {
731 int ret;
732
733 ret = ov5640_write_reg(sensor, reg, val >> 8);
734 if (ret)
735 return ret;
736
737 return ov5640_write_reg(sensor, reg + 1, val & 0xff);
738 }
739
ov5640_mod_reg(struct ov5640_dev * sensor,u16 reg,u8 mask,u8 val)740 static int ov5640_mod_reg(struct ov5640_dev *sensor, u16 reg,
741 u8 mask, u8 val)
742 {
743 u8 readval;
744 int ret;
745
746 ret = ov5640_read_reg(sensor, reg, &readval);
747 if (ret)
748 return ret;
749
750 readval &= ~mask;
751 val &= mask;
752 val |= readval;
753
754 return ov5640_write_reg(sensor, reg, val);
755 }
756
757 /*
758 * After trying the various combinations, reading various
759 * documentations spread around the net, and from the various
760 * feedback, the clock tree is probably as follows:
761 *
762 * +--------------+
763 * | Ext. Clock |
764 * +-+------------+
765 * | +----------+
766 * +->| PLL1 | - reg 0x3036, for the multiplier
767 * +-+--------+ - reg 0x3037, bits 0-3 for the pre-divider
768 * | +--------------+
769 * +->| System Clock | - reg 0x3035, bits 4-7
770 * +-+------------+
771 * | +--------------+
772 * +->| MIPI Divider | - reg 0x3035, bits 0-3
773 * | +-+------------+
774 * | +----------------> MIPI SCLK
775 * | + +-----+
776 * | +->| / 2 |-------> MIPI BIT CLK
777 * | +-----+
778 * | +--------------+
779 * +->| PLL Root Div | - reg 0x3037, bit 4
780 * +-+------------+
781 * | +---------+
782 * +->| Bit Div | - reg 0x3034, bits 0-3
783 * +-+-------+
784 * | +-------------+
785 * +->| SCLK Div | - reg 0x3108, bits 0-1
786 * | +-+-----------+
787 * | +---------------> SCLK
788 * | +-------------+
789 * +->| SCLK 2X Div | - reg 0x3108, bits 2-3
790 * | +-+-----------+
791 * | +---------------> SCLK 2X
792 * | +-------------+
793 * +->| PCLK Div | - reg 0x3108, bits 4-5
794 * ++------------+
795 * + +-----------+
796 * +->| P_DIV | - reg 0x3035, bits 0-3
797 * +-----+-----+
798 * +------------> PCLK
799 *
800 * This is deviating from the datasheet at least for the register
801 * 0x3108, since it's said here that the PCLK would be clocked from
802 * the PLL.
803 *
804 * There seems to be also (unverified) constraints:
805 * - the PLL pre-divider output rate should be in the 4-27MHz range
806 * - the PLL multiplier output rate should be in the 500-1000MHz range
807 * - PCLK >= SCLK * 2 in YUV, >= SCLK in Raw or JPEG
808 *
809 * In the two latter cases, these constraints are met since our
810 * factors are hardcoded. If we were to change that, we would need to
811 * take this into account. The only varying parts are the PLL
812 * multiplier and the system clock divider, which are shared between
813 * all these clocks so won't cause any issue.
814 */
815
816 /*
817 * This is supposed to be ranging from 1 to 8, but the value is always
818 * set to 3 in the vendor kernels.
819 */
820 #define OV5640_PLL_PREDIV 3
821
822 #define OV5640_PLL_MULT_MIN 4
823 #define OV5640_PLL_MULT_MAX 252
824
825 /*
826 * This is supposed to be ranging from 1 to 16, but the value is
827 * always set to either 1 or 2 in the vendor kernels.
828 */
829 #define OV5640_SYSDIV_MIN 1
830 #define OV5640_SYSDIV_MAX 16
831
832 /*
833 * Hardcode these values for scaler and non-scaler modes.
834 * FIXME: to be re-calcualted for 1 data lanes setups
835 */
836 #define OV5640_MIPI_DIV_PCLK 2
837 #define OV5640_MIPI_DIV_SCLK 1
838
839 /*
840 * This is supposed to be ranging from 1 to 2, but the value is always
841 * set to 2 in the vendor kernels.
842 */
843 #define OV5640_PLL_ROOT_DIV 2
844 #define OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 BIT(4)
845
846 /*
847 * We only supports 8-bit formats at the moment
848 */
849 #define OV5640_BIT_DIV 2
850 #define OV5640_PLL_CTRL0_MIPI_MODE_8BIT 0x08
851
852 /*
853 * This is supposed to be ranging from 1 to 8, but the value is always
854 * set to 2 in the vendor kernels.
855 */
856 #define OV5640_SCLK_ROOT_DIV 2
857
858 /*
859 * This is hardcoded so that the consistency is maintained between SCLK and
860 * SCLK 2x.
861 */
862 #define OV5640_SCLK2X_ROOT_DIV (OV5640_SCLK_ROOT_DIV / 2)
863
864 /*
865 * This is supposed to be ranging from 1 to 8, but the value is always
866 * set to 1 in the vendor kernels.
867 */
868 #define OV5640_PCLK_ROOT_DIV 1
869 #define OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS 0x00
870
ov5640_compute_sys_clk(struct ov5640_dev * sensor,u8 pll_prediv,u8 pll_mult,u8 sysdiv)871 static unsigned long ov5640_compute_sys_clk(struct ov5640_dev *sensor,
872 u8 pll_prediv, u8 pll_mult,
873 u8 sysdiv)
874 {
875 unsigned long sysclk = sensor->xclk_freq / pll_prediv * pll_mult;
876
877 /* PLL1 output cannot exceed 1GHz. */
878 if (sysclk / 1000000 > 1000)
879 return 0;
880
881 return sysclk / sysdiv;
882 }
883
ov5640_calc_sys_clk(struct ov5640_dev * sensor,unsigned long rate,u8 * pll_prediv,u8 * pll_mult,u8 * sysdiv)884 static unsigned long ov5640_calc_sys_clk(struct ov5640_dev *sensor,
885 unsigned long rate,
886 u8 *pll_prediv, u8 *pll_mult,
887 u8 *sysdiv)
888 {
889 unsigned long best = ~0;
890 u8 best_sysdiv = 1, best_mult = 1;
891 u8 _sysdiv, _pll_mult;
892
893 for (_sysdiv = OV5640_SYSDIV_MIN;
894 _sysdiv <= OV5640_SYSDIV_MAX;
895 _sysdiv++) {
896 for (_pll_mult = OV5640_PLL_MULT_MIN;
897 _pll_mult <= OV5640_PLL_MULT_MAX;
898 _pll_mult++) {
899 unsigned long _rate;
900
901 /*
902 * The PLL multiplier cannot be odd if above
903 * 127.
904 */
905 if (_pll_mult > 127 && (_pll_mult % 2))
906 continue;
907
908 _rate = ov5640_compute_sys_clk(sensor,
909 OV5640_PLL_PREDIV,
910 _pll_mult, _sysdiv);
911
912 /*
913 * We have reached the maximum allowed PLL1 output,
914 * increase sysdiv.
915 */
916 if (!_rate)
917 break;
918
919 /*
920 * Prefer rates above the expected clock rate than
921 * below, even if that means being less precise.
922 */
923 if (_rate < rate)
924 continue;
925
926 if (abs(rate - _rate) < abs(rate - best)) {
927 best = _rate;
928 best_sysdiv = _sysdiv;
929 best_mult = _pll_mult;
930 }
931
932 if (_rate == rate)
933 goto out;
934 }
935 }
936
937 out:
938 *sysdiv = best_sysdiv;
939 *pll_prediv = OV5640_PLL_PREDIV;
940 *pll_mult = best_mult;
941
942 return best;
943 }
944
945 /*
946 * ov5640_set_mipi_pclk() - Calculate the clock tree configuration values
947 * for the MIPI CSI-2 output.
948 *
949 * @rate: The requested bandwidth per lane in bytes per second.
950 * 'Bandwidth Per Lane' is calculated as:
951 * bpl = HTOT * VTOT * FPS * bpp / num_lanes;
952 *
953 * This function use the requested bandwidth to calculate:
954 * - sample_rate = bpl / (bpp / num_lanes);
955 * = bpl / (PLL_RDIV * BIT_DIV * PCLK_DIV * MIPI_DIV / num_lanes);
956 *
957 * - mipi_sclk = bpl / MIPI_DIV / 2; ( / 2 is for CSI-2 DDR)
958 *
959 * with these fixed parameters:
960 * PLL_RDIV = 2;
961 * BIT_DIVIDER = 2; (MIPI_BIT_MODE == 8 ? 2 : 2,5);
962 * PCLK_DIV = 1;
963 *
964 * The MIPI clock generation differs for modes that use the scaler and modes
965 * that do not. In case the scaler is in use, the MIPI_SCLK generates the MIPI
966 * BIT CLk, and thus:
967 *
968 * - mipi_sclk = bpl / MIPI_DIV / 2;
969 * MIPI_DIV = 1;
970 *
971 * For modes that do not go through the scaler, the MIPI BIT CLOCK is generated
972 * from the pixel clock, and thus:
973 *
974 * - sample_rate = bpl / (bpp / num_lanes);
975 * = bpl / (2 * 2 * 1 * MIPI_DIV / num_lanes);
976 * = bpl / (4 * MIPI_DIV / num_lanes);
977 * - MIPI_DIV = bpp / (4 * num_lanes);
978 *
979 * FIXME: this have been tested with 16bpp and 2 lanes setup only.
980 * MIPI_DIV is fixed to value 2, but it -might- be changed according to the
981 * above formula for setups with 1 lane or image formats with different bpp.
982 *
983 * FIXME: this deviates from the sensor manual documentation which is quite
984 * thin on the MIPI clock tree generation part.
985 */
ov5640_set_mipi_pclk(struct ov5640_dev * sensor,unsigned long rate)986 static int ov5640_set_mipi_pclk(struct ov5640_dev *sensor,
987 unsigned long rate)
988 {
989 const struct ov5640_mode_info *mode = sensor->current_mode;
990 u8 prediv, mult, sysdiv;
991 u8 mipi_div;
992 int ret;
993
994 /*
995 * 1280x720 is reported to use 'SUBSAMPLING' only,
996 * but according to the sensor manual it goes through the
997 * scaler before subsampling.
998 */
999 if (mode->dn_mode == SCALING ||
1000 (mode->id == OV5640_MODE_720P_1280_720))
1001 mipi_div = OV5640_MIPI_DIV_SCLK;
1002 else
1003 mipi_div = OV5640_MIPI_DIV_PCLK;
1004
1005 ov5640_calc_sys_clk(sensor, rate, &prediv, &mult, &sysdiv);
1006
1007 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0,
1008 0x0f, OV5640_PLL_CTRL0_MIPI_MODE_8BIT);
1009
1010 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1,
1011 0xff, sysdiv << 4 | mipi_div);
1012 if (ret)
1013 return ret;
1014
1015 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 0xff, mult);
1016 if (ret)
1017 return ret;
1018
1019 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3,
1020 0x1f, OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 | prediv);
1021 if (ret)
1022 return ret;
1023
1024 return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER,
1025 0x30, OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS);
1026 }
1027
ov5640_calc_pclk(struct ov5640_dev * sensor,unsigned long rate,u8 * pll_prediv,u8 * pll_mult,u8 * sysdiv,u8 * pll_rdiv,u8 * bit_div,u8 * pclk_div)1028 static unsigned long ov5640_calc_pclk(struct ov5640_dev *sensor,
1029 unsigned long rate,
1030 u8 *pll_prediv, u8 *pll_mult, u8 *sysdiv,
1031 u8 *pll_rdiv, u8 *bit_div, u8 *pclk_div)
1032 {
1033 unsigned long _rate = rate * OV5640_PLL_ROOT_DIV * OV5640_BIT_DIV *
1034 OV5640_PCLK_ROOT_DIV;
1035
1036 _rate = ov5640_calc_sys_clk(sensor, _rate, pll_prediv, pll_mult,
1037 sysdiv);
1038 *pll_rdiv = OV5640_PLL_ROOT_DIV;
1039 *bit_div = OV5640_BIT_DIV;
1040 *pclk_div = OV5640_PCLK_ROOT_DIV;
1041
1042 return _rate / *pll_rdiv / *bit_div / *pclk_div;
1043 }
1044
ov5640_set_dvp_pclk(struct ov5640_dev * sensor,unsigned long rate)1045 static int ov5640_set_dvp_pclk(struct ov5640_dev *sensor, unsigned long rate)
1046 {
1047 u8 prediv, mult, sysdiv, pll_rdiv, bit_div, pclk_div;
1048 int ret;
1049
1050 ov5640_calc_pclk(sensor, rate, &prediv, &mult, &sysdiv, &pll_rdiv,
1051 &bit_div, &pclk_div);
1052
1053 if (bit_div == 2)
1054 bit_div = 8;
1055
1056 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0,
1057 0x0f, bit_div);
1058 if (ret)
1059 return ret;
1060
1061 /*
1062 * We need to set sysdiv according to the clock, and to clear
1063 * the MIPI divider.
