1 /*
2  * Copyright © 2006-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * Authors: David Woodhouse <dwmw2@infradead.org>,
14  *          Ashok Raj <ashok.raj@intel.com>,
15  *          Shaohua Li <shaohua.li@intel.com>,
16  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17  *          Fenghua Yu <fenghua.yu@intel.com>
18  *          Joerg Roedel <jroedel@suse.de>
19  */
20 
21 #define pr_fmt(fmt)     "DMAR: " fmt
22 
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/debugfs.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/memory.h>
36 #include <linux/cpu.h>
37 #include <linux/timer.h>
38 #include <linux/io.h>
39 #include <linux/iova.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/tboot.h>
44 #include <linux/dmi.h>
45 #include <linux/pci-ats.h>
46 #include <linux/memblock.h>
47 #include <linux/dma-contiguous.h>
48 #include <linux/dma-direct.h>
49 #include <linux/crash_dump.h>
50 #include <asm/irq_remapping.h>
51 #include <asm/cacheflush.h>
52 #include <asm/iommu.h>
53 
54 #include "irq_remapping.h"
55 #include "intel-pasid.h"
56 
57 #define ROOT_SIZE		VTD_PAGE_SIZE
58 #define CONTEXT_SIZE		VTD_PAGE_SIZE
59 
60 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
61 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
62 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
63 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
64 
65 #define IOAPIC_RANGE_START	(0xfee00000)
66 #define IOAPIC_RANGE_END	(0xfeefffff)
67 #define IOVA_START_ADDR		(0x1000)
68 
69 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
70 
71 #define MAX_AGAW_WIDTH 64
72 #define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
73 
74 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
75 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
76 
77 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
78    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
79 #define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
80 				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
81 #define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
82 
83 /* IO virtual address start page frame number */
84 #define IOVA_START_PFN		(1)
85 
86 #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
87 
88 /* page table handling */
89 #define LEVEL_STRIDE		(9)
90 #define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)
91 
92 /*
93  * This bitmap is used to advertise the page sizes our hardware support
94  * to the IOMMU core, which will then use this information to split
95  * physically contiguous memory regions it is mapping into page sizes
96  * that we support.
97  *
98  * Traditionally the IOMMU core just handed us the mappings directly,
99  * after making sure the size is an order of a 4KiB page and that the
100  * mapping has natural alignment.
101  *
102  * To retain this behavior, we currently advertise that we support
103  * all page sizes that are an order of 4KiB.
104  *
105  * If at some point we'd like to utilize the IOMMU core's new behavior,
106  * we could change this to advertise the real page sizes we support.
107  */
108 #define INTEL_IOMMU_PGSIZES	(~0xFFFUL)
109 
agaw_to_level(int agaw)110 static inline int agaw_to_level(int agaw)
111 {
112 	return agaw + 2;
113 }
114 
agaw_to_width(int agaw)115 static inline int agaw_to_width(int agaw)
116 {
117 	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
118 }
119 
width_to_agaw(int width)120 static inline int width_to_agaw(int width)
121 {
122 	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
123 }
124 
level_to_offset_bits(int level)125 static inline unsigned int level_to_offset_bits(int level)
126 {
127 	return (level - 1) * LEVEL_STRIDE;
128 }
129 
pfn_level_offset(unsigned long pfn,int level)130 static inline int pfn_level_offset(unsigned long pfn, int level)
131 {
132 	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
133 }
134 
level_mask(int level)135 static inline unsigned long level_mask(int level)
136 {
137 	return -1UL << level_to_offset_bits(level);
138 }
139 
level_size(int level)140 static inline unsigned long level_size(int level)
141 {
142 	return 1UL << level_to_offset_bits(level);
143 }
144 
align_to_level(unsigned long pfn,int level)145 static inline unsigned long align_to_level(unsigned long pfn, int level)
146 {
147 	return (pfn + level_size(level) - 1) & level_mask(level);
148 }
149 
lvl_to_nr_pages(unsigned int lvl)150 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
151 {
152 	return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
153 }
154 
155 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
156    are never going to work. */
dma_to_mm_pfn(unsigned long dma_pfn)157 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
158 {
159 	return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
160 }
161 
mm_to_dma_pfn(unsigned long mm_pfn)162 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
163 {
164 	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
165 }
page_to_dma_pfn(struct page * pg)166 static inline unsigned long page_to_dma_pfn(struct page *pg)
167 {
168 	return mm_to_dma_pfn(page_to_pfn(pg));
169 }
virt_to_dma_pfn(void * p)170 static inline unsigned long virt_to_dma_pfn(void *p)
171 {
172 	return page_to_dma_pfn(virt_to_page(p));
173 }
174 
175 /* global iommu list, set NULL for ignored DMAR units */
176 static struct intel_iommu **g_iommus;
177 
178 static void __init check_tylersburg_isoch(void);
179 static int rwbf_quirk;
180 
181 /*
182  * set to 1 to panic kernel if can't successfully enable VT-d
183  * (used when kernel is launched w/ TXT)
184  */
185 static int force_on = 0;
186 int intel_iommu_tboot_noforce;
187 
188 /*
189  * 0: Present
190  * 1-11: Reserved
191  * 12-63: Context Ptr (12 - (haw-1))
192  * 64-127: Reserved
193  */
194 struct root_entry {
195 	u64	lo;
196 	u64	hi;
197 };
198 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
199 
200 /*
201  * Take a root_entry and return the Lower Context Table Pointer (LCTP)
202  * if marked present.
203  */
root_entry_lctp(struct root_entry * re)204 static phys_addr_t root_entry_lctp(struct root_entry *re)
205 {
206 	if (!(re->lo & 1))
207 		return 0;
208 
209 	return re->lo & VTD_PAGE_MASK;
210 }
211 
212 /*
213  * Take a root_entry and return the Upper Context Table Pointer (UCTP)
214  * if marked present.
