1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * drivers/media/i2c/ccs/ccs-core.c
4 *
5 * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors
6 *
7 * Copyright (C) 2020 Intel Corporation
8 * Copyright (C) 2010--2012 Nokia Corporation
9 * Contact: Sakari Ailus <sakari.ailus@linux.intel.com>
10 *
11 * Based on smiapp driver by Vimarsh Zutshi
12 * Based on jt8ev1.c by Vimarsh Zutshi
13 * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
14 */
15
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/device.h>
19 #include <linux/firmware.h>
20 #include <linux/gpio.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/module.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/property.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/slab.h>
27 #include <linux/smiapp.h>
28 #include <linux/v4l2-mediabus.h>
29 #include <media/v4l2-fwnode.h>
30 #include <media/v4l2-device.h>
31 #include <uapi/linux/ccs.h>
32
33 #include "ccs.h"
34
35 #define CCS_ALIGN_DIM(dim, flags) \
36 ((flags) & V4L2_SEL_FLAG_GE \
37 ? ALIGN((dim), 2) \
38 : (dim) & ~1)
39
40 static struct ccs_limit_offset {
41 u16 lim;
42 u16 info;
43 } ccs_limit_offsets[CCS_L_LAST + 1];
44
45 /*
46 * ccs_module_idents - supported camera modules
47 */
48 static const struct ccs_module_ident ccs_module_idents[] = {
49 CCS_IDENT_L(0x01, 0x022b, -1, "vs6555"),
50 CCS_IDENT_L(0x01, 0x022e, -1, "vw6558"),
51 CCS_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
52 CCS_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
53 CCS_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
54 CCS_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
55 CCS_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
56 CCS_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
57 CCS_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
58 CCS_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
59 CCS_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
60 };
61
62 #define CCS_DEVICE_FLAG_IS_SMIA BIT(0)
63
64 struct ccs_device {
65 unsigned char flags;
66 };
67
68 static const char * const ccs_regulators[] = { "vcore", "vio", "vana" };
69
70 /*
71 *
72 * Dynamic Capability Identification
73 *
74 */
75
ccs_assign_limit(void * ptr,unsigned int width,u32 val)76 static void ccs_assign_limit(void *ptr, unsigned int width, u32 val)
77 {
78 switch (width) {
79 case sizeof(u8):
80 *(u8 *)ptr = val;
81 break;
82 case sizeof(u16):
83 *(u16 *)ptr = val;
84 break;
85 case sizeof(u32):
86 *(u32 *)ptr = val;
87 break;
88 }
89 }
90
ccs_limit_ptr(struct ccs_sensor * sensor,unsigned int limit,unsigned int offset,void ** __ptr)91 static int ccs_limit_ptr(struct ccs_sensor *sensor, unsigned int limit,
92 unsigned int offset, void **__ptr)
93 {
94 const struct ccs_limit *linfo;
95
96 if (WARN_ON(limit >= CCS_L_LAST))
97 return -EINVAL;
98
99 linfo = &ccs_limits[ccs_limit_offsets[limit].info];
100
101 if (WARN_ON(!sensor->ccs_limits) ||
102 WARN_ON(offset + ccs_reg_width(linfo->reg) >
103 ccs_limit_offsets[limit + 1].lim))
104 return -EINVAL;
105
106 *__ptr = sensor->ccs_limits + ccs_limit_offsets[limit].lim + offset;
107
108 return 0;
109 }
110
ccs_replace_limit(struct ccs_sensor * sensor,unsigned int limit,unsigned int offset,u32 val)111 void ccs_replace_limit(struct ccs_sensor *sensor,
112 unsigned int limit, unsigned int offset, u32 val)
113 {
114 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
115 const struct ccs_limit *linfo;
116 void *ptr;
117 int ret;
118
119 ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
120 if (ret)
121 return;
122
123 linfo = &ccs_limits[ccs_limit_offsets[limit].info];
124
125 dev_dbg(&client->dev, "quirk: 0x%8.8x \"%s\" %u = %d, 0x%x\n",
126 linfo->reg, linfo->name, offset, val, val);
127
128 ccs_assign_limit(ptr, ccs_reg_width(linfo->reg), val);
129 }
130
ccs_get_limit(struct ccs_sensor * sensor,unsigned int limit,unsigned int offset)131 u32 ccs_get_limit(struct ccs_sensor *sensor, unsigned int limit,
132 unsigned int offset)
133 {
134 void *ptr;
135 u32 val;
136 int ret;
137
138 ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
139 if (ret)
140 return 0;
141
142 switch (ccs_reg_width(ccs_limits[ccs_limit_offsets[limit].info].reg)) {
143 case sizeof(u8):
144 val = *(u8 *)ptr;
145 break;
146 case sizeof(u16):
147 val = *(u16 *)ptr;
148 break;
149 case sizeof(u32):
150 val = *(u32 *)ptr;
151 break;
152 default:
153 WARN_ON(1);
154 return 0;
155 }
156
157 return ccs_reg_conv(sensor, ccs_limits[limit].reg, val);
158 }
159
ccs_read_all_limits(struct ccs_sensor * sensor)160 static int ccs_read_all_limits(struct ccs_sensor *sensor)
161 {
162 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
163 void *ptr, *alloc, *end;
164 unsigned int i, l;
165 int ret;
166
167 kfree(sensor->ccs_limits);
168 sensor->ccs_limits = NULL;
169
170 alloc = kzalloc(ccs_limit_offsets[CCS_L_LAST].lim, GFP_KERNEL);
171 if (!alloc)
172 return -ENOMEM;
173
174 end = alloc + ccs_limit_offsets[CCS_L_LAST].lim;
175
176 for (i = 0, l = 0, ptr = alloc; ccs_limits[i].size; i++) {
177 u32 reg = ccs_limits[i].reg;
178 unsigned int width = ccs_reg_width(reg);
179 unsigned int j;
180
181 if (l == CCS_L_LAST) {
182 dev_err(&client->dev,
183 "internal error --- end of limit array\n");
184 ret = -EINVAL;
185 goto out_err;
186 }
187
188 for (j = 0; j < ccs_limits[i].size / width;
189 j++, reg += width, ptr += width) {
190 u32 val;
191
192 ret = ccs_read_addr_noconv(sensor, reg, &val);
193 if (ret)
194 goto out_err;
195
196 if (ptr + width > end) {
197 dev_err(&client->dev,
198 "internal error --- no room for regs\n");
199 ret = -EINVAL;
200 goto out_err;
201 }
202
203 if (!val && j)
204 break;
205
206 ccs_assign_limit(ptr, width, val);
207
208 dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
209 reg, ccs_limits[i].name, val, val);
210 }
211
212 if (ccs_limits[i].flags & CCS_L_FL_SAME_REG)
213 continue;
214
215 l++;
216 ptr = alloc + ccs_limit_offsets[l].lim;
217 }
218
219 if (l != CCS_L_LAST) {
220 dev_err(&client->dev,
221 "internal error --- insufficient limits\n");
222 ret = -EINVAL;
223 goto out_err;
224 }
225
226 sensor->ccs_limits = alloc;
227
228 if (CCS_LIM(sensor, SCALER_N_MIN) < 16)
229 ccs_replace_limit(sensor, CCS_L_SCALER_N_MIN, 0, 16);
230
231 return 0;
232
233 out_err:
234 kfree(alloc);
235
236 return ret;
237 }
238
ccs_read_frame_fmt(struct ccs_sensor * sensor)239 static int ccs_read_frame_fmt(struct ccs_sensor *sensor)
240 {
241 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
242 u8 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
243 unsigned int i;
244 int pixel_count = 0;
245 int line_count = 0;
246
247 fmt_model_type = CCS_LIM(sensor, FRAME_FORMAT_MODEL_TYPE);
248 fmt_model_subtype = CCS_LIM(sensor, FRAME_FORMAT_MODEL_SUBTYPE);
249
250 ncol_desc = (fmt_model_subtype
251 & CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_MASK)
252 >> CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_SHIFT;
253 nrow_desc = fmt_model_subtype
254 & CCS_FRAME_FORMAT_MODEL_SUBTYPE_ROWS_MASK;
255
256 dev_dbg(&client->dev, "format_model_type %s\n",
257 fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE
258 ? "2 byte" :
259 fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE
260 ? "4 byte" : "is simply bad");
261
262 dev_dbg(&client->dev, "%u column and %u row descriptors\n",
263 ncol_desc, nrow_desc);
264
265 for (i = 0; i < ncol_desc + nrow_desc; i++) {
266 u32 desc;
267 u32 pixelcode;
268 u32 pixels;
269 char *which;
270 char *what;
271
272 if (fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE) {
273 desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR, i);
274
275 pixelcode =
276 (desc
277 & CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_MASK)
278 >> CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_SHIFT;
279 pixels = desc & CCS_FRAME_FORMAT_DESCRIPTOR_PIXELS_MASK;
280 } else if (fmt_model_type
281 == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE) {
282 desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR_4, i);
283
284 pixelcode =
285 (desc
286 & CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_MASK)
287 >> CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_SHIFT;
288 pixels = desc &
289 CCS_FRAME_FORMAT_DESCRIPTOR_4_PIXELS_MASK;
290 } else {
291 dev_dbg(&client->dev,
292 "invalid frame format model type %d\n",
293 fmt_model_type);
294 return -EINVAL;
295 }
296
297 if (i < ncol_desc)
298 which = "columns";
299 else
300 which = "rows";
301
302 switch (pixelcode) {
303 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
304 what = "embedded";
305 break;
306 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DUMMY_PIXEL:
307 what = "dummy";
308 break;
309 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_BLACK_PIXEL:
310 what = "black";
311 break;
312 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DARK_PIXEL:
313 what = "dark";
314 break;
315 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
316 what = "visible";
317 break;
318 default:
319 what = "invalid";
320 break;
321 }
322
323 dev_dbg(&client->dev,
324 "%s pixels: %d %s (pixelcode %u)\n",
325 what, pixels, which, pixelcode);
326
327 if (i < ncol_desc) {
328 if (pixelcode ==
329 CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL)
330 sensor->visible_pixel_start = pixel_count;
331 pixel_count += pixels;
332 continue;
333 }
334
335 /* Handle row descriptors */
336 switch (pixelcode) {
337 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
338 if (sensor->embedded_end)
339 break;
340 sensor->embedded_start = line_count;
341 sensor->embedded_end = line_count + pixels;
342 break;
343 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
344 sensor->image_start = line_count;
345 break;
346 }
347 line_count += pixels;
348 }
349
350 if (sensor->embedded_end > sensor->image_start) {
351 dev_dbg(&client->dev,
352 "adjusting image start line to %u (was %u)\n",
353 sensor->embedded_end, sensor->image_start);
354 sensor->image_start = sensor->embedded_end;
355 }
356
357 dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
358 sensor->embedded_start, sensor->embedded_end);
359 dev_dbg(&client->dev, "image data starts at line %d\n",
360 sensor->image_start);
361
362 return 0;
363 }
364
ccs_pll_configure(struct ccs_sensor * sensor)365 static int ccs_pll_configure(struct ccs_sensor *sensor)
366 {
367 struct ccs_pll *pll = &sensor->pll;
368 int rval;
369
370 rval = ccs_write(sensor, VT_PIX_CLK_DIV, pll->vt_bk.pix_clk_div);
371 if (rval < 0)
372 return rval;
373
374 rval = ccs_write(sensor, VT_SYS_CLK_DIV, pll->vt_bk.sys_clk_div);
375 if (rval < 0)
376 return rval;
377
378 rval = ccs_write(sensor, PRE_PLL_CLK_DIV, pll->vt_fr.pre_pll_clk_div);
379 if (rval < 0)
380 return rval;
381
382 rval = ccs_write(sensor, PLL_MULTIPLIER, pll->vt_fr.pll_multiplier);
383 if (rval < 0)
384 return rval;
385
386 if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
387 CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL)) {
388 /* Lane op clock ratio does not apply here. */
389 rval = ccs_write(sensor, REQUESTED_LINK_RATE,
390 DIV_ROUND_UP(pll->op_bk.sys_clk_freq_hz,
391 1000000 / 256 / 256) *
392 (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ?
393 sensor->pll.csi2.lanes : 1) <<
394 (pll->flags & CCS_PLL_FLAG_OP_SYS_DDR ?
395 1 : 0));
396 if (rval < 0)
397 return rval;
398 }
399
400 if (sensor->pll.flags & CCS_PLL_FLAG_NO_OP_CLOCKS)
401 return 0;
402
403 rval = ccs_write(sensor, OP_PIX_CLK_DIV, pll->op_bk.pix_clk_div);
404 if (rval < 0)
405 return rval;
406
407 rval = ccs_write(sensor, OP_SYS_CLK_DIV, pll->op_bk.sys_clk_div);
408 if (rval < 0)
409 return rval;
410
411 if (!(pll->flags & CCS_PLL_FLAG_DUAL_PLL))
412 return 0;
413
414 rval = ccs_write(sensor, PLL_MODE, CCS_PLL_MODE_DUAL);
415 if (rval < 0)
416 return rval;
417
418 rval = ccs_write(sensor, OP_PRE_PLL_CLK_DIV,
419 pll->op_fr.pre_pll_clk_div);
420 if (rval < 0)
421 return rval;
422
423 return ccs_write(sensor, OP_PLL_MULTIPLIER, pll->op_fr.pll_multiplier);
424 }
425
ccs_pll_try(struct ccs_sensor * sensor,struct ccs_pll * pll)426 static int ccs_pll_try(struct ccs_sensor *sensor, struct ccs_pll *pll)
427 {
428 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
429 struct ccs_pll_limits lim = {
430 .vt_fr = {
431 .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_PRE_PLL_CLK_DIV),
432 .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_PRE_PLL_CLK_DIV),
433 .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_IP_CLK_FREQ_MHZ),
434 .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_IP_CLK_FREQ_MHZ),
435 .min_pll_multiplier = CCS_LIM(sensor, MIN_PLL_MULTIPLIER),
436 .max_pll_multiplier = CCS_LIM(sensor, MAX_PLL_MULTIPLIER),
437 .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_OP_CLK_FREQ_MHZ),
438 .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_OP_CLK_FREQ_MHZ),
439 },
440 .op_fr = {
441 .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_OP_PRE_PLL_CLK_DIV),
442 .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_OP_PRE_PLL_CLK_DIV),
443 .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_IP_CLK_FREQ_MHZ),
444 .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_IP_CLK_FREQ_MHZ),
445 .min_pll_multiplier = CCS_LIM(sensor, MIN_OP_PLL_MULTIPLIER),
446 .max_pll_multiplier = CCS_LIM(sensor, MAX_OP_PLL_MULTIPLIER),
447 .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_OP_CLK_FREQ_MHZ),
448 .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_OP_CLK_FREQ_MHZ),
449 },
450 .op_bk = {
451 .min_sys_clk_div = CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV),
452 .max_sys_clk_div = CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV),
453 .min_pix_clk_div = CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV),
454 .max_pix_clk_div = CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV),
455 .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_OP_SYS_CLK_FREQ_MHZ),
456 .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_OP_SYS_CLK_FREQ_MHZ),
457 .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PIX_CLK_FREQ_MHZ),
458 .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PIX_CLK_FREQ_MHZ),
459 },
460 .vt_bk = {
461 .min_sys_clk_div = CCS_LIM(sensor, MIN_VT_SYS_CLK_DIV),
462 .max_sys_clk_div = CCS_LIM(sensor, MAX_VT_SYS_CLK_DIV),
463 .min_pix_clk_div = CCS_LIM(sensor, MIN_VT_PIX_CLK_DIV),
464 .max_pix_clk_div = CCS_LIM(sensor, MAX_VT_PIX_CLK_DIV),
465 .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_VT_SYS_CLK_FREQ_MHZ),
466 .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_VT_SYS_CLK_FREQ_MHZ),
467 .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_VT_PIX_CLK_FREQ_MHZ),
468 .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_VT_PIX_CLK_FREQ_MHZ),
469 },
470 .min_line_length_pck_bin = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN),
471 .min_line_length_pck = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK),
472 };
473
474 return ccs_pll_calculate(&client->dev, &lim, pll);
475 }
476
ccs_pll_update(struct ccs_sensor * sensor)477 static int ccs_pll_update(struct ccs_sensor *sensor)
478 {
479 struct ccs_pll *pll = &sensor->pll;
480 int rval;
481
482 pll->binning_horizontal = sensor->binning_horizontal;
483 pll->binning_vertical = sensor->binning_vertical;
484 pll->link_freq =
485 sensor->link_freq->qmenu_int[sensor->link_freq->val];
486 pll->scale_m = sensor->scale_m;
487 pll->bits_per_pixel = sensor->csi_format->compressed;
488
489 rval = ccs_pll_try(sensor, pll);
490 if (rval < 0)
491 return rval;
492
493 __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
494 pll->pixel_rate_pixel_array);
495 __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
496
497 return 0;
498 }
499
500
501 /*
502 *
503 * V4L2 Controls handling
504 *
505 */
506
__ccs_update_exposure_limits(struct ccs_sensor * sensor)507 static void __ccs_update_exposure_limits(struct ccs_sensor *sensor)
508 {
509 struct v4l2_ctrl *ctrl = sensor->exposure;
510 int max;
511
512 max = sensor->pixel_array->crop[CCS_PA_PAD_SRC].height
513 + sensor->vblank->val
514 - CCS_LIM(sensor, COARSE_INTEGRATION_TIME_MAX_MARGIN);
515
516 __v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
517 }
518
519 /*
520 * Order matters.