1064 */
1065 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1,
1066 0xff, sysdiv << 4);
1067 if (ret)
1068 return ret;
1069
1070 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2,
1071 0xff, mult);
1072 if (ret)
1073 return ret;
1074
1075 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3,
1076 0x1f, prediv | ((pll_rdiv - 1) << 4));
1077 if (ret)
1078 return ret;
1079
1080 return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x30,
1081 (ilog2(pclk_div) << 4));
1082 }
1083
1084 /* set JPEG framing sizes */
ov5640_set_jpeg_timings(struct ov5640_dev * sensor,const struct ov5640_mode_info * mode)1085 static int ov5640_set_jpeg_timings(struct ov5640_dev *sensor,
1086 const struct ov5640_mode_info *mode)
1087 {
1088 int ret;
1089
1090 /*
1091 * compression mode 3 timing
1092 *
1093 * Data is transmitted with programmable width (VFIFO_HSIZE).
1094 * No padding done. Last line may have less data. Varying
1095 * number of lines per frame, depending on amount of data.
1096 */
1097 ret = ov5640_mod_reg(sensor, OV5640_REG_JPG_MODE_SELECT, 0x7, 0x3);
1098 if (ret < 0)
1099 return ret;
1100
1101 ret = ov5640_write_reg16(sensor, OV5640_REG_VFIFO_HSIZE, mode->hact);
1102 if (ret < 0)
1103 return ret;
1104
1105 return ov5640_write_reg16(sensor, OV5640_REG_VFIFO_VSIZE, mode->vact);
1106 }
1107
1108 /* download ov5640 settings to sensor through i2c */
ov5640_set_timings(struct ov5640_dev * sensor,const struct ov5640_mode_info * mode)1109 static int ov5640_set_timings(struct ov5640_dev *sensor,
1110 const struct ov5640_mode_info *mode)
1111 {
1112 int ret;
1113
1114 if (sensor->fmt.code == MEDIA_BUS_FMT_JPEG_1X8) {
1115 ret = ov5640_set_jpeg_timings(sensor, mode);
1116 if (ret < 0)
1117 return ret;
1118 }
1119
1120 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPHO, mode->hact);
1121 if (ret < 0)
1122 return ret;
1123
1124 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPVO, mode->vact);
1125 if (ret < 0)
1126 return ret;
1127
1128 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_HTS, mode->htot);
1129 if (ret < 0)
1130 return ret;
1131
1132 return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, mode->vtot);
1133 }
1134
ov5640_load_regs(struct ov5640_dev * sensor,const struct ov5640_mode_info * mode)1135 static int ov5640_load_regs(struct ov5640_dev *sensor,
1136 const struct ov5640_mode_info *mode)
1137 {
1138 const struct reg_value *regs = mode->reg_data;
1139 unsigned int i;
1140 u32 delay_ms;
1141 u16 reg_addr;
1142 u8 mask, val;
1143 int ret = 0;
1144
1145 for (i = 0; i < mode->reg_data_size; ++i, ++regs) {
1146 delay_ms = regs->delay_ms;
1147 reg_addr = regs->reg_addr;
1148 val = regs->val;
1149 mask = regs->mask;
1150
1151 /* remain in power down mode for DVP */
1152 if (regs->reg_addr == OV5640_REG_SYS_CTRL0 &&
1153 val == OV5640_REG_SYS_CTRL0_SW_PWUP &&
1154 sensor->ep.bus_type != V4L2_MBUS_CSI2_DPHY)
1155 continue;
1156
1157 if (mask)
1158 ret = ov5640_mod_reg(sensor, reg_addr, mask, val);
1159 else
1160 ret = ov5640_write_reg(sensor, reg_addr, val);
1161 if (ret)
1162 break;
1163
1164 if (delay_ms)
1165 usleep_range(1000 * delay_ms, 1000 * delay_ms + 100);
1166 }
1167
1168 return ov5640_set_timings(sensor, mode);
1169 }
1170
ov5640_set_autoexposure(struct ov5640_dev * sensor,bool on)1171 static int ov5640_set_autoexposure(struct ov5640_dev *sensor, bool on)
1172 {
1173 return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL,
1174 BIT(0), on ? 0 : BIT(0));
1175 }
1176
1177 /* read exposure, in number of line periods */
ov5640_get_exposure(struct ov5640_dev * sensor)1178 static int ov5640_get_exposure(struct ov5640_dev *sensor)
1179 {
1180 int exp, ret;
1181 u8 temp;
1182
1183 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_HI, &temp);
1184 if (ret)
1185 return ret;
1186 exp = ((int)temp & 0x0f) << 16;
1187 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_MED, &temp);
1188 if (ret)
1189 return ret;
1190 exp |= ((int)temp << 8);
1191 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_LO, &temp);
1192 if (ret)
1193 return ret;
1194 exp |= (int)temp;
1195
1196 return exp >> 4;
1197 }
1198
1199 /* write exposure, given number of line periods */
ov5640_set_exposure(struct ov5640_dev * sensor,u32 exposure)1200 static int ov5640_set_exposure(struct ov5640_dev *sensor, u32 exposure)
1201 {
1202 int ret;
1203
1204 exposure <<= 4;
1205
1206 ret = ov5640_write_reg(sensor,
1207 OV5640_REG_AEC_PK_EXPOSURE_LO,
1208 exposure & 0xff);
1209 if (ret)
1210 return ret;
1211 ret = ov5640_write_reg(sensor,
1212 OV5640_REG_AEC_PK_EXPOSURE_MED,
1213 (exposure >> 8) & 0xff);
1214 if (ret)
1215 return ret;
1216 return ov5640_write_reg(sensor,
1217 OV5640_REG_AEC_PK_EXPOSURE_HI,
1218 (exposure >> 16) & 0x0f);
1219 }
1220
ov5640_get_gain(struct ov5640_dev * sensor)1221 static int ov5640_get_gain(struct ov5640_dev *sensor)
1222 {
1223 u16 gain;
1224 int ret;
1225
1226 ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, &gain);
1227 if (ret)
1228 return ret;
1229
1230 return gain & 0x3ff;
1231 }
1232
ov5640_set_gain(struct ov5640_dev * sensor,int gain)1233 static int ov5640_set_gain(struct ov5640_dev *sensor, int gain)
1234 {
1235 return ov5640_write_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN,
1236 (u16)gain & 0x3ff);
1237 }
1238
ov5640_set_autogain(struct ov5640_dev * sensor,bool on)1239 static int ov5640_set_autogain(struct ov5640_dev *sensor, bool on)
1240 {
1241 return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL,
1242 BIT(1), on ? 0 : BIT(1));
1243 }
1244
ov5640_set_stream_dvp(struct ov5640_dev * sensor,bool on)1245 static int ov5640_set_stream_dvp(struct ov5640_dev *sensor, bool on)
1246 {
1247 return ov5640_write_reg(sensor, OV5640_REG_SYS_CTRL0, on ?
1248 OV5640_REG_SYS_CTRL0_SW_PWUP :
1249 OV5640_REG_SYS_CTRL0_SW_PWDN);
1250 }
1251
ov5640_set_stream_mipi(struct ov5640_dev * sensor,bool on)1252 static int ov5640_set_stream_mipi(struct ov5640_dev *sensor, bool on)
1253 {
1254 int ret;
1255
1256 /*
1257 * Enable/disable the MIPI interface
1258 *
1259 * 0x300e = on ? 0x45 : 0x40
1260 *
1261 * FIXME: the sensor manual (version 2.03) reports
1262 * [7:5] = 000 : 1 data lane mode
1263 * [7:5] = 001 : 2 data lanes mode
1264 * But this settings do not work, while the following ones
1265 * have been validated for 2 data lanes mode.
