1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright The Asahi Linux Contributors
4 *
5 * Based on irq-lpc32xx:
6 * Copyright 2015-2016 Vladimir Zapolskiy <vz@mleia.com>
7 * Based on irq-bcm2836:
8 * Copyright 2015 Broadcom
9 */
10
11 /*
12 * AIC is a fairly simple interrupt controller with the following features:
13 *
14 * - 896 level-triggered hardware IRQs
15 * - Single mask bit per IRQ
16 * - Per-IRQ affinity setting
17 * - Automatic masking on event delivery (auto-ack)
18 * - Software triggering (ORed with hw line)
19 * - 2 per-CPU IPIs (meant as "self" and "other", but they are
20 * interchangeable if not symmetric)
21 * - Automatic prioritization (single event/ack register per CPU, lower IRQs =
22 * higher priority)
23 * - Automatic masking on ack
24 * - Default "this CPU" register view and explicit per-CPU views
25 *
26 * In addition, this driver also handles FIQs, as these are routed to the same
27 * IRQ vector. These are used for Fast IPIs, the ARMv8 timer IRQs, and
28 * performance counters (TODO).
29 *
30 * Implementation notes:
31 *
32 * - This driver creates two IRQ domains, one for HW IRQs and internal FIQs,
33 * and one for IPIs.
34 * - Since Linux needs more than 2 IPIs, we implement a software IRQ controller
35 * and funnel all IPIs into one per-CPU IPI (the second "self" IPI is unused).
36 * - FIQ hwirq numbers are assigned after true hwirqs, and are per-cpu.
37 * - DT bindings use 3-cell form (like GIC):
38 * - <0 nr flags> - hwirq #nr
39 * - <1 nr flags> - FIQ #nr
40 * - nr=0 Physical HV timer
41 * - nr=1 Virtual HV timer
42 * - nr=2 Physical guest timer
43 * - nr=3 Virtual guest timer
44 */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/bits.h>
49 #include <linux/bitfield.h>
50 #include <linux/cpuhotplug.h>
51 #include <linux/io.h>
52 #include <linux/irqchip.h>
53 #include <linux/irqchip/arm-vgic-info.h>
54 #include <linux/irqdomain.h>
55 #include <linux/jump_label.h>
56 #include <linux/limits.h>
57 #include <linux/of_address.h>
58 #include <linux/slab.h>
59 #include <asm/apple_m1_pmu.h>
60 #include <asm/cputype.h>
61 #include <asm/exception.h>
62 #include <asm/sysreg.h>
63 #include <asm/virt.h>
64
65 #include <dt-bindings/interrupt-controller/apple-aic.h>
66
67 /*
68 * AIC v1 registers (MMIO)
69 */
70
71 #define AIC_INFO 0x0004
72 #define AIC_INFO_NR_IRQ GENMASK(15, 0)
73
74 #define AIC_CONFIG 0x0010
75
76 #define AIC_WHOAMI 0x2000
77 #define AIC_EVENT 0x2004
78 #define AIC_EVENT_DIE GENMASK(31, 24)
79 #define AIC_EVENT_TYPE GENMASK(23, 16)
80 #define AIC_EVENT_NUM GENMASK(15, 0)
81
82 #define AIC_EVENT_TYPE_FIQ 0 /* Software use */
83 #define AIC_EVENT_TYPE_IRQ 1
84 #define AIC_EVENT_TYPE_IPI 4
85 #define AIC_EVENT_IPI_OTHER 1
86 #define AIC_EVENT_IPI_SELF 2
87
88 #define AIC_IPI_SEND 0x2008
89 #define AIC_IPI_ACK 0x200c
90 #define AIC_IPI_MASK_SET 0x2024
91 #define AIC_IPI_MASK_CLR 0x2028
92
93 #define AIC_IPI_SEND_CPU(cpu) BIT(cpu)
94
95 #define AIC_IPI_OTHER BIT(0)
96 #define AIC_IPI_SELF BIT(31)
97
98 #define AIC_TARGET_CPU 0x3000
99
100 #define AIC_CPU_IPI_SET(cpu) (0x5008 + ((cpu) << 7))
101 #define AIC_CPU_IPI_CLR(cpu) (0x500c + ((cpu) << 7))
102 #define AIC_CPU_IPI_MASK_SET(cpu) (0x5024 + ((cpu) << 7))
103 #define AIC_CPU_IPI_MASK_CLR(cpu) (0x5028 + ((cpu) << 7))
104
105 #define AIC_MAX_IRQ 0x400
106
107 /*
108 * AIC v2 registers (MMIO)
109 */
110
111 #define AIC2_VERSION 0x0000
112 #define AIC2_VERSION_VER GENMASK(7, 0)
113
114 #define AIC2_INFO1 0x0004
115 #define AIC2_INFO1_NR_IRQ GENMASK(15, 0)
116 #define AIC2_INFO1_LAST_DIE GENMASK(27, 24)
117
118 #define AIC2_INFO2 0x0008
119
120 #define AIC2_INFO3 0x000c
121 #define AIC2_INFO3_MAX_IRQ GENMASK(15, 0)
122 #define AIC2_INFO3_MAX_DIE GENMASK(27, 24)
123
124 #define AIC2_RESET 0x0010
125 #define AIC2_RESET_RESET BIT(0)
126
127 #define AIC2_CONFIG 0x0014
128 #define AIC2_CONFIG_ENABLE BIT(0)
129 #define AIC2_CONFIG_PREFER_PCPU BIT(28)
130
131 #define AIC2_TIMEOUT 0x0028
132 #define AIC2_CLUSTER_PRIO 0x0030
133 #define AIC2_DELAY_GROUPS 0x0100
134
135 #define AIC2_IRQ_CFG 0x2000
136
137 /*
138 * AIC2 registers are laid out like this, starting at AIC2_IRQ_CFG:
139 *
140 * Repeat for each die:
141 * IRQ_CFG: u32 * MAX_IRQS
142 * SW_SET: u32 * (MAX_IRQS / 32)
143 * SW_CLR: u32 * (MAX_IRQS / 32)
144 * MASK_SET: u32 * (MAX_IRQS / 32)
145 * MASK_CLR: u32 * (MAX_IRQS / 32)
146 * HW_STATE: u32 * (MAX_IRQS / 32)
147 *
148 * This is followed by a set of event registers, each 16K page aligned.