521 *
522 * 1. Bits-per-pixel, descending.
523 * 2. Bits-per-pixel compressed, descending.
524 * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
525 * orders must be defined.
526 */
527 static const struct ccs_csi_data_format ccs_csi_data_formats[] = {
528 { MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, CCS_PIXEL_ORDER_GRBG, },
529 { MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, CCS_PIXEL_ORDER_RGGB, },
530 { MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, CCS_PIXEL_ORDER_BGGR, },
531 { MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, CCS_PIXEL_ORDER_GBRG, },
532 { MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, CCS_PIXEL_ORDER_GRBG, },
533 { MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, CCS_PIXEL_ORDER_RGGB, },
534 { MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, CCS_PIXEL_ORDER_BGGR, },
535 { MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, CCS_PIXEL_ORDER_GBRG, },
536 { MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, CCS_PIXEL_ORDER_GRBG, },
537 { MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, CCS_PIXEL_ORDER_RGGB, },
538 { MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, CCS_PIXEL_ORDER_BGGR, },
539 { MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, CCS_PIXEL_ORDER_GBRG, },
540 { MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, CCS_PIXEL_ORDER_GRBG, },
541 { MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, CCS_PIXEL_ORDER_RGGB, },
542 { MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, CCS_PIXEL_ORDER_BGGR, },
543 { MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, CCS_PIXEL_ORDER_GBRG, },
544 { MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GRBG, },
545 { MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_RGGB, },
546 { MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_BGGR, },
547 { MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GBRG, },
548 { MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, CCS_PIXEL_ORDER_GRBG, },
549 { MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, CCS_PIXEL_ORDER_RGGB, },
550 { MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, CCS_PIXEL_ORDER_BGGR, },
551 { MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, CCS_PIXEL_ORDER_GBRG, },
552 };
553
554 static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
555
556 #define to_csi_format_idx(fmt) (((unsigned long)(fmt) \
557 - (unsigned long)ccs_csi_data_formats) \
558 / sizeof(*ccs_csi_data_formats))
559
ccs_pixel_order(struct ccs_sensor * sensor)560 static u32 ccs_pixel_order(struct ccs_sensor *sensor)
561 {
562 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
563 int flip = 0;
564
565 if (sensor->hflip) {
566 if (sensor->hflip->val)
567 flip |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
568
569 if (sensor->vflip->val)
570 flip |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
571 }
572
573 flip ^= sensor->hvflip_inv_mask;
574
575 dev_dbg(&client->dev, "flip %d\n", flip);
576 return sensor->default_pixel_order ^ flip;
577 }
578
ccs_update_mbus_formats(struct ccs_sensor * sensor)579 static void ccs_update_mbus_formats(struct ccs_sensor *sensor)
580 {
581 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
582 unsigned int csi_format_idx =
583 to_csi_format_idx(sensor->csi_format) & ~3;
584 unsigned int internal_csi_format_idx =
585 to_csi_format_idx(sensor->internal_csi_format) & ~3;
586 unsigned int pixel_order = ccs_pixel_order(sensor);
587
588 if (WARN_ON_ONCE(max(internal_csi_format_idx, csi_format_idx) +
589 pixel_order >= ARRAY_SIZE(ccs_csi_data_formats)))
590 return;
591
592 sensor->mbus_frame_fmts =
593 sensor->default_mbus_frame_fmts << pixel_order;
594 sensor->csi_format =
595 &ccs_csi_data_formats[csi_format_idx + pixel_order];
596 sensor->internal_csi_format =
597 &ccs_csi_data_formats[internal_csi_format_idx
598 + pixel_order];
599
600 dev_dbg(&client->dev, "new pixel order %s\n",
601 pixel_order_str[pixel_order]);
602 }
603
604 static const char * const ccs_test_patterns[] = {
605 "Disabled",
606 "Solid Colour",
607 "Eight Vertical Colour Bars",
608 "Colour Bars With Fade to Grey",
609 "Pseudorandom Sequence (PN9)",
610 };
611
ccs_set_ctrl(struct v4l2_ctrl * ctrl)612 static int ccs_set_ctrl(struct v4l2_ctrl *ctrl)
613 {
614 struct ccs_sensor *sensor =
615 container_of(ctrl->handler, struct ccs_subdev, ctrl_handler)
616 ->sensor;
617 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
618 int pm_status;
619 u32 orient = 0;
620 unsigned int i;
621 int exposure;
622 int rval;
623
624 switch (ctrl->id) {
625 case V4L2_CID_HFLIP:
626 case V4L2_CID_VFLIP:
627 if (sensor->streaming)
628 return -EBUSY;
629
630 if (sensor->hflip->val)
631 orient |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
632
633 if (sensor->vflip->val)
634 orient |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
635
636 orient ^= sensor->hvflip_inv_mask;
637
638 ccs_update_mbus_formats(sensor);
639
640 break;
641 case V4L2_CID_VBLANK:
642 exposure = sensor->exposure->val;
643
644 __ccs_update_exposure_limits(sensor);
645
646 if (exposure > sensor->exposure->maximum) {
647 sensor->exposure->val = sensor->exposure->maximum;
648 rval = ccs_set_ctrl(sensor->exposure);
649 if (rval < 0)
650 return rval;
651 }
652
653 break;
654 case V4L2_CID_LINK_FREQ:
655 if (sensor->streaming)
656 return -EBUSY;
657
658 rval = ccs_pll_update(sensor);
659 if (rval)
660 return rval;
661
662 return 0;
663 case V4L2_CID_TEST_PATTERN:
664 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
665 v4l2_ctrl_activate(
666 sensor->test_data[i],
667 ctrl->val ==
668 V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
669
670 break;
671 }
672
673 pm_status = pm_runtime_get_if_active(&client->dev, true);
674 if (!pm_status)
675 return 0;
676
677 switch (ctrl->id) {
678 case V4L2_CID_ANALOGUE_GAIN:
679 rval = ccs_write(sensor, ANALOG_GAIN_CODE_GLOBAL, ctrl->val);
680
681 break;
682
683 case V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN:
684 rval = ccs_write(sensor, ANALOG_LINEAR_GAIN_GLOBAL, ctrl->val);
685
686 break;
687
688 case V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN:
689 rval = ccs_write(sensor, ANALOG_EXPONENTIAL_GAIN_GLOBAL,
690 ctrl->val);
691
692 break;
693
694 case V4L2_CID_DIGITAL_GAIN:
695 if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
696 CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL) {
697 rval = ccs_write(sensor, DIGITAL_GAIN_GLOBAL,
698 ctrl->val);
699 break;
700 }
701
702 rval = ccs_write_addr(sensor,
703 SMIAPP_REG_U16_DIGITAL_GAIN_GREENR,
704 ctrl->val);
705 if (rval)
706 break;
707
708 rval = ccs_write_addr(sensor,
709 SMIAPP_REG_U16_DIGITAL_GAIN_RED,
710 ctrl->val);
711 if (rval)
712 break;
713
714 rval = ccs_write_addr(sensor,
715 SMIAPP_REG_U16_DIGITAL_GAIN_BLUE,
716 ctrl->val);
717 if (rval)
718 break;
719
720 rval = ccs_write_addr(sensor,
721 SMIAPP_REG_U16_DIGITAL_GAIN_GREENB,
722 ctrl->val);
723
724 break;
725 case V4L2_CID_EXPOSURE:
726 rval = ccs_write(sensor, COARSE_INTEGRATION_TIME, ctrl->val);
727
728 break;
729 case V4L2_CID_HFLIP:
730 case V4L2_CID_VFLIP:
731 rval = ccs_write(sensor, IMAGE_ORIENTATION, orient);
732
733 break;
734 case V4L2_CID_VBLANK:
735 rval = ccs_write(sensor, FRAME_LENGTH_LINES,
736 sensor->pixel_array->crop[
737 CCS_PA_PAD_SRC].height
738 + ctrl->val);
739
740 break;
741 case V4L2_CID_HBLANK:
742 rval = ccs_write(sensor, LINE_LENGTH_PCK,
743 sensor->pixel_array->crop[CCS_PA_PAD_SRC].width
744 + ctrl->val);
745
746 break;
747 case V4L2_CID_TEST_PATTERN:
748 rval = ccs_write(sensor, TEST_PATTERN_MODE, ctrl->val);
749
750 break;
751 case V4L2_CID_TEST_PATTERN_RED:
752 rval = ccs_write(sensor, TEST_DATA_RED, ctrl->val);
753
754 break;
755 case V4L2_CID_TEST_PATTERN_GREENR:
756 rval = ccs_write(sensor, TEST_DATA_GREENR, ctrl->val);
757
758 break;
759 case V4L2_CID_TEST_PATTERN_BLUE:
760 rval = ccs_write(sensor, TEST_DATA_BLUE, ctrl->val);
761
762 break;
763 case V4L2_CID_TEST_PATTERN_GREENB:
764 rval = ccs_write(sensor, TEST_DATA_GREENB, ctrl->val);
765
766 break;
767 case V4L2_CID_CCS_SHADING_CORRECTION:
768 rval = ccs_write(sensor, SHADING_CORRECTION_EN,
769 ctrl->val ? CCS_SHADING_CORRECTION_EN_ENABLE :
770 0);
771
772 if (!rval && sensor->luminance_level)
773 v4l2_ctrl_activate(sensor->luminance_level, ctrl->val);
774
775 break;
776 case V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL:
777 rval = ccs_write(sensor, LUMINANCE_CORRECTION_LEVEL, ctrl->val);
778
779 break;
780 case V4L2_CID_PIXEL_RATE:
781 /* For v4l2_ctrl_s_ctrl_int64() used internally. */
782 rval = 0;
783
784 break;
785 default:
786 rval = -EINVAL;
787 }
788
789 if (pm_status > 0) {
790 pm_runtime_mark_last_busy(&client->dev);
791 pm_runtime_put_autosuspend(&client->dev);
792 }
793
794 return rval;
795 }
796
797 static const struct v4l2_ctrl_ops ccs_ctrl_ops = {
798 .s_ctrl = ccs_set_ctrl,
799 };
800
ccs_init_controls(struct ccs_sensor * sensor)801 static int ccs_init_controls(struct ccs_sensor *sensor)
802 {
803 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
804 int rval;
805
806 rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 17);
807 if (rval)
808 return rval;
809
810 sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
811
812 switch (CCS_LIM(sensor, ANALOG_GAIN_CAPABILITY)) {
813 case CCS_ANALOG_GAIN_CAPABILITY_GLOBAL: {
814 struct {
815 const char *name;
816 u32 id;
817 s32 value;
818 } const gain_ctrls[] = {
819 { "Analogue Gain m0", V4L2_CID_CCS_ANALOGUE_GAIN_M0,
820 CCS_LIM(sensor, ANALOG_GAIN_M0), },
821 { "Analogue Gain c0", V4L2_CID_CCS_ANALOGUE_GAIN_C0,
822 CCS_LIM(sensor, ANALOG_GAIN_C0), },
823 { "Analogue Gain m1", V4L2_CID_CCS_ANALOGUE_GAIN_M1,
824 CCS_LIM(sensor, ANALOG_GAIN_M1), },
825 { "Analogue Gain c1", V4L2_CID_CCS_ANALOGUE_GAIN_C1,
826 CCS_LIM(sensor, ANALOG_GAIN_C1), },
827 };
828 struct v4l2_ctrl_config ctrl_cfg = {
829 .type = V4L2_CTRL_TYPE_INTEGER,
830 .ops = &ccs_ctrl_ops,
831 .flags = V4L2_CTRL_FLAG_READ_ONLY,
832 .step = 1,
833 };
834 unsigned int i;
835
836 for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
837 ctrl_cfg.name = gain_ctrls[i].name;
838 ctrl_cfg.id = gain_ctrls[i].id;
839 ctrl_cfg.min = ctrl_cfg.max = ctrl_cfg.def =
840 gain_ctrls[i].value;
841
842 v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
843 &ctrl_cfg, NULL);
844 }
845
846 v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
847 &ccs_ctrl_ops, V4L2_CID_ANALOGUE_GAIN,
848 CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN),
849 CCS_LIM(sensor, ANALOG_GAIN_CODE_MAX),
850 max(CCS_LIM(sensor, ANALOG_GAIN_CODE_STEP),
851 1U),
852 CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN));
853 }
854 break;
855
856 case CCS_ANALOG_GAIN_CAPABILITY_ALTERNATE_GLOBAL: {
857 struct {
858 const char *name;
859 u32 id;
860 u16 min, max, step;
861 } const gain_ctrls[] = {
862 {
863 "Analogue Linear Gain",
864 V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN,
865 CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MIN),
866 CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MAX),
867 max(CCS_LIM(sensor,
868 ANALOG_LINEAR_GAIN_STEP_SIZE),
869 1U),
870 },
871 {
872 "Analogue Exponential Gain",
873 V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN,
874 CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MIN),
875 CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MAX),
876 max(CCS_LIM(sensor,
877 ANALOG_EXPONENTIAL_GAIN_STEP_SIZE),
878 1U),
879 },
880 };
881 struct v4l2_ctrl_config ctrl_cfg = {
882 .type = V4L2_CTRL_TYPE_INTEGER,
883 .ops = &ccs_ctrl_ops,
884 };
885 unsigned int i;
886
887 for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
888 ctrl_cfg.name = gain_ctrls[i].name;
889 ctrl_cfg.min = ctrl_cfg.def = gain_ctrls[i].min;
890 ctrl_cfg.max = gain_ctrls[i].max;
891 ctrl_cfg.step = gain_ctrls[i].step;
892 ctrl_cfg.id = gain_ctrls[i].id;
893
894 v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
895 &ctrl_cfg, NULL);
896 }
897 }
898 }
899
900 if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
901 (CCS_SHADING_CORRECTION_CAPABILITY_COLOR_SHADING |
902 CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION)) {
903 const struct v4l2_ctrl_config ctrl_cfg = {
904 .name = "Shading Correction",
905 .type = V4L2_CTRL_TYPE_BOOLEAN,
906 .id = V4L2_CID_CCS_SHADING_CORRECTION,
907 .ops = &ccs_ctrl_ops,
908 .max = 1,
909 .step = 1,
910 };
911
912 v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
913 &ctrl_cfg, NULL);
914 }
915
916 if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
917 CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION) {
918 const struct v4l2_ctrl_config ctrl_cfg = {
919 .name = "Luminance Correction Level",
920 .type = V4L2_CTRL_TYPE_BOOLEAN,
921 .id = V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL,
922 .ops = &ccs_ctrl_ops,
923 .max = 255,
924 .step = 1,
925 .def = 128,
926 };
927
928 sensor->luminance_level =
929 v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
930 &ctrl_cfg, NULL);
931 }
932
933 if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
934 CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL ||
935 CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
936 SMIAPP_DIGITAL_GAIN_CAPABILITY_PER_CHANNEL)
937 v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
938 &ccs_ctrl_ops, V4L2_CID_DIGITAL_GAIN,
939 CCS_LIM(sensor, DIGITAL_GAIN_MIN),
940 CCS_LIM(sensor, DIGITAL_GAIN_MAX),
941 max(CCS_LIM(sensor, DIGITAL_GAIN_STEP_SIZE),
942 1U),
943 0x100);
944
945 /* Exposure limits will be updated soon, use just something here. */
946 sensor->exposure = v4l2_ctrl_new_std(
947 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
948 V4L2_CID_EXPOSURE, 0, 0, 1, 0);
949
950 sensor->hflip = v4l2_ctrl_new_std(
951 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
952 V4L2_CID_HFLIP, 0, 1, 1, 0);
953 sensor->vflip = v4l2_ctrl_new_std(
954 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
955 V4L2_CID_VFLIP, 0, 1, 1, 0);
956
957 sensor->vblank = v4l2_ctrl_new_std(
958 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
959 V4L2_CID_VBLANK, 0, 1, 1, 0);
960
961 if (sensor->vblank)
962 sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
963
964 sensor->hblank = v4l2_ctrl_new_std(
965 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
966 V4L2_CID_HBLANK, 0, 1, 1, 0);
967
968 if (sensor->hblank)
969 sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
970
971 sensor->pixel_rate_parray = v4l2_ctrl_new_std(
972 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
973 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
974
975 v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
976 &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN,
977 ARRAY_SIZE(ccs_test_patterns) - 1,
978 0, 0, ccs_test_patterns);
979
980 if (sensor->pixel_array->ctrl_handler.error) {
981 dev_err(&client->dev,
982 "pixel array controls initialization failed (%d)\n",
983 sensor->pixel_array->ctrl_handler.error);
984 return sensor->pixel_array->ctrl_handler.error;
985 }
986
987 sensor->pixel_array->sd.ctrl_handler =
988 &sensor->pixel_array->ctrl_handler;
989
990 v4l2_ctrl_cluster(2, &sensor->hflip);
991
992 rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
993 if (rval)
994 return rval;
995
996 sensor->src->ctrl_handler.lock = &sensor->mutex;
997
998 sensor->pixel_rate_csi = v4l2_ctrl_new_std(
999 &sensor->src->ctrl_handler, &ccs_ctrl_ops,
1000 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
1001
1002 if (sensor->src->ctrl_handler.error) {
1003 dev_err(&client->dev,
1004 "src controls initialization failed (%d)\n",
1005 sensor->src->ctrl_handler.error);
1006 return sensor->src->ctrl_handler.error;
1007 }
1008
1009 sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
1010
1011 return 0;
1012 }
1013
1014 /*
1015 * For controls that require information on available media bus codes
1016 * and linke frequencies.