215  */
root_entry_uctp(struct root_entry * re)216 static phys_addr_t root_entry_uctp(struct root_entry *re)
217 {
218 	if (!(re->hi & 1))
219 		return 0;
220 
221 	return re->hi & VTD_PAGE_MASK;
222 }
223 /*
224  * low 64 bits:
225  * 0: present
226  * 1: fault processing disable
227  * 2-3: translation type
228  * 12-63: address space root
229  * high 64 bits:
230  * 0-2: address width
231  * 3-6: aval
232  * 8-23: domain id
233  */
234 struct context_entry {
235 	u64 lo;
236 	u64 hi;
237 };
238 
context_clear_pasid_enable(struct context_entry * context)239 static inline void context_clear_pasid_enable(struct context_entry *context)
240 {
241 	context->lo &= ~(1ULL << 11);
242 }
243 
context_pasid_enabled(struct context_entry * context)244 static inline bool context_pasid_enabled(struct context_entry *context)
245 {
246 	return !!(context->lo & (1ULL << 11));
247 }
248 
context_set_copied(struct context_entry * context)249 static inline void context_set_copied(struct context_entry *context)
250 {
251 	context->hi |= (1ull << 3);
252 }
253 
context_copied(struct context_entry * context)254 static inline bool context_copied(struct context_entry *context)
255 {
256 	return !!(context->hi & (1ULL << 3));
257 }
258 
__context_present(struct context_entry * context)259 static inline bool __context_present(struct context_entry *context)
260 {
261 	return (context->lo & 1);
262 }
263 
context_present(struct context_entry * context)264 static inline bool context_present(struct context_entry *context)
265 {
266 	return context_pasid_enabled(context) ?
267 	     __context_present(context) :
268 	     __context_present(context) && !context_copied(context);
269 }
270 
context_set_present(struct context_entry * context)271 static inline void context_set_present(struct context_entry *context)
272 {
273 	context->lo |= 1;
274 }
275 
context_set_fault_enable(struct context_entry * context)276 static inline void context_set_fault_enable(struct context_entry *context)
277 {
278 	context->lo &= (((u64)-1) << 2) | 1;
279 }
280 
context_set_translation_type(struct context_entry * context,unsigned long value)281 static inline void context_set_translation_type(struct context_entry *context,
282 						unsigned long value)
283 {
284 	context->lo &= (((u64)-1) << 4) | 3;
285 	context->lo |= (value & 3) << 2;
286 }
287 
context_set_address_root(struct context_entry * context,unsigned long value)288 static inline void context_set_address_root(struct context_entry *context,
289 					    unsigned long value)
290 {
291 	context->lo &= ~VTD_PAGE_MASK;
292 	context->lo |= value & VTD_PAGE_MASK;
293 }
294 
context_set_address_width(struct context_entry * context,unsigned long value)295 static inline void context_set_address_width(struct context_entry *context,
296 					     unsigned long value)
297 {
298 	context->hi |= value & 7;
299 }
300 
context_set_domain_id(struct context_entry * context,unsigned long value)301 static inline void context_set_domain_id(struct context_entry *context,
302 					 unsigned long value)
303 {
304 	context->hi |= (value & ((1 << 16) - 1)) << 8;
305 }
306 
context_domain_id(struct context_entry * c)307 static inline int context_domain_id(struct context_entry *c)
308 {
309 	return((c->hi >> 8) & 0xffff);
310 }
311 
context_clear_entry(struct context_entry * context)312 static inline void context_clear_entry(struct context_entry *context)
313 {
314 	context->lo = 0;
315 	context->hi = 0;
316 }
317 
318 /*
319  * 0: readable
320  * 1: writable
321  * 2-6: reserved
322  * 7: super page
323  * 8-10: available
324  * 11: snoop behavior
325  * 12-63: Host physcial address
326  */
327 struct dma_pte {
328 	u64 val;
329 };
330 
dma_clear_pte(struct dma_pte * pte)331 static inline void dma_clear_pte(struct dma_pte *pte)
332 {
333 	pte->val = 0;
334 }
335 
dma_pte_addr(struct dma_pte * pte)336 static inline u64 dma_pte_addr(struct dma_pte *pte)
337 {
338 #ifdef CONFIG_64BIT
339 	return pte->val & VTD_PAGE_MASK;
340 #else
341 	/* Must have a full atomic 64-bit read */
342 	return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
343 #endif
344 }
345 
dma_pte_present(struct dma_pte * pte)346 static inline bool dma_pte_present(struct dma_pte *pte)
347 {
348 	return (pte->val & 3) != 0;
349 }
350 
dma_pte_superpage(struct dma_pte * pte)351 static inline bool dma_pte_superpage(struct dma_pte *pte)
352 {
353 	return (pte->val & DMA_PTE_LARGE_PAGE);
354 }
355 
first_pte_in_page(struct dma_pte * pte)356 static inline int first_pte_in_page(struct dma_pte *pte)
357 {
358 	return !((unsigned long)pte & ~VTD_PAGE_MASK);
359 }
360 
361 /*
362  * This domain is a statically identity mapping domain.
363  *	1. This domain creats a static 1:1 mapping to all usable memory.
364  * 	2. It maps to each iommu if successful.
365  *	3. Each iommu mapps to this domain if successful.
366  */
367 static struct dmar_domain *si_domain;
368 static int hw_pass_through = 1;
369 
370 /*
371  * Domain represents a virtual machine, more than one devices
372  * across iommus may be owned in one domain, e.g. kvm guest.