149 * The first one is the AP event register we will use. Unfortunately,
150 * the actual implemented die count is not specified anywhere in the
151 * capability registers, so we have to explicitly specify the event
152 * register as a second reg entry in the device tree to remain
153 * forward-compatible.
154 */
155
156 #define AIC2_IRQ_CFG_TARGET GENMASK(3, 0)
157 #define AIC2_IRQ_CFG_DELAY_IDX GENMASK(7, 5)
158
159 #define MASK_REG(x) (4 * ((x) >> 5))
160 #define MASK_BIT(x) BIT((x) & GENMASK(4, 0))
161
162 /*
163 * IMP-DEF sysregs that control FIQ sources
164 */
165
166 /* IPI request registers */
167 #define SYS_IMP_APL_IPI_RR_LOCAL_EL1 sys_reg(3, 5, 15, 0, 0)
168 #define SYS_IMP_APL_IPI_RR_GLOBAL_EL1 sys_reg(3, 5, 15, 0, 1)
169 #define IPI_RR_CPU GENMASK(7, 0)
170 /* Cluster only used for the GLOBAL register */
171 #define IPI_RR_CLUSTER GENMASK(23, 16)
172 #define IPI_RR_TYPE GENMASK(29, 28)
173 #define IPI_RR_IMMEDIATE 0
174 #define IPI_RR_RETRACT 1
175 #define IPI_RR_DEFERRED 2
176 #define IPI_RR_NOWAKE 3
177
178 /* IPI status register */
179 #define SYS_IMP_APL_IPI_SR_EL1 sys_reg(3, 5, 15, 1, 1)
180 #define IPI_SR_PENDING BIT(0)
181
182 /* Guest timer FIQ enable register */
183 #define SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2 sys_reg(3, 5, 15, 1, 3)
184 #define VM_TMR_FIQ_ENABLE_V BIT(0)
185 #define VM_TMR_FIQ_ENABLE_P BIT(1)
186
187 /* Deferred IPI countdown register */
188 #define SYS_IMP_APL_IPI_CR_EL1 sys_reg(3, 5, 15, 3, 1)
189
190 /* Uncore PMC control register */
191 #define SYS_IMP_APL_UPMCR0_EL1 sys_reg(3, 7, 15, 0, 4)
192 #define UPMCR0_IMODE GENMASK(18, 16)
193 #define UPMCR0_IMODE_OFF 0
194 #define UPMCR0_IMODE_AIC 2
195 #define UPMCR0_IMODE_HALT 3
196 #define UPMCR0_IMODE_FIQ 4
197
198 /* Uncore PMC status register */
199 #define SYS_IMP_APL_UPMSR_EL1 sys_reg(3, 7, 15, 6, 4)
200 #define UPMSR_IACT BIT(0)
201
202 /* MPIDR fields */
203 #define MPIDR_CPU(x) MPIDR_AFFINITY_LEVEL(x, 0)
204 #define MPIDR_CLUSTER(x) MPIDR_AFFINITY_LEVEL(x, 1)
205
206 #define AIC_IRQ_HWIRQ(die, irq) (FIELD_PREP(AIC_EVENT_DIE, die) | \
207 FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_IRQ) | \
208 FIELD_PREP(AIC_EVENT_NUM, irq))
209 #define AIC_FIQ_HWIRQ(x) (FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_FIQ) | \
210 FIELD_PREP(AIC_EVENT_NUM, x))
211 #define AIC_HWIRQ_IRQ(x) FIELD_GET(AIC_EVENT_NUM, x)
212 #define AIC_HWIRQ_DIE(x) FIELD_GET(AIC_EVENT_DIE, x)
213 #define AIC_NR_FIQ 6
214 #define AIC_NR_SWIPI 32
215
216 /*
217 * FIQ hwirq index definitions: FIQ sources use the DT binding defines
218 * directly, except that timers are special. At the irqchip level, the
219 * two timer types are represented by their access method: _EL0 registers
220 * or _EL02 registers. In the DT binding, the timers are represented
221 * by their purpose (HV or guest). This mapping is for when the kernel is
222 * running at EL2 (with VHE). When the kernel is running at EL1, the
223 * mapping differs and aic_irq_domain_translate() performs the remapping.