1017 */
ccs_init_late_controls(struct ccs_sensor * sensor)1018 static int ccs_init_late_controls(struct ccs_sensor *sensor)
1019 {
1020 unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
1021 sensor->csi_format->compressed - sensor->compressed_min_bpp];
1022 unsigned int i;
1023
1024 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
1025 int max_value = (1 << sensor->csi_format->width) - 1;
1026
1027 sensor->test_data[i] = v4l2_ctrl_new_std(
1028 &sensor->pixel_array->ctrl_handler,
1029 &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
1030 0, max_value, 1, max_value);
1031 }
1032
1033 sensor->link_freq = v4l2_ctrl_new_int_menu(
1034 &sensor->src->ctrl_handler, &ccs_ctrl_ops,
1035 V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
1036 __ffs(*valid_link_freqs), sensor->hwcfg.op_sys_clock);
1037
1038 return sensor->src->ctrl_handler.error;
1039 }
1040
ccs_free_controls(struct ccs_sensor * sensor)1041 static void ccs_free_controls(struct ccs_sensor *sensor)
1042 {
1043 unsigned int i;
1044
1045 for (i = 0; i < sensor->ssds_used; i++)
1046 v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
1047 }
1048
ccs_get_mbus_formats(struct ccs_sensor * sensor)1049 static int ccs_get_mbus_formats(struct ccs_sensor *sensor)
1050 {
1051 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1052 struct ccs_pll *pll = &sensor->pll;
1053 u8 compressed_max_bpp = 0;
1054 unsigned int type, n;
1055 unsigned int i, pixel_order;
1056 int rval;
1057
1058 type = CCS_LIM(sensor, DATA_FORMAT_MODEL_TYPE);
1059
1060 dev_dbg(&client->dev, "data_format_model_type %d\n", type);
1061
1062 rval = ccs_read(sensor, PIXEL_ORDER, &pixel_order);
1063 if (rval)
1064 return rval;
1065
1066 if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
1067 dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
1068 return -EINVAL;
1069 }
1070
1071 dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
1072 pixel_order_str[pixel_order]);
1073
1074 switch (type) {
1075 case CCS_DATA_FORMAT_MODEL_TYPE_NORMAL:
1076 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
1077 break;
1078 case CCS_DATA_FORMAT_MODEL_TYPE_EXTENDED:
1079 n = CCS_LIM_DATA_FORMAT_DESCRIPTOR_MAX_N + 1;
1080 break;
1081 default:
1082 return -EINVAL;
1083 }
1084
1085 sensor->default_pixel_order = pixel_order;
1086 sensor->mbus_frame_fmts = 0;
1087
1088 for (i = 0; i < n; i++) {
1089 unsigned int fmt, j;
1090
1091 fmt = CCS_LIM_AT(sensor, DATA_FORMAT_DESCRIPTOR, i);
1092
1093 dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
1094 i, fmt >> 8, (u8)fmt);
1095
1096 for (j = 0; j < ARRAY_SIZE(ccs_csi_data_formats); j++) {
1097 const struct ccs_csi_data_format *f =
1098 &ccs_csi_data_formats[j];
1099
1100 if (f->pixel_order != CCS_PIXEL_ORDER_GRBG)
1101 continue;
1102
1103 if (f->width != fmt >>
1104 CCS_DATA_FORMAT_DESCRIPTOR_UNCOMPRESSED_SHIFT ||
1105 f->compressed !=
1106 (fmt & CCS_DATA_FORMAT_DESCRIPTOR_COMPRESSED_MASK))
1107 continue;
1108
1109 dev_dbg(&client->dev, "jolly good! %d\n", j);
1110
1111 sensor->default_mbus_frame_fmts |= 1 << j;
1112 }
1113 }
1114
1115 /* Figure out which BPP values can be used with which formats. */
1116 pll->binning_horizontal = 1;
1117 pll->binning_vertical = 1;
1118 pll->scale_m = sensor->scale_m;
1119
1120 for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1121 sensor->compressed_min_bpp =
1122 min(ccs_csi_data_formats[i].compressed,
1123 sensor->compressed_min_bpp);
1124 compressed_max_bpp =
1125 max(ccs_csi_data_formats[i].compressed,
1126 compressed_max_bpp);
1127 }
1128
1129 sensor->valid_link_freqs = devm_kcalloc(
1130 &client->dev,
1131 compressed_max_bpp - sensor->compressed_min_bpp + 1,
1132 sizeof(*sensor->valid_link_freqs), GFP_KERNEL);
1133 if (!sensor->valid_link_freqs)
1134 return -ENOMEM;
1135
1136 for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1137 const struct ccs_csi_data_format *f =
1138 &ccs_csi_data_formats[i];
1139 unsigned long *valid_link_freqs =
1140 &sensor->valid_link_freqs[
1141 f->compressed - sensor->compressed_min_bpp];
1142 unsigned int j;
1143
1144 if (!(sensor->default_mbus_frame_fmts & 1 << i))
1145 continue;
1146
1147 pll->bits_per_pixel = f->compressed;
1148
1149 for (j = 0; sensor->hwcfg.op_sys_clock[j]; j++) {
1150 pll->link_freq = sensor->hwcfg.op_sys_clock[j];
1151
1152 rval = ccs_pll_try(sensor, pll);
1153 dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
1154 pll->link_freq, pll->bits_per_pixel,
1155 rval ? "not ok" : "ok");
1156 if (rval)
1157 continue;
1158
1159 set_bit(j, valid_link_freqs);
1160 }
1161
1162 if (!*valid_link_freqs) {
1163 dev_info(&client->dev,
1164 "no valid link frequencies for %u bpp\n",
1165 f->compressed);
1166 sensor->default_mbus_frame_fmts &= ~BIT(i);
1167 continue;
1168 }
1169
1170 if (!sensor->csi_format
1171 || f->width > sensor->csi_format->width
1172 || (f->width == sensor->csi_format->width
1173 && f->compressed > sensor->csi_format->compressed)) {
1174 sensor->csi_format = f;
1175 sensor->internal_csi_format = f;
1176 }
1177 }
1178
1179 if (!sensor->csi_format) {
1180 dev_err(&client->dev, "no supported mbus code found\n");
1181 return -EINVAL;
1182 }
1183
1184 ccs_update_mbus_formats(sensor);
1185
1186 return 0;
1187 }
1188
ccs_update_blanking(struct ccs_sensor * sensor)1189 static void ccs_update_blanking(struct ccs_sensor *sensor)
1190 {
1191 struct v4l2_ctrl *vblank = sensor->vblank;
1192 struct v4l2_ctrl *hblank = sensor->hblank;
1193 u16 min_fll, max_fll, min_llp, max_llp, min_lbp;
1194 int min, max;
1195
1196 if (sensor->binning_vertical > 1 || sensor->binning_horizontal > 1) {
1197 min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES_BIN);
1198 max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES_BIN);
1199 min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN);
1200 max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK_BIN);
1201 min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK_BIN);
1202 } else {
1203 min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES);
1204 max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES);
1205 min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK);
1206 max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK);
1207 min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK);
1208 }
1209
1210 min = max_t(int,
1211 CCS_LIM(sensor, MIN_FRAME_BLANKING_LINES),
1212 min_fll - sensor->pixel_array->crop[CCS_PA_PAD_SRC].height);
1213 max = max_fll - sensor->pixel_array->crop[CCS_PA_PAD_SRC].height;
1214
1215 __v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
1216
1217 min = max_t(int,
1218 min_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width,
1219 min_lbp);
1220 max = max_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width;
1221
1222 __v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
1223
1224 __ccs_update_exposure_limits(sensor);
1225 }
1226
ccs_pll_blanking_update(struct ccs_sensor * sensor)1227 static int ccs_pll_blanking_update(struct ccs_sensor *sensor)
1228 {
1229 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1230 int rval;
1231
1232 rval = ccs_pll_update(sensor);
1233 if (rval < 0)
1234 return rval;
1235
1236 /* Output from pixel array, including blanking */
1237 ccs_update_blanking(sensor);
1238
1239 dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
1240 dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
1241
1242 dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
1243 sensor->pll.pixel_rate_pixel_array /
1244 ((sensor->pixel_array->crop[CCS_PA_PAD_SRC].width
1245 + sensor->hblank->val) *
1246 (sensor->pixel_array->crop[CCS_PA_PAD_SRC].height
1247 + sensor->vblank->val) / 100));
1248
1249 return 0;
1250 }
1251
1252 /*
1253 *
1254 * SMIA++ NVM handling
1255 *
1256 */
1257
ccs_read_nvm_page(struct ccs_sensor * sensor,u32 p,u8 * nvm,u8 * status)1258 static int ccs_read_nvm_page(struct ccs_sensor *sensor, u32 p, u8 *nvm,
1259 u8 *status)
1260 {
1261 unsigned int i;
1262 int rval;
1263 u32 s;
1264
1265 *status = 0;
1266
1267 rval = ccs_write(sensor, DATA_TRANSFER_IF_1_PAGE_SELECT, p);
1268 if (rval)
1269 return rval;
1270
1271 rval = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL,
1272 CCS_DATA_TRANSFER_IF_1_CTRL_ENABLE);
1273 if (rval)
1274 return rval;
1275
1276 rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1277 if (rval)
1278 return rval;
1279
1280 if (s & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE) {
1281 *status = s;
1282 return -ENODATA;
1283 }
1284
1285 if (CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
1286 CCS_DATA_TRANSFER_IF_CAPABILITY_POLLING) {
1287 for (i = 1000; i > 0; i--) {
1288 if (s & CCS_DATA_TRANSFER_IF_1_STATUS_READ_IF_READY)
1289 break;
1290
1291 rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1292 if (rval)
1293 return rval;
1294 }
1295
1296 if (!i)
1297 return -ETIMEDOUT;
1298 }
1299
1300 for (i = 0; i <= CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P; i++) {
1301 u32 v;
1302
1303 rval = ccs_read(sensor, DATA_TRANSFER_IF_1_DATA(i), &v);
1304 if (rval)
1305 return rval;
1306
1307 *nvm++ = v;
1308 }
1309
1310 return 0;
1311 }
1312
ccs_read_nvm(struct ccs_sensor * sensor,unsigned char * nvm,size_t nvm_size)1313 static int ccs_read_nvm(struct ccs_sensor *sensor, unsigned char *nvm,
1314 size_t nvm_size)
1315 {
1316 u8 status = 0;
1317 u32 p;
1318 int rval = 0, rval2;
1319
1320 for (p = 0; p < nvm_size / (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1)
1321 && !rval; p++) {
1322 rval = ccs_read_nvm_page(sensor, p, nvm, &status);
1323 nvm += CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1;
1324 }
1325
1326 if (rval == -ENODATA &&
1327 status & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE)
1328 rval = 0;
1329
1330 rval2 = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL, 0);
1331 if (rval < 0)
1332 return rval;
1333 else
1334 return rval2 ?: p * (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1);
1335 }
1336
1337 /*
1338 *
1339 * SMIA++ CCI address control
1340 *
1341 */
ccs_change_cci_addr(struct ccs_sensor * sensor)1342 static int ccs_change_cci_addr(struct ccs_sensor *sensor)
1343 {
1344 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1345 int rval;
1346 u32 val;
1347
1348 client->addr = sensor->hwcfg.i2c_addr_dfl;
1349
1350 rval = ccs_write(sensor, CCI_ADDRESS_CTRL,
1351 sensor->hwcfg.i2c_addr_alt << 1);
1352 if (rval)
1353 return rval;
1354
1355 client->addr = sensor->hwcfg.i2c_addr_alt;
1356
1357 /* verify addr change went ok */
1358 rval = ccs_read(sensor, CCI_ADDRESS_CTRL, &val);
1359 if (rval)
1360 return rval;
1361
1362 if (val != sensor->hwcfg.i2c_addr_alt << 1)
1363 return -ENODEV;
1364
1365 return 0;
1366 }
1367
1368 /*
1369 *
1370 * SMIA++ Mode Control
1371 *
1372 */
ccs_setup_flash_strobe(struct ccs_sensor * sensor)1373 static int ccs_setup_flash_strobe(struct ccs_sensor *sensor)
1374 {
1375 struct ccs_flash_strobe_parms *strobe_setup;
1376 unsigned int ext_freq = sensor->hwcfg.ext_clk;
1377 u32 tmp;
1378 u32 strobe_adjustment;
1379 u32 strobe_width_high_rs;
1380 int rval;
1381
1382 strobe_setup = sensor->hwcfg.strobe_setup;
1383
1384 /*
1385 * How to calculate registers related to strobe length. Please
1386 * do not change, or if you do at least know what you're
1387 * doing. :-)
1388 *
1389 * Sakari Ailus <sakari.ailus@linux.intel.com> 2010-10-25
1390 *
1391 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1392 * / EXTCLK freq [Hz]) * flash_strobe_adjustment
1393 *
1394 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1395 * flash_strobe_adjustment E N, [1 - 0xff]
1396 *
1397 * The formula above is written as below to keep it on one
1398 * line:
1399 *
1400 * l / 10^6 = w / e * a
1401 *
1402 * Let's mark w * a by x:
1403 *
1404 * x = w * a
1405 *
1406 * Thus, we get:
1407 *
1408 * x = l * e / 10^6
1409 *
1410 * The strobe width must be at least as long as requested,
1411 * thus rounding upwards is needed.
1412 *
1413 * x = (l * e + 10^6 - 1) / 10^6
1414 * -----------------------------
1415 *
1416 * Maximum possible accuracy is wanted at all times. Thus keep
1417 * a as small as possible.