1266 *
1267 * [7:5] = 010 : 2 data lanes mode
1268 * [4] = 0 : Power up MIPI HS Tx
1269 * [3] = 0 : Power up MIPI LS Rx
1270 * [2] = 1/0 : MIPI interface enable/disable
1271 * [1:0] = 01/00: FIXME: 'debug'
1272 */
1273 ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00,
1274 on ? 0x45 : 0x40);
1275 if (ret)
1276 return ret;
1277
1278 return ov5640_write_reg(sensor, OV5640_REG_FRAME_CTRL01,
1279 on ? 0x00 : 0x0f);
1280 }
1281
ov5640_get_sysclk(struct ov5640_dev * sensor)1282 static int ov5640_get_sysclk(struct ov5640_dev *sensor)
1283 {
1284 /* calculate sysclk */
1285 u32 xvclk = sensor->xclk_freq / 10000;
1286 u32 multiplier, prediv, VCO, sysdiv, pll_rdiv;
1287 u32 sclk_rdiv_map[] = {1, 2, 4, 8};
1288 u32 bit_div2x = 1, sclk_rdiv, sysclk;
1289 u8 temp1, temp2;
1290 int ret;
1291
1292 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL0, &temp1);
1293 if (ret)
1294 return ret;
1295 temp2 = temp1 & 0x0f;
1296 if (temp2 == 8 || temp2 == 10)
1297 bit_div2x = temp2 / 2;
1298
1299 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL1, &temp1);
1300 if (ret)
1301 return ret;
1302 sysdiv = temp1 >> 4;
1303 if (sysdiv == 0)
1304 sysdiv = 16;
1305
1306 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL2, &temp1);
1307 if (ret)
1308 return ret;
1309 multiplier = temp1;
1310
1311 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL3, &temp1);
1312 if (ret)
1313 return ret;
1314 prediv = temp1 & 0x0f;
1315 pll_rdiv = ((temp1 >> 4) & 0x01) + 1;
1316
1317 ret = ov5640_read_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, &temp1);
1318 if (ret)
1319 return ret;
1320 temp2 = temp1 & 0x03;
1321 sclk_rdiv = sclk_rdiv_map[temp2];
1322
1323 if (!prediv || !sysdiv || !pll_rdiv || !bit_div2x)
1324 return -EINVAL;
1325
1326 VCO = xvclk * multiplier / prediv;
1327
1328 sysclk = VCO / sysdiv / pll_rdiv * 2 / bit_div2x / sclk_rdiv;
1329
1330 return sysclk;
1331 }
1332
ov5640_set_night_mode(struct ov5640_dev * sensor)1333 static int ov5640_set_night_mode(struct ov5640_dev *sensor)
1334 {
1335 /* read HTS from register settings */
1336 u8 mode;
1337 int ret;
1338
1339 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_CTRL00, &mode);
1340 if (ret)
1341 return ret;
1342 mode &= 0xfb;
1343 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL00, mode);
1344 }
1345
ov5640_get_hts(struct ov5640_dev * sensor)1346 static int ov5640_get_hts(struct ov5640_dev *sensor)
1347 {
1348 /* read HTS from register settings */
1349 u16 hts;
1350 int ret;
1351
1352 ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_HTS, &hts);
1353 if (ret)
1354 return ret;
1355 return hts;
1356 }
1357
ov5640_get_vts(struct ov5640_dev * sensor)1358 static int ov5640_get_vts(struct ov5640_dev *sensor)
1359 {
1360 u16 vts;
1361 int ret;
1362
1363 ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_VTS, &vts);
1364 if (ret)
1365 return ret;
1366 return vts;
1367 }
1368
ov5640_set_vts(struct ov5640_dev * sensor,int vts)1369 static int ov5640_set_vts(struct ov5640_dev *sensor, int vts)
1370 {
1371 return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, vts);
1372 }
1373
ov5640_get_light_freq(struct ov5640_dev * sensor)1374 static int ov5640_get_light_freq(struct ov5640_dev *sensor)
1375 {
1376 /* get banding filter value */
1377 int ret, light_freq = 0;
1378 u8 temp, temp1;
1379
1380 ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL01, &temp);
1381 if (ret)
1382 return ret;
1383
1384 if (temp & 0x80) {
1385 /* manual */
1386 ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL00,
1387 &temp1);
1388 if (ret)
1389 return ret;
1390 if (temp1 & 0x04) {
1391 /* 50Hz */
1392 light_freq = 50;
1393 } else {
1394 /* 60Hz */
1395 light_freq = 60;
1396 }
1397 } else {
1398 /* auto */
1399 ret = ov5640_read_reg(sensor, OV5640_REG_SIGMADELTA_CTRL0C,
1400 &temp1);
1401 if (ret)
1402 return ret;
1403
1404 if (temp1 & 0x01) {
1405 /* 50Hz */
1406 light_freq = 50;
1407 } else {
1408 /* 60Hz */
1409 }
1410 }
1411
1412 return light_freq;
1413 }
1414
ov5640_set_bandingfilter(struct ov5640_dev * sensor)1415 static int ov5640_set_bandingfilter(struct ov5640_dev *sensor)
1416 {
1417 u32 band_step60, max_band60, band_step50, max_band50, prev_vts;
1418 int ret;
1419
1420 /* read preview PCLK */
1421 ret = ov5640_get_sysclk(sensor);
1422 if (ret < 0)
1423 return ret;
1424 if (ret == 0)
1425 return -EINVAL;
1426 sensor->prev_sysclk = ret;
1427 /* read preview HTS */
1428 ret = ov5640_get_hts(sensor);
1429 if (ret < 0)
1430 return ret;
1431 if (ret == 0)
1432 return -EINVAL;
1433 sensor->prev_hts = ret;
1434
1435 /* read preview VTS */
1436 ret = ov5640_get_vts(sensor);
1437 if (ret < 0)
1438 return ret;
1439 prev_vts = ret;
1440
1441 /* calculate banding filter */
1442 /* 60Hz */
1443 band_step60 = sensor->prev_sysclk * 100 / sensor->prev_hts * 100 / 120;
1444 ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B60_STEP, band_step60);
1445 if (ret)
1446 return ret;
1447 if (!band_step60)
1448 return -EINVAL;
1449 max_band60 = (int)((prev_vts - 4) / band_step60);
1450 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0D, max_band60);
1451 if (ret)
1452 return ret;
1453
1454 /* 50Hz */
1455 band_step50 = sensor->prev_sysclk * 100 / sensor->prev_hts;
1456 ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B50_STEP, band_step50);
1457 if (ret)
1458 return ret;
1459 if (!band_step50)
1460 return -EINVAL;
1461 max_band50 = (int)((prev_vts - 4) / band_step50);
1462 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0E, max_band50);
1463 }
1464
ov5640_set_ae_target(struct ov5640_dev * sensor,int target)1465 static int ov5640_set_ae_target(struct ov5640_dev *sensor, int target)
1466 {
1467 /* stable in high */
1468 u32 fast_high, fast_low;
1469 int ret;
1470
1471 sensor->ae_low = target * 23 / 25; /* 0.92 */
1472 sensor->ae_high = target * 27 / 25; /* 1.08 */
1473
1474 fast_high = sensor->ae_high << 1;
1475 if (fast_high > 255)
1476 fast_high = 255;
1477
1478 fast_low = sensor->ae_low >> 1;
1479
1480 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0F, sensor->ae_high);
1481 if (ret)
1482 return ret;
1483 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL10, sensor->ae_low);
1484 if (ret)
1485 return ret;
1486 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1B, sensor->ae_high);
1487 if (ret)
1488 return ret;
1489 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1E, sensor->ae_low);
1490 if (ret)
1491 return ret;
1492 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL11, fast_high);
1493 if (ret)
1494 return ret;
1495 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1F, fast_low);
1496 }
1497
ov5640_get_binning(struct ov5640_dev * sensor)1498 static int ov5640_get_binning(struct ov5640_dev *sensor)
1499 {
1500 u8 temp;
1501 int ret;
1502
1503 ret = ov5640_read_reg(sensor, OV5640_REG_TIMING_TC_REG21, &temp);
1504 if (ret)
1505 return ret;
1506
1507 return temp & BIT(0);
1508 }
1509
ov5640_set_binning(struct ov5640_dev * sensor,bool enable)1510 static int ov5640_set_binning(struct ov5640_dev *sensor, bool enable)
1511 {
1512 int ret;
1513
1514 /*
1515 * TIMING TC REG21:
1516 * - [0]: Horizontal binning enable
1517 */
1518 ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
1519 BIT(0), enable ? BIT(0) : 0);
1520 if (ret)
1521 return ret;
1522 /*
1523 * TIMING TC REG20:
1524 * - [0]: Undocumented, but hardcoded init sequences
1525 * are always setting REG21/REG20 bit 0 to same value...
1526 */
1527 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20,
1528 BIT(0), enable ? BIT(0) : 0);
1529 }
1530
ov5640_set_virtual_channel(struct ov5640_dev * sensor)1531 static int ov5640_set_virtual_channel(struct ov5640_dev *sensor)
1532 {
1533 struct i2c_client *client = sensor->i2c_client;
1534 u8 temp, channel = virtual_channel;
1535 int ret;
1536
1537 if (channel > 3) {
1538 dev_err(&client->dev,
1539 "%s: wrong virtual_channel parameter, expected (0..3), got %d\n",
1540 __func__, channel);
1541 return -EINVAL;
1542 }
1543
1544 ret = ov5640_read_reg(sensor, OV5640_REG_DEBUG_MODE, &temp);
1545 if (ret)
1546 return ret;
1547 temp &= ~(3 << 6);
1548 temp |= (channel << 6);
1549 return ov5640_write_reg(sensor, OV5640_REG_DEBUG_MODE, temp);
1550 }
1551
1552 static const struct ov5640_mode_info *
ov5640_find_mode(struct ov5640_dev * sensor,enum ov5640_frame_rate fr,int width,int height,bool nearest)1553 ov5640_find_mode(struct ov5640_dev *sensor, enum ov5640_frame_rate fr,
1554 int width, int height, bool nearest)
1555 {
1556 const struct ov5640_mode_info *mode;
1557
1558 mode = v4l2_find_nearest_size(ov5640_mode_data,
1559 ARRAY_SIZE(ov5640_mode_data),
1560 hact, vact,
1561 width, height);
1562
1563 if (!mode ||
1564 (!nearest && (mode->hact != width || mode->vact != height)))
1565 return NULL;
1566
1567 /* Check to see if the current mode exceeds the max frame rate */
1568 if (ov5640_framerates[fr] > ov5640_framerates[mode->max_fps])
1569 return NULL;
1570
1571 return mode;
1572 }
1573
ov5640_calc_pixel_rate(struct ov5640_dev * sensor)1574 static u64 ov5640_calc_pixel_rate(struct ov5640_dev *sensor)
1575 {
1576 u64 rate;
1577
1578 rate = sensor->current_mode->vtot * sensor->current_mode->htot;
1579 rate *= ov5640_framerates[sensor->current_fr];
1580
1581 return rate;
1582 }
1583
1584 /*
1585 * sensor changes between scaling and subsampling, go through
1586 * exposure calculation
1587 */
ov5640_set_mode_exposure_calc(struct ov5640_dev * sensor,const struct ov5640_mode_info * mode)1588 static int ov5640_set_mode_exposure_calc(struct ov5640_dev *sensor,
1589 const struct ov5640_mode_info *mode)
1590 {
1591 u32 prev_shutter, prev_gain16;
1592 u32 cap_shutter, cap_gain16;
1593 u32 cap_sysclk, cap_hts, cap_vts;
1594 u32 light_freq, cap_bandfilt, cap_maxband;
1595 u32 cap_gain16_shutter;
1596 u8 average;
1597 int ret;
1598
1599 if (!mode->reg_data)
1600 return -EINVAL;
1601
1602 /* read preview shutter */
1603 ret = ov5640_get_exposure(sensor);
1604 if (ret < 0)
1605 return ret;
1606 prev_shutter = ret;
1607 ret = ov5640_get_binning(sensor);
1608 if (ret < 0)
1609 return ret;
1610 if (ret && mode->id != OV5640_MODE_720P_1280_720 &&
1611 mode->id != OV5640_MODE_1080P_1920_1080)
1612 prev_shutter *= 2;
1613
1614 /* read preview gain */
1615 ret = ov5640_get_gain(sensor);
1616 if (ret < 0)
1617 return ret;
1618 prev_gain16 = ret;
1619
1620 /* get average */
1621 ret = ov5640_read_reg(sensor, OV5640_REG_AVG_READOUT, &average);
1622 if (ret)
1623 return ret;
1624
1625 /* turn off night mode for capture */
1626 ret = ov5640_set_night_mode(sensor);
1627 if (ret < 0)
1628 return ret;
1629
1630 /* Write capture setting */
1631 ret = ov5640_load_regs(sensor, mode);
1632 if (ret < 0)
1633 return ret;
1634
1635 /* read capture VTS */
1636 ret = ov5640_get_vts(sensor);
1637 if (ret < 0)
1638 return ret;
1639 cap_vts = ret;
1640 ret = ov5640_get_hts(sensor);
1641 if (ret < 0)
1642 return ret;
1643 if (ret == 0)
1644 return -EINVAL;
1645 cap_hts = ret;
1646
1647 ret = ov5640_get_sysclk(sensor);
1648 if (ret < 0)
1649 return ret;