224 */
225
226 #define AIC_TMR_EL0_PHYS AIC_TMR_HV_PHYS
227 #define AIC_TMR_EL0_VIRT AIC_TMR_HV_VIRT
228 #define AIC_TMR_EL02_PHYS AIC_TMR_GUEST_PHYS
229 #define AIC_TMR_EL02_VIRT AIC_TMR_GUEST_VIRT
230
231 static DEFINE_STATIC_KEY_TRUE(use_fast_ipi);
232
233 struct aic_info {
234 int version;
235
236 /* Register offsets */
237 u32 event;
238 u32 target_cpu;
239 u32 irq_cfg;
240 u32 sw_set;
241 u32 sw_clr;
242 u32 mask_set;
243 u32 mask_clr;
244
245 u32 die_stride;
246
247 /* Features */
248 bool fast_ipi;
249 };
250
251 static const struct aic_info aic1_info = {
252 .version = 1,
253
254 .event = AIC_EVENT,
255 .target_cpu = AIC_TARGET_CPU,
256 };
257
258 static const struct aic_info aic1_fipi_info = {
259 .version = 1,
260
261 .event = AIC_EVENT,
262 .target_cpu = AIC_TARGET_CPU,
263
264 .fast_ipi = true,
265 };
266
267 static const struct aic_info aic2_info = {
268 .version = 2,
269
270 .irq_cfg = AIC2_IRQ_CFG,
271
272 .fast_ipi = true,
273 };
274
275 static const struct of_device_id aic_info_match[] = {
276 {
277 .compatible = "apple,t8103-aic",
278 .data = &aic1_fipi_info,
279 },
280 {
281 .compatible = "apple,aic",
282 .data = &aic1_info,
283 },
284 {
285 .compatible = "apple,aic2",
286 .data = &aic2_info,
287 },
288 {}
289 };
290
291 struct aic_irq_chip {
292 void __iomem *base;
293 void __iomem *event;
294 struct irq_domain *hw_domain;
295 struct irq_domain *ipi_domain;
296 struct {
297 cpumask_t aff;
298 } *fiq_aff[AIC_NR_FIQ];
299
300 int nr_irq;
301 int max_irq;
302 int nr_die;
303 int max_die;
304
305 struct aic_info info;
306 };
307
308 static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked);
309
310 static DEFINE_PER_CPU(atomic_t, aic_vipi_flag);
311 static DEFINE_PER_CPU(atomic_t, aic_vipi_enable);
312
313 static struct aic_irq_chip *aic_irqc;
314
315 static void aic_handle_ipi(struct pt_regs *regs);
316
aic_ic_read(struct aic_irq_chip * ic,u32 reg)317 static u32 aic_ic_read(struct aic_irq_chip *ic, u32 reg)
318 {
319 return readl_relaxed(ic->base + reg);
320 }
321
aic_ic_write(struct aic_irq_chip * ic,u32 reg,u32 val)322 static void aic_ic_write(struct aic_irq_chip *ic, u32 reg, u32 val)
323 {
324 writel_relaxed(val, ic->base + reg);
325 }
326
327 /*
328 * IRQ irqchip
329 */
330
aic_irq_mask(struct irq_data * d)331 static void aic_irq_mask(struct irq_data *d)
332 {
333 irq_hw_number_t hwirq = irqd_to_hwirq(d);
334 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
335
336 u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride;
337 u32 irq = AIC_HWIRQ_IRQ(hwirq);
338
339 aic_ic_write(ic, ic->info.mask_set + off + MASK_REG(irq), MASK_BIT(irq));
340 }
341
aic_irq_unmask(struct irq_data * d)342 static void aic_irq_unmask(struct irq_data *d)
343 {
344 irq_hw_number_t hwirq = irqd_to_hwirq(d);
345 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
346
347 u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride;
348 u32 irq = AIC_HWIRQ_IRQ(hwirq);
349
350 aic_ic_write(ic, ic->info.mask_clr + off + MASK_REG(irq), MASK_BIT(irq));
351 }
352
aic_irq_eoi(struct irq_data * d)353 static void aic_irq_eoi(struct irq_data *d)
354 {
355 /*
356 * Reading the interrupt reason automatically acknowledges and masks
357 * the IRQ, so we just unmask it here if needed.
358 */
359 if (!irqd_irq_masked(d))
360 aic_irq_unmask(d);
361 }
362
aic_handle_irq(struct pt_regs * regs)363 static void __exception_irq_entry aic_handle_irq(struct pt_regs *regs)
364 {
365 struct aic_irq_chip *ic = aic_irqc;
366 u32 event, type, irq;
367
368 do {
369 /*
370 * We cannot use a relaxed read here, as reads from DMA buffers
371 * need to be ordered after the IRQ fires.
372 */
373 event = readl(ic->event + ic->info.event);
374 type = FIELD_GET(AIC_EVENT_TYPE, event);
375 irq = FIELD_GET(AIC_EVENT_NUM, event);
376
377 if (type == AIC_EVENT_TYPE_IRQ)
378 generic_handle_domain_irq(aic_irqc->hw_domain, event);
379 else if (type == AIC_EVENT_TYPE_IPI && irq == 1)
380 aic_handle_ipi(regs);
381 else if (event != 0)
382 pr_err_ratelimited("Unknown IRQ event %d, %d\n", type, irq);
383 } while (event);
384
385 /*
386 * vGIC maintenance interrupts end up here too, so we need to check
387 * for them separately. This should never trigger if KVM is working
388 * properly, because it will have already taken care of clearing it
389 * on guest exit before this handler runs.
390 */
391 if (is_kernel_in_hyp_mode() && (read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) &&
392 read_sysreg_s(SYS_ICH_MISR_EL2) != 0) {
393 pr_err_ratelimited("vGIC IRQ fired and not handled by KVM, disabling.\n");
394 sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
395 }
396 }
397
aic_irq_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)398 static int aic_irq_set_affinity(struct irq_data *d,
399 const struct cpumask *mask_val, bool force)
400 {
401 irq_hw_number_t hwirq = irqd_to_hwirq(d);
402 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
403 int cpu;
404
405 BUG_ON(!ic->info.target_cpu);
406
407 if (force)
408 cpu = cpumask_first(mask_val);
409 else
410 cpu = cpumask_any_and(mask_val, cpu_online_mask);
411
412 aic_ic_write(ic, ic->info.target_cpu + AIC_HWIRQ_IRQ(hwirq) * 4, BIT(cpu));
413 irq_data_update_effective_affinity(d, cpumask_of(cpu));
414
415 return IRQ_SET_MASK_OK;
416 }
417
aic_irq_set_type(struct irq_data * d,unsigned int type)418 static int aic_irq_set_type(struct irq_data *d, unsigned int type)
419 {
420 /*
421 * Some IRQs (e.g. MSIs) implicitly have edge semantics, and we don't
422 * have a way to find out the type of any given IRQ, so just allow both.