373  */
374 #define DOMAIN_FLAG_VIRTUAL_MACHINE	(1 << 0)
375 
376 /* si_domain contains mulitple devices */
377 #define DOMAIN_FLAG_STATIC_IDENTITY	(1 << 1)
378 
379 #define for_each_domain_iommu(idx, domain)			\
380 	for (idx = 0; idx < g_num_of_iommus; idx++)		\
381 		if (domain->iommu_refcnt[idx])
382 
383 struct dmar_rmrr_unit {
384 	struct list_head list;		/* list of rmrr units	*/
385 	struct acpi_dmar_header *hdr;	/* ACPI header		*/
386 	u64	base_address;		/* reserved base address*/
387 	u64	end_address;		/* reserved end address */
388 	struct dmar_dev_scope *devices;	/* target devices */
389 	int	devices_cnt;		/* target device count */
390 	struct iommu_resv_region *resv; /* reserved region handle */
391 };
392 
393 struct dmar_atsr_unit {
394 	struct list_head list;		/* list of ATSR units */
395 	struct acpi_dmar_header *hdr;	/* ACPI header */
396 	struct dmar_dev_scope *devices;	/* target devices */
397 	int devices_cnt;		/* target device count */
398 	u8 include_all:1;		/* include all ports */
399 };
400 
401 static LIST_HEAD(dmar_atsr_units);
402 static LIST_HEAD(dmar_rmrr_units);
403 
404 #define for_each_rmrr_units(rmrr) \
405 	list_for_each_entry(rmrr, &dmar_rmrr_units, list)
406 
407 /* bitmap for indexing intel_iommus */
408 static int g_num_of_iommus;
409 
410 static void domain_exit(struct dmar_domain *domain);
411 static void domain_remove_dev_info(struct dmar_domain *domain);
412 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
413 				     struct device *dev);
414 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
415 static void domain_context_clear(struct intel_iommu *iommu,
416 				 struct device *dev);
417 static int domain_detach_iommu(struct dmar_domain *domain,
418 			       struct intel_iommu *iommu);
419 
420 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
421 int dmar_disabled = 0;
422 #else
423 int dmar_disabled = 1;
424 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
425 
426 int intel_iommu_enabled = 0;
427 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
428 
429 static int dmar_map_gfx = 1;
430 static int dmar_forcedac;
431 static int intel_iommu_strict;
432 static int intel_iommu_superpage = 1;
433 static int intel_iommu_ecs = 1;
434 static int intel_iommu_pasid28;
435 static int iommu_identity_mapping;
436 
437 #define IDENTMAP_ALL		1
438 #define IDENTMAP_GFX		2
439 #define IDENTMAP_AZALIA		4
440 
441 /* Broadwell and Skylake have broken ECS support — normal so-called "second
442  * level" translation of DMA requests-without-PASID doesn't actually happen
443  * unless you also set the NESTE bit in an extended context-entry. Which of
444  * course means that SVM doesn't work because it's trying to do nested
445  * translation of the physical addresses it finds in the process page tables,
446  * through the IOVA->phys mapping found in the "second level" page tables.
447  *
448  * The VT-d specification was retroactively changed to change the definition
449  * of the capability bits and pretend that Broadwell/Skylake never happened...
450  * but unfortunately the wrong bit was changed. It's ECS which is broken, but
451  * for some reason it was the PASID capability bit which was redefined (from
452  * bit 28 on BDW/SKL to bit 40 in future).
453  *
454  * So our test for ECS needs to eschew those implementations which set the old
455  * PASID capabiity bit 28, since those are the ones on which ECS is broken.
456  * Unless we are working around the 'pasid28' limitations, that is, by putting
457  * the device into passthrough mode for normal DMA and thus masking the bug.
458  */
459 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
460 			    (intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap)))
461 /* PASID support is thus enabled if ECS is enabled and *either* of the old
462  * or new capability bits are set. */
463 #define pasid_enabled(iommu) (ecs_enabled(iommu) &&			\
464 			      (ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap)))
465 
466 int intel_iommu_gfx_mapped;
467 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
468 
469 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
470 static DEFINE_SPINLOCK(device_domain_lock);
471 static LIST_HEAD(device_domain_list);
472 
473 /*
474  * Iterate over elements in device_domain_list and call the specified
475  * callback @fn against each element. This helper should only be used
476  * in the context where the device_domain_lock has already been holden.
477  */
for_each_device_domain(int (* fn)(struct device_domain_info * info,void * data),void * data)478 int for_each_device_domain(int (*fn)(struct device_domain_info *info,
479 				     void *data), void *data)
480 {
481 	int ret = 0;
482 	struct device_domain_info *info;
483 
484 	assert_spin_locked(&device_domain_lock);
485 	list_for_each_entry(info, &device_domain_list, global) {
486 		ret = fn(info, data);
487 		if (ret)
488 			return ret;
489 	}
490 
491 	return 0;
492 }
493 
494 const struct iommu_ops intel_iommu_ops;
495 
translation_pre_enabled(struct intel_iommu * iommu)496 static bool translation_pre_enabled(struct intel_iommu *iommu)
497 {
498 	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
499 }
500 
clear_translation_pre_enabled(struct intel_iommu * iommu)501 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
502 {
503 	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
504 }
505 
init_translation_status(struct intel_iommu * iommu)506 static void init_translation_status(struct intel_iommu *iommu)
507 {
508 	u32 gsts;
509 
510 	gsts = readl(iommu->reg + DMAR_GSTS_REG);