1650 if (ret == 0)
1651 return -EINVAL;
1652 cap_sysclk = ret;
1653
1654 /* calculate capture banding filter */
1655 ret = ov5640_get_light_freq(sensor);
1656 if (ret < 0)
1657 return ret;
1658 light_freq = ret;
1659
1660 if (light_freq == 60) {
1661 /* 60Hz */
1662 cap_bandfilt = cap_sysclk * 100 / cap_hts * 100 / 120;
1663 } else {
1664 /* 50Hz */
1665 cap_bandfilt = cap_sysclk * 100 / cap_hts;
1666 }
1667
1668 if (!sensor->prev_sysclk) {
1669 ret = ov5640_get_sysclk(sensor);
1670 if (ret < 0)
1671 return ret;
1672 if (ret == 0)
1673 return -EINVAL;
1674 sensor->prev_sysclk = ret;
1675 }
1676
1677 if (!cap_bandfilt)
1678 return -EINVAL;
1679
1680 cap_maxband = (int)((cap_vts - 4) / cap_bandfilt);
1681
1682 /* calculate capture shutter/gain16 */
1683 if (average > sensor->ae_low && average < sensor->ae_high) {
1684 /* in stable range */
1685 cap_gain16_shutter =
1686 prev_gain16 * prev_shutter *
1687 cap_sysclk / sensor->prev_sysclk *
1688 sensor->prev_hts / cap_hts *
1689 sensor->ae_target / average;
1690 } else {
1691 cap_gain16_shutter =
1692 prev_gain16 * prev_shutter *
1693 cap_sysclk / sensor->prev_sysclk *
1694 sensor->prev_hts / cap_hts;
1695 }
1696
1697 /* gain to shutter */
1698 if (cap_gain16_shutter < (cap_bandfilt * 16)) {
1699 /* shutter < 1/100 */
1700 cap_shutter = cap_gain16_shutter / 16;
1701 if (cap_shutter < 1)
1702 cap_shutter = 1;
1703
1704 cap_gain16 = cap_gain16_shutter / cap_shutter;
1705 if (cap_gain16 < 16)
1706 cap_gain16 = 16;
1707 } else {
1708 if (cap_gain16_shutter > (cap_bandfilt * cap_maxband * 16)) {
1709 /* exposure reach max */
1710 cap_shutter = cap_bandfilt * cap_maxband;
1711 if (!cap_shutter)
1712 return -EINVAL;
1713
1714 cap_gain16 = cap_gain16_shutter / cap_shutter;
1715 } else {
1716 /* 1/100 < (cap_shutter = n/100) =< max */
1717 cap_shutter =
1718 ((int)(cap_gain16_shutter / 16 / cap_bandfilt))
1719 * cap_bandfilt;
1720 if (!cap_shutter)
1721 return -EINVAL;
1722
1723 cap_gain16 = cap_gain16_shutter / cap_shutter;
1724 }
1725 }
1726
1727 /* set capture gain */
1728 ret = ov5640_set_gain(sensor, cap_gain16);
1729 if (ret)
1730 return ret;
1731
1732 /* write capture shutter */
1733 if (cap_shutter > (cap_vts - 4)) {
1734 cap_vts = cap_shutter + 4;
1735 ret = ov5640_set_vts(sensor, cap_vts);
1736 if (ret < 0)
1737 return ret;
1738 }
1739
1740 /* set exposure */
1741 return ov5640_set_exposure(sensor, cap_shutter);
1742 }
1743
1744 /*
1745 * if sensor changes inside scaling or subsampling
1746 * change mode directly
1747 */
ov5640_set_mode_direct(struct ov5640_dev * sensor,const struct ov5640_mode_info * mode)1748 static int ov5640_set_mode_direct(struct ov5640_dev *sensor,
1749 const struct ov5640_mode_info *mode)
1750 {
1751 if (!mode->reg_data)
1752 return -EINVAL;
1753
1754 /* Write capture setting */
1755 return ov5640_load_regs(sensor, mode);
1756 }
1757
ov5640_set_mode(struct ov5640_dev * sensor)1758 static int ov5640_set_mode(struct ov5640_dev *sensor)
1759 {
1760 const struct ov5640_mode_info *mode = sensor->current_mode;
1761 const struct ov5640_mode_info *orig_mode = sensor->last_mode;
1762 enum ov5640_downsize_mode dn_mode, orig_dn_mode;
1763 bool auto_gain = sensor->ctrls.auto_gain->val == 1;
1764 bool auto_exp = sensor->ctrls.auto_exp->val == V4L2_EXPOSURE_AUTO;
1765 unsigned long rate;
1766 int ret;
1767
1768 dn_mode = mode->dn_mode;
1769 orig_dn_mode = orig_mode->dn_mode;
1770
1771 /* auto gain and exposure must be turned off when changing modes */
1772 if (auto_gain) {
1773 ret = ov5640_set_autogain(sensor, false);
1774 if (ret)
1775 return ret;
1776 }
1777
1778 if (auto_exp) {
1779 ret = ov5640_set_autoexposure(sensor, false);
1780 if (ret)
1781 goto restore_auto_gain;
1782 }
1783
1784 /*
1785 * All the formats we support have 16 bits per pixel, seems to require
1786 * the same rate than YUV, so we can just use 16 bpp all the time.
1787 */
1788 rate = ov5640_calc_pixel_rate(sensor) * 16;
1789 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) {
1790 rate = rate / sensor->ep.bus.mipi_csi2.num_data_lanes;
1791 ret = ov5640_set_mipi_pclk(sensor, rate);
1792 } else {
1793 rate = rate / sensor->ep.bus.parallel.bus_width;
1794 ret = ov5640_set_dvp_pclk(sensor, rate);
1795 }
1796
1797 if (ret < 0)
1798 return 0;
1799
1800 if ((dn_mode == SUBSAMPLING && orig_dn_mode == SCALING) ||
1801 (dn_mode == SCALING && orig_dn_mode == SUBSAMPLING)) {
1802 /*
1803 * change between subsampling and scaling
1804 * go through exposure calculation
1805 */
1806 ret = ov5640_set_mode_exposure_calc(sensor, mode);
1807 } else {
1808 /*
1809 * change inside subsampling or scaling
1810 * download firmware directly
1811 */
1812 ret = ov5640_set_mode_direct(sensor, mode);
1813 }
1814 if (ret < 0)
1815 goto restore_auto_exp_gain;
1816
1817 /* restore auto gain and exposure */
1818 if (auto_gain)
1819 ov5640_set_autogain(sensor, true);
1820 if (auto_exp)
1821 ov5640_set_autoexposure(sensor, true);
1822
1823 ret = ov5640_set_binning(sensor, dn_mode != SCALING);
1824 if (ret < 0)
1825 return ret;
1826 ret = ov5640_set_ae_target(sensor, sensor->ae_target);
1827 if (ret < 0)
1828 return ret;
1829 ret = ov5640_get_light_freq(sensor);
1830 if (ret < 0)
1831 return ret;
1832 ret = ov5640_set_bandingfilter(sensor);
1833 if (ret < 0)
1834 return ret;
1835 ret = ov5640_set_virtual_channel(sensor);
1836 if (ret < 0)
1837 return ret;
1838
1839 sensor->pending_mode_change = false;
1840 sensor->last_mode = mode;
1841
1842 return 0;
1843
1844 restore_auto_exp_gain:
1845 if (auto_exp)
1846 ov5640_set_autoexposure(sensor, true);
1847 restore_auto_gain:
1848 if (auto_gain)
1849 ov5640_set_autogain(sensor, true);
1850
1851 return ret;
1852 }
1853
1854 static int ov5640_set_framefmt(struct ov5640_dev *sensor,
1855 struct v4l2_mbus_framefmt *format);
1856
1857 /* restore the last set video mode after chip power-on */
ov5640_restore_mode(struct ov5640_dev * sensor)1858 static int ov5640_restore_mode(struct ov5640_dev *sensor)
1859 {
1860 int ret;
1861
1862 /* first load the initial register values */
1863 ret = ov5640_load_regs(sensor, &ov5640_mode_init_data);
1864 if (ret < 0)
1865 return ret;
1866 sensor->last_mode = &ov5640_mode_init_data;
1867
1868 ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x3f,
1869 (ilog2(OV5640_SCLK2X_ROOT_DIV) << 2) |
1870 ilog2(OV5640_SCLK_ROOT_DIV));
1871 if (ret)
1872 return ret;
1873
1874 /* now restore the last capture mode */
1875 ret = ov5640_set_mode(sensor);
1876 if (ret < 0)
1877 return ret;
1878
1879 return ov5640_set_framefmt(sensor, &sensor->fmt);
1880 }
1881
ov5640_power(struct ov5640_dev * sensor,bool enable)1882 static void ov5640_power(struct ov5640_dev *sensor, bool enable)
1883 {
1884 gpiod_set_value_cansleep(sensor->pwdn_gpio, enable ? 0 : 1);
1885 }
1886
ov5640_reset(struct ov5640_dev * sensor)1887 static void ov5640_reset(struct ov5640_dev *sensor)
1888 {
1889 if (!sensor->reset_gpio)
1890 return;
1891
1892 gpiod_set_value_cansleep(sensor->reset_gpio, 0);
1893
1894 /* camera power cycle */
1895 ov5640_power(sensor, false);
1896 usleep_range(5000, 10000);
1897 ov5640_power(sensor, true);
1898 usleep_range(5000, 10000);
1899
1900 gpiod_set_value_cansleep(sensor->reset_gpio, 1);
1901 usleep_range(1000, 2000);
1902
1903 gpiod_set_value_cansleep(sensor->reset_gpio, 0);
1904 usleep_range(20000, 25000);
1905 }
1906
ov5640_set_power_on(struct ov5640_dev * sensor)1907 static int ov5640_set_power_on(struct ov5640_dev *sensor)
1908 {
1909 struct i2c_client *client = sensor->i2c_client;
1910 int ret;
1911
1912 ret = clk_prepare_enable(sensor->xclk);
1913 if (ret) {
1914 dev_err(&client->dev, "%s: failed to enable clock\n",
1915 __func__);
1916 return ret;
1917 }
1918
1919 ret = regulator_bulk_enable(OV5640_NUM_SUPPLIES,
1920 sensor->supplies);
1921 if (ret) {
1922 dev_err(&client->dev, "%s: failed to enable regulators\n",
1923 __func__);
1924 goto xclk_off;
1925 }
1926
1927 ov5640_reset(sensor);
1928 ov5640_power(sensor, true);
1929
1930 ret = ov5640_init_slave_id(sensor);
1931 if (ret)
1932 goto power_off;
1933
1934 return 0;
1935
1936 power_off:
1937 ov5640_power(sensor, false);
1938 regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies);
1939 xclk_off:
1940 clk_disable_unprepare(sensor->xclk);
1941 return ret;
1942 }
1943
ov5640_set_power_off(struct ov5640_dev * sensor)1944 static void ov5640_set_power_off(struct ov5640_dev *sensor)
1945 {
1946 ov5640_power(sensor, false);
1947 regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies);
1948 clk_disable_unprepare(sensor->xclk);
1949 }
1950
ov5640_set_power_mipi(struct ov5640_dev * sensor,bool on)1951 static int ov5640_set_power_mipi(struct ov5640_dev *sensor, bool on)
1952 {
1953 int ret;
1954
1955 if (!on) {
1956 /* Reset MIPI bus settings to their default values. */
1957 ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x58);
1958 ov5640_write_reg(sensor, OV5640_REG_MIPI_CTRL00, 0x04);
1959 ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT00, 0x00);
1960 return 0;
1961 }
1962
1963 /*
1964 * Power up MIPI HS Tx and LS Rx; 2 data lanes mode
1965 *
1966 * 0x300e = 0x40
1967 * [7:5] = 010 : 2 data lanes mode (see FIXME note in
1968 * "ov5640_set_stream_mipi()")
1969 * [4] = 0 : Power up MIPI HS Tx
1970 * [3] = 0 : Power up MIPI LS Rx
1971 * [2] = 0 : MIPI interface disabled
1972 */
1973 ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x40);
1974 if (ret)
1975 return ret;
1976
1977 /*
1978 * Gate clock and set LP11 in 'no packets mode' (idle)
1979 *
1980 * 0x4800 = 0x24
1981 * [5] = 1 : Gate clock when 'no packets'
1982 * [2] = 1 : MIPI bus in LP11 when 'no packets'
1983 */
1984 ret = ov5640_write_reg(sensor, OV5640_REG_MIPI_CTRL00, 0x24);
1985 if (ret)
1986 return ret;
1987
1988 /*
1989 * Set data lanes and clock in LP11 when 'sleeping'
1990 *
1991 * 0x3019 = 0x70
1992 * [6] = 1 : MIPI data lane 2 in LP11 when 'sleeping'
1993 * [5] = 1 : MIPI data lane 1 in LP11 when 'sleeping'
1994 * [4] = 1 : MIPI clock lane in LP11 when 'sleeping'
1995 */
1996 ret = ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT00, 0x70);
1997 if (ret)
1998 return ret;
1999
2000 /* Give lanes some time to coax into LP11 state. */
2001 usleep_range(500, 1000);
2002
2003 return 0;
2004 }
2005
ov5640_set_power_dvp(struct ov5640_dev * sensor,bool on)2006 static int ov5640_set_power_dvp(struct ov5640_dev *sensor, bool on)
2007 {
2008 unsigned int flags = sensor->ep.bus.parallel.flags;
2009 bool bt656 = sensor->ep.bus_type == V4L2_MBUS_BT656;
2010 u8 polarities = 0;
2011 int ret;
2012
2013 if (!on) {
2014 /* Reset settings to their default values. */
2015 ov5640_write_reg(sensor, OV5640_REG_CCIR656_CTRL00, 0x00);
2016 ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x58);
2017 ov5640_write_reg(sensor, OV5640_REG_POLARITY_CTRL00, 0x20);
2018 ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE01, 0x00);
2019 ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE02, 0x00);
2020 return 0;
2021 }
2022
2023 /*
2024 * Note about parallel port configuration.