423 */
424 return (type == IRQ_TYPE_LEVEL_HIGH || type == IRQ_TYPE_EDGE_RISING) ? 0 : -EINVAL;
425 }
426
427 static struct irq_chip aic_chip = {
428 .name = "AIC",
429 .irq_mask = aic_irq_mask,
430 .irq_unmask = aic_irq_unmask,
431 .irq_eoi = aic_irq_eoi,
432 .irq_set_affinity = aic_irq_set_affinity,
433 .irq_set_type = aic_irq_set_type,
434 };
435
436 static struct irq_chip aic2_chip = {
437 .name = "AIC2",
438 .irq_mask = aic_irq_mask,
439 .irq_unmask = aic_irq_unmask,
440 .irq_eoi = aic_irq_eoi,
441 .irq_set_type = aic_irq_set_type,
442 };
443
444 /*
445 * FIQ irqchip
446 */
447
aic_fiq_get_idx(struct irq_data * d)448 static unsigned long aic_fiq_get_idx(struct irq_data *d)
449 {
450 return AIC_HWIRQ_IRQ(irqd_to_hwirq(d));
451 }
452
aic_fiq_set_mask(struct irq_data * d)453 static void aic_fiq_set_mask(struct irq_data *d)
454 {
455 /* Only the guest timers have real mask bits, unfortunately. */
456 switch (aic_fiq_get_idx(d)) {
457 case AIC_TMR_EL02_PHYS:
458 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_P, 0);
459 isb();
460 break;
461 case AIC_TMR_EL02_VIRT:
462 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V, 0);
463 isb();
464 break;
465 default:
466 break;
467 }
468 }
469
aic_fiq_clear_mask(struct irq_data * d)470 static void aic_fiq_clear_mask(struct irq_data *d)
471 {
472 switch (aic_fiq_get_idx(d)) {
473 case AIC_TMR_EL02_PHYS:
474 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_P);
475 isb();
476 break;
477 case AIC_TMR_EL02_VIRT:
478 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_V);
479 isb();
480 break;
481 default:
482 break;
483 }
484 }
485
aic_fiq_mask(struct irq_data * d)486 static void aic_fiq_mask(struct irq_data *d)
487 {
488 aic_fiq_set_mask(d);
489 __this_cpu_and(aic_fiq_unmasked, ~BIT(aic_fiq_get_idx(d)));
490 }
491
aic_fiq_unmask(struct irq_data * d)492 static void aic_fiq_unmask(struct irq_data *d)
493 {
494 aic_fiq_clear_mask(d);
495 __this_cpu_or(aic_fiq_unmasked, BIT(aic_fiq_get_idx(d)));
496 }
497
aic_fiq_eoi(struct irq_data * d)498 static void aic_fiq_eoi(struct irq_data *d)
499 {
500 /* We mask to ack (where we can), so we need to unmask at EOI. */
501 if (__this_cpu_read(aic_fiq_unmasked) & BIT(aic_fiq_get_idx(d)))
502 aic_fiq_clear_mask(d);
503 }
504
505 #define TIMER_FIRING(x) \
506 (((x) & (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_MASK | \
507 ARCH_TIMER_CTRL_IT_STAT)) == \
508 (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT))
509
aic_handle_fiq(struct pt_regs * regs)510 static void __exception_irq_entry aic_handle_fiq(struct pt_regs *regs)
511 {
512 /*
513 * It would be really nice if we had a system register that lets us get
514 * the FIQ source state without having to peek down into sources...
515 * but such a register does not seem to exist.
516 *
517 * So, we have these potential sources to test for:
518 * - Fast IPIs (not yet used)
519 * - The 4 timers (CNTP, CNTV for each of HV and guest)
520 * - Per-core PMCs (not yet supported)
521 * - Per-cluster uncore PMCs (not yet supported)
522 *
523 * Since not dealing with any of these results in a FIQ storm,
524 * we check for everything here, even things we don't support yet.
525 */
526
527 if (read_sysreg_s(SYS_IMP_APL_IPI_SR_EL1) & IPI_SR_PENDING) {
528 if (static_branch_likely(&use_fast_ipi)) {
529 aic_handle_ipi(regs);
530 } else {
531 pr_err_ratelimited("Fast IPI fired. Acking.\n");
532 write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
533 }
534 }
535
536 if (TIMER_FIRING(read_sysreg(cntp_ctl_el0)))
537 generic_handle_domain_irq(aic_irqc->hw_domain,
538 AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS));
539
540 if (TIMER_FIRING(read_sysreg(cntv_ctl_el0)))
541 generic_handle_domain_irq(aic_irqc->hw_domain,
542 AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT));
543
544 if (is_kernel_in_hyp_mode()) {
545 uint64_t enabled = read_sysreg_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2);
546
547 if ((enabled & VM_TMR_FIQ_ENABLE_P) &&
548 TIMER_FIRING(read_sysreg_s(SYS_CNTP_CTL_EL02)))
549 generic_handle_domain_irq(aic_irqc->hw_domain,
550 AIC_FIQ_HWIRQ(AIC_TMR_EL02_PHYS));
551
552 if ((enabled & VM_TMR_FIQ_ENABLE_V) &&
553 TIMER_FIRING(read_sysreg_s(SYS_CNTV_CTL_EL02)))
554 generic_handle_domain_irq(aic_irqc->hw_domain,
555 AIC_FIQ_HWIRQ(AIC_TMR_EL02_VIRT));
556 }
557
558 if (read_sysreg_s(SYS_IMP_APL_PMCR0_EL1) & PMCR0_IACT) {
559 int irq;
560 if (cpumask_test_cpu(smp_processor_id(),
561 &aic_irqc->fiq_aff[AIC_CPU_PMU_P]->aff))
562 irq = AIC_CPU_PMU_P;
563 else
564 irq = AIC_CPU_PMU_E;
565 generic_handle_domain_irq(aic_irqc->hw_domain,
566 AIC_FIQ_HWIRQ(irq));
567 }
568
569 if (FIELD_GET(UPMCR0_IMODE, read_sysreg_s(SYS_IMP_APL_UPMCR0_EL1)) == UPMCR0_IMODE_FIQ &&
570 (read_sysreg_s(SYS_IMP_APL_UPMSR_EL1) & UPMSR_IACT)) {
571 /* Same story with uncore PMCs */
572 pr_err_ratelimited("Uncore PMC FIQ fired. Masking.\n");
573 sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
574 FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
575 }
576 }
577
aic_fiq_set_type(struct irq_data * d,unsigned int type)578 static int aic_fiq_set_type(struct irq_data *d, unsigned int type)
579 {