1418 *
1419 * Calculate a, assuming maximum w, with rounding upwards:
1420 *
1421 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1422 * -------------------------------------
1423 *
1424 * Thus, we also get w, with that a, with rounding upwards:
1425 *
1426 * w = (x + a - 1) / a
1427 * -------------------
1428 *
1429 * To get limits:
1430 *
1431 * x E [1, (2^16 - 1) * (2^8 - 1)]
1432 *
1433 * Substituting maximum x to the original formula (with rounding),
1434 * the maximum l is thus
1435 *
1436 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1437 *
1438 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1439 * --------------------------------------------------
1440 *
1441 * flash_strobe_length must be clamped between 1 and
1442 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1443 *
1444 * Then,
1445 *
1446 * flash_strobe_adjustment = ((flash_strobe_length *
1447 * EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1448 *
1449 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1450 * EXTCLK freq + 10^6 - 1) / 10^6 +
1451 * flash_strobe_adjustment - 1) / flash_strobe_adjustment
1452 */
1453 tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1454 1000000 + 1, ext_freq);
1455 strobe_setup->strobe_width_high_us =
1456 clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1457
1458 tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1459 1000000 - 1), 1000000ULL);
1460 strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1461 strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1462 strobe_adjustment;
1463
1464 rval = ccs_write(sensor, FLASH_MODE_RS, strobe_setup->mode);
1465 if (rval < 0)
1466 goto out;
1467
1468 rval = ccs_write(sensor, FLASH_STROBE_ADJUSTMENT, strobe_adjustment);
1469 if (rval < 0)
1470 goto out;
1471
1472 rval = ccs_write(sensor, TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1473 strobe_width_high_rs);
1474 if (rval < 0)
1475 goto out;
1476
1477 rval = ccs_write(sensor, TFLASH_STROBE_DELAY_RS_CTRL,
1478 strobe_setup->strobe_delay);
1479 if (rval < 0)
1480 goto out;
1481
1482 rval = ccs_write(sensor, FLASH_STROBE_START_POINT,
1483 strobe_setup->stobe_start_point);
1484 if (rval < 0)
1485 goto out;
1486
1487 rval = ccs_write(sensor, FLASH_TRIGGER_RS, strobe_setup->trigger);
1488
1489 out:
1490 sensor->hwcfg.strobe_setup->trigger = 0;
1491
1492 return rval;
1493 }
1494
1495 /* -----------------------------------------------------------------------------
1496 * Power management
1497 */
1498
ccs_write_msr_regs(struct ccs_sensor * sensor)1499 static int ccs_write_msr_regs(struct ccs_sensor *sensor)
1500 {
1501 int rval;
1502
1503 rval = ccs_write_data_regs(sensor,
1504 sensor->sdata.sensor_manufacturer_regs,
1505 sensor->sdata.num_sensor_manufacturer_regs);
1506 if (rval)
1507 return rval;
1508
1509 return ccs_write_data_regs(sensor,
1510 sensor->mdata.module_manufacturer_regs,
1511 sensor->mdata.num_module_manufacturer_regs);
1512 }
1513
ccs_update_phy_ctrl(struct ccs_sensor * sensor)1514 static int ccs_update_phy_ctrl(struct ccs_sensor *sensor)
1515 {
1516 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1517 u8 val;
1518
1519 if (!sensor->ccs_limits)
1520 return 0;
1521
1522 if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
1523 CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL) {
1524 val = CCS_PHY_CTRL_AUTO;
1525 } else if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
1526 CCS_PHY_CTRL_CAPABILITY_UI_PHY_CTL) {
1527 val = CCS_PHY_CTRL_UI;
1528 } else {
1529 dev_err(&client->dev, "manual PHY control not supported\n");
1530 return -EINVAL;
1531 }
1532
1533 return ccs_write(sensor, PHY_CTRL, val);
1534 }
1535
ccs_power_on(struct device * dev)1536 static int ccs_power_on(struct device *dev)
1537 {
1538 struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1539 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1540 /*
1541 * The sub-device related to the I2C device is always the
1542 * source one, i.e. ssds[0].
1543 */
1544 struct ccs_sensor *sensor =
1545 container_of(ssd, struct ccs_sensor, ssds[0]);
1546 const struct ccs_device *ccsdev = device_get_match_data(dev);
1547 int rval;
1548
1549 rval = regulator_bulk_enable(ARRAY_SIZE(ccs_regulators),
1550 sensor->regulators);
1551 if (rval) {
1552 dev_err(dev, "failed to enable vana regulator\n");
1553 return rval;
1554 }
1555
1556 if (sensor->reset || sensor->xshutdown || sensor->ext_clk) {
1557 unsigned int sleep;
1558
1559 rval = clk_prepare_enable(sensor->ext_clk);
1560 if (rval < 0) {
1561 dev_dbg(dev, "failed to enable xclk\n");
1562 goto out_xclk_fail;
1563 }
1564
1565 gpiod_set_value(sensor->reset, 0);
1566 gpiod_set_value(sensor->xshutdown, 1);
1567
1568 if (ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA)
1569 sleep = SMIAPP_RESET_DELAY(sensor->hwcfg.ext_clk);
1570 else
1571 sleep = 5000;
1572
1573 usleep_range(sleep, sleep);
1574 }
1575
1576 /*
1577 * Failures to respond to the address change command have been noticed.
1578 * Those failures seem to be caused by the sensor requiring a longer
1579 * boot time than advertised. An additional 10ms delay seems to work
1580 * around the issue, but the SMIA++ I2C write retry hack makes the delay
1581 * unnecessary. The failures need to be investigated to find a proper
1582 * fix, and a delay will likely need to be added here if the I2C write
1583 * retry hack is reverted before the root cause of the boot time issue
1584 * is found.
1585 */
1586
1587 if (!sensor->reset && !sensor->xshutdown) {
1588 u8 retry = 100;
1589 u32 reset;
1590
1591 rval = ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
1592 if (rval < 0) {
1593 dev_err(dev, "software reset failed\n");
1594 goto out_cci_addr_fail;
1595 }
1596
1597 do {
1598 rval = ccs_read(sensor, SOFTWARE_RESET, &reset);
1599 reset = !rval && reset == CCS_SOFTWARE_RESET_OFF;
1600 if (reset)
1601 break;
1602
1603 usleep_range(1000, 2000);
1604 } while (--retry);
1605
1606 if (!reset)
1607 return -EIO;
1608 }
1609
1610 if (sensor->hwcfg.i2c_addr_alt) {
1611 rval = ccs_change_cci_addr(sensor);
1612 if (rval) {
1613 dev_err(dev, "cci address change error\n");
1614 goto out_cci_addr_fail;
1615 }
1616 }
1617
1618 rval = ccs_write(sensor, COMPRESSION_MODE,
1619 CCS_COMPRESSION_MODE_DPCM_PCM_SIMPLE);
1620 if (rval) {
1621 dev_err(dev, "compression mode set failed\n");
1622 goto out_cci_addr_fail;
1623 }
1624
1625 rval = ccs_write(sensor, EXTCLK_FREQUENCY_MHZ,
1626 sensor->hwcfg.ext_clk / (1000000 / (1 << 8)));
1627 if (rval) {
1628 dev_err(dev, "extclk frequency set failed\n");
1629 goto out_cci_addr_fail;
1630 }
1631
1632 rval = ccs_write(sensor, CSI_LANE_MODE, sensor->hwcfg.lanes - 1);
1633 if (rval) {
1634 dev_err(dev, "csi lane mode set failed\n");
1635 goto out_cci_addr_fail;
1636 }
1637
1638 rval = ccs_write(sensor, FAST_STANDBY_CTRL,
1639 CCS_FAST_STANDBY_CTRL_FRAME_TRUNCATION);
1640 if (rval) {
1641 dev_err(dev, "fast standby set failed\n");
1642 goto out_cci_addr_fail;
1643 }
1644
1645 rval = ccs_write(sensor, CSI_SIGNALING_MODE,
1646 sensor->hwcfg.csi_signalling_mode);
1647 if (rval) {
1648 dev_err(dev, "csi signalling mode set failed\n");
1649 goto out_cci_addr_fail;
1650 }
1651
1652 rval = ccs_update_phy_ctrl(sensor);
1653 if (rval < 0)
1654 goto out_cci_addr_fail;
1655
1656 rval = ccs_write_msr_regs(sensor);
1657 if (rval)
1658 goto out_cci_addr_fail;
1659
1660 rval = ccs_call_quirk(sensor, post_poweron);
1661 if (rval) {
1662 dev_err(dev, "post_poweron quirks failed\n");
1663 goto out_cci_addr_fail;
1664 }
1665
1666 return 0;
1667
1668 out_cci_addr_fail:
1669 gpiod_set_value(sensor->reset, 1);
1670 gpiod_set_value(sensor->xshutdown, 0);
1671 clk_disable_unprepare(sensor->ext_clk);
1672
1673 out_xclk_fail:
1674 regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1675 sensor->regulators);
1676
1677 return rval;
1678 }
1679
ccs_power_off(struct device * dev)1680 static int ccs_power_off(struct device *dev)
1681 {
1682 struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1683 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1684 struct ccs_sensor *sensor =
1685 container_of(ssd, struct ccs_sensor, ssds[0]);
1686
1687 /*
1688 * Currently power/clock to lens are enable/disabled separately
1689 * but they are essentially the same signals. So if the sensor is
1690 * powered off while the lens is powered on the sensor does not
1691 * really see a power off and next time the cci address change
1692 * will fail. So do a soft reset explicitly here.
1693 */
1694 if (sensor->hwcfg.i2c_addr_alt)
1695 ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
1696
1697 gpiod_set_value(sensor->reset, 1);
1698 gpiod_set_value(sensor->xshutdown, 0);
1699 clk_disable_unprepare(sensor->ext_clk);
1700 usleep_range(5000, 5000);
1701 regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1702 sensor->regulators);
1703 sensor->streaming = false;
1704
1705 return 0;
1706 }
1707
1708 /* -----------------------------------------------------------------------------
1709 * Video stream management
1710 */
1711
ccs_start_streaming(struct ccs_sensor * sensor)1712 static int ccs_start_streaming(struct ccs_sensor *sensor)
1713 {
1714 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1715 unsigned int binning_mode;
1716 int rval;
1717
1718 mutex_lock(&sensor->mutex);
1719
1720 rval = ccs_write(sensor, CSI_DATA_FORMAT,
1721 (sensor->csi_format->width << 8) |
1722 sensor->csi_format->compressed);
1723 if (rval)
1724 goto out;
1725
1726 /* Binning configuration */
1727 if (sensor->binning_horizontal == 1 &&
1728 sensor->binning_vertical == 1) {
1729 binning_mode = 0;
1730 } else {
1731 u8 binning_type =
1732 (sensor->binning_horizontal << 4)
1733 | sensor->binning_vertical;
1734
1735 rval = ccs_write(sensor, BINNING_TYPE, binning_type);
1736 if (rval < 0)
1737 goto out;
1738
1739 binning_mode = 1;
1740 }
1741 rval = ccs_write(sensor, BINNING_MODE, binning_mode);
1742 if (rval < 0)
1743 goto out;
1744
1745 /* Set up PLL */
1746 rval = ccs_pll_configure(sensor);
1747 if (rval)
1748 goto out;
1749
1750 /* Analog crop start coordinates */
1751 rval = ccs_write(sensor, X_ADDR_START,
1752 sensor->pixel_array->crop[CCS_PA_PAD_SRC].left);
1753 if (rval < 0)
1754 goto out;
1755
1756 rval = ccs_write(sensor, Y_ADDR_START,
1757 sensor->pixel_array->crop[CCS_PA_PAD_SRC].top);
1758 if (rval < 0)
1759 goto out;
1760
1761 /* Analog crop end coordinates */
1762 rval = ccs_write(
1763 sensor, X_ADDR_END,
1764 sensor->pixel_array->crop[CCS_PA_PAD_SRC].left
1765 + sensor->pixel_array->crop[CCS_PA_PAD_SRC].width - 1);
1766 if (rval < 0)
1767 goto out;
1768
1769 rval = ccs_write(
1770 sensor, Y_ADDR_END,
1771 sensor->pixel_array->crop[CCS_PA_PAD_SRC].top
1772 + sensor->pixel_array->crop[CCS_PA_PAD_SRC].height - 1);
1773 if (rval < 0)
1774 goto out;
1775
1776 /*
1777 * Output from pixel array, including blanking, is set using
1778 * controls below. No need to set here.
1779 */
1780
1781 /* Digital crop */
1782 if (CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
1783 == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1784 rval = ccs_write(
1785 sensor, DIGITAL_CROP_X_OFFSET,
1786 sensor->scaler->crop[CCS_PAD_SINK].left);
1787 if (rval < 0)
1788 goto out;
1789
1790 rval = ccs_write(
1791 sensor, DIGITAL_CROP_Y_OFFSET,
1792 sensor->scaler->crop[CCS_PAD_SINK].top);
1793 if (rval < 0)
1794 goto out;
1795
1796 rval = ccs_write(
1797 sensor, DIGITAL_CROP_IMAGE_WIDTH,
1798 sensor->scaler->crop[CCS_PAD_SINK].width);
1799 if (rval < 0)
1800 goto out;
1801
1802 rval = ccs_write(
1803 sensor, DIGITAL_CROP_IMAGE_HEIGHT,
1804 sensor->scaler->crop[CCS_PAD_SINK].height);
1805 if (rval < 0)
1806 goto out;
1807 }
1808
1809 /* Scaling */
1810 if (CCS_LIM(sensor, SCALING_CAPABILITY)
1811 != CCS_SCALING_CAPABILITY_NONE) {
1812 rval = ccs_write(sensor, SCALING_MODE, sensor->scaling_mode);
1813 if (rval < 0)
1814 goto out;
1815
1816 rval = ccs_write(sensor, SCALE_M, sensor->scale_m);
1817 if (rval < 0)
1818 goto out;
1819 }
1820
1821 /* Output size from sensor */
1822 rval = ccs_write(sensor, X_OUTPUT_SIZE,
1823 sensor->src->crop[CCS_PAD_SRC].width);
1824 if (rval < 0)
1825 goto out;
1826 rval = ccs_write(sensor, Y_OUTPUT_SIZE,
1827 sensor->src->crop[CCS_PAD_SRC].height);
1828 if (rval < 0)
1829 goto out;
1830
1831 if (CCS_LIM(sensor, FLASH_MODE_CAPABILITY) &
1832 (CCS_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1833 SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE) &&
1834 sensor->hwcfg.strobe_setup != NULL &&
1835 sensor->hwcfg.strobe_setup->trigger != 0) {
1836 rval = ccs_setup_flash_strobe(sensor);
1837 if (rval)
1838 goto out;
1839 }
1840
1841 rval = ccs_call_quirk(sensor, pre_streamon);
1842 if (rval) {
1843 dev_err(&client->dev, "pre_streamon quirks failed\n");
1844 goto out;
1845 }
1846
1847 rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_STREAMING);
1848
1849 out:
1850 mutex_unlock(&sensor->mutex);
1851
1852 return rval;
1853 }
1854
ccs_stop_streaming(struct ccs_sensor * sensor)1855 static int ccs_stop_streaming(struct ccs_sensor *sensor)
1856 {
1857 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1858 int rval;
1859
1860 mutex_lock(&sensor->mutex);
1861 rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_SOFTWARE_STANDBY);
1862 if (rval)
1863 goto out;
1864
1865 rval = ccs_call_quirk(sensor, post_streamoff);
1866 if (rval)
1867 dev_err(&client->dev, "post_streamoff quirks failed\n");
1868
1869 out:
1870 mutex_unlock(&sensor->mutex);
1871 return rval;
1872 }
1873
1874 /* -----------------------------------------------------------------------------
1875 * V4L2 subdev video operations
1876 */
1877
ccs_pm_get_init(struct ccs_sensor * sensor)1878 static int ccs_pm_get_init(struct ccs_sensor *sensor)
1879 {
1880 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1881 int rval;
1882
1883 /*
1884 * It can't use pm_runtime_resume_and_get() here, as the driver
1885 * relies at the returned value to detect if the device was already
1886 * active or not.