2025 *
2026 * When configured in parallel mode, the OV5640 will
2027 * output 10 bits data on DVP data lines [9:0].
2028 * If only 8 bits data are wanted, the 8 bits data lines
2029 * of the camera interface must be physically connected
2030 * on the DVP data lines [9:2].
2031 *
2032 * Control lines polarity can be configured through
2033 * devicetree endpoint control lines properties.
2034 * If no endpoint control lines properties are set,
2035 * polarity will be as below:
2036 * - VSYNC: active high
2037 * - HREF: active low
2038 * - PCLK: active low
2039 *
2040 * VSYNC & HREF are not configured if BT656 bus mode is selected
2041 */
2042
2043 /*
2044 * BT656 embedded synchronization configuration
2045 *
2046 * CCIR656 CTRL00
2047 * - [7]: SYNC code selection (0: auto generate sync code,
2048 * 1: sync code from regs 0x4732-0x4735)
2049 * - [6]: f value in CCIR656 SYNC code when fixed f value
2050 * - [5]: Fixed f value
2051 * - [4:3]: Blank toggle data options (00: data=1'h040/1'h200,
2052 * 01: data from regs 0x4736-0x4738, 10: always keep 0)
2053 * - [1]: Clip data disable
2054 * - [0]: CCIR656 mode enable
2055 *
2056 * Default CCIR656 SAV/EAV mode with default codes
2057 * SAV=0xff000080 & EAV=0xff00009d is enabled here with settings:
2058 * - CCIR656 mode enable
2059 * - auto generation of sync codes
2060 * - blank toggle data 1'h040/1'h200
2061 * - clip reserved data (0x00 & 0xff changed to 0x01 & 0xfe)
2062 */
2063 ret = ov5640_write_reg(sensor, OV5640_REG_CCIR656_CTRL00,
2064 bt656 ? 0x01 : 0x00);
2065 if (ret)
2066 return ret;
2067
2068 /*
2069 * configure parallel port control lines polarity
2070 *
2071 * POLARITY CTRL0
2072 * - [5]: PCLK polarity (0: active low, 1: active high)
2073 * - [1]: HREF polarity (0: active low, 1: active high)
2074 * - [0]: VSYNC polarity (mismatch here between
2075 * datasheet and hardware, 0 is active high
2076 * and 1 is active low...)
2077 */
2078 if (!bt656) {
2079 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
2080 polarities |= BIT(1);
2081 if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW)
2082 polarities |= BIT(0);
2083 }
2084 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
2085 polarities |= BIT(5);
2086
2087 ret = ov5640_write_reg(sensor, OV5640_REG_POLARITY_CTRL00, polarities);
2088 if (ret)
2089 return ret;
2090
2091 /*
2092 * powerdown MIPI TX/RX PHY & enable DVP
2093 *
2094 * MIPI CONTROL 00
2095 * [4] = 1 : Power down MIPI HS Tx
2096 * [3] = 1 : Power down MIPI LS Rx
2097 * [2] = 0 : DVP enable (MIPI disable)
2098 */
2099 ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x18);
2100 if (ret)
2101 return ret;
2102
2103 /*
2104 * enable VSYNC/HREF/PCLK DVP control lines
2105 * & D[9:6] DVP data lines
2106 *
2107 * PAD OUTPUT ENABLE 01
2108 * - 6: VSYNC output enable
2109 * - 5: HREF output enable
2110 * - 4: PCLK output enable
2111 * - [3:0]: D[9:6] output enable
2112 */
2113 ret = ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE01,
2114 bt656 ? 0x1f : 0x7f);
2115 if (ret)
2116 return ret;
2117
2118 /*
2119 * enable D[5:0] DVP data lines
2120 *
2121 * PAD OUTPUT ENABLE 02
2122 * - [7:2]: D[5:0] output enable
2123 */
2124 return ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE02, 0xfc);
2125 }
2126
ov5640_set_power(struct ov5640_dev * sensor,bool on)2127 static int ov5640_set_power(struct ov5640_dev *sensor, bool on)
2128 {
2129 int ret = 0;
2130
2131 if (on) {
2132 ret = ov5640_set_power_on(sensor);
2133 if (ret)
2134 return ret;
2135
2136 ret = ov5640_restore_mode(sensor);
2137 if (ret)
2138 goto power_off;
2139 }
2140
2141 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY)
2142 ret = ov5640_set_power_mipi(sensor, on);
2143 else
2144 ret = ov5640_set_power_dvp(sensor, on);
2145 if (ret)
2146 goto power_off;
2147
2148 if (!on)
2149 ov5640_set_power_off(sensor);
2150
2151 return 0;
2152
2153 power_off:
2154 ov5640_set_power_off(sensor);
2155 return ret;
2156 }
2157
2158 /* --------------- Subdev Operations --------------- */
2159
ov5640_s_power(struct v4l2_subdev * sd,int on)2160 static int ov5640_s_power(struct v4l2_subdev *sd, int on)
2161 {
2162 struct ov5640_dev *sensor = to_ov5640_dev(sd);
2163 int ret = 0;
2164
2165 mutex_lock(&sensor->lock);
2166
2167 /*
2168 * If the power count is modified from 0 to != 0 or from != 0 to 0,
2169 * update the power state.
2170 */
2171 if (sensor->power_count == !on) {
2172 ret = ov5640_set_power(sensor, !!on);
2173 if (ret)
2174 goto out;
2175 }
2176
2177 /* Update the power count. */
2178 sensor->power_count += on ? 1 : -1;
2179 WARN_ON(sensor->power_count < 0);
2180 out:
2181 mutex_unlock(&sensor->lock);
2182
2183 if (on && !ret && sensor->power_count == 1) {
2184 /* restore controls */
2185 ret = v4l2_ctrl_handler_setup(&sensor->ctrls.handler);
2186 }
2187
2188 return ret;
2189 }
2190
ov5640_try_frame_interval(struct ov5640_dev * sensor,struct v4l2_fract * fi,u32 width,u32 height)2191 static int ov5640_try_frame_interval(struct ov5640_dev *sensor,
2192 struct v4l2_fract *fi,
2193 u32 width, u32 height)
2194 {
2195 const struct ov5640_mode_info *mode;
2196 enum ov5640_frame_rate rate = OV5640_15_FPS;
2197 int minfps, maxfps, best_fps, fps;
2198 int i;
2199
2200 minfps = ov5640_framerates[OV5640_15_FPS];
2201 maxfps = ov5640_framerates[OV5640_60_FPS];
2202
2203 if (fi->numerator == 0) {
2204 fi->denominator = maxfps;
2205 fi->numerator = 1;
2206 rate = OV5640_60_FPS;
2207 goto find_mode;
2208 }
2209
2210 fps = clamp_val(DIV_ROUND_CLOSEST(fi->denominator, fi->numerator),
2211 minfps, maxfps);
2212
2213 best_fps = minfps;
2214 for (i = 0; i < ARRAY_SIZE(ov5640_framerates); i++) {
2215 int curr_fps = ov5640_framerates[i];
2216
2217 if (abs(curr_fps - fps) < abs(best_fps - fps)) {
2218 best_fps = curr_fps;
2219 rate = i;
2220 }
2221 }
2222
2223 fi->numerator = 1;
2224 fi->denominator = best_fps;
2225
2226 find_mode:
2227 mode = ov5640_find_mode(sensor, rate, width, height, false);
2228 return mode ? rate : -EINVAL;
2229 }
2230
ov5640_get_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)2231 static int ov5640_get_fmt(struct v4l2_subdev *sd,
2232 struct v4l2_subdev_state *sd_state,
2233 struct v4l2_subdev_format *format)
2234 {
2235 struct ov5640_dev *sensor = to_ov5640_dev(sd);
2236 struct v4l2_mbus_framefmt *fmt;
2237
2238 if (format->pad != 0)
2239 return -EINVAL;
2240
2241 mutex_lock(&sensor->lock);
2242
2243 if (format->which == V4L2_SUBDEV_FORMAT_TRY)
2244 fmt = v4l2_subdev_get_try_format(&sensor->sd, sd_state,
2245 format->pad);
2246 else
2247 fmt = &sensor->fmt;
2248
2249 format->format = *fmt;
2250
2251 mutex_unlock(&sensor->lock);
2252
2253 return 0;
2254 }
2255
ov5640_try_fmt_internal(struct v4l2_subdev * sd,struct v4l2_mbus_framefmt * fmt,enum ov5640_frame_rate fr,const struct ov5640_mode_info ** new_mode)2256 static int ov5640_try_fmt_internal(struct v4l2_subdev *sd,
2257 struct v4l2_mbus_framefmt *fmt,
2258 enum ov5640_frame_rate fr,
2259 const struct ov5640_mode_info **new_mode)
2260 {
2261 struct ov5640_dev *sensor = to_ov5640_dev(sd);
2262 const struct ov5640_mode_info *mode;
2263 int i;
2264
2265 mode = ov5640_find_mode(sensor, fr, fmt->width, fmt->height, true);
2266 if (!mode)
2267 return -EINVAL;
2268 fmt->width = mode->hact;
2269 fmt->height = mode->vact;
2270
2271 if (new_mode)
2272 *new_mode = mode;
2273
2274 for (i = 0; i < ARRAY_SIZE(ov5640_formats); i++)
2275 if (ov5640_formats[i].code == fmt->code)
2276 break;
2277 if (i >= ARRAY_SIZE(ov5640_formats))
2278 i = 0;
2279
2280 fmt->code = ov5640_formats[i].code;
2281 fmt->colorspace = ov5640_formats[i].colorspace;
2282 fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace);
2283 fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
2284 fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace);
2285
2286 return 0;
2287 }
2288
ov5640_set_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)2289 static int ov5640_set_fmt(struct v4l2_subdev *sd,
2290 struct v4l2_subdev_state *sd_state,
2291 struct v4l2_subdev_format *format)
2292 {
2293 struct ov5640_dev *sensor = to_ov5640_dev(sd);
2294 const struct ov5640_mode_info *new_mode;
2295 struct v4l2_mbus_framefmt *mbus_fmt = &format->format;
2296 struct v4l2_mbus_framefmt *fmt;
2297 int ret;
2298
2299 if (format->pad != 0)
2300 return -EINVAL;
2301
2302 mutex_lock(&sensor->lock);
2303
2304 if (sensor->streaming) {
2305 ret = -EBUSY;
2306 goto out;
2307 }
2308
2309 ret = ov5640_try_fmt_internal(sd, mbus_fmt,
2310 sensor->current_fr, &new_mode);
2311 if (ret)
2312 goto out;
2313
2314 if (format->which == V4L2_SUBDEV_FORMAT_TRY)
2315 fmt = v4l2_subdev_get_try_format(sd, sd_state, 0);
2316 else
2317 fmt = &sensor->fmt;
2318
2319 *fmt = *mbus_fmt;
2320