580 return (type == IRQ_TYPE_LEVEL_HIGH) ? 0 : -EINVAL;
581 }
582
583 static struct irq_chip fiq_chip = {
584 .name = "AIC-FIQ",
585 .irq_mask = aic_fiq_mask,
586 .irq_unmask = aic_fiq_unmask,
587 .irq_ack = aic_fiq_set_mask,
588 .irq_eoi = aic_fiq_eoi,
589 .irq_set_type = aic_fiq_set_type,
590 };
591
592 /*
593 * Main IRQ domain
594 */
595
aic_irq_domain_map(struct irq_domain * id,unsigned int irq,irq_hw_number_t hw)596 static int aic_irq_domain_map(struct irq_domain *id, unsigned int irq,
597 irq_hw_number_t hw)
598 {
599 struct aic_irq_chip *ic = id->host_data;
600 u32 type = FIELD_GET(AIC_EVENT_TYPE, hw);
601 struct irq_chip *chip = &aic_chip;
602
603 if (ic->info.version == 2)
604 chip = &aic2_chip;
605
606 if (type == AIC_EVENT_TYPE_IRQ) {
607 irq_domain_set_info(id, irq, hw, chip, id->host_data,
608 handle_fasteoi_irq, NULL, NULL);
609 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
610 } else {
611 int fiq = FIELD_GET(AIC_EVENT_NUM, hw);
612
613 switch (fiq) {
614 case AIC_CPU_PMU_P:
615 case AIC_CPU_PMU_E:
616 irq_set_percpu_devid_partition(irq, &ic->fiq_aff[fiq]->aff);
617 break;
618 default:
619 irq_set_percpu_devid(irq);
620 break;
621 }
622
623 irq_domain_set_info(id, irq, hw, &fiq_chip, id->host_data,
624 handle_percpu_devid_irq, NULL, NULL);
625 }
626
627 return 0;
628 }
629
aic_irq_domain_translate(struct irq_domain * id,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)630 static int aic_irq_domain_translate(struct irq_domain *id,
631 struct irq_fwspec *fwspec,
632 unsigned long *hwirq,
633 unsigned int *type)
634 {
635 struct aic_irq_chip *ic = id->host_data;
636 u32 *args;
637 u32 die = 0;
638
639 if (fwspec->param_count < 3 || fwspec->param_count > 4 ||
640 !is_of_node(fwspec->fwnode))
641 return -EINVAL;
642
643 args = &fwspec->param[1];
644
645 if (fwspec->param_count == 4) {
646 die = args[0];
647 args++;
648 }
649
650 switch (fwspec->param[0]) {
651 case AIC_IRQ:
652 if (die >= ic->nr_die)
653 return -EINVAL;
654 if (args[0] >= ic->nr_irq)
655 return -EINVAL;
656 *hwirq = AIC_IRQ_HWIRQ(die, args[0]);
657 break;
658 case AIC_FIQ:
659 if (die != 0)
660 return -EINVAL;
661 if (args[0] >= AIC_NR_FIQ)
662 return -EINVAL;
663 *hwirq = AIC_FIQ_HWIRQ(args[0]);
664
665 /*
666 * In EL1 the non-redirected registers are the guest's,
667 * not EL2's, so remap the hwirqs to match.
668 */
669 if (!is_kernel_in_hyp_mode()) {
670 switch (args[0]) {
671 case AIC_TMR_GUEST_PHYS:
672 *hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS);
673 break;
674 case AIC_TMR_GUEST_VIRT:
675 *hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT);
676 break;
677 case AIC_TMR_HV_PHYS:
678 case AIC_TMR_HV_VIRT:
679 return -ENOENT;
680 default:
681 break;
682 }
683 }
684 break;
685 default:
686 return -EINVAL;
687 }
688
689 *type = args[1] & IRQ_TYPE_SENSE_MASK;
690
691 return 0;
692 }
693
aic_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)694 static int aic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
695 unsigned int nr_irqs, void *arg)
696 {
697 unsigned int type = IRQ_TYPE_NONE;
698 struct irq_fwspec *fwspec = arg;
699 irq_hw_number_t hwirq;
700 int i, ret;
701
702 ret = aic_irq_domain_translate(domain, fwspec, &hwirq, &type);
703 if (ret)
704 return ret;
705
706 for (i = 0; i < nr_irqs; i++) {
707 ret = aic_irq_domain_map(domain, virq + i, hwirq + i);
708 if (ret)
709 return ret;
710 }
711
712 return 0;
713 }
714
aic_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)715 static void aic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
716 unsigned int nr_irqs)
717 {
718 int i;
719
720 for (i = 0; i < nr_irqs; i++) {
721 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
722
723 irq_set_handler(virq + i, NULL);
724 irq_domain_reset_irq_data(d);
725 }
726 }
727
728 static const struct irq_domain_ops aic_irq_domain_ops = {
729 .translate = aic_irq_domain_translate,
730 .alloc = aic_irq_domain_alloc,
731 .free = aic_irq_domain_free,
732 };
733
734 /*
735 * IPI irqchip
736 */
737
aic_ipi_send_fast(int cpu)738 static void aic_ipi_send_fast(int cpu)
739 {
740 u64 mpidr = cpu_logical_map(cpu);
741 u64 my_mpidr = read_cpuid_mpidr();
742 u64 cluster = MPIDR_CLUSTER(mpidr);
743 u64 idx = MPIDR_CPU(mpidr);
744
745 if (MPIDR_CLUSTER(my_mpidr) == cluster)
746 write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx),
747 SYS_IMP_APL_IPI_RR_LOCAL_EL1);
748 else
749 write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx) | FIELD_PREP(IPI_RR_CLUSTER, cluster),
750 SYS_IMP_APL_IPI_RR_GLOBAL_EL1);
751 isb();
752 }
753
aic_ipi_mask(struct irq_data * d)754 static void aic_ipi_mask(struct irq_data *d)
755 {
756 u32 irq_bit = BIT(irqd_to_hwirq(d));
757
758 /* No specific ordering requirements needed here. */
759 atomic_andnot(irq_bit, this_cpu_ptr(&aic_vipi_enable));
760 }
761
aic_ipi_unmask(struct irq_data * d)762 static void aic_ipi_unmask(struct irq_data *d)
763 {
764 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
765 u32 irq_bit = BIT(irqd_to_hwirq(d));
766
767 atomic_or(irq_bit, this_cpu_ptr(&aic_vipi_enable));
768
769 /*
770 * The atomic_or() above must complete before the atomic_read()
771 * below to avoid racing aic_ipi_send_mask().