1887 */
1888 rval = pm_runtime_get_sync(&client->dev);
1889 if (rval < 0)
1890 goto error;
1891
1892 /* Device was already active, so don't set controls */
1893 if (rval == 1)
1894 return 0;
1895
1896 /* Restore V4L2 controls to the previously suspended device */
1897 rval = v4l2_ctrl_handler_setup(&sensor->pixel_array->ctrl_handler);
1898 if (rval)
1899 goto error;
1900
1901 rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1902 if (rval)
1903 goto error;
1904
1905 /* Keep PM runtime usage_count incremented on success */
1906 return 0;
1907 error:
1908 pm_runtime_put(&client->dev);
1909 return rval;
1910 }
1911
ccs_set_stream(struct v4l2_subdev * subdev,int enable)1912 static int ccs_set_stream(struct v4l2_subdev *subdev, int enable)
1913 {
1914 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1915 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1916 int rval;
1917
1918 if (sensor->streaming == enable)
1919 return 0;
1920
1921 if (!enable) {
1922 ccs_stop_streaming(sensor);
1923 sensor->streaming = false;
1924 pm_runtime_mark_last_busy(&client->dev);
1925 pm_runtime_put_autosuspend(&client->dev);
1926
1927 return 0;
1928 }
1929
1930 rval = ccs_pm_get_init(sensor);
1931 if (rval)
1932 return rval;
1933
1934 sensor->streaming = true;
1935
1936 rval = ccs_start_streaming(sensor);
1937 if (rval < 0) {
1938 sensor->streaming = false;
1939 pm_runtime_mark_last_busy(&client->dev);
1940 pm_runtime_put_autosuspend(&client->dev);
1941 }
1942
1943 return rval;
1944 }
1945
ccs_pre_streamon(struct v4l2_subdev * subdev,u32 flags)1946 static int ccs_pre_streamon(struct v4l2_subdev *subdev, u32 flags)
1947 {
1948 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1949 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1950 int rval;
1951
1952 if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
1953 switch (sensor->hwcfg.csi_signalling_mode) {
1954 case CCS_CSI_SIGNALING_MODE_CSI_2_DPHY:
1955 if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
1956 CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_DPHY))
1957 return -EACCES;
1958 break;
1959 case CCS_CSI_SIGNALING_MODE_CSI_2_CPHY:
1960 if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
1961 CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_CPHY))
1962 return -EACCES;
1963 break;
1964 default:
1965 return -EACCES;
1966 }
1967 }
1968
1969 rval = ccs_pm_get_init(sensor);
1970 if (rval)
1971 return rval;
1972
1973 if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
1974 rval = ccs_write(sensor, MANUAL_LP_CTRL,
1975 CCS_MANUAL_LP_CTRL_ENABLE);
1976 if (rval)
1977 pm_runtime_put(&client->dev);
1978 }
1979
1980 return rval;
1981 }
1982
ccs_post_streamoff(struct v4l2_subdev * subdev)1983 static int ccs_post_streamoff(struct v4l2_subdev *subdev)
1984 {
1985 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1986 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1987
1988 return pm_runtime_put(&client->dev);
1989 }
1990
ccs_enum_mbus_code(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_mbus_code_enum * code)1991 static int ccs_enum_mbus_code(struct v4l2_subdev *subdev,
1992 struct v4l2_subdev_state *sd_state,
1993 struct v4l2_subdev_mbus_code_enum *code)
1994 {
1995 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1996 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1997 unsigned int i;
1998 int idx = -1;
1999 int rval = -EINVAL;
2000
2001 mutex_lock(&sensor->mutex);
2002
2003 dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
2004 subdev->name, code->pad, code->index);
2005
2006 if (subdev != &sensor->src->sd || code->pad != CCS_PAD_SRC) {
2007 if (code->index)
2008 goto out;
2009
2010 code->code = sensor->internal_csi_format->code;
2011 rval = 0;
2012 goto out;
2013 }
2014
2015 for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
2016 if (sensor->mbus_frame_fmts & (1 << i))
2017 idx++;
2018
2019 if (idx == code->index) {
2020 code->code = ccs_csi_data_formats[i].code;
2021 dev_err(&client->dev, "found index %d, i %d, code %x\n",
2022 code->index, i, code->code);
2023 rval = 0;
2024 break;
2025 }
2026 }
2027
2028 out:
2029 mutex_unlock(&sensor->mutex);
2030
2031 return rval;
2032 }
2033
__ccs_get_mbus_code(struct v4l2_subdev * subdev,unsigned int pad)2034 static u32 __ccs_get_mbus_code(struct v4l2_subdev *subdev, unsigned int pad)
2035 {
2036 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2037
2038 if (subdev == &sensor->src->sd && pad == CCS_PAD_SRC)
2039 return sensor->csi_format->code;
2040 else
2041 return sensor->internal_csi_format->code;
2042 }
2043
__ccs_get_format(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * fmt)2044 static int __ccs_get_format(struct v4l2_subdev *subdev,
2045 struct v4l2_subdev_state *sd_state,
2046 struct v4l2_subdev_format *fmt)
2047 {
2048 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2049
2050 if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
2051 fmt->format = *v4l2_subdev_get_try_format(subdev, sd_state,
2052 fmt->pad);
2053 } else {
2054 struct v4l2_rect *r;
2055
2056 if (fmt->pad == ssd->source_pad)
2057 r = &ssd->crop[ssd->source_pad];
2058 else
2059 r = &ssd->sink_fmt;
2060
2061 fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
2062 fmt->format.width = r->width;
2063 fmt->format.height = r->height;
2064 fmt->format.field = V4L2_FIELD_NONE;
2065 }
2066
2067 return 0;
2068 }
2069
ccs_get_format(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * fmt)2070 static int ccs_get_format(struct v4l2_subdev *subdev,
2071 struct v4l2_subdev_state *sd_state,
2072 struct v4l2_subdev_format *fmt)
2073 {
2074 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2075 int rval;
2076
2077 mutex_lock(&sensor->mutex);
2078 rval = __ccs_get_format(subdev, sd_state, fmt);
2079 mutex_unlock(&sensor->mutex);
2080
2081 return rval;
2082 }
2083
ccs_get_crop_compose(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_rect ** crops,struct v4l2_rect ** comps,int which)2084 static void ccs_get_crop_compose(struct v4l2_subdev *subdev,
2085 struct v4l2_subdev_state *sd_state,
2086 struct v4l2_rect **crops,
2087 struct v4l2_rect **comps, int which)
2088 {
2089 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2090 unsigned int i;
2091
2092 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2093 if (crops)
2094 for (i = 0; i < subdev->entity.num_pads; i++)
2095 crops[i] = &ssd->crop[i];
2096 if (comps)
2097 *comps = &ssd->compose;
2098 } else {
2099 if (crops) {
2100 for (i = 0; i < subdev->entity.num_pads; i++)
2101 crops[i] = v4l2_subdev_get_try_crop(subdev,
2102 sd_state,
2103 i);
2104 }
2105 if (comps)
2106 *comps = v4l2_subdev_get_try_compose(subdev, sd_state,
2107 CCS_PAD_SINK);
2108 }
2109 }
2110
2111 /* Changes require propagation only on sink pad. */
ccs_propagate(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,int which,int target)2112 static void ccs_propagate(struct v4l2_subdev *subdev,
2113 struct v4l2_subdev_state *sd_state, int which,
2114 int target)
2115 {
2116 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2117 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2118 struct v4l2_rect *comp, *crops[CCS_PADS];
2119
2120 ccs_get_crop_compose(subdev, sd_state, crops, &comp, which);
2121
2122 switch (target) {
2123 case V4L2_SEL_TGT_CROP:
2124 comp->width = crops[CCS_PAD_SINK]->width;
2125 comp->height = crops[CCS_PAD_SINK]->height;
2126 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2127 if (ssd == sensor->scaler) {
2128 sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
2129 sensor->scaling_mode =
2130 CCS_SCALING_MODE_NO_SCALING;
2131 } else if (ssd == sensor->binner) {
2132 sensor->binning_horizontal = 1;
2133 sensor->binning_vertical = 1;
2134 }
2135 }
2136 fallthrough;
2137 case V4L2_SEL_TGT_COMPOSE:
2138 *crops[CCS_PAD_SRC] = *comp;
2139 break;
2140 default:
2141 WARN_ON_ONCE(1);
2142 }
2143 }
2144
2145 static const struct ccs_csi_data_format
ccs_validate_csi_data_format(struct ccs_sensor * sensor,u32 code)2146 *ccs_validate_csi_data_format(struct ccs_sensor *sensor, u32 code)
2147 {
2148 unsigned int i;
2149
2150 for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
2151 if (sensor->mbus_frame_fmts & (1 << i) &&
2152 ccs_csi_data_formats[i].code == code)
2153 return &ccs_csi_data_formats[i];
2154 }
2155
2156 return sensor->csi_format;
2157 }
2158
ccs_set_format_source(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * fmt)2159 static int ccs_set_format_source(struct v4l2_subdev *subdev,
2160 struct v4l2_subdev_state *sd_state,
2161 struct v4l2_subdev_format *fmt)
2162 {
2163 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2164 const struct ccs_csi_data_format *csi_format,
2165 *old_csi_format = sensor->csi_format;
2166 unsigned long *valid_link_freqs;
2167 u32 code = fmt->format.code;
2168 unsigned int i;
2169 int rval;
2170
2171 rval = __ccs_get_format(subdev, sd_state, fmt);
2172 if (rval)
2173 return rval;
2174
2175 /*
2176 * Media bus code is changeable on src subdev's source pad. On
2177 * other source pads we just get format here.
2178 */
2179 if (subdev != &sensor->src->sd)
2180 return 0;
2181
2182 csi_format = ccs_validate_csi_data_format(sensor, code);
2183
2184 fmt->format.code = csi_format->code;
2185
2186 if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
2187 return 0;
2188
2189 sensor->csi_format = csi_format;
2190
2191 if (csi_format->width != old_csi_format->width)
2192 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
2193 __v4l2_ctrl_modify_range(
2194 sensor->test_data[i], 0,
2195 (1 << csi_format->width) - 1, 1, 0);
2196
2197 if (csi_format->compressed == old_csi_format->compressed)
2198 return 0;
2199
2200 valid_link_freqs =
2201 &sensor->valid_link_freqs[sensor->csi_format->compressed
2202 - sensor->compressed_min_bpp];
2203
2204 __v4l2_ctrl_modify_range(
2205 sensor->link_freq, 0,
2206 __fls(*valid_link_freqs), ~*valid_link_freqs,
2207 __ffs(*valid_link_freqs));
2208
2209 return ccs_pll_update(sensor);
2210 }
2211
ccs_set_format(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * fmt)2212 static int ccs_set_format(struct v4l2_subdev *subdev,
2213 struct v4l2_subdev_state *sd_state,
2214 struct v4l2_subdev_format *fmt)
2215 {
2216 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2217 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2218 struct v4l2_rect *crops[CCS_PADS];
2219
2220 mutex_lock(&sensor->mutex);
2221
2222 if (fmt->pad == ssd->source_pad) {
2223 int rval;
2224
2225 rval = ccs_set_format_source(subdev, sd_state, fmt);
2226
2227 mutex_unlock(&sensor->mutex);
2228
2229 return rval;
2230 }
2231
2232 /* Sink pad. Width and height are changeable here. */
2233 fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
2234 fmt->format.width &= ~1;
2235 fmt->format.height &= ~1;
2236 fmt->format.field = V4L2_FIELD_NONE;
2237
2238 fmt->format.width =
2239 clamp(fmt->format.width,
2240 CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
2241 CCS_LIM(sensor, MAX_X_OUTPUT_SIZE));
2242 fmt->format.height =
2243 clamp(fmt->format.height,
2244 CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2245 CCS_LIM(sensor, MAX_Y_OUTPUT_SIZE));
2246
2247 ccs_get_crop_compose(subdev, sd_state, crops, NULL, fmt->which);
2248
2249 crops[ssd->sink_pad]->left = 0;
2250 crops[ssd->sink_pad]->top = 0;
2251 crops[ssd->sink_pad]->width = fmt->format.width;
2252 crops[ssd->sink_pad]->height = fmt->format.height;
2253 if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2254 ssd->sink_fmt = *crops[ssd->sink_pad];
2255 ccs_propagate(subdev, sd_state, fmt->which, V4L2_SEL_TGT_CROP);
2256
2257 mutex_unlock(&sensor->mutex);
2258
2259 return 0;
2260 }
2261
2262 /*
2263 * Calculate goodness of scaled image size compared to expected image
2264 * size and flags provided.
2265 */
2266 #define SCALING_GOODNESS 100000
2267 #define SCALING_GOODNESS_EXTREME 100000000
scaling_goodness(struct v4l2_subdev * subdev,int w,int ask_w,int h,int ask_h,u32 flags)2268 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
2269 int h, int ask_h, u32 flags)
2270 {
2271 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2272 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2273 int val = 0;
2274
2275 w &= ~1;
2276 ask_w &= ~1;
2277 h &= ~1;
2278 ask_h &= ~1;
2279
2280 if (flags & V4L2_SEL_FLAG_GE) {
2281 if (w < ask_w)
2282 val -= SCALING_GOODNESS;
2283 if (h < ask_h)
2284 val -= SCALING_GOODNESS;
2285 }
2286
2287 if (flags & V4L2_SEL_FLAG_LE) {
2288 if (w > ask_w)
2289 val -= SCALING_GOODNESS;
2290 if (h > ask_h)
2291 val -= SCALING_GOODNESS;
2292 }
2293
2294 val -= abs(w - ask_w);
2295 val -= abs(h - ask_h);
2296
2297 if (w < CCS_LIM(sensor, MIN_X_OUTPUT_SIZE))
2298 val -= SCALING_GOODNESS_EXTREME;
2299
2300 dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
2301 w, ask_w, h, ask_h, val);
2302
2303 return val;
2304 }
2305
ccs_set_compose_binner(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel,struct v4l2_rect ** crops,struct v4l2_rect * comp)2306 static void ccs_set_compose_binner(struct v4l2_subdev *subdev,
2307 struct v4l2_subdev_state *sd_state,
2308 struct v4l2_subdev_selection *sel,
2309 struct v4l2_rect **crops,
2310 struct v4l2_rect *comp)
2311 {
2312 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2313 unsigned int i;
2314 unsigned int binh = 1, binv = 1;
2315 int best = scaling_goodness(
2316 subdev,
2317 crops[CCS_PAD_SINK]->width, sel->r.width,
2318 crops[CCS_PAD_SINK]->height, sel->r.height, sel->flags);
2319
2320 for (i = 0; i < sensor->nbinning_subtypes; i++) {
2321 int this = scaling_goodness(
2322 subdev,
2323 crops[CCS_PAD_SINK]->width
2324 / sensor->binning_subtypes[i].horizontal,
2325 sel->r.width,
2326 crops[CCS_PAD_SINK]->height
2327 / sensor->binning_subtypes[i].vertical,
2328 sel->r.height, sel->flags);
2329
2330 if (this > best) {
2331 binh = sensor->binning_subtypes[i].horizontal;
2332 binv = sensor->binning_subtypes[i].vertical;
2333 best = this;
2334 }
2335 }
2336 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2337 sensor->binning_vertical = binv;
2338 sensor->binning_horizontal = binh;
2339 }
2340
2341 sel->r.width = (crops[CCS_PAD_SINK]->width / binh) & ~1;
2342 sel->r.height = (crops[CCS_PAD_SINK]->height / binv) & ~1;
2343 }
2344
2345 /*
2346 * Calculate best scaling ratio and mode for given output resolution.
2347 *
2348 * Try all of these: horizontal ratio, vertical ratio and smallest
2349 * size possible (horizontally).
2350 *
2351 * Also try whether horizontal scaler or full scaler gives a better
2352 * result.