2321 if (new_mode != sensor->current_mode) {
2322 sensor->current_mode = new_mode;
2323 sensor->pending_mode_change = true;
2324 }
2325 if (mbus_fmt->code != sensor->fmt.code)
2326 sensor->pending_fmt_change = true;
2327
2328 __v4l2_ctrl_s_ctrl_int64(sensor->ctrls.pixel_rate,
2329 ov5640_calc_pixel_rate(sensor));
2330 out:
2331 mutex_unlock(&sensor->lock);
2332 return ret;
2333 }
2334
ov5640_set_framefmt(struct ov5640_dev * sensor,struct v4l2_mbus_framefmt * format)2335 static int ov5640_set_framefmt(struct ov5640_dev *sensor,
2336 struct v4l2_mbus_framefmt *format)
2337 {
2338 int ret = 0;
2339 bool is_jpeg = false;
2340 u8 fmt, mux;
2341
2342 switch (format->code) {
2343 case MEDIA_BUS_FMT_UYVY8_1X16:
2344 case MEDIA_BUS_FMT_UYVY8_2X8:
2345 /* YUV422, UYVY */
2346 fmt = 0x3f;
2347 mux = OV5640_FMT_MUX_YUV422;
2348 break;
2349 case MEDIA_BUS_FMT_YUYV8_1X16:
2350 case MEDIA_BUS_FMT_YUYV8_2X8:
2351 /* YUV422, YUYV */
2352 fmt = 0x30;
2353 mux = OV5640_FMT_MUX_YUV422;
2354 break;
2355 case MEDIA_BUS_FMT_RGB565_2X8_LE:
2356 /* RGB565 {g[2:0],b[4:0]},{r[4:0],g[5:3]} */
2357 fmt = 0x6F;
2358 mux = OV5640_FMT_MUX_RGB;
2359 break;
2360 case MEDIA_BUS_FMT_RGB565_2X8_BE:
2361 /* RGB565 {r[4:0],g[5:3]},{g[2:0],b[4:0]} */
2362 fmt = 0x61;
2363 mux = OV5640_FMT_MUX_RGB;
2364 break;
2365 case MEDIA_BUS_FMT_JPEG_1X8:
2366 /* YUV422, YUYV */
2367 fmt = 0x30;
2368 mux = OV5640_FMT_MUX_YUV422;
2369 is_jpeg = true;
2370 break;
2371 case MEDIA_BUS_FMT_SBGGR8_1X8:
2372 /* Raw, BGBG... / GRGR... */
2373 fmt = 0x00;
2374 mux = OV5640_FMT_MUX_RAW_DPC;
2375 break;
2376 case MEDIA_BUS_FMT_SGBRG8_1X8:
2377 /* Raw bayer, GBGB... / RGRG... */
2378 fmt = 0x01;
2379 mux = OV5640_FMT_MUX_RAW_DPC;
2380 break;
2381 case MEDIA_BUS_FMT_SGRBG8_1X8:
2382 /* Raw bayer, GRGR... / BGBG... */
2383 fmt = 0x02;
2384 mux = OV5640_FMT_MUX_RAW_DPC;
2385 break;
2386 case MEDIA_BUS_FMT_SRGGB8_1X8:
2387 /* Raw bayer, RGRG... / GBGB... */
2388 fmt = 0x03;
2389 mux = OV5640_FMT_MUX_RAW_DPC;
2390 break;
2391 default:
2392 return -EINVAL;
2393 }
2394
2395 /* FORMAT CONTROL00: YUV and RGB formatting */
2396 ret = ov5640_write_reg(sensor, OV5640_REG_FORMAT_CONTROL00, fmt);
2397 if (ret)
2398 return ret;
2399
2400 /* FORMAT MUX CONTROL: ISP YUV or RGB */
2401 ret = ov5640_write_reg(sensor, OV5640_REG_ISP_FORMAT_MUX_CTRL, mux);
2402 if (ret)
2403 return ret;
2404
2405 /*
2406 * TIMING TC REG21:
2407 * - [5]: JPEG enable
2408 */
2409 ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
2410 BIT(5), is_jpeg ? BIT(5) : 0);
2411 if (ret)
2412 return ret;
2413
2414 /*
2415 * SYSTEM RESET02:
2416 * - [4]: Reset JFIFO
2417 * - [3]: Reset SFIFO
2418 * - [2]: Reset JPEG
2419 */
2420 ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_RESET02,
2421 BIT(4) | BIT(3) | BIT(2),
2422 is_jpeg ? 0 : (BIT(4) | BIT(3) | BIT(2)));
2423 if (ret)
2424 return ret;
2425
2426 /*
2427 * CLOCK ENABLE02:
2428 * - [5]: Enable JPEG 2x clock
2429 * - [3]: Enable JPEG clock
2430 */
2431 return ov5640_mod_reg(sensor, OV5640_REG_SYS_CLOCK_ENABLE02,
2432 BIT(5) | BIT(3),
2433 is_jpeg ? (BIT(5) | BIT(3)) : 0);
2434 }
2435
2436 /*
2437 * Sensor Controls.
2438 */
2439
ov5640_set_ctrl_hue(struct ov5640_dev * sensor,int value)2440 static int ov5640_set_ctrl_hue(struct ov5640_dev *sensor, int value)
2441 {
2442 int ret;
2443
2444 if (value) {
2445 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
2446 BIT(0), BIT(0));
2447 if (ret)
2448 return ret;
2449 ret = ov5640_write_reg16(sensor, OV5640_REG_SDE_CTRL1, value);
2450 } else {
2451 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(0), 0);
2452 }
2453
2454 return ret;
2455 }
2456
ov5640_set_ctrl_contrast(struct ov5640_dev * sensor,int value)2457 static int ov5640_set_ctrl_contrast(struct ov5640_dev *sensor, int value)
2458 {
2459 int ret;
2460
2461 if (value) {
2462 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
2463 BIT(2), BIT(2));
2464 if (ret)
2465 return ret;
2466 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL5,
2467 value & 0xff);
2468 } else {
2469 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(2), 0);
2470 }
2471
2472 return ret;
2473 }
2474
ov5640_set_ctrl_saturation(struct ov5640_dev * sensor,int value)2475 static int ov5640_set_ctrl_saturation(struct ov5640_dev *sensor, int value)
2476 {
2477 int ret;
2478
2479 if (value) {
2480 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
2481 BIT(1), BIT(1));
2482 if (ret)
2483 return ret;
2484 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL3,
2485 value & 0xff);
2486 if (ret)
2487 return ret;
2488 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL4,
2489 value & 0xff);
2490 } else {
2491 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(1), 0);
2492 }
2493
2494 return ret;
2495 }
2496
ov5640_set_ctrl_white_balance(struct ov5640_dev * sensor,int awb)2497 static int ov5640_set_ctrl_white_balance(struct ov5640_dev *sensor, int awb)
2498 {
2499 int ret;
2500
2501 ret = ov5640_mod_reg(sensor, OV5640_REG_AWB_MANUAL_CTRL,
2502 BIT(0), awb ? 0 : 1);
2503 if (ret)
2504 return ret;
2505
2506 if (!awb) {
2507 u16 red = (u16)sensor->ctrls.red_balance->val;
2508 u16 blue = (u16)sensor->ctrls.blue_balance->val;
2509
2510 ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_R_GAIN, red);
2511 if (ret)
2512 return ret;
2513 ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_B_GAIN, blue);
2514 }
2515
2516 return ret;
2517 }
2518
ov5640_set_ctrl_exposure(struct ov5640_dev * sensor,enum v4l2_exposure_auto_type auto_exposure)2519 static int ov5640_set_ctrl_exposure(struct ov5640_dev *sensor,
2520 enum v4l2_exposure_auto_type auto_exposure)
2521 {
2522 struct ov5640_ctrls *ctrls = &sensor->ctrls;
2523 bool auto_exp = (auto_exposure == V4L2_EXPOSURE_AUTO);
2524 int ret = 0;
2525
2526 if (ctrls->auto_exp->is_new) {
2527 ret = ov5640_set_autoexposure(sensor, auto_exp);
2528 if (ret)
2529 return ret;
2530 }
2531
2532 if (!auto_exp && ctrls->exposure->is_new) {
2533 u16 max_exp;
2534
2535 ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_VTS,
2536 &max_exp);
2537 if (ret)
2538 return ret;
2539 ret = ov5640_get_vts(sensor);
2540 if (ret < 0)
2541 return ret;
2542 max_exp += ret;
2543 ret = 0;
2544
2545 if (ctrls->exposure->val < max_exp)
2546 ret = ov5640_set_exposure(sensor, ctrls->exposure->val);
2547 }
2548
2549 return ret;
2550 }
2551
ov5640_set_ctrl_gain(struct ov5640_dev * sensor,bool auto_gain)2552 static int ov5640_set_ctrl_gain(struct ov5640_dev *sensor, bool auto_gain)
2553 {
2554 struct ov5640_ctrls *ctrls = &sensor->ctrls;
2555 int ret = 0;
2556
2557 if (ctrls->auto_gain->is_new) {
2558 ret = ov5640_set_autogain(sensor, auto_gain);
2559 if (ret)
2560 return ret;
2561 }
2562
2563 if (!auto_gain && ctrls->gain->is_new)
2564 ret = ov5640_set_gain(sensor, ctrls->gain->val);
2565
2566 return ret;
2567 }
2568
2569 static const char * const test_pattern_menu[] = {
2570 "Disabled",
2571 "Color bars",
2572 "Color bars w/ rolling bar",
2573 "Color squares",
2574 "Color squares w/ rolling bar",
2575 };
2576
2577 #define OV5640_TEST_ENABLE BIT(7)
2578 #define OV5640_TEST_ROLLING BIT(6) /* rolling horizontal bar */
2579 #define OV5640_TEST_TRANSPARENT BIT(5)
2580 #define OV5640_TEST_SQUARE_BW BIT(4) /* black & white squares */
2581 #define OV5640_TEST_BAR_STANDARD (0 << 2)
2582 #define OV5640_TEST_BAR_VERT_CHANGE_1 (1 << 2)
2583 #define OV5640_TEST_BAR_HOR_CHANGE (2 << 2)
2584 #define OV5640_TEST_BAR_VERT_CHANGE_2 (3 << 2)
2585 #define OV5640_TEST_BAR (0 << 0)
2586 #define OV5640_TEST_RANDOM (1 << 0)
2587 #define OV5640_TEST_SQUARE (2 << 0)
2588 #define OV5640_TEST_BLACK (3 << 0)
2589
2590 static const u8 test_pattern_val[] = {
2591 0,
2592 OV5640_TEST_ENABLE | OV5640_TEST_BAR_VERT_CHANGE_1 |
2593 OV5640_TEST_BAR,
2594 OV5640_TEST_ENABLE | OV5640_TEST_ROLLING |
2595 OV5640_TEST_BAR_VERT_CHANGE_1 | OV5640_TEST_BAR,
2596 OV5640_TEST_ENABLE | OV5640_TEST_SQUARE,
2597 OV5640_TEST_ENABLE | OV5640_TEST_ROLLING | OV5640_TEST_SQUARE,
2598 };
2599
ov5640_set_ctrl_test_pattern(struct ov5640_dev * sensor,int value)2600 static int ov5640_set_ctrl_test_pattern(struct ov5640_dev *sensor, int value)
2601 {
2602 return ov5640_write_reg(sensor, OV5640_REG_PRE_ISP_TEST_SET1,
2603 test_pattern_val[value]);
2604 }
2605
ov5640_set_ctrl_light_freq(struct ov5640_dev * sensor,int value)2606 static int ov5640_set_ctrl_light_freq(struct ov5640_dev *sensor, int value)
2607 {
2608 int ret;
2609
2610 ret = ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL01, BIT(7),
2611 (value == V4L2_CID_POWER_LINE_FREQUENCY_AUTO) ?
2612 0 : BIT(7));
2613 if (ret)
2614 return ret;
2615
2616 return ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL00, BIT(2),
2617 (value == V4L2_CID_POWER_LINE_FREQUENCY_50HZ) ?