511 	if (gsts & DMA_GSTS_TES)
512 		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
513 }
514 
515 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
to_dmar_domain(struct iommu_domain * dom)516 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
517 {
518 	return container_of(dom, struct dmar_domain, domain);
519 }
520 
intel_iommu_setup(char * str)521 static int __init intel_iommu_setup(char *str)
522 {
523 	if (!str)
524 		return -EINVAL;
525 	while (*str) {
526 		if (!strncmp(str, "on", 2)) {
527 			dmar_disabled = 0;
528 			pr_info("IOMMU enabled\n");
529 		} else if (!strncmp(str, "off", 3)) {
530 			dmar_disabled = 1;
531 			pr_info("IOMMU disabled\n");
532 		} else if (!strncmp(str, "igfx_off", 8)) {
533 			dmar_map_gfx = 0;
534 			pr_info("Disable GFX device mapping\n");
535 		} else if (!strncmp(str, "forcedac", 8)) {
536 			pr_info("Forcing DAC for PCI devices\n");
537 			dmar_forcedac = 1;
538 		} else if (!strncmp(str, "strict", 6)) {
539 			pr_info("Disable batched IOTLB flush\n");
540 			intel_iommu_strict = 1;
541 		} else if (!strncmp(str, "sp_off", 6)) {
542 			pr_info("Disable supported super page\n");
543 			intel_iommu_superpage = 0;
544 		} else if (!strncmp(str, "ecs_off", 7)) {
545 			printk(KERN_INFO
546 				"Intel-IOMMU: disable extended context table support\n");
547 			intel_iommu_ecs = 0;
548 		} else if (!strncmp(str, "pasid28", 7)) {
549 			printk(KERN_INFO
550 				"Intel-IOMMU: enable pre-production PASID support\n");
551 			intel_iommu_pasid28 = 1;
552 			iommu_identity_mapping |= IDENTMAP_GFX;
553 		} else if (!strncmp(str, "tboot_noforce", 13)) {
554 			printk(KERN_INFO
555 				"Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
556 			intel_iommu_tboot_noforce = 1;
557 		}
558 
559 		str += strcspn(str, ",");
560 		while (*str == ',')
561 			str++;
562 	}
563 	return 0;
564 }
565 __setup("intel_iommu=", intel_iommu_setup);
566 
567 static struct kmem_cache *iommu_domain_cache;
568 static struct kmem_cache *iommu_devinfo_cache;
569 
get_iommu_domain(struct intel_iommu * iommu,u16 did)570 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
571 {
572 	struct dmar_domain **domains;
573 	int idx = did >> 8;
574 
575 	domains = iommu->domains[idx];
576 	if (!domains)
577 		return NULL;
578 
579 	return domains[did & 0xff];
580 }
581 
set_iommu_domain(struct intel_iommu * iommu,u16 did,struct dmar_domain * domain)582 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
583 			     struct dmar_domain *domain)
584 {
585 	struct dmar_domain **domains;
586 	int idx = did >> 8;
587 
588 	if (!iommu->domains[idx]) {
589 		size_t size = 256 * sizeof(struct dmar_domain *);
590 		iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
591 	}
592 
593 	domains = iommu->domains[idx];
594 	if (WARN_ON(!domains))
595 		return;
596 	else
597 		domains[did & 0xff] = domain;
598 }
599 
alloc_pgtable_page(int node)600 void *alloc_pgtable_page(int node)
601 {
602 	struct page *page;
603 	void *vaddr = NULL;
604 
605 	page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
606 	if (page)
607 		vaddr = page_address(page);
608 	return vaddr;
609 }
610 
free_pgtable_page(void * vaddr)611 void free_pgtable_page(void *vaddr)
612 {
613 	free_page((unsigned long)vaddr);
614 }
615 
alloc_domain_mem(void)616 static inline void *alloc_domain_mem(void)
617 {
618 	return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
619 }
620 
free_domain_mem(void * vaddr)621 static void free_domain_mem(void *vaddr)
622 {
623 	kmem_cache_free(iommu_domain_cache, vaddr);
624 }
625 
alloc_devinfo_mem(void)626 static inline void * alloc_devinfo_mem(void)
627 {
628 	return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
629 }
630 
free_devinfo_mem(void * vaddr)631 static inline void free_devinfo_mem(void *vaddr)
632 {
633 	kmem_cache_free(iommu_devinfo_cache, vaddr);
634 }
635 
domain_type_is_vm(struct dmar_domain * domain)636 static inline int domain_type_is_vm(struct dmar_domain *domain)
637 {
638 	return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
639 }
640 
domain_type_is_si(struct dmar_domain * domain)641 static inline int domain_type_is_si(struct dmar_domain *domain)
642 {
643 	return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
644 }
645 
domain_type_is_vm_or_si(struct dmar_domain * domain)646 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
647 {
648 	return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
649 				DOMAIN_FLAG_STATIC_IDENTITY);
650 }
651 
domain_pfn_supported(struct dmar_domain * domain,unsigned long pfn)652 static inline int domain_pfn_supported(struct dmar_domain *domain,
653 				       unsigned long pfn)
654 {
655 	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
656 
657 	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
658 }
659 
__iommu_calculate_agaw(struct intel_iommu * iommu,int max_gaw)660 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
661 {
662 	unsigned long sagaw;
663 	int agaw = -1;
664 
665 	sagaw = cap_sagaw(iommu->cap);
666 	for (agaw = width_to_agaw(max_gaw);
667 	     agaw >= 0; agaw--) {
668 		if (test_bit(agaw, &sagaw))
669 			break;
670 	}
671 
672 	return agaw;
673 }
674 
675 /*
676  * Calculate max SAGAW for each iommu.
677  */
iommu_calculate_max_sagaw(struct intel_iommu * iommu)678 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
679 {
680 	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
681 }
682 
683 /*
684  * calculate agaw for each iommu.
685  * "SAGAW" may be different across iommus, use a default agaw, and
686  * get a supported less agaw for iommus that don't support the default agaw.