772 */
773 smp_mb__after_atomic();
774
775 /*
776 * If a pending vIPI was unmasked, raise a HW IPI to ourselves.
777 * No barriers needed here since this is a self-IPI.
778 */
779 if (atomic_read(this_cpu_ptr(&aic_vipi_flag)) & irq_bit) {
780 if (static_branch_likely(&use_fast_ipi))
781 aic_ipi_send_fast(smp_processor_id());
782 else
783 aic_ic_write(ic, AIC_IPI_SEND, AIC_IPI_SEND_CPU(smp_processor_id()));
784 }
785 }
786
aic_ipi_send_mask(struct irq_data * d,const struct cpumask * mask)787 static void aic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
788 {
789 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
790 u32 irq_bit = BIT(irqd_to_hwirq(d));
791 u32 send = 0;
792 int cpu;
793 unsigned long pending;
794
795 for_each_cpu(cpu, mask) {
796 /*
797 * This sequence is the mirror of the one in aic_ipi_unmask();
798 * see the comment there. Additionally, release semantics
799 * ensure that the vIPI flag set is ordered after any shared
800 * memory accesses that precede it. This therefore also pairs
801 * with the atomic_fetch_andnot in aic_handle_ipi().
802 */
803 pending = atomic_fetch_or_release(irq_bit, per_cpu_ptr(&aic_vipi_flag, cpu));
804
805 /*
806 * The atomic_fetch_or_release() above must complete before the
807 * atomic_read() below to avoid racing aic_ipi_unmask().
808 */
809 smp_mb__after_atomic();
810
811 if (!(pending & irq_bit) &&
812 (atomic_read(per_cpu_ptr(&aic_vipi_enable, cpu)) & irq_bit)) {
813 if (static_branch_likely(&use_fast_ipi))
814 aic_ipi_send_fast(cpu);
815 else
816 send |= AIC_IPI_SEND_CPU(cpu);
817 }
818 }
819
820 /*
821 * The flag writes must complete before the physical IPI is issued
822 * to another CPU. This is implied by the control dependency on
823 * the result of atomic_read_acquire() above, which is itself
824 * already ordered after the vIPI flag write.
825 */
826 if (send)
827 aic_ic_write(ic, AIC_IPI_SEND, send);
828 }
829
830 static struct irq_chip ipi_chip = {
831 .name = "AIC-IPI",
832 .irq_mask = aic_ipi_mask,
833 .irq_unmask = aic_ipi_unmask,
834 .ipi_send_mask = aic_ipi_send_mask,
835 };
836
837 /*
838 * IPI IRQ domain
839 */
840
aic_handle_ipi(struct pt_regs * regs)841 static void aic_handle_ipi(struct pt_regs *regs)
842 {
843 int i;
844 unsigned long enabled, firing;
845
846 /*
847 * Ack the IPI. We need to order this after the AIC event read, but
848 * that is enforced by normal MMIO ordering guarantees.
849 *
850 * For the Fast IPI case, this needs to be ordered before the vIPI
851 * handling below, so we need to isb();
852 */
853 if (static_branch_likely(&use_fast_ipi)) {
854 write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
855 isb();
856 } else {
857 aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER);
858 }
859
860 /*
861 * The mask read does not need to be ordered. Only we can change
862 * our own mask anyway, so no races are possible here, as long as
863 * we are properly in the interrupt handler (which is covered by
864 * the barrier that is part of the top-level AIC handler's readl()).
865 */
866 enabled = atomic_read(this_cpu_ptr(&aic_vipi_enable));
867
868 /*
869 * Clear the IPIs we are about to handle. This pairs with the
870 * atomic_fetch_or_release() in aic_ipi_send_mask(), and needs to be
871 * ordered after the aic_ic_write() above (to avoid dropping vIPIs) and
872 * before IPI handling code (to avoid races handling vIPIs before they
873 * are signaled). The former is taken care of by the release semantics
874 * of the write portion, while the latter is taken care of by the
875 * acquire semantics of the read portion.
876 */
877 firing = atomic_fetch_andnot(enabled, this_cpu_ptr(&aic_vipi_flag)) & enabled;
878
879 for_each_set_bit(i, &firing, AIC_NR_SWIPI)
880 generic_handle_domain_irq(aic_irqc->ipi_domain, i);
881
882 /*
883 * No ordering needed here; at worst this just changes the timing of
884 * when the next IPI will be delivered.