2618 BIT(2) : 0);
2619 }
2620
ov5640_set_ctrl_hflip(struct ov5640_dev * sensor,int value)2621 static int ov5640_set_ctrl_hflip(struct ov5640_dev *sensor, int value)
2622 {
2623 /*
2624 * If sensor is mounted upside down, mirror logic is inversed.
2625 *
2626 * Sensor is a BSI (Back Side Illuminated) one,
2627 * so image captured is physically mirrored.
2628 * This is why mirror logic is inversed in
2629 * order to cancel this mirror effect.
2630 */
2631
2632 /*
2633 * TIMING TC REG21:
2634 * - [2]: ISP mirror
2635 * - [1]: Sensor mirror
2636 */
2637 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
2638 BIT(2) | BIT(1),
2639 (!(value ^ sensor->upside_down)) ?
2640 (BIT(2) | BIT(1)) : 0);
2641 }
2642
ov5640_set_ctrl_vflip(struct ov5640_dev * sensor,int value)2643 static int ov5640_set_ctrl_vflip(struct ov5640_dev *sensor, int value)
2644 {
2645 /* If sensor is mounted upside down, flip logic is inversed */
2646
2647 /*
2648 * TIMING TC REG20:
2649 * - [2]: ISP vflip
2650 * - [1]: Sensor vflip
2651 */
2652 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20,
2653 BIT(2) | BIT(1),
2654 (value ^ sensor->upside_down) ?
2655 (BIT(2) | BIT(1)) : 0);
2656 }
2657
ov5640_g_volatile_ctrl(struct v4l2_ctrl * ctrl)2658 static int ov5640_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
2659 {
2660 struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
2661 struct ov5640_dev *sensor = to_ov5640_dev(sd);
2662 int val;
2663
2664 /* v4l2_ctrl_lock() locks our own mutex */
2665
2666 switch (ctrl->id) {
2667 case V4L2_CID_AUTOGAIN:
2668 val = ov5640_get_gain(sensor);
2669 if (val < 0)
2670 return val;
2671 sensor->ctrls.gain->val = val;
2672 break;
2673 case V4L2_CID_EXPOSURE_AUTO:
2674 val = ov5640_get_exposure(sensor);
2675 if (val < 0)
2676 return val;
2677 sensor->ctrls.exposure->val = val;
2678 break;
2679 }
2680
2681 return 0;
2682 }
2683
ov5640_s_ctrl(struct v4l2_ctrl * ctrl)2684 static int ov5640_s_ctrl(struct v4l2_ctrl *ctrl)
2685 {
2686 struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
2687 struct ov5640_dev *sensor = to_ov5640_dev(sd);
2688 int ret;
2689
2690 /* v4l2_ctrl_lock() locks our own mutex */
2691
2692 /*
2693 * If the device is not powered up by the host driver do
2694 * not apply any controls to H/W at this time. Instead
2695 * the controls will be restored right after power-up.
2696 */
2697 if (sensor->power_count == 0)
2698 return 0;
2699
2700 switch (ctrl->id) {
2701 case V4L2_CID_AUTOGAIN:
2702 ret = ov5640_set_ctrl_gain(sensor, ctrl->val);
2703 break;
2704 case V4L2_CID_EXPOSURE_AUTO:
2705 ret = ov5640_set_ctrl_exposure(sensor, ctrl->val);
2706 break;
2707 case V4L2_CID_AUTO_WHITE_BALANCE:
2708 ret = ov5640_set_ctrl_white_balance(sensor, ctrl->val);
2709 break;
2710 case V4L2_CID_HUE:
2711 ret = ov5640_set_ctrl_hue(sensor, ctrl->val);
2712 break;
2713 case V4L2_CID_CONTRAST:
2714 ret = ov5640_set_ctrl_contrast(sensor, ctrl->val);
2715 break;
2716 case V4L2_CID_SATURATION:
2717 ret = ov5640_set_ctrl_saturation(sensor, ctrl->val);
2718 break;
2719 case V4L2_CID_TEST_PATTERN:
2720 ret = ov5640_set_ctrl_test_pattern(sensor, ctrl->val);
2721 break;
2722 case V4L2_CID_POWER_LINE_FREQUENCY:
2723 ret = ov5640_set_ctrl_light_freq(sensor, ctrl->val);
2724 break;
2725 case V4L2_CID_HFLIP:
2726 ret = ov5640_set_ctrl_hflip(sensor, ctrl->val);
2727 break;
2728 case V4L2_CID_VFLIP:
2729 ret = ov5640_set_ctrl_vflip(sensor, ctrl->val);
2730 break;
2731 default:
2732 ret = -EINVAL;
2733 break;
2734 }
2735
2736 return ret;
2737 }
2738
2739 static const struct v4l2_ctrl_ops ov5640_ctrl_ops = {
2740 .g_volatile_ctrl = ov5640_g_volatile_ctrl,
2741 .s_ctrl = ov5640_s_ctrl,
2742 };
2743
ov5640_init_controls(struct ov5640_dev * sensor)2744 static int ov5640_init_controls(struct ov5640_dev *sensor)
2745 {
2746 const struct v4l2_ctrl_ops *ops = &ov5640_ctrl_ops;
2747 struct ov5640_ctrls *ctrls = &sensor->ctrls;
2748 struct v4l2_ctrl_handler *hdl = &ctrls->handler;
2749 int ret;
2750
2751 v4l2_ctrl_handler_init(hdl, 32);
2752
2753 /* we can use our own mutex for the ctrl lock */
2754 hdl->lock = &sensor->lock;
2755
2756 /* Clock related controls */
2757 ctrls->pixel_rate = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_PIXEL_RATE,
2758 0, INT_MAX, 1,
2759 ov5640_calc_pixel_rate(sensor));
2760
2761 /* Auto/manual white balance */
2762 ctrls->auto_wb = v4l2_ctrl_new_std(hdl, ops,
2763 V4L2_CID_AUTO_WHITE_BALANCE,
2764 0, 1, 1, 1);
2765 ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE,
2766 0, 4095, 1, 0);
2767 ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE,
2768 0, 4095, 1, 0);
2769 /* Auto/manual exposure */
2770 ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops,
2771 V4L2_CID_EXPOSURE_AUTO,
2772 V4L2_EXPOSURE_MANUAL, 0,
2773 V4L2_EXPOSURE_AUTO);
2774 ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE,
2775 0, 65535, 1, 0);
2776 /* Auto/manual gain */
2777 ctrls->auto_gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTOGAIN,
2778 0, 1, 1, 1);
2779 ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN,
2780 0, 1023, 1, 0);
2781
2782 ctrls->saturation = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION,
2783 0, 255, 1, 64);
2784 ctrls->hue = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HUE,
2785 0, 359, 1, 0);
2786 ctrls->contrast = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_CONTRAST,
2787 0, 255, 1, 0);
2788 ctrls->test_pattern =
2789 v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN,
2790 ARRAY_SIZE(test_pattern_menu) - 1,
2791 0, 0, test_pattern_menu);
2792 ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP,
2793 0, 1, 1, 0);
2794 ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP,
2795 0, 1, 1, 0);
2796
2797 ctrls->light_freq =
2798 v4l2_ctrl_new_std_menu(hdl, ops,
2799 V4L2_CID_POWER_LINE_FREQUENCY,
2800 V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0,
2801 V4L2_CID_POWER_LINE_FREQUENCY_50HZ);
2802
2803 if (hdl->error) {
2804 ret = hdl->error;
2805 goto free_ctrls;
2806 }
2807
2808 ctrls->pixel_rate->flags |= V4L2_CTRL_FLAG_READ_ONLY;
2809 ctrls->gain->flags |= V4L2_CTRL_FLAG_VOLATILE;
2810 ctrls->exposure->flags |= V4L2_CTRL_FLAG_VOLATILE;
2811
2812 v4l2_ctrl_auto_cluster(3, &ctrls->auto_wb, 0, false);
2813 v4l2_ctrl_auto_cluster(2, &ctrls->auto_gain, 0, true);
2814 v4l2_ctrl_auto_cluster(2, &ctrls->auto_exp, 1, true);
2815
2816 sensor->sd.ctrl_handler = hdl;
2817 return 0;
2818
2819 free_ctrls:
2820 v4l2_ctrl_handler_free(hdl);
2821 return ret;
2822 }
2823
ov5640_enum_frame_size(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_frame_size_enum * fse)2824 static int ov5640_enum_frame_size(struct v4l2_subdev *sd,
2825 struct v4l2_subdev_state *sd_state,
2826 struct v4l2_subdev_frame_size_enum *fse)
2827 {
2828 if (fse->pad != 0)
2829 return -EINVAL;
2830 if (fse->index >= OV5640_NUM_MODES)
2831 return -EINVAL;
2832
2833 fse->min_width =
2834 ov5640_mode_data[fse->index].hact;
2835 fse->max_width = fse->min_width;
2836 fse->min_height =
2837 ov5640_mode_data[fse->index].vact;
2838 fse->max_height = fse->min_height;
2839
2840 return 0;
2841 }
2842
ov5640_enum_frame_interval(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_frame_interval_enum * fie)2843 static int ov5640_enum_frame_interval(
2844 struct v4l2_subdev *sd,
2845 struct v4l2_subdev_state *sd_state,
2846 struct v4l2_subdev_frame_interval_enum *fie)
2847 {
2848 struct ov5640_dev *sensor = to_ov5640_dev(sd);
2849 struct v4l2_fract tpf;
2850 int ret;
2851
2852 if (fie->pad != 0)
2853 return -EINVAL;
2854 if (fie->index >= OV5640_NUM_FRAMERATES)
2855 return -EINVAL;
2856
2857 tpf.numerator = 1;
2858 tpf.denominator = ov5640_framerates[fie->index];
2859
2860 ret = ov5640_try_frame_interval(sensor, &tpf,
2861 fie->width, fie->height);
2862 if (ret < 0)
2863 return -EINVAL;
2864
2865 fie->interval = tpf;
2866 return 0;
2867 }
2868
ov5640_g_frame_interval(struct v4l2_subdev * sd,struct v4l2_subdev_frame_interval * fi)2869 static int ov5640_g_frame_interval(struct v4l2_subdev *sd,
2870 struct v4l2_subdev_frame_interval *fi)
2871 {
2872 struct ov5640_dev *sensor = to_ov5640_dev(sd);
2873
2874 mutex_lock(&sensor->lock);
2875 fi->interval = sensor->frame_interval;
2876 mutex_unlock(&sensor->lock);
2877
2878 return 0;
2879 }
2880
ov5640_s_frame_interval(struct v4l2_subdev * sd,struct v4l2_subdev_frame_interval * fi)2881 static int ov5640_s_frame_interval(struct v4l2_subdev *sd,
2882 struct v4l2_subdev_frame_interval *fi)
2883 {
2884 struct ov5640_dev *sensor = to_ov5640_dev(sd);
2885 const struct ov5640_mode_info *mode;
2886 int frame_rate, ret = 0;
2887
2888 if (fi->pad != 0)
2889 return -EINVAL;
2890
2891 mutex_lock(&sensor->lock);
2892
2893 if (sensor->streaming) {
2894 ret = -EBUSY;
2895 goto out;
2896 }
2897
2898 mode = sensor->current_mode;
2899
2900 frame_rate = ov5640_try_frame_interval(sensor, &fi->interval,
2901 mode->hact, mode->vact);
2902 if (frame_rate < 0) {
2903 /* Always return a valid frame interval value */
2904 fi->interval = sensor->frame_interval;
2905 goto out;
2906 }
2907
2908 mode = ov5640_find_mode(sensor, frame_rate, mode->hact,
2909 mode->vact, true);
2910 if (!mode) {
2911 ret = -EINVAL;
2912 goto out;