687  */
iommu_calculate_agaw(struct intel_iommu * iommu)688 int iommu_calculate_agaw(struct intel_iommu *iommu)
689 {
690 	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
691 }
692 
693 /* This functionin only returns single iommu in a domain */
domain_get_iommu(struct dmar_domain * domain)694 struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
695 {
696 	int iommu_id;
697 
698 	/* si_domain and vm domain should not get here. */
699 	BUG_ON(domain_type_is_vm_or_si(domain));
700 	for_each_domain_iommu(iommu_id, domain)
701 		break;
702 
703 	if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
704 		return NULL;
705 
706 	return g_iommus[iommu_id];
707 }
708 
domain_update_iommu_coherency(struct dmar_domain * domain)709 static void domain_update_iommu_coherency(struct dmar_domain *domain)
710 {
711 	struct dmar_drhd_unit *drhd;
712 	struct intel_iommu *iommu;
713 	bool found = false;
714 	int i;
715 
716 	domain->iommu_coherency = 1;
717 
718 	for_each_domain_iommu(i, domain) {
719 		found = true;
720 		if (!ecap_coherent(g_iommus[i]->ecap)) {
721 			domain->iommu_coherency = 0;
722 			break;
723 		}
724 	}
725 	if (found)
726 		return;
727 
728 	/* No hardware attached; use lowest common denominator */
729 	rcu_read_lock();
730 	for_each_active_iommu(iommu, drhd) {
731 		if (!ecap_coherent(iommu->ecap)) {
732 			domain->iommu_coherency = 0;
733 			break;
734 		}
735 	}
736 	rcu_read_unlock();
737 }
738 
domain_update_iommu_snooping(struct intel_iommu * skip)739 static int domain_update_iommu_snooping(struct intel_iommu *skip)
740 {
741 	struct dmar_drhd_unit *drhd;
742 	struct intel_iommu *iommu;
743 	int ret = 1;
744 
745 	rcu_read_lock();
746 	for_each_active_iommu(iommu, drhd) {
747 		if (iommu != skip) {
748 			if (!ecap_sc_support(iommu->ecap)) {
749 				ret = 0;
750 				break;
751 			}
752 		}
753 	}
754 	rcu_read_unlock();
755 
756 	return ret;
757 }
758 
domain_update_iommu_superpage(struct intel_iommu * skip)759 static int domain_update_iommu_superpage(struct intel_iommu *skip)
760 {
761 	struct dmar_drhd_unit *drhd;
762 	struct intel_iommu *iommu;
763 	int mask = 0xf;
764 
765 	if (!intel_iommu_superpage) {
766 		return 0;
767 	}
768 
769 	/* set iommu_superpage to the smallest common denominator */
770 	rcu_read_lock();
771 	for_each_active_iommu(iommu, drhd) {
772 		if (iommu != skip) {
773 			mask &= cap_super_page_val(iommu->cap);
774 			if (!mask)
775 				break;
776 		}
777 	}
778 	rcu_read_unlock();
779 
780 	return fls(mask);
781 }
782 
783 /* Some capabilities may be different across iommus */
domain_update_iommu_cap(struct dmar_domain * domain)784 static void domain_update_iommu_cap(struct dmar_domain *domain)
785 {
786 	domain_update_iommu_coherency(domain);
787 	domain->iommu_snooping = domain_update_iommu_snooping(NULL);
788 	domain->iommu_superpage = domain_update_iommu_superpage(NULL);
789 }
790 
iommu_context_addr(struct intel_iommu * iommu,u8 bus,u8 devfn,int alloc)791 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
792 						       u8 bus, u8 devfn, int alloc)
793 {
794 	struct root_entry *root = &iommu->root_entry[bus];
795 	struct context_entry *context;
796 	u64 *entry;
797 
798 	entry = &root->lo;
799 	if (ecs_enabled(iommu)) {
800 		if (devfn >= 0x80) {
801 			devfn -= 0x80;
802 			entry = &root->hi;
803 		}
804 		devfn *= 2;
805 	}
806 	if (*entry & 1)
807 		context = phys_to_virt(*entry & VTD_PAGE_MASK);
808 	else {
809 		unsigned long phy_addr;
810 		if (!alloc)
811 			return NULL;
812 
813 		context = alloc_pgtable_page(iommu->node);
814 		if (!context)
815 			return NULL;
816 
817 		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
818 		phy_addr = virt_to_phys((void *)context);
819 		*entry = phy_addr | 1;
820 		__iommu_flush_cache(iommu, entry, sizeof(*entry));
821 	}
822 	return &context[devfn];
823 }
824 
iommu_dummy(struct device * dev)825 static int iommu_dummy(struct device *dev)
826 {
827 	return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
828 }
829 
device_to_iommu(struct device * dev,u8 * bus,u8 * devfn)830 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
831 {
832 	struct dmar_drhd_unit *drhd = NULL;
833 	struct intel_iommu *iommu;
834 	struct device *tmp;
835 	struct pci_dev *ptmp, *pdev = NULL;
836 	u16 segment = 0;
837 	int i;
838 
839 	if (iommu_dummy(dev))
840 		return NULL;
841 
842 	if (dev_is_pci(dev)) {
843 		struct pci_dev *pf_pdev;
844 
845 		pdev = to_pci_dev(dev);
846 
847 #ifdef CONFIG_X86
848 		/* VMD child devices currently cannot be handled individually */
849 		if (is_vmd(pdev->bus))
850 			return NULL;
851 #endif
852 
853 		/* VFs aren't listed in scope tables; we need to look up
854 		 * the PF instead to find the IOMMU. */
855 		pf_pdev = pci_physfn(pdev);
856 		dev = &pf_pdev->dev;
857 		segment = pci_domain_nr(pdev->bus);
858 	} else if (has_acpi_companion(dev))
859 		dev = &ACPI_COMPANION(dev)->dev;
860 
861 	rcu_read_lock();
862 	for_each_active_iommu(iommu, drhd) {
863 		if (pdev && segment != drhd->segment)
864 			continue;
865 
866 		for_each_active_dev_scope(drhd->devices,
867 					  drhd->devices_cnt, i, tmp) {
868 			if (tmp == dev) {
869 				/* For a VF use its original BDF# not that of the PF
870 				 * which we used for the IOMMU lookup. Strictly speaking
871 				 * we could do this for all PCI devices; we only need to
872 				 * get the BDF# from the scope table for ACPI matches. */
873 				if (pdev && pdev->is_virtfn)
874 					goto got_pdev;
875 
876 				*bus = drhd->devices[i].bus;
877 				*devfn = drhd->devices[i].devfn;
878 				goto out;
879 			}
880 
881 			if (!pdev || !dev_is_pci(tmp))
882 				continue;
883 
884 			ptmp = to_pci_dev(tmp);
885 			if (ptmp->subordinate &&
886 			    ptmp->subordinate->number <= pdev->bus->number &&
887 			    ptmp->subordinate->busn_res.end >= pdev->bus->number)
888 				goto got_pdev;
889 		}
890 
891 		if (pdev && drhd->include_all) {
892 		got_pdev:
893 			*bus = pdev->bus->number;
894 			*devfn = pdev->devfn;
895 			goto out;
896 		}
897 	}
898 	iommu = NULL;
899  out:
900 	rcu_read_unlock();
901 
902 	return iommu;
903 }
904 
domain_flush_cache(struct dmar_domain * domain,void * addr,int size)905 static void domain_flush_cache(struct dmar_domain *domain,
906 			       void *addr, int size)
907 {
908 	if (!domain->iommu_coherency)
909 		clflush_cache_range(addr, size);
910 }
911 
device_context_mapped(struct intel_iommu * iommu,u8 bus,u8 devfn)912 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
913 {
914 	struct context_entry *context;
915 	int ret = 0;
916 	unsigned long flags;
917 
918 	spin_lock_irqsave(&iommu->lock, flags);
919 	context = iommu_context_addr(iommu, bus, devfn, 0);
920 	if (context)
921 		ret = context_present(context);
922 	spin_unlock_irqrestore(&iommu->lock, flags);
923 	return ret;
924 }
925 
free_context_table(struct intel_iommu * iommu)926 static void free_context_table(struct intel_iommu *iommu)
927 {
928 	int i;
929 	unsigned long flags;
930 	struct context_entry *context;
931 
932 	spin_lock_irqsave(&iommu->lock, flags);
933 	if (!iommu->root_entry) {
934 		goto out;
935 	}
936 	for (i = 0; i < ROOT_ENTRY_NR; i++) {
937 		context = iommu_context_addr(iommu, i, 0, 0);
938 		if (context)
939 			free_pgtable_page(context);
940 
941 		if (!ecs_enabled(iommu))
942 			continue;
943 
944 		context = iommu_context_addr(iommu, i, 0x80, 0);
945 		if (context)
946 			free_pgtable_page(context);
947 
948 	}
949 	free_pgtable_page(iommu->root_entry);
950 	iommu->root_entry = NULL;
951 out:
952 	spin_unlock_irqrestore(&iommu->lock, flags);
953 }
954 
pfn_to_dma_pte(struct dmar_domain * domain,unsigned long pfn,int * target_level)955 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
956 				      unsigned long pfn, int *target_level)
957 {
958 	struct dma_pte *parent, *pte = NULL;
959 	int level = agaw_to_level(domain->agaw);
960 	int offset;
961 
962 	BUG_ON(!domain->pgd);
963 
964 	if (!domain_pfn_supported(domain, pfn))
965 		/* Address beyond IOMMU's addressing capabilities. */
966 		return NULL;
967 
968 	parent = domain->pgd;
969 
970 	while (1) {
971 		void *tmp_page;
972 
973 		offset = pfn_level_offset(pfn, level);
974 		pte = &parent[offset];
975 		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
976 			break;
977 		if (level == *target_level)
978 			break;
979 
980 		if (!dma_pte_present(pte)) {
981 			uint64_t pteval;
982 
983 			tmp_page = alloc_pgtable_page(domain->nid);
984 
985 			if (!tmp_page)
986 				return NULL;
987 
988 			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
989 			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
990 			if (cmpxchg64(&pte->val, 0ULL, pteval))
991 				/* Someone else set it while we were thinking; use theirs. */
992 				free_pgtable_page(tmp_page);
993 			else
994 				domain_flush_cache(domain, pte, sizeof(*pte));
995 		}
996 		if (level == 1)
997 			break;
998 
999 		parent = phys_to_virt(dma_pte_addr(pte));
1000 		level--;
1001 	}
1002 
1003 	if (!*target_level)
1004 		*target_level = level;
1005 
1006 	return pte;
1007 }
1008 
1009 
1010 /* return address's pte at specific level */
dma_pfn_level_pte(struct dmar_domain * domain,unsigned long pfn,int level,int * large_page)1011 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1012 					 unsigned long pfn,
1013 					 int level, int *large_page)
1014 {
1015 	struct dma_pte *parent, *pte = NULL;
1016 	int total = agaw_to_level(domain->agaw);
1017 	int offset;
1018 
1019 	parent = domain->pgd;
1020 	while (level <= total) {
1021 		offset = pfn_level_offset(pfn, total);
1022 		pte = &parent[offset];
1023 		if (level == total)
1024 			return pte;
1025 
1026 		if (!dma_pte_present(pte)) {
1027 			*large_page = total;
1028 			break;
1029 		}
1030 
1031 		if (dma_pte_superpage(pte)) {
1032 			*large_page = total;
1033 			return pte;
1034 		}
1035 
1036 		parent = phys_to_virt(dma_pte_addr(pte));
1037 		total--;
1038 	}
1039 	return NULL;
1040 }
1041 
1042 /* clear last level pte, a tlb flush should be followed */
dma_pte_clear_range(struct dmar_domain * domain,unsigned long start_pfn,unsigned long last_pfn)1043 static void dma_pte_clear_range(struct dmar_domain *domain,
1044 				unsigned long start_pfn,
1045 				unsigned long last_pfn)
1046 {
1047 	unsigned int large_page = 1;
1048 	struct dma_pte *first_pte, *pte;
1049 
1050 	BUG_ON(!domain_pfn_supported(domain, start_pfn));
1051 	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1052 	BUG_ON(start_pfn > last_pfn);
1053 
1054 	/* we don't need lock here; nobody else touches the iova range */
1055 	do {
1056 		large_page = 1;
1057 		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1058 		if (!pte) {
1059 			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1060 			continue;
1061 		}
1062 		do {
1063 			dma_clear_pte(pte);
1064 			start_pfn += lvl_to_nr_pages(large_page);
1065 			pte++;
1066 		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1067 
1068 		domain_flush_cache(domain, first_pte,
1069 				   (void *)pte - (void *)first_pte);
1070 
1071 	} while (start_pfn && start_pfn <= last_pfn);
1072 }
1073 
dma_pte_free_level(struct dmar_domain * domain,int level,int retain_level,struct dma_pte * pte,unsigned long pfn,unsigned long start_pfn,unsigned long last_pfn)1074 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1075 			       int retain_level, struct dma_pte *pte,
1076 			       unsigned long pfn, unsigned long start_pfn,
1077 			       unsigned long last_pfn)
1078 {
1079 	pfn = max(start_pfn, pfn);
1080 	pte = &pte[pfn_level_offset(pfn, level)];
1081 
1082 	do {
1083 		unsigned long level_pfn;
1084 		struct dma_pte *level_pte;
1085 
1086 		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1087 			goto next;
1088 
1089 		level_pfn = pfn & level_mask(level);
1090 		level_pte = phys_to_virt(dma_pte_addr(pte));
1091 
1092 		if (level > 2) {
1093 			dma_pte_free_level(domain, level - 1, retain_level,
1094 					   level_pte, level_pfn, start_pfn,
1095 					   last_pfn);
1096 		}
1097 
1098 		/*
1099 		 * Free the page table if we're below the level we want to
1100 		 * retain and the range covers the entire table.