2353 */
ccs_set_compose_scaler(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel,struct v4l2_rect ** crops,struct v4l2_rect * comp)2354 static void ccs_set_compose_scaler(struct v4l2_subdev *subdev,
2355 struct v4l2_subdev_state *sd_state,
2356 struct v4l2_subdev_selection *sel,
2357 struct v4l2_rect **crops,
2358 struct v4l2_rect *comp)
2359 {
2360 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2361 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2362 u32 min, max, a, b, max_m;
2363 u32 scale_m = CCS_LIM(sensor, SCALER_N_MIN);
2364 int mode = CCS_SCALING_MODE_HORIZONTAL;
2365 u32 try[4];
2366 u32 ntry = 0;
2367 unsigned int i;
2368 int best = INT_MIN;
2369
2370 sel->r.width = min_t(unsigned int, sel->r.width,
2371 crops[CCS_PAD_SINK]->width);
2372 sel->r.height = min_t(unsigned int, sel->r.height,
2373 crops[CCS_PAD_SINK]->height);
2374
2375 a = crops[CCS_PAD_SINK]->width
2376 * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.width;
2377 b = crops[CCS_PAD_SINK]->height
2378 * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.height;
2379 max_m = crops[CCS_PAD_SINK]->width
2380 * CCS_LIM(sensor, SCALER_N_MIN)
2381 / CCS_LIM(sensor, MIN_X_OUTPUT_SIZE);
2382
2383 a = clamp(a, CCS_LIM(sensor, SCALER_M_MIN),
2384 CCS_LIM(sensor, SCALER_M_MAX));
2385 b = clamp(b, CCS_LIM(sensor, SCALER_M_MIN),
2386 CCS_LIM(sensor, SCALER_M_MAX));
2387 max_m = clamp(max_m, CCS_LIM(sensor, SCALER_M_MIN),
2388 CCS_LIM(sensor, SCALER_M_MAX));
2389
2390 dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
2391
2392 min = min(max_m, min(a, b));
2393 max = min(max_m, max(a, b));
2394
2395 try[ntry] = min;
2396 ntry++;
2397 if (min != max) {
2398 try[ntry] = max;
2399 ntry++;
2400 }
2401 if (max != max_m) {
2402 try[ntry] = min + 1;
2403 ntry++;
2404 if (min != max) {
2405 try[ntry] = max + 1;
2406 ntry++;
2407 }
2408 }
2409
2410 for (i = 0; i < ntry; i++) {
2411 int this = scaling_goodness(
2412 subdev,
2413 crops[CCS_PAD_SINK]->width
2414 / try[i] * CCS_LIM(sensor, SCALER_N_MIN),
2415 sel->r.width,
2416 crops[CCS_PAD_SINK]->height,
2417 sel->r.height,
2418 sel->flags);
2419
2420 dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
2421
2422 if (this > best) {
2423 scale_m = try[i];
2424 mode = CCS_SCALING_MODE_HORIZONTAL;
2425 best = this;
2426 }
2427
2428 if (CCS_LIM(sensor, SCALING_CAPABILITY)
2429 == CCS_SCALING_CAPABILITY_HORIZONTAL)
2430 continue;
2431
2432 this = scaling_goodness(
2433 subdev, crops[CCS_PAD_SINK]->width
2434 / try[i]
2435 * CCS_LIM(sensor, SCALER_N_MIN),
2436 sel->r.width,
2437 crops[CCS_PAD_SINK]->height
2438 / try[i]
2439 * CCS_LIM(sensor, SCALER_N_MIN),
2440 sel->r.height,
2441 sel->flags);
2442
2443 if (this > best) {
2444 scale_m = try[i];
2445 mode = SMIAPP_SCALING_MODE_BOTH;
2446 best = this;
2447 }
2448 }
2449
2450 sel->r.width =
2451 (crops[CCS_PAD_SINK]->width
2452 / scale_m
2453 * CCS_LIM(sensor, SCALER_N_MIN)) & ~1;
2454 if (mode == SMIAPP_SCALING_MODE_BOTH)
2455 sel->r.height =
2456 (crops[CCS_PAD_SINK]->height
2457 / scale_m
2458 * CCS_LIM(sensor, SCALER_N_MIN))
2459 & ~1;
2460 else
2461 sel->r.height = crops[CCS_PAD_SINK]->height;
2462
2463 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2464 sensor->scale_m = scale_m;
2465 sensor->scaling_mode = mode;
2466 }
2467 }
2468 /* We're only called on source pads. This function sets scaling. */
ccs_set_compose(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel)2469 static int ccs_set_compose(struct v4l2_subdev *subdev,
2470 struct v4l2_subdev_state *sd_state,
2471 struct v4l2_subdev_selection *sel)
2472 {
2473 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2474 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2475 struct v4l2_rect *comp, *crops[CCS_PADS];
2476
2477 ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which);
2478
2479 sel->r.top = 0;
2480 sel->r.left = 0;
2481
2482 if (ssd == sensor->binner)
2483 ccs_set_compose_binner(subdev, sd_state, sel, crops, comp);
2484 else
2485 ccs_set_compose_scaler(subdev, sd_state, sel, crops, comp);
2486
2487 *comp = sel->r;
2488 ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_COMPOSE);
2489
2490 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2491 return ccs_pll_blanking_update(sensor);
2492
2493 return 0;
2494 }
2495
__ccs_sel_supported(struct v4l2_subdev * subdev,struct v4l2_subdev_selection * sel)2496 static int __ccs_sel_supported(struct v4l2_subdev *subdev,
2497 struct v4l2_subdev_selection *sel)
2498 {
2499 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2500 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2501
2502 /* We only implement crop in three places. */
2503 switch (sel->target) {
2504 case V4L2_SEL_TGT_CROP:
2505 case V4L2_SEL_TGT_CROP_BOUNDS:
2506 if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2507 return 0;
2508 if (ssd == sensor->src && sel->pad == CCS_PAD_SRC)
2509 return 0;
2510 if (ssd == sensor->scaler && sel->pad == CCS_PAD_SINK &&
2511 CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
2512 == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
2513 return 0;
2514 return -EINVAL;
2515 case V4L2_SEL_TGT_NATIVE_SIZE:
2516 if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2517 return 0;
2518 return -EINVAL;
2519 case V4L2_SEL_TGT_COMPOSE:
2520 case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2521 if (sel->pad == ssd->source_pad)
2522 return -EINVAL;
2523 if (ssd == sensor->binner)
2524 return 0;
2525 if (ssd == sensor->scaler && CCS_LIM(sensor, SCALING_CAPABILITY)
2526 != CCS_SCALING_CAPABILITY_NONE)
2527 return 0;
2528 fallthrough;
2529 default:
2530 return -EINVAL;
2531 }
2532 }
2533
ccs_set_crop(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel)2534 static int ccs_set_crop(struct v4l2_subdev *subdev,
2535 struct v4l2_subdev_state *sd_state,
2536 struct v4l2_subdev_selection *sel)
2537 {
2538 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2539 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2540 struct v4l2_rect *src_size, *crops[CCS_PADS];
2541 struct v4l2_rect _r;
2542
2543 ccs_get_crop_compose(subdev, sd_state, crops, NULL, sel->which);
2544
2545 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2546 if (sel->pad == ssd->sink_pad)
2547 src_size = &ssd->sink_fmt;
2548 else
2549 src_size = &ssd->compose;
2550 } else {
2551 if (sel->pad == ssd->sink_pad) {
2552 _r.left = 0;
2553 _r.top = 0;
2554 _r.width = v4l2_subdev_get_try_format(subdev,
2555 sd_state,
2556 sel->pad)
2557 ->width;
2558 _r.height = v4l2_subdev_get_try_format(subdev,
2559 sd_state,
2560 sel->pad)
2561 ->height;
2562 src_size = &_r;
2563 } else {
2564 src_size = v4l2_subdev_get_try_compose(
2565 subdev, sd_state, ssd->sink_pad);
2566 }
2567 }
2568
2569 if (ssd == sensor->src && sel->pad == CCS_PAD_SRC) {
2570 sel->r.left = 0;
2571 sel->r.top = 0;
2572 }
2573
2574 sel->r.width = min(sel->r.width, src_size->width);
2575 sel->r.height = min(sel->r.height, src_size->height);
2576
2577 sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
2578 sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
2579
2580 *crops[sel->pad] = sel->r;
2581
2582 if (ssd != sensor->pixel_array && sel->pad == CCS_PAD_SINK)
2583 ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_CROP);
2584
2585 return 0;
2586 }
2587
ccs_get_native_size(struct ccs_subdev * ssd,struct v4l2_rect * r)2588 static void ccs_get_native_size(struct ccs_subdev *ssd, struct v4l2_rect *r)
2589 {
2590 r->top = 0;
2591 r->left = 0;
2592 r->width = CCS_LIM(ssd->sensor, X_ADDR_MAX) + 1;
2593 r->height = CCS_LIM(ssd->sensor, Y_ADDR_MAX) + 1;
2594 }
2595
__ccs_get_selection(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel)2596 static int __ccs_get_selection(struct v4l2_subdev *subdev,
2597 struct v4l2_subdev_state *sd_state,
2598 struct v4l2_subdev_selection *sel)
2599 {
2600 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2601 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2602 struct v4l2_rect *comp, *crops[CCS_PADS];
2603 struct v4l2_rect sink_fmt;
2604 int ret;
2605
2606 ret = __ccs_sel_supported(subdev, sel);
2607 if (ret)
2608 return ret;
2609
2610 ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which);
2611
2612 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2613 sink_fmt = ssd->sink_fmt;
2614 } else {
2615 struct v4l2_mbus_framefmt *fmt =
2616 v4l2_subdev_get_try_format(subdev, sd_state,
2617 ssd->sink_pad);
2618
2619 sink_fmt.left = 0;
2620 sink_fmt.top = 0;
2621 sink_fmt.width = fmt->width;
2622 sink_fmt.height = fmt->height;
2623 }
2624
2625 switch (sel->target) {
2626 case V4L2_SEL_TGT_CROP_BOUNDS:
2627 case V4L2_SEL_TGT_NATIVE_SIZE:
2628 if (ssd == sensor->pixel_array)
2629 ccs_get_native_size(ssd, &sel->r);
2630 else if (sel->pad == ssd->sink_pad)
2631 sel->r = sink_fmt;
2632 else
2633 sel->r = *comp;
2634 break;
2635 case V4L2_SEL_TGT_CROP:
2636 case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2637 sel->r = *crops[sel->pad];
2638 break;
2639 case V4L2_SEL_TGT_COMPOSE:
2640 sel->r = *comp;
2641 break;
2642 }
2643
2644 return 0;
2645 }
2646
ccs_get_selection(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel)2647 static int ccs_get_selection(struct v4l2_subdev *subdev,
2648 struct v4l2_subdev_state *sd_state,
2649 struct v4l2_subdev_selection *sel)
2650 {
2651 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2652 int rval;
2653
2654 mutex_lock(&sensor->mutex);
2655 rval = __ccs_get_selection(subdev, sd_state, sel);
2656 mutex_unlock(&sensor->mutex);
2657
2658 return rval;
2659 }
2660
ccs_set_selection(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel)2661 static int ccs_set_selection(struct v4l2_subdev *subdev,
2662 struct v4l2_subdev_state *sd_state,
2663 struct v4l2_subdev_selection *sel)
2664 {
2665 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2666 int ret;
2667
2668 ret = __ccs_sel_supported(subdev, sel);
2669 if (ret)
2670 return ret;
2671
2672 mutex_lock(&sensor->mutex);
2673
2674 sel->r.left = max(0, sel->r.left & ~1);
2675 sel->r.top = max(0, sel->r.top & ~1);
2676 sel->r.width = CCS_ALIGN_DIM(sel->r.width, sel->flags);
2677 sel->r.height = CCS_ALIGN_DIM(sel->r.height, sel->flags);
2678
2679 sel->r.width = max_t(unsigned int, CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
2680 sel->r.width);
2681 sel->r.height = max_t(unsigned int, CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2682 sel->r.height);
2683
2684 switch (sel->target) {
2685 case V4L2_SEL_TGT_CROP:
2686 ret = ccs_set_crop(subdev, sd_state, sel);
2687 break;
2688 case V4L2_SEL_TGT_COMPOSE:
2689 ret = ccs_set_compose(subdev, sd_state, sel);
2690 break;
2691 default:
2692 ret = -EINVAL;
2693 }
2694
2695 mutex_unlock(&sensor->mutex);
2696 return ret;
2697 }
2698
ccs_get_skip_frames(struct v4l2_subdev * subdev,u32 * frames)2699 static int ccs_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2700 {
2701 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2702
2703 *frames = sensor->frame_skip;
2704 return 0;
2705 }
2706
ccs_get_skip_top_lines(struct v4l2_subdev * subdev,u32 * lines)2707 static int ccs_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
2708 {
2709 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2710
2711 *lines = sensor->image_start;
2712
2713 return 0;
2714 }
2715
2716 /* -----------------------------------------------------------------------------
2717 * sysfs attributes
2718 */
2719
2720 static ssize_t
nvm_show(struct device * dev,struct device_attribute * attr,char * buf)2721 nvm_show(struct device *dev, struct device_attribute *attr, char *buf)
2722 {
2723 struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2724 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2725 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2726 int rval;
2727
2728 if (!sensor->dev_init_done)
2729 return -EBUSY;
2730
2731 rval = ccs_pm_get_init(sensor);
2732 if (rval < 0)
2733 return -ENODEV;
2734
2735 rval = ccs_read_nvm(sensor, buf, PAGE_SIZE);
2736 if (rval < 0) {
2737 pm_runtime_put(&client->dev);
2738 dev_err(&client->dev, "nvm read failed\n");
2739 return -ENODEV;
2740 }
2741
2742 pm_runtime_mark_last_busy(&client->dev);
2743 pm_runtime_put_autosuspend(&client->dev);
2744
2745 /*
2746 * NVM is still way below a PAGE_SIZE, so we can safely
2747 * assume this for now.
2748 */
2749 return rval;
2750 }
2751 static DEVICE_ATTR_RO(nvm);
2752
2753 static ssize_t
ident_show(struct device * dev,struct device_attribute * attr,char * buf)2754 ident_show(struct device *dev, struct device_attribute *attr, char *buf)
2755 {
2756 struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2757 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2758 struct ccs_module_info *minfo = &sensor->minfo;
2759
2760 if (minfo->mipi_manufacturer_id)
2761 return snprintf(buf, PAGE_SIZE, "%4.4x%4.4x%2.2x\n",
2762 minfo->mipi_manufacturer_id, minfo->model_id,
2763 minfo->revision_number) + 1;
2764 else
2765 return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
2766 minfo->smia_manufacturer_id, minfo->model_id,
2767 minfo->revision_number) + 1;
2768 }
2769 static DEVICE_ATTR_RO(ident);
2770
2771 /* -----------------------------------------------------------------------------
2772 * V4L2 subdev core operations
2773 */
2774
ccs_identify_module(struct ccs_sensor * sensor)2775 static int ccs_identify_module(struct ccs_sensor *sensor)
2776 {
2777 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2778 struct ccs_module_info *minfo = &sensor->minfo;
2779 unsigned int i;
2780 u32 rev;
2781 int rval = 0;
2782
2783 /* Module info */
2784 rval = ccs_read(sensor, MODULE_MANUFACTURER_ID,
2785 &minfo->mipi_manufacturer_id);
2786 if (!rval && !minfo->mipi_manufacturer_id)
2787 rval = ccs_read_addr_8only(sensor,
2788 SMIAPP_REG_U8_MANUFACTURER_ID,
2789 &minfo->smia_manufacturer_id);
2790 if (!rval)
2791 rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_MODEL_ID,
2792 &minfo->model_id);
2793 if (!rval)
2794 rval = ccs_read_addr_8only(sensor,
2795 CCS_R_MODULE_REVISION_NUMBER_MAJOR,
2796 &rev);
2797 if (!rval) {
2798 rval = ccs_read_addr_8only(sensor,
2799 CCS_R_MODULE_REVISION_NUMBER_MINOR,
2800 &minfo->revision_number);
2801 minfo->revision_number |= rev << 8;
2802 }
2803 if (!rval)
2804 rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_YEAR,
2805 &minfo->module_year);
2806 if (!rval)
2807 rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_MONTH,
2808 &minfo->module_month);
2809 if (!rval)
2810 rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_DAY,
2811 &minfo->module_day);
2812
2813 /* Sensor info */
2814 if (!rval)
2815 rval = ccs_read(sensor, SENSOR_MANUFACTURER_ID,
2816 &minfo->sensor_mipi_manufacturer_id);
2817 if (!rval && !minfo->sensor_mipi_manufacturer_id)
2818 rval = ccs_read_addr_8only(sensor,
2819 CCS_R_SENSOR_MANUFACTURER_ID,
2820 &minfo->sensor_smia_manufacturer_id);
2821 if (!rval)
2822 rval = ccs_read_addr_8only(sensor,
2823 CCS_R_SENSOR_MODEL_ID,
2824 &minfo->sensor_model_id);
2825 if (!rval)
2826 rval = ccs_read_addr_8only(sensor,
2827 CCS_R_SENSOR_REVISION_NUMBER,
2828 &minfo->sensor_revision_number);
2829 if (!rval)
2830 rval = ccs_read_addr_8only(sensor,
2831 CCS_R_SENSOR_FIRMWARE_VERSION,
2832 &minfo->sensor_firmware_version);
2833
2834 /* SMIA */
2835 if (!rval)
2836 rval = ccs_read(sensor, MIPI_CCS_VERSION, &minfo->ccs_version);
2837 if (!rval && !minfo->ccs_version)
2838 rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2839 &minfo->smia_version);
2840 if (!rval && !minfo->ccs_version)
2841 rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2842 &minfo->smiapp_version);
2843
2844 if (rval) {
2845 dev_err(&client->dev, "sensor detection failed\n");
2846 return -ENODEV;
2847 }
2848
2849 if (minfo->mipi_manufacturer_id)
2850 dev_dbg(&client->dev, "MIPI CCS module 0x%4.4x-0x%4.4x\n",
2851 minfo->mipi_manufacturer_id, minfo->model_id);
2852 else
2853 dev_dbg(&client->dev, "SMIA module 0x%2.2x-0x%4.4x\n",
2854 minfo->smia_manufacturer_id, minfo->model_id);
2855
2856 dev_dbg(&client->dev,
2857 "module revision 0x%4.4x date %2.2d-%2.2d-%2.2d\n",
2858 minfo->revision_number, minfo->module_year, minfo->module_month,
2859 minfo->module_day);
2860
2861 if (minfo->sensor_mipi_manufacturer_id)
2862 dev_dbg(&client->dev, "MIPI CCS sensor 0x%4.4x-0x%4.4x\n",
2863 minfo->sensor_mipi_manufacturer_id,
2864 minfo->sensor_model_id);
2865 else
2866 dev_dbg(&client->dev, "SMIA sensor 0x%2.2x-0x%4.4x\n",
2867 minfo->sensor_smia_manufacturer_id,
2868 minfo->sensor_model_id);
2869
2870 dev_dbg(&client->dev,
2871 "sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2872 minfo->sensor_revision_number, minfo->sensor_firmware_version);
2873
2874 if (minfo->ccs_version) {
2875 dev_dbg(&client->dev, "MIPI CCS version %u.%u",
2876 (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MAJOR_MASK)
2877 >> CCS_MIPI_CCS_VERSION_MAJOR_SHIFT,
2878 (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MINOR_MASK));
2879 minfo->name = CCS_NAME;
2880 } else {
2881 dev_dbg(&client->dev,
2882 "smia version %2.2d smiapp version %2.2d\n",
2883 minfo->smia_version, minfo->smiapp_version);
2884 minfo->name = SMIAPP_NAME;
2885 }
2886
2887 /*
2888 * Some modules have bad data in the lvalues below. Hope the
2889 * rvalues have better stuff. The lvalues are module
2890 * parameters whereas the rvalues are sensor parameters.