2913 }
2914
2915 if (mode != sensor->current_mode ||
2916 frame_rate != sensor->current_fr) {
2917 sensor->current_fr = frame_rate;
2918 sensor->frame_interval = fi->interval;
2919 sensor->current_mode = mode;
2920 sensor->pending_mode_change = true;
2921
2922 __v4l2_ctrl_s_ctrl_int64(sensor->ctrls.pixel_rate,
2923 ov5640_calc_pixel_rate(sensor));
2924 }
2925 out:
2926 mutex_unlock(&sensor->lock);
2927 return ret;
2928 }
2929
ov5640_enum_mbus_code(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_mbus_code_enum * code)2930 static int ov5640_enum_mbus_code(struct v4l2_subdev *sd,
2931 struct v4l2_subdev_state *sd_state,
2932 struct v4l2_subdev_mbus_code_enum *code)
2933 {
2934 if (code->pad != 0)
2935 return -EINVAL;
2936 if (code->index >= ARRAY_SIZE(ov5640_formats))
2937 return -EINVAL;
2938
2939 code->code = ov5640_formats[code->index].code;
2940 return 0;
2941 }
2942
ov5640_s_stream(struct v4l2_subdev * sd,int enable)2943 static int ov5640_s_stream(struct v4l2_subdev *sd, int enable)
2944 {
2945 struct ov5640_dev *sensor = to_ov5640_dev(sd);
2946 int ret = 0;
2947
2948 mutex_lock(&sensor->lock);
2949
2950 if (sensor->streaming == !enable) {
2951 if (enable && sensor->pending_mode_change) {
2952 ret = ov5640_set_mode(sensor);
2953 if (ret)
2954 goto out;
2955 }
2956
2957 if (enable && sensor->pending_fmt_change) {
2958 ret = ov5640_set_framefmt(sensor, &sensor->fmt);
2959 if (ret)
2960 goto out;
2961 sensor->pending_fmt_change = false;
2962 }
2963
2964 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY)
2965 ret = ov5640_set_stream_mipi(sensor, enable);
2966 else
2967 ret = ov5640_set_stream_dvp(sensor, enable);
2968
2969 if (!ret)
2970 sensor->streaming = enable;
2971 }
2972 out:
2973 mutex_unlock(&sensor->lock);
2974 return ret;
2975 }
2976
2977 static const struct v4l2_subdev_core_ops ov5640_core_ops = {
2978 .s_power = ov5640_s_power,
2979 .log_status = v4l2_ctrl_subdev_log_status,
2980 .subscribe_event = v4l2_ctrl_subdev_subscribe_event,
2981 .unsubscribe_event = v4l2_event_subdev_unsubscribe,
2982 };
2983
2984 static const struct v4l2_subdev_video_ops ov5640_video_ops = {
2985 .g_frame_interval = ov5640_g_frame_interval,
2986 .s_frame_interval = ov5640_s_frame_interval,
2987 .s_stream = ov5640_s_stream,
2988 };
2989
2990 static const struct v4l2_subdev_pad_ops ov5640_pad_ops = {
2991 .enum_mbus_code = ov5640_enum_mbus_code,
2992 .get_fmt = ov5640_get_fmt,
2993 .set_fmt = ov5640_set_fmt,
2994 .enum_frame_size = ov5640_enum_frame_size,
2995 .enum_frame_interval = ov5640_enum_frame_interval,
2996 };
2997
2998 static const struct v4l2_subdev_ops ov5640_subdev_ops = {
2999 .core = &ov5640_core_ops,
3000 .video = &ov5640_video_ops,
3001 .pad = &ov5640_pad_ops,
3002 };
3003
ov5640_get_regulators(struct ov5640_dev * sensor)3004 static int ov5640_get_regulators(struct ov5640_dev *sensor)
3005 {
3006 int i;
3007
3008 for (i = 0; i < OV5640_NUM_SUPPLIES; i++)
3009 sensor->supplies[i].supply = ov5640_supply_name[i];
3010
3011 return devm_regulator_bulk_get(&sensor->i2c_client->dev,
3012 OV5640_NUM_SUPPLIES,
3013 sensor->supplies);
3014 }
3015
ov5640_check_chip_id(struct ov5640_dev * sensor)3016 static int ov5640_check_chip_id(struct ov5640_dev *sensor)
3017 {
3018 struct i2c_client *client = sensor->i2c_client;
3019 int ret = 0;
3020 u16 chip_id;
3021
3022 ret = ov5640_set_power_on(sensor);
3023 if (ret)
3024 return ret;
3025
3026 ret = ov5640_read_reg16(sensor, OV5640_REG_CHIP_ID, &chip_id);
3027 if (ret) {
3028 dev_err(&client->dev, "%s: failed to read chip identifier\n",
3029 __func__);
3030 goto power_off;
3031 }
3032
3033 if (chip_id != 0x5640) {
3034 dev_err(&client->dev, "%s: wrong chip identifier, expected 0x5640, got 0x%x\n",
3035 __func__, chip_id);
3036 ret = -ENXIO;
3037 }
3038
3039 power_off:
3040 ov5640_set_power_off(sensor);
3041 return ret;
3042 }
3043
ov5640_probe(struct i2c_client * client)3044 static int ov5640_probe(struct i2c_client *client)
3045 {
3046 struct device *dev = &client->dev;
3047 struct fwnode_handle *endpoint;
3048 struct ov5640_dev *sensor;
3049 struct v4l2_mbus_framefmt *fmt;
3050 u32 rotation;
3051 int ret;
3052
3053 sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL);
3054 if (!sensor)
3055 return -ENOMEM;
3056
3057 sensor->i2c_client = client;
3058
3059 /*
3060 * default init sequence initialize sensor to
3061 * YUV422 UYVY VGA@30fps
3062 */
3063 fmt = &sensor->fmt;
3064 fmt->code = MEDIA_BUS_FMT_UYVY8_2X8;
3065 fmt->colorspace = V4L2_COLORSPACE_SRGB;
3066 fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace);
3067 fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
3068 fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace);
3069 fmt->width = 640;
3070 fmt->height = 480;
3071 fmt->field = V4L2_FIELD_NONE;
3072 sensor->frame_interval.numerator = 1;
3073 sensor->frame_interval.denominator = ov5640_framerates[OV5640_30_FPS];
3074 sensor->current_fr = OV5640_30_FPS;
3075 sensor->current_mode =
3076 &ov5640_mode_data[OV5640_MODE_VGA_640_480];
3077 sensor->last_mode = sensor->current_mode;
3078
3079 sensor->ae_target = 52;
3080
3081 /* optional indication of physical rotation of sensor */
3082 ret = fwnode_property_read_u32(dev_fwnode(&client->dev), "rotation",
3083 &rotation);
3084 if (!ret) {
3085 switch (rotation) {
3086 case 180:
3087 sensor->upside_down = true;
3088 fallthrough;
3089 case 0:
3090 break;
3091 default:
3092 dev_warn(dev, "%u degrees rotation is not supported, ignoring...\n",
3093 rotation);
3094 }
3095 }
3096
3097 endpoint = fwnode_graph_get_next_endpoint(dev_fwnode(&client->dev),
3098 NULL);
3099 if (!endpoint) {
3100 dev_err(dev, "endpoint node not found\n");
3101 return -EINVAL;
3102 }
3103
3104 ret = v4l2_fwnode_endpoint_parse(endpoint, &sensor->ep);
3105 fwnode_handle_put(endpoint);
3106 if (ret) {
3107 dev_err(dev, "Could not parse endpoint\n");
3108 return ret;
3109 }
3110
3111 if (sensor->ep.bus_type != V4L2_MBUS_PARALLEL &&
3112 sensor->ep.bus_type != V4L2_MBUS_CSI2_DPHY &&
3113 sensor->ep.bus_type != V4L2_MBUS_BT656) {
3114 dev_err(dev, "Unsupported bus type %d\n", sensor->ep.bus_type);
3115 return -EINVAL;
3116 }
3117
3118 /* get system clock (xclk) */
3119 sensor->xclk = devm_clk_get(dev, "xclk");
3120 if (IS_ERR(sensor->xclk)) {
3121 dev_err(dev, "failed to get xclk\n");
3122 return PTR_ERR(sensor->xclk);
3123 }
3124
3125 sensor->xclk_freq = clk_get_rate(sensor->xclk);
3126 if (sensor->xclk_freq < OV5640_XCLK_MIN ||
3127 sensor->xclk_freq > OV5640_XCLK_MAX) {
3128 dev_err(dev, "xclk frequency out of range: %d Hz\n",
3129 sensor->xclk_freq);
3130 return -EINVAL;
3131 }
3132
3133 /* request optional power down pin */
3134 sensor->pwdn_gpio = devm_gpiod_get_optional(dev, "powerdown",
3135 GPIOD_OUT_HIGH);
3136 if (IS_ERR(sensor->pwdn_gpio))
3137 return PTR_ERR(sensor->pwdn_gpio);
3138
3139 /* request optional reset pin */
3140 sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset",
3141 GPIOD_OUT_HIGH);
3142 if (IS_ERR(sensor->reset_gpio))
3143 return PTR_ERR(sensor->reset_gpio);
3144
3145 v4l2_i2c_subdev_init(&sensor->sd, client, &ov5640_subdev_ops);
3146
3147 sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE |
3148 V4L2_SUBDEV_FL_HAS_EVENTS;
3149 sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
3150 sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
3151 ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad);
3152 if (ret)
3153 return ret;
3154
3155 ret = ov5640_get_regulators(sensor);
3156 if (ret)
3157 return ret;
3158
3159 mutex_init(&sensor->lock);
3160
3161 ret = ov5640_check_chip_id(sensor);
3162 if (ret)
3163 goto entity_cleanup;
3164
3165 ret = ov5640_init_controls(sensor);
3166 if (ret)
3167 goto entity_cleanup;
3168
3169 ret = v4l2_async_register_subdev_sensor(&sensor->sd);
3170 if (ret)
3171 goto free_ctrls;
3172
3173 return 0;
3174
3175 free_ctrls:
3176 v4l2_ctrl_handler_free(&sensor->ctrls.handler);
3177 entity_cleanup:
3178 media_entity_cleanup(&sensor->sd.entity);
3179 mutex_destroy(&sensor->lock);
3180 return ret;
3181 }
3182
ov5640_remove(struct i2c_client * client)3183 static int ov5640_remove(struct i2c_client *client)
3184 {
3185 struct v4l2_subdev *sd = i2c_get_clientdata(client);
3186 struct ov5640_dev *sensor = to_ov5640_dev(sd);
3187
3188 v4l2_async_unregister_subdev(&sensor->sd);
3189 media_entity_cleanup(&sensor->sd.entity);
3190 v4l2_ctrl_handler_free(&sensor->ctrls.handler);
3191 mutex_destroy(&sensor->lock);
3192
3193 return 0;
3194 }
3195
3196 static const struct i2c_device_id ov5640_id[] = {
3197 {"ov5640", 0},
3198 {},
3199 };
3200 MODULE_DEVICE_TABLE(i2c, ov5640_id);
3201
3202 static const struct of_device_id ov5640_dt_ids[] = {
3203 { .compatible = "ovti,ov5640" },
3204 { /* sentinel */ }
3205 };
3206 MODULE_DEVICE_TABLE(of, ov5640_dt_ids);
3207
3208 static struct i2c_driver ov5640_i2c_driver = {
3209 .driver = {
3210 .name = "ov5640",
3211 .of_match_table = ov5640_dt_ids,
3212 },
3213 .id_table = ov5640_id,
3214 .probe_new = ov5640_probe,
3215 .remove = ov5640_remove,
3216 };
3217
3218 module_i2c_driver(ov5640_i2c_driver);
3219
3220 MODULE_DESCRIPTION("OV5640 MIPI Camera Subdev Driver");
3221 MODULE_LICENSE("GPL");
3222