1101 		 */
1102 		if (level < retain_level && !(start_pfn > level_pfn ||
1103 		      last_pfn < level_pfn + level_size(level) - 1)) {
1104 			dma_clear_pte(pte);
1105 			domain_flush_cache(domain, pte, sizeof(*pte));
1106 			free_pgtable_page(level_pte);
1107 		}
1108 next:
1109 		pfn += level_size(level);
1110 	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1111 }
1112 
1113 /*
1114  * clear last level (leaf) ptes and free page table pages below the
1115  * level we wish to keep intact.
1116  */
dma_pte_free_pagetable(struct dmar_domain * domain,unsigned long start_pfn,unsigned long last_pfn,int retain_level)1117 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1118 				   unsigned long start_pfn,
1119 				   unsigned long last_pfn,
1120 				   int retain_level)
1121 {
1122 	BUG_ON(!domain_pfn_supported(domain, start_pfn));
1123 	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1124 	BUG_ON(start_pfn > last_pfn);
1125 
1126 	dma_pte_clear_range(domain, start_pfn, last_pfn);
1127 
1128 	/* We don't need lock here; nobody else touches the iova range */
1129 	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1130 			   domain->pgd, 0, start_pfn, last_pfn);
1131 
1132 	/* free pgd */
1133 	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1134 		free_pgtable_page(domain->pgd);
1135 		domain->pgd = NULL;
1136 	}
1137 }
1138 
1139 /* When a page at a given level is being unlinked from its parent, we don't
1140    need to *modify* it at all. All we need to do is make a list of all the
1141    pages which can be freed just as soon as we've flushed the IOTLB and we
1142    know the hardware page-walk will no longer touch them.
1143    The 'pte' argument is the *parent* PTE, pointing to the page that is to
1144    be freed. */
dma_pte_list_pagetables(struct dmar_domain * domain,int level,struct dma_pte * pte,struct page * freelist)1145 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1146 					    int level, struct dma_pte *pte,
1147 					    struct page *freelist)
1148 {
1149 	struct page *pg;
1150 
1151 	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1152 	pg->freelist = freelist;
1153 	freelist = pg;
1154 
1155 	if (level == 1)
1156 		return freelist;
1157 
1158 	pte = page_address(pg);
1159 	do {
1160 		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1161 			freelist = dma_pte_list_pagetables(domain, level - 1,
1162 							   pte, freelist);
1163 		pte++;
1164 	} while (!first_pte_in_page(pte));
1165 
1166 	return freelist;
1167 }
1168 
dma_pte_clear_level(struct dmar_domain * domain,int level,struct dma_pte * pte,unsigned long pfn,unsigned long start_pfn,unsigned long last_pfn,struct page * freelist)1169 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1170 					struct dma_pte *pte, unsigned long pfn,
1171 					unsigned long start_pfn,
1172 					unsigned long last_pfn,
1173 					struct page *freelist)
1174 {
1175 	struct dma_pte *first_pte = NULL, *last_pte = NULL;
1176 
1177 	pfn = max(start_pfn, pfn);
1178 	pte = &pte[pfn_level_offset(pfn, level)];
1179 
1180 	do {
1181 		unsigned long level_pfn;
1182 
1183 		if (!dma_pte_present(pte))
1184 			goto next;
1185 
1186 		level_pfn = pfn & level_mask(level);
1187 
1188 		/* If range covers entire pagetable, free it */
1189 		if (start_pfn <= level_pfn &&
1190 		    last_pfn >= level_pfn + level_size(level) - 1) {
1191 			/* These suborbinate page tables are going away entirely. Don't
1192 			   bother to clear them; we're just going to *free* them. */
1193 			if (level > 1 && !dma_pte_superpage(pte))
1194 				freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1195 
1196 			dma_clear_pte(pte);
1197 			if (!first_pte)
1198 				first_pte = pte;
1199 			last_pte = pte;
1200 		} else if (level > 1) {
1201 			/* Recurse down into a level that isn't *entirely* obsolete */
1202 			freelist = dma_pte_clear_level(domain, level - 1,
1203 						       phys_to_virt(dma_pte_addr(pte)),
1204 						       level_pfn, start_pfn, last_pfn,
1205 						       freelist);
1206 		}
1207 next:
1208 		pfn += level_size(level);
1209 	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1210 
1211 	if (first_pte)
1212 		domain_flush_cache(domain, first_pte,
1213 				   (void *)++last_pte - (void *)first_pte);
1214 
1215 	return freelist;
1216 }
1217 
1218 /* We can't just free the pages because the IOMMU may still be walking
1219    the page tables, and may have cached the intermediate levels. The
1220    pages can only be freed after the IOTLB flush has been done. */
domain_unmap(struct dmar_domain * domain,unsigned long start_pfn,unsigned long last_pfn)1221 static struct page *domain_unmap(struct dmar_domain *domain,
1222 				 unsigned long start_pfn,
1223 				 unsigned long last_pfn)
1224 {
1225 	struct page *freelist = NULL;
1226 
1227 	BUG_ON(!domain_pfn_supported(domain, start_pfn));
1228 	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1229 	BUG_ON(start_pfn > last_pfn);
1230 
1231 	/* we don't need lock here; nobody else touches the iova range */