885 */
886 if (!static_branch_likely(&use_fast_ipi))
887 aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
888 }
889
aic_ipi_alloc(struct irq_domain * d,unsigned int virq,unsigned int nr_irqs,void * args)890 static int aic_ipi_alloc(struct irq_domain *d, unsigned int virq,
891 unsigned int nr_irqs, void *args)
892 {
893 int i;
894
895 for (i = 0; i < nr_irqs; i++) {
896 irq_set_percpu_devid(virq + i);
897 irq_domain_set_info(d, virq + i, i, &ipi_chip, d->host_data,
898 handle_percpu_devid_irq, NULL, NULL);
899 }
900
901 return 0;
902 }
903
aic_ipi_free(struct irq_domain * d,unsigned int virq,unsigned int nr_irqs)904 static void aic_ipi_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs)
905 {
906 /* Not freeing IPIs */
907 }
908
909 static const struct irq_domain_ops aic_ipi_domain_ops = {
910 .alloc = aic_ipi_alloc,
911 .free = aic_ipi_free,
912 };
913
aic_init_smp(struct aic_irq_chip * irqc,struct device_node * node)914 static int __init aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node)
915 {
916 struct irq_domain *ipi_domain;
917 int base_ipi;
918
919 ipi_domain = irq_domain_create_linear(irqc->hw_domain->fwnode, AIC_NR_SWIPI,
920 &aic_ipi_domain_ops, irqc);
921 if (WARN_ON(!ipi_domain))
922 return -ENODEV;
923
924 ipi_domain->flags |= IRQ_DOMAIN_FLAG_IPI_SINGLE;
925 irq_domain_update_bus_token(ipi_domain, DOMAIN_BUS_IPI);
926
927 base_ipi = __irq_domain_alloc_irqs(ipi_domain, -1, AIC_NR_SWIPI,
928 NUMA_NO_NODE, NULL, false, NULL);
929
930 if (WARN_ON(!base_ipi)) {
931 irq_domain_remove(ipi_domain);
932 return -ENODEV;
933 }
934
935 set_smp_ipi_range(base_ipi, AIC_NR_SWIPI);
936
937 irqc->ipi_domain = ipi_domain;
938
939 return 0;
940 }
941
aic_init_cpu(unsigned int cpu)942 static int aic_init_cpu(unsigned int cpu)
943 {
944 /* Mask all hard-wired per-CPU IRQ/FIQ sources */
945
946 /* Pending Fast IPI FIQs */
947 write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
948
949 /* Timer FIQs */
950 sysreg_clear_set(cntp_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
951 sysreg_clear_set(cntv_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
952
953 /* EL2-only (VHE mode) IRQ sources */
954 if (is_kernel_in_hyp_mode()) {
955 /* Guest timers */
956 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2,
957 VM_TMR_FIQ_ENABLE_V | VM_TMR_FIQ_ENABLE_P, 0);
958
959 /* vGIC maintenance IRQ */
960 sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
961 }
962
963 /* PMC FIQ */
964 sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT,
965 FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF));
966
967 /* Uncore PMC FIQ */
968 sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
969 FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
970
971 /* Commit all of the above */
972 isb();
973
974 if (aic_irqc->info.version == 1) {
975 /*
976 * Make sure the kernel's idea of logical CPU order is the same as AIC's
977 * If we ever end up with a mismatch here, we will have to introduce
978 * a mapping table similar to what other irqchip drivers do.
979 */
980 WARN_ON(aic_ic_read(aic_irqc, AIC_WHOAMI) != smp_processor_id());
981
982 /*
983 * Always keep IPIs unmasked at the hardware level (except auto-masking
984 * by AIC during processing). We manage masks at the vIPI level.
985 * These registers only exist on AICv1, AICv2 always uses fast IPIs.
986 */
987 aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_SELF | AIC_IPI_OTHER);
988 if (static_branch_likely(&use_fast_ipi)) {
989 aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF | AIC_IPI_OTHER);
990 } else {
991 aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF);
992 aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
993 }
994 }
995
996 /* Initialize the local mask state */
997 __this_cpu_write(aic_fiq_unmasked, 0);
998
999 return 0;
1000 }
1001
1002 static struct gic_kvm_info vgic_info __initdata = {
1003 .type = GIC_V3,
1004 .no_maint_irq_mask = true,
1005 .no_hw_deactivation = true,
1006 };
1007
build_fiq_affinity(struct aic_irq_chip * ic,struct device_node * aff)1008 static void build_fiq_affinity(struct aic_irq_chip *ic, struct device_node *aff)
1009 {
1010 int i, n;
1011 u32 fiq;
1012
1013 if (of_property_read_u32(aff, "apple,fiq-index", &fiq) ||
1014 WARN_ON(fiq >= AIC_NR_FIQ) || ic->fiq_aff[fiq])
1015 return;
1016
1017 n = of_property_count_elems_of_size(aff, "cpus", sizeof(u32));
1018 if (WARN_ON(n < 0))
1019 return;
1020
1021 ic->fiq_aff[fiq] = kzalloc(sizeof(*ic->fiq_aff[fiq]), GFP_KERNEL);
1022 if (!ic->fiq_aff[fiq])
1023 return;
1024
1025 for (i = 0; i < n; i++) {
1026 struct device_node *cpu_node;
1027 u32 cpu_phandle;
1028 int cpu;
1029
1030 if (of_property_read_u32_index(aff, "cpus", i, &cpu_phandle))
1031 continue;
1032
1033 cpu_node = of_find_node_by_phandle(cpu_phandle);
1034 if (WARN_ON(!cpu_node))
1035 continue;