2891 */
2892 if (minfo->sensor_smia_manufacturer_id &&
2893 !minfo->smia_manufacturer_id && !minfo->model_id) {
2894 minfo->smia_manufacturer_id =
2895 minfo->sensor_smia_manufacturer_id;
2896 minfo->model_id = minfo->sensor_model_id;
2897 minfo->revision_number = minfo->sensor_revision_number;
2898 }
2899
2900 for (i = 0; i < ARRAY_SIZE(ccs_module_idents); i++) {
2901 if (ccs_module_idents[i].mipi_manufacturer_id &&
2902 ccs_module_idents[i].mipi_manufacturer_id
2903 != minfo->mipi_manufacturer_id)
2904 continue;
2905 if (ccs_module_idents[i].smia_manufacturer_id &&
2906 ccs_module_idents[i].smia_manufacturer_id
2907 != minfo->smia_manufacturer_id)
2908 continue;
2909 if (ccs_module_idents[i].model_id != minfo->model_id)
2910 continue;
2911 if (ccs_module_idents[i].flags
2912 & CCS_MODULE_IDENT_FLAG_REV_LE) {
2913 if (ccs_module_idents[i].revision_number_major
2914 < (minfo->revision_number >> 8))
2915 continue;
2916 } else {
2917 if (ccs_module_idents[i].revision_number_major
2918 != (minfo->revision_number >> 8))
2919 continue;
2920 }
2921
2922 minfo->name = ccs_module_idents[i].name;
2923 minfo->quirk = ccs_module_idents[i].quirk;
2924 break;
2925 }
2926
2927 if (i >= ARRAY_SIZE(ccs_module_idents))
2928 dev_warn(&client->dev,
2929 "no quirks for this module; let's hope it's fully compliant\n");
2930
2931 dev_dbg(&client->dev, "the sensor is called %s\n", minfo->name);
2932
2933 return 0;
2934 }
2935
2936 static const struct v4l2_subdev_ops ccs_ops;
2937 static const struct v4l2_subdev_internal_ops ccs_internal_ops;
2938 static const struct media_entity_operations ccs_entity_ops;
2939
ccs_register_subdev(struct ccs_sensor * sensor,struct ccs_subdev * ssd,struct ccs_subdev * sink_ssd,u16 source_pad,u16 sink_pad,u32 link_flags)2940 static int ccs_register_subdev(struct ccs_sensor *sensor,
2941 struct ccs_subdev *ssd,
2942 struct ccs_subdev *sink_ssd,
2943 u16 source_pad, u16 sink_pad, u32 link_flags)
2944 {
2945 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2946 int rval;
2947
2948 if (!sink_ssd)
2949 return 0;
2950
2951 rval = media_entity_pads_init(&ssd->sd.entity, ssd->npads, ssd->pads);
2952 if (rval) {
2953 dev_err(&client->dev, "media_entity_pads_init failed\n");
2954 return rval;
2955 }
2956
2957 rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev, &ssd->sd);
2958 if (rval) {
2959 dev_err(&client->dev, "v4l2_device_register_subdev failed\n");
2960 return rval;
2961 }
2962
2963 rval = media_create_pad_link(&ssd->sd.entity, source_pad,
2964 &sink_ssd->sd.entity, sink_pad,
2965 link_flags);
2966 if (rval) {
2967 dev_err(&client->dev, "media_create_pad_link failed\n");
2968 v4l2_device_unregister_subdev(&ssd->sd);
2969 return rval;
2970 }
2971
2972 return 0;
2973 }
2974
ccs_unregistered(struct v4l2_subdev * subdev)2975 static void ccs_unregistered(struct v4l2_subdev *subdev)
2976 {
2977 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2978 unsigned int i;
2979
2980 for (i = 1; i < sensor->ssds_used; i++)
2981 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2982 }
2983
ccs_registered(struct v4l2_subdev * subdev)2984 static int ccs_registered(struct v4l2_subdev *subdev)
2985 {
2986 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2987 int rval;
2988
2989 if (sensor->scaler) {
2990 rval = ccs_register_subdev(sensor, sensor->binner,
2991 sensor->scaler,
2992 CCS_PAD_SRC, CCS_PAD_SINK,
2993 MEDIA_LNK_FL_ENABLED |
2994 MEDIA_LNK_FL_IMMUTABLE);
2995 if (rval < 0)
2996 return rval;
2997 }
2998
2999 rval = ccs_register_subdev(sensor, sensor->pixel_array, sensor->binner,
3000 CCS_PA_PAD_SRC, CCS_PAD_SINK,
3001 MEDIA_LNK_FL_ENABLED |
3002 MEDIA_LNK_FL_IMMUTABLE);
3003 if (rval)
3004 goto out_err;
3005
3006 return 0;
3007
3008 out_err:
3009 ccs_unregistered(subdev);
3010
3011 return rval;
3012 }
3013
ccs_cleanup(struct ccs_sensor * sensor)3014 static void ccs_cleanup(struct ccs_sensor *sensor)
3015 {
3016 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
3017
3018 device_remove_file(&client->dev, &dev_attr_nvm);
3019 device_remove_file(&client->dev, &dev_attr_ident);
3020
3021 ccs_free_controls(sensor);
3022 }
3023
ccs_create_subdev(struct ccs_sensor * sensor,struct ccs_subdev * ssd,const char * name,unsigned short num_pads,u32 function)3024 static void ccs_create_subdev(struct ccs_sensor *sensor,
3025 struct ccs_subdev *ssd, const char *name,
3026 unsigned short num_pads, u32 function)
3027 {
3028 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
3029
3030 if (!ssd)
3031 return;
3032
3033 if (ssd != sensor->src)
3034 v4l2_subdev_init(&ssd->sd, &ccs_ops);
3035
3036 ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
3037 ssd->sd.entity.function = function;
3038 ssd->sensor = sensor;
3039
3040 ssd->npads = num_pads;
3041 ssd->source_pad = num_pads - 1;
3042
3043 v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name);
3044
3045 ccs_get_native_size(ssd, &ssd->sink_fmt);
3046
3047 ssd->compose.width = ssd->sink_fmt.width;
3048 ssd->compose.height = ssd->sink_fmt.height;
3049 ssd->crop[ssd->source_pad] = ssd->compose;
3050 ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3051 if (ssd != sensor->pixel_array) {
3052 ssd->crop[ssd->sink_pad] = ssd->compose;
3053 ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK;
3054 }
3055
3056 ssd->sd.entity.ops = &ccs_entity_ops;
3057
3058 if (ssd == sensor->src)
3059 return;
3060
3061 ssd->sd.internal_ops = &ccs_internal_ops;
3062 ssd->sd.owner = THIS_MODULE;
3063 ssd->sd.dev = &client->dev;
3064 v4l2_set_subdevdata(&ssd->sd, client);
3065 }
3066
ccs_open(struct v4l2_subdev * sd,struct v4l2_subdev_fh * fh)3067 static int ccs_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
3068 {
3069 struct ccs_subdev *ssd = to_ccs_subdev(sd);
3070 struct ccs_sensor *sensor = ssd->sensor;
3071 unsigned int i;
3072
3073 mutex_lock(&sensor->mutex);
3074
3075 for (i = 0; i < ssd->npads; i++) {
3076 struct v4l2_mbus_framefmt *try_fmt =
3077 v4l2_subdev_get_try_format(sd, fh->state, i);
3078 struct v4l2_rect *try_crop =
3079 v4l2_subdev_get_try_crop(sd, fh->state, i);
3080 struct v4l2_rect *try_comp;
3081
3082 ccs_get_native_size(ssd, try_crop);
3083
3084 try_fmt->width = try_crop->width;
3085 try_fmt->height = try_crop->height;
3086 try_fmt->code = sensor->internal_csi_format->code;
3087 try_fmt->field = V4L2_FIELD_NONE;
3088
3089 if (ssd != sensor->pixel_array)
3090 continue;
3091
3092 try_comp = v4l2_subdev_get_try_compose(sd, fh->state, i);
3093 *try_comp = *try_crop;
3094 }
3095
3096 mutex_unlock(&sensor->mutex);
3097
3098 return 0;
3099 }
3100
3101 static const struct v4l2_subdev_video_ops ccs_video_ops = {
3102 .s_stream = ccs_set_stream,
3103 .pre_streamon = ccs_pre_streamon,
3104 .post_streamoff = ccs_post_streamoff,
3105 };
3106
3107 static const struct v4l2_subdev_pad_ops ccs_pad_ops = {
3108 .enum_mbus_code = ccs_enum_mbus_code,
3109 .get_fmt = ccs_get_format,
3110 .set_fmt = ccs_set_format,
3111 .get_selection = ccs_get_selection,
3112 .set_selection = ccs_set_selection,
3113 };
3114
3115 static const struct v4l2_subdev_sensor_ops ccs_sensor_ops = {
3116 .g_skip_frames = ccs_get_skip_frames,
3117 .g_skip_top_lines = ccs_get_skip_top_lines,
3118 };
3119
3120 static const struct v4l2_subdev_ops ccs_ops = {
3121 .video = &ccs_video_ops,
3122 .pad = &ccs_pad_ops,
3123 .sensor = &ccs_sensor_ops,
3124 };
3125
3126 static const struct media_entity_operations ccs_entity_ops = {
3127 .link_validate = v4l2_subdev_link_validate,
3128 };
3129
3130 static const struct v4l2_subdev_internal_ops ccs_internal_src_ops = {
3131 .registered = ccs_registered,
3132 .unregistered = ccs_unregistered,
3133 .open = ccs_open,
3134 };
3135
3136 static const struct v4l2_subdev_internal_ops ccs_internal_ops = {
3137 .open = ccs_open,
3138 };
3139
3140 /* -----------------------------------------------------------------------------
3141 * I2C Driver
3142 */
3143
ccs_suspend(struct device * dev)3144 static int __maybe_unused ccs_suspend(struct device *dev)
3145 {
3146 struct i2c_client *client = to_i2c_client(dev);
3147 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3148 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
3149 bool streaming = sensor->streaming;
3150 int rval;
3151
3152 rval = pm_runtime_resume_and_get(dev);
3153 if (rval < 0)
3154 return rval;
3155
3156 if (sensor->streaming)
3157 ccs_stop_streaming(sensor);
3158
3159 /* save state for resume */
3160 sensor->streaming = streaming;
3161
3162 return 0;
3163 }
3164
ccs_resume(struct device * dev)3165 static int __maybe_unused ccs_resume(struct device *dev)
3166 {
3167 struct i2c_client *client = to_i2c_client(dev);
3168 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3169 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
3170 int rval = 0;
3171
3172 pm_runtime_put(dev);
3173
3174 if (sensor->streaming)
3175 rval = ccs_start_streaming(sensor);
3176
3177 return rval;
3178 }
3179
ccs_get_hwconfig(struct ccs_sensor * sensor,struct device * dev)3180 static int ccs_get_hwconfig(struct ccs_sensor *sensor, struct device *dev)
3181 {
3182 struct ccs_hwconfig *hwcfg = &sensor->hwcfg;
3183 struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_UNKNOWN };
3184 struct fwnode_handle *ep;
3185 struct fwnode_handle *fwnode = dev_fwnode(dev);
3186 u32 rotation;
3187 int i;
3188 int rval;
3189
3190 ep = fwnode_graph_get_endpoint_by_id(fwnode, 0, 0,
3191 FWNODE_GRAPH_ENDPOINT_NEXT);
3192 if (!ep)
3193 return -ENODEV;
3194
3195 /*
3196 * Note that we do need to rely on detecting the bus type between CSI-2
3197 * D-PHY and CCP2 as the old bindings did not require it.
3198 */
3199 rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
3200 if (rval)
3201 goto out_err;
3202
3203 switch (bus_cfg.bus_type) {
3204 case V4L2_MBUS_CSI2_DPHY:
3205 hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_DPHY;
3206 hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
3207 break;
3208 case V4L2_MBUS_CSI2_CPHY:
3209 hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_CPHY;
3210 hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
3211 break;
3212 case V4L2_MBUS_CSI1:
3213 case V4L2_MBUS_CCP2:
3214 hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ?
3215 SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE :
3216 SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK;
3217 hwcfg->lanes = 1;
3218 break;
3219 default:
3220 dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type);
3221 rval = -EINVAL;
3222 goto out_err;
3223 }
3224
3225 dev_dbg(dev, "lanes %u\n", hwcfg->lanes);
3226
3227 rval = fwnode_property_read_u32(fwnode, "rotation", &rotation);
3228 if (!rval) {
3229 switch (rotation) {
3230 case 180:
3231 hwcfg->module_board_orient =
3232 CCS_MODULE_BOARD_ORIENT_180;
3233 fallthrough;
3234 case 0:
3235 break;
3236 default:
3237 dev_err(dev, "invalid rotation %u\n", rotation);
3238 rval = -EINVAL;
3239 goto out_err;
3240 }
3241 }
3242
3243 rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency",
3244 &hwcfg->ext_clk);
3245 if (rval)
3246 dev_info(dev, "can't get clock-frequency\n");
3247
3248 dev_dbg(dev, "clk %d, mode %d\n", hwcfg->ext_clk,
3249 hwcfg->csi_signalling_mode);
3250
3251 if (!bus_cfg.nr_of_link_frequencies) {
3252 dev_warn(dev, "no link frequencies defined\n");
3253 rval = -EINVAL;
3254 goto out_err;
3255 }
3256
3257 hwcfg->op_sys_clock = devm_kcalloc(
3258 dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */,
3259 sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
3260 if (!hwcfg->op_sys_clock) {
3261 rval = -ENOMEM;
3262 goto out_err;
3263 }
3264
3265 for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) {
3266 hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i];
3267 dev_dbg(dev, "freq %d: %lld\n", i, hwcfg->op_sys_clock[i]);
3268 }
3269
3270 v4l2_fwnode_endpoint_free(&bus_cfg);
3271 fwnode_handle_put(ep);
3272
3273 return 0;
3274
3275 out_err:
3276 v4l2_fwnode_endpoint_free(&bus_cfg);
3277 fwnode_handle_put(ep);
3278
3279 return rval;
3280 }
3281
ccs_probe(struct i2c_client * client)3282 static int ccs_probe(struct i2c_client *client)
3283 {
3284 struct ccs_sensor *sensor;
3285 const struct firmware *fw;
3286 char filename[40];
3287 unsigned int i;
3288 int rval;
3289
3290 sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
3291 if (sensor == NULL)
3292 return -ENOMEM;
3293
3294 rval = ccs_get_hwconfig(sensor, &client->dev);
3295 if (rval)
3296 return rval;
3297
3298 sensor->src = &sensor->ssds[sensor->ssds_used];
3299
3300 v4l2_i2c_subdev_init(&sensor->src->sd, client, &ccs_ops);
3301 sensor->src->sd.internal_ops = &ccs_internal_src_ops;
3302
3303 sensor->regulators = devm_kcalloc(&client->dev,
3304 ARRAY_SIZE(ccs_regulators),
3305 sizeof(*sensor->regulators),
3306 GFP_KERNEL);
3307 if (!sensor->regulators)
3308 return -ENOMEM;
3309
3310 for (i = 0; i < ARRAY_SIZE(ccs_regulators); i++)
3311 sensor->regulators[i].supply = ccs_regulators[i];
3312
3313 rval = devm_regulator_bulk_get(&client->dev, ARRAY_SIZE(ccs_regulators),
3314 sensor->regulators);
3315 if (rval) {
3316 dev_err(&client->dev, "could not get regulators\n");
3317 return rval;
3318 }
3319
3320 sensor->ext_clk = devm_clk_get(&client->dev, NULL);
3321 if (PTR_ERR(sensor->ext_clk) == -ENOENT) {
3322 dev_info(&client->dev, "no clock defined, continuing...\n");
3323 sensor->ext_clk = NULL;
3324 } else if (IS_ERR(sensor->ext_clk)) {
3325 dev_err(&client->dev, "could not get clock (%ld)\n",
3326 PTR_ERR(sensor->ext_clk));
3327 return -EPROBE_DEFER;
3328 }
3329
3330 if (sensor->ext_clk) {
3331 if (sensor->hwcfg.ext_clk) {
3332 unsigned long rate;
3333
3334 rval = clk_set_rate(sensor->ext_clk,
3335 sensor->hwcfg.ext_clk);
3336 if (rval < 0) {
3337 dev_err(&client->dev,
3338 "unable to set clock freq to %u\n",
3339 sensor->hwcfg.ext_clk);
3340 return rval;
3341 }
3342
3343 rate = clk_get_rate(sensor->ext_clk);
3344 if (rate != sensor->hwcfg.ext_clk) {
3345 dev_err(&client->dev,
3346 "can't set clock freq, asked for %u but got %lu\n",
3347 sensor->hwcfg.ext_clk, rate);
3348 return -EINVAL;
3349 }
3350 } else {
3351 sensor->hwcfg.ext_clk = clk_get_rate(sensor->ext_clk);
3352 dev_dbg(&client->dev, "obtained clock freq %u\n",
3353 sensor->hwcfg.ext_clk);
3354 }
3355 } else if (sensor->hwcfg.ext_clk) {
3356 dev_dbg(&client->dev, "assuming clock freq %u\n",
3357 sensor->hwcfg.ext_clk);
3358 } else {
3359 dev_err(&client->dev, "unable to obtain clock freq\n");
3360 return -EINVAL;
3361 }
3362
3363 if (!sensor->hwcfg.ext_clk) {
3364 dev_err(&client->dev, "cannot work with xclk frequency 0\n");
3365 return -EINVAL;
3366 }
3367
3368 sensor->reset = devm_gpiod_get_optional(&client->dev, "reset",
3369 GPIOD_OUT_HIGH);
3370 if (IS_ERR(sensor->reset))
3371 return PTR_ERR(sensor->reset);
3372 /* Support old users that may have used "xshutdown" property. */
3373 if (!sensor->reset)
3374 sensor->xshutdown = devm_gpiod_get_optional(&client->dev,
3375 "xshutdown",
3376 GPIOD_OUT_LOW);
3377 if (IS_ERR(sensor->xshutdown))
3378 return PTR_ERR(sensor->xshutdown);
3379
3380 rval = ccs_power_on(&client->dev);
3381 if (rval < 0)
3382 return rval;
3383
3384 mutex_init(&sensor->mutex);
3385
3386 rval = ccs_identify_module(sensor);
3387 if (rval) {
3388 rval = -ENODEV;
3389 goto out_power_off;
3390 }
3391
3392 rval = snprintf(filename, sizeof(filename),
3393 "ccs/ccs-sensor-%4.4x-%4.4x-%4.4x.fw",
3394 sensor->minfo.sensor_mipi_manufacturer_id,
3395 sensor->minfo.sensor_model_id,
3396 sensor->minfo.sensor_revision_number);
3397 if (rval >= sizeof(filename)) {
3398 rval = -ENOMEM;
3399 goto out_power_off;
3400 }
3401
3402 rval = request_firmware(&fw, filename, &client->dev);
3403 if (!rval) {
3404 ccs_data_parse(&sensor->sdata, fw->data, fw->size, &client->dev,
3405 true);
3406 release_firmware(fw);
3407 }
3408
3409 rval = snprintf(filename, sizeof(filename),
3410 "ccs/ccs-module-%4.4x-%4.4x-%4.4x.fw",
3411 sensor->minfo.mipi_manufacturer_id,
3412 sensor->minfo.model_id,
3413 sensor->minfo.revision_number);
3414 if (rval >= sizeof(filename)) {
3415 rval = -ENOMEM;
3416 goto out_release_sdata;
3417 }
3418
3419 rval = request_firmware(&fw, filename, &client->dev);
3420 if (!rval) {
3421 ccs_data_parse(&sensor->mdata, fw->data, fw->size, &client->dev,
3422 true);
3423 release_firmware(fw);
3424 }
3425
3426 rval = ccs_read_all_limits(sensor);
3427 if (rval)
3428 goto out_release_mdata;
3429
3430 rval = ccs_read_frame_fmt(sensor);
3431 if (rval) {
3432 rval = -ENODEV;
3433 goto out_free_ccs_limits;
3434 }
3435
3436 rval = ccs_update_phy_ctrl(sensor);
3437 if (rval < 0)
3438 goto out_free_ccs_limits;
3439
3440 /*
3441 * Handle Sensor Module orientation on the board.
3442 *
3443 * The application of H-FLIP and V-FLIP on the sensor is modified by
3444 * the sensor orientation on the board.
3445 *
3446 * For CCS_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
3447 * both H-FLIP and V-FLIP for normal operation which also implies
3448 * that a set/unset operation for user space HFLIP and VFLIP v4l2
3449 * controls will need to be internally inverted.
3450 *
3451 * Rotation also changes the bayer pattern.
3452 */
3453 if (sensor->hwcfg.module_board_orient ==
3454 CCS_MODULE_BOARD_ORIENT_180)
3455 sensor->hvflip_inv_mask =
3456 CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR |
3457 CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
3458
3459 rval = ccs_call_quirk(sensor, limits);
3460 if (rval) {
3461 dev_err(&client->dev, "limits quirks failed\n");
3462 goto out_free_ccs_limits;
3463 }
3464
3465 if (CCS_LIM(sensor, BINNING_CAPABILITY)) {
3466 sensor->nbinning_subtypes =
3467 min_t(u8, CCS_LIM(sensor, BINNING_SUB_TYPES),
3468 CCS_LIM_BINNING_SUB_TYPE_MAX_N);
3469
3470 for (i = 0; i < sensor->nbinning_subtypes; i++) {
3471 sensor->binning_subtypes[i].horizontal =
3472 CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) >>
3473 CCS_BINNING_SUB_TYPE_COLUMN_SHIFT;
3474 sensor->binning_subtypes[i].vertical =
3475 CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) &
3476 CCS_BINNING_SUB_TYPE_ROW_MASK;
3477
3478 dev_dbg(&client->dev, "binning %xx%x\n",
3479 sensor->binning_subtypes[i].horizontal,
3480 sensor->binning_subtypes[i].vertical);
3481 }
3482 }
3483 sensor->binning_horizontal = 1;
3484 sensor->binning_vertical = 1;
3485
3486 if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
3487 dev_err(&client->dev, "sysfs ident entry creation failed\n");
3488 rval = -ENOENT;
3489 goto out_free_ccs_limits;
3490 }
3491
3492 if (sensor->minfo.smiapp_version &&
3493 CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
3494 CCS_DATA_TRANSFER_IF_CAPABILITY_SUPPORTED) {
3495 if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
3496 dev_err(&client->dev, "sysfs nvm entry failed\n");
3497 rval = -EBUSY;
3498 goto out_cleanup;
3499 }
3500 }
3501
3502 if (!CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV) ||
3503 !CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV) ||
3504 !CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV) ||
3505 !CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV)) {
3506 /* No OP clock branch */
3507 sensor->pll.flags |= CCS_PLL_FLAG_NO_OP_CLOCKS;
3508 } else if (CCS_LIM(sensor, SCALING_CAPABILITY)
3509 != CCS_SCALING_CAPABILITY_NONE ||
3510 CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
3511 == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
3512 /* We have a scaler or digital crop. */
3513 sensor->scaler = &sensor->ssds[sensor->ssds_used];
3514 sensor->ssds_used++;
3515 }
3516 sensor->binner = &sensor->ssds[sensor->ssds_used];
3517 sensor->ssds_used++;
3518 sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
3519 sensor->ssds_used++;
3520
3521 sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
3522
3523 /* prepare PLL configuration input values */
3524 sensor->pll.bus_type = CCS_PLL_BUS_TYPE_CSI2_DPHY;
3525 sensor->pll.csi2.lanes = sensor->hwcfg.lanes;
3526 if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3527 CCS_CLOCK_CALCULATION_LANE_SPEED) {
3528 sensor->pll.flags |= CCS_PLL_FLAG_LANE_SPEED_MODEL;
3529 if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3530 CCS_CLOCK_CALCULATION_LINK_DECOUPLED) {
3531 sensor->pll.vt_lanes =
3532 CCS_LIM(sensor, NUM_OF_VT_LANES) + 1;
3533 sensor->pll.op_lanes =
3534 CCS_LIM(sensor, NUM_OF_OP_LANES) + 1;
3535 sensor->pll.flags |= CCS_PLL_FLAG_LINK_DECOUPLED;
3536 } else {
3537 sensor->pll.vt_lanes = sensor->pll.csi2.lanes;
3538 sensor->pll.op_lanes = sensor->pll.csi2.lanes;
3539 }
3540 }
3541 if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3542 CCS_CLOCK_TREE_PLL_CAPABILITY_EXT_DIVIDER)
3543 sensor->pll.flags |= CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER;
3544 if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3545 CCS_CLOCK_TREE_PLL_CAPABILITY_FLEXIBLE_OP_PIX_CLK_DIV)
3546 sensor->pll.flags |= CCS_PLL_FLAG_FLEXIBLE_OP_PIX_CLK_DIV;
3547 if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3548 CCS_FIFO_SUPPORT_CAPABILITY_DERATING)
3549 sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING;
3550 if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3551 CCS_FIFO_SUPPORT_CAPABILITY_DERATING_OVERRATING)
3552 sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING |
3553 CCS_PLL_FLAG_FIFO_OVERRATING;
3554 if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3555 CCS_CLOCK_TREE_PLL_CAPABILITY_DUAL_PLL) {
3556 if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3557 CCS_CLOCK_TREE_PLL_CAPABILITY_SINGLE_PLL) {
3558 u32 v;
3559
3560 /* Use sensor default in PLL mode selection */
3561 rval = ccs_read(sensor, PLL_MODE, &v);
3562 if (rval)
3563 goto out_cleanup;
3564
3565 if (v == CCS_PLL_MODE_DUAL)
3566 sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3567 } else {
3568 sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3569 }
3570 if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3571 CCS_CLOCK_CALCULATION_DUAL_PLL_OP_SYS_DDR)
3572 sensor->pll.flags |= CCS_PLL_FLAG_OP_SYS_DDR;
3573 if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3574 CCS_CLOCK_CALCULATION_DUAL_PLL_OP_PIX_DDR)
3575 sensor->pll.flags |= CCS_PLL_FLAG_OP_PIX_DDR;
3576 }
3577 sensor->pll.op_bits_per_lane = CCS_LIM(sensor, OP_BITS_PER_LANE);
3578 sensor->pll.ext_clk_freq_hz = sensor->hwcfg.ext_clk;
3579 sensor->pll.scale_n = CCS_LIM(sensor, SCALER_N_MIN);
3580
3581 ccs_create_subdev(sensor, sensor->scaler, " scaler", 2,
3582 MEDIA_ENT_F_PROC_VIDEO_SCALER);
3583 ccs_create_subdev(sensor, sensor->binner, " binner", 2,
3584 MEDIA_ENT_F_PROC_VIDEO_SCALER);
3585 ccs_create_subdev(sensor, sensor->pixel_array, " pixel_array", 1,
3586 MEDIA_ENT_F_CAM_SENSOR);
3587
3588 rval = ccs_init_controls(sensor);
3589 if (rval < 0)
3590 goto out_cleanup;
3591
3592 rval = ccs_call_quirk(sensor, init);
3593 if (rval)
3594 goto out_cleanup;
3595
3596 rval = ccs_get_mbus_formats(sensor);
3597 if (rval) {
3598 rval = -ENODEV;
3599 goto out_cleanup;
3600 }
3601
3602 rval = ccs_init_late_controls(sensor);
3603 if (rval) {
3604 rval = -ENODEV;
3605 goto out_cleanup;
3606 }
3607
3608 mutex_lock(&sensor->mutex);
3609 rval = ccs_pll_blanking_update(sensor);
3610 mutex_unlock(&sensor->mutex);
3611 if (rval) {
3612 dev_err(&client->dev, "update mode failed\n");
3613 goto out_cleanup;
3614 }
3615
3616 sensor->streaming = false;
3617 sensor->dev_init_done = true;
3618
3619 rval = media_entity_pads_init(&sensor->src->sd.entity, 2,
3620 sensor->src->pads);
3621 if (rval < 0)
3622 goto out_media_entity_cleanup;
3623
3624 rval = ccs_write_msr_regs(sensor);
3625 if (rval)
3626 goto out_media_entity_cleanup;
3627
3628 pm_runtime_set_active(&client->dev);
3629 pm_runtime_get_noresume(&client->dev);
3630 pm_runtime_enable(&client->dev);
3631
3632 rval = v4l2_async_register_subdev_sensor(&sensor->src->sd);
3633 if (rval < 0)
3634 goto out_disable_runtime_pm;
3635
3636 pm_runtime_set_autosuspend_delay(&client->dev, 1000);
3637 pm_runtime_use_autosuspend(&client->dev);
3638 pm_runtime_put_autosuspend(&client->dev);
3639
3640 return 0;
3641
3642 out_disable_runtime_pm:
3643 pm_runtime_put_noidle(&client->dev);
3644 pm_runtime_disable(&client->dev);
3645
3646 out_media_entity_cleanup:
3647 media_entity_cleanup(&sensor->src->sd.entity);
3648
3649 out_cleanup:
3650 ccs_cleanup(sensor);
3651
3652 out_release_mdata:
3653 kvfree(sensor->mdata.backing);
3654
3655 out_release_sdata:
3656 kvfree(sensor->sdata.backing);
3657
3658 out_free_ccs_limits:
3659 kfree(sensor->ccs_limits);
3660
3661 out_power_off:
3662 ccs_power_off(&client->dev);
3663 mutex_destroy(&sensor->mutex);
3664
3665 return rval;
3666 }
3667
ccs_remove(struct i2c_client * client)3668 static int ccs_remove(struct i2c_client *client)
3669 {
3670 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3671 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
3672 unsigned int i;
3673
3674 v4l2_async_unregister_subdev(subdev);
3675
3676 pm_runtime_disable(&client->dev);
3677 if (!pm_runtime_status_suspended(&client->dev))
3678 ccs_power_off(&client->dev);
3679 pm_runtime_set_suspended(&client->dev);
3680
3681 for (i = 0; i < sensor->ssds_used; i++) {
3682 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
3683 media_entity_cleanup(&sensor->ssds[i].sd.entity);
3684 }
3685 ccs_cleanup(sensor);
3686 mutex_destroy(&sensor->mutex);
3687 kfree(sensor->ccs_limits);
3688 kvfree(sensor->sdata.backing);
3689 kvfree(sensor->mdata.backing);
3690
3691 return 0;
3692 }
3693
3694 static const struct ccs_device smia_device = {
3695 .flags = CCS_DEVICE_FLAG_IS_SMIA,
3696 };
3697
3698 static const struct ccs_device ccs_device = {};
3699
3700 static const struct acpi_device_id ccs_acpi_table[] = {
3701 { .id = "MIPI0200", .driver_data = (unsigned long)&ccs_device },
3702 { },
3703 };
3704 MODULE_DEVICE_TABLE(acpi, ccs_acpi_table);
3705
3706 static const struct of_device_id ccs_of_table[] = {
3707 { .compatible = "mipi-ccs-1.1", .data = &ccs_device },
3708 { .compatible = "mipi-ccs-1.0", .data = &ccs_device },
3709 { .compatible = "mipi-ccs", .data = &ccs_device },
3710 { .compatible = "nokia,smia", .data = &smia_device },
3711 { },
3712 };
3713 MODULE_DEVICE_TABLE(of, ccs_of_table);
3714
3715 static const struct dev_pm_ops ccs_pm_ops = {
3716 SET_SYSTEM_SLEEP_PM_OPS(ccs_suspend, ccs_resume)
3717 SET_RUNTIME_PM_OPS(ccs_power_off, ccs_power_on, NULL)
3718 };
3719
3720 static struct i2c_driver ccs_i2c_driver = {
3721 .driver = {
3722 .acpi_match_table = ccs_acpi_table,
3723 .of_match_table = ccs_of_table,
3724 .name = CCS_NAME,
3725 .pm = &ccs_pm_ops,
3726 },
3727 .probe_new = ccs_probe,
3728 .remove = ccs_remove,
3729 };
3730
ccs_module_init(void)3731 static int ccs_module_init(void)
3732 {
3733 unsigned int i, l;
3734
3735 for (i = 0, l = 0; ccs_limits[i].size && l < CCS_L_LAST; i++) {
3736 if (!(ccs_limits[i].flags & CCS_L_FL_SAME_REG)) {
3737 ccs_limit_offsets[l + 1].lim =
3738 ALIGN(ccs_limit_offsets[l].lim +
3739 ccs_limits[i].size,
3740 ccs_reg_width(ccs_limits[i + 1].reg));
3741 ccs_limit_offsets[l].info = i;
3742 l++;
3743 } else {
3744 ccs_limit_offsets[l].lim += ccs_limits[i].size;
3745 }
3746 }
3747
3748 if (WARN_ON(ccs_limits[i].size))
3749 return -EINVAL;
3750
3751 if (WARN_ON(l != CCS_L_LAST))
3752 return -EINVAL;
3753
3754 return i2c_register_driver(THIS_MODULE, &ccs_i2c_driver);
3755 }
3756
ccs_module_cleanup(void)3757 static void ccs_module_cleanup(void)
3758 {
3759 i2c_del_driver(&ccs_i2c_driver);
3760 }
3761
3762 module_init(ccs_module_init);
3763 module_exit(ccs_module_cleanup);
3764
3765 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
3766 MODULE_DESCRIPTION("Generic MIPI CCS/SMIA/SMIA++ camera sensor driver");
3767 MODULE_LICENSE("GPL v2");
3768 MODULE_ALIAS("smiapp");
3769