1036
1037 cpu = of_cpu_node_to_id(cpu_node);
1038 of_node_put(cpu_node);
1039 if (WARN_ON(cpu < 0))
1040 continue;
1041
1042 cpumask_set_cpu(cpu, &ic->fiq_aff[fiq]->aff);
1043 }
1044 }
1045
aic_of_ic_init(struct device_node * node,struct device_node * parent)1046 static int __init aic_of_ic_init(struct device_node *node, struct device_node *parent)
1047 {
1048 int i, die;
1049 u32 off, start_off;
1050 void __iomem *regs;
1051 struct aic_irq_chip *irqc;
1052 struct device_node *affs;
1053 const struct of_device_id *match;
1054
1055 regs = of_iomap(node, 0);
1056 if (WARN_ON(!regs))
1057 return -EIO;
1058
1059 irqc = kzalloc(sizeof(*irqc), GFP_KERNEL);
1060 if (!irqc) {
1061 iounmap(regs);
1062 return -ENOMEM;
1063 }
1064
1065 irqc->base = regs;
1066
1067 match = of_match_node(aic_info_match, node);
1068 if (!match)
1069 goto err_unmap;
1070
1071 irqc->info = *(struct aic_info *)match->data;
1072
1073 aic_irqc = irqc;
1074
1075 switch (irqc->info.version) {
1076 case 1: {
1077 u32 info;
1078
1079 info = aic_ic_read(irqc, AIC_INFO);
1080 irqc->nr_irq = FIELD_GET(AIC_INFO_NR_IRQ, info);
1081 irqc->max_irq = AIC_MAX_IRQ;
1082 irqc->nr_die = irqc->max_die = 1;
1083
1084 off = start_off = irqc->info.target_cpu;
1085 off += sizeof(u32) * irqc->max_irq; /* TARGET_CPU */
1086
1087 irqc->event = irqc->base;
1088
1089 break;
1090 }
1091 case 2: {
1092 u32 info1, info3;
1093
1094 info1 = aic_ic_read(irqc, AIC2_INFO1);
1095 info3 = aic_ic_read(irqc, AIC2_INFO3);
1096
1097 irqc->nr_irq = FIELD_GET(AIC2_INFO1_NR_IRQ, info1);
1098 irqc->max_irq = FIELD_GET(AIC2_INFO3_MAX_IRQ, info3);
1099 irqc->nr_die = FIELD_GET(AIC2_INFO1_LAST_DIE, info1) + 1;
1100 irqc->max_die = FIELD_GET(AIC2_INFO3_MAX_DIE, info3);
1101
1102 off = start_off = irqc->info.irq_cfg;
1103 off += sizeof(u32) * irqc->max_irq; /* IRQ_CFG */
1104
1105 irqc->event = of_iomap(node, 1);
1106 if (WARN_ON(!irqc->event))
1107 goto err_unmap;
1108
1109 break;
1110 }
1111 }
1112
1113 irqc->info.sw_set = off;
1114 off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_SET */
1115 irqc->info.sw_clr = off;
1116 off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_CLR */
1117 irqc->info.mask_set = off;
1118 off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_SET */
1119 irqc->info.mask_clr = off;
1120 off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_CLR */
1121 off += sizeof(u32) * (irqc->max_irq >> 5); /* HW_STATE */
1122
1123 if (irqc->info.fast_ipi)
1124 static_branch_enable(&use_fast_ipi);
1125 else
1126 static_branch_disable(&use_fast_ipi);
1127
1128 irqc->info.die_stride = off - start_off;
1129
1130 irqc->hw_domain = irq_domain_create_tree(of_node_to_fwnode(node),
1131 &aic_irq_domain_ops, irqc);
1132 if (WARN_ON(!irqc->hw_domain))
1133 goto err_unmap;
1134
1135 irq_domain_update_bus_token(irqc->hw_domain, DOMAIN_BUS_WIRED);
1136
1137 if (aic_init_smp(irqc, node))
1138 goto err_remove_domain;
1139
1140 affs = of_get_child_by_name(node, "affinities");
1141 if (affs) {
1142 struct device_node *chld;
1143
1144 for_each_child_of_node(affs, chld)
1145 build_fiq_affinity(irqc, chld);
1146 }
1147 of_node_put(affs);
1148
1149 set_handle_irq(aic_handle_irq);
1150 set_handle_fiq(aic_handle_fiq);
1151
1152 off = 0;
1153 for (die = 0; die < irqc->nr_die; die++) {
1154 for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++)
1155 aic_ic_write(irqc, irqc->info.mask_set + off + i * 4, U32_MAX);
1156 for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++)
1157 aic_ic_write(irqc, irqc->info.sw_clr + off + i * 4, U32_MAX);
1158 if (irqc->info.target_cpu)
1159 for (i = 0; i < irqc->nr_irq; i++)
1160 aic_ic_write(irqc, irqc->info.target_cpu + off + i * 4, 1);
1161 off += irqc->info.die_stride;
1162 }
1163
1164 if (irqc->info.version == 2) {
1165 u32 config = aic_ic_read(irqc, AIC2_CONFIG);
1166
1167 config |= AIC2_CONFIG_ENABLE;
1168 aic_ic_write(irqc, AIC2_CONFIG, config);
1169 }
1170
1171 if (!is_kernel_in_hyp_mode())
1172 pr_info("Kernel running in EL1, mapping interrupts");
1173
1174 if (static_branch_likely(&use_fast_ipi))
1175 pr_info("Using Fast IPIs");
1176
1177 cpuhp_setup_state(CPUHP_AP_IRQ_APPLE_AIC_STARTING,
1178 "irqchip/apple-aic/ipi:starting",
1179 aic_init_cpu, NULL);
1180
1181 vgic_set_kvm_info(&vgic_info);
1182
1183 pr_info("Initialized with %d/%d IRQs * %d/%d die(s), %d FIQs, %d vIPIs",
1184 irqc->nr_irq, irqc->max_irq, irqc->nr_die, irqc->max_die, AIC_NR_FIQ, AIC_NR_SWIPI);
1185
1186 return 0;
1187
1188 err_remove_domain:
1189 irq_domain_remove(irqc->hw_domain);
1190 err_unmap:
1191 if (irqc->event && irqc->event != irqc->base)
1192 iounmap(irqc->event);
1193 iounmap(irqc->base);
1194 kfree(irqc);
1195 return -ENODEV;
1196 }
1197
1198 IRQCHIP_DECLARE(apple_aic, "apple,aic", aic_of_ic_init);
1199 IRQCHIP_DECLARE(apple_aic2, "apple,aic2", aic_of_ic_init);
1200