1232 	freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1233 				       domain->pgd, 0, start_pfn, last_pfn, NULL);
1234 
1235 	/* free pgd */
1236 	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1237 		struct page *pgd_page = virt_to_page(domain->pgd);
1238 		pgd_page->freelist = freelist;
1239 		freelist = pgd_page;
1240 
1241 		domain->pgd = NULL;
1242 	}
1243 
1244 	return freelist;
1245 }
1246 
dma_free_pagelist(struct page * freelist)1247 static void dma_free_pagelist(struct page *freelist)
1248 {
1249 	struct page *pg;
1250 
1251 	while ((pg = freelist)) {
1252 		freelist = pg->freelist;
1253 		free_pgtable_page(page_address(pg));
1254 	}
1255 }
1256 
iova_entry_free(unsigned long data)1257 static void iova_entry_free(unsigned long data)
1258 {
1259 	struct page *freelist = (struct page *)data;
1260 
1261 	dma_free_pagelist(freelist);
1262 }
1263 
1264 /* iommu handling */
iommu_alloc_root_entry(struct intel_iommu * iommu)1265 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1266 {
1267 	struct root_entry *root;
1268 	unsigned long flags;
1269 
1270 	root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1271 	if (!root) {
1272 		pr_err("Allocating root entry for %s failed\n",
1273 			iommu->name);
1274 		return -ENOMEM;
1275 	}
1276 
1277 	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1278 
1279 	spin_lock_irqsave(&iommu->lock, flags);
1280 	iommu->root_entry = root;
1281 	spin_unlock_irqrestore(&iommu->lock, flags);
1282 
1283 	return 0;
1284 }
1285 
iommu_set_root_entry(struct intel_iommu * iommu)1286 static void iommu_set_root_entry(struct intel_iommu *iommu)
1287 {
1288 	u64 addr;
1289 	u32 sts;
1290 	unsigned long flag;
1291 
1292 	addr = virt_to_phys(iommu->root_entry);
1293 	if (ecs_enabled(iommu))
1294 		addr |= DMA_RTADDR_RTT;
1295 
1296 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1297 	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1298 
1299 	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1300 
1301 	/* Make sure hardware complete it */
1302 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1303 		      readl, (sts & DMA_GSTS_RTPS), sts);
1304 
1305 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1306 }
1307 
iommu_flush_write_buffer(struct intel_iommu * iommu)1308 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1309 {
1310 	u32 val;
1311 	unsigned long flag;
1312 
1313 	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1314 		return;
1315 
1316 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1317 	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1318 
1319 	/* Make sure hardware complete it */
1320 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1321 		      readl, (!(val & DMA_GSTS_WBFS)), val);
1322 
1323 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1324 }
1325 
1326 /* return value determine if we need a write buffer flush */
__iommu_flush_context(struct intel_iommu * iommu,u16 did,u16 source_id,u8 function_mask,u64 type)1327 static void __iommu_flush_context(struct intel_iommu *iommu,
1328 				  u16 did, u16 source_id, u8 function_mask,
1329 				  u64 type)
1330 {
1331 	u64 val = 0;
1332 	unsigned long flag;
1333 
1334 	switch (type) {
1335 	case DMA_CCMD_GLOBAL_INVL:
1336 		val = DMA_CCMD_GLOBAL_INVL;
1337 		break;
1338 	case DMA_CCMD_DOMAIN_INVL:
1339 		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1340 		break;
1341 	case DMA_CCMD_DEVICE_INVL:
1342 		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1343 			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1344 		break;
1345 	default:
1346 		BUG();
1347 	}
1348 	val |= DMA_CCMD_ICC;
1349 
1350 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1351 	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1352 
1353 	/* Make sure hardware complete it */
1354 	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1355 		dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1356 
1357 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1358 }
1359 
1360 /* return value determine if we need a write buffer flush */
__iommu_flush_iotlb(struct intel_iommu * iommu,u16 did,u64 addr,unsigned int size_order,u64 type)1361 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1362 				u64 addr, unsigned int size_order, u64 type)
1363 {
1364 	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1365 	u64 val = 0, val_iva = 0;
1366 	unsigned long flag;
1367 
1368 	switch (type) {
1369 	case DMA_TLB_GLOBAL_FLUSH:
1370 		/* global flush doesn't need set IVA_REG */
1371 		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1372 		break;
1373 	case DMA_TLB_DSI_FLUSH:
1374 		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1375 		break;
1376 	case DMA_TLB_PSI_FLUSH:
1377 		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1378 		/* IH bit is passed in as part of address */
1379 		val_iva = size_order | addr;
1380 		break;
1381 	default:
1382 		BUG();
1383 	}
1384 	/* Note: set drain read/write */
1385 #if 0
1386 	/*
1387 	 * This is probably to be super secure.. Looks like we can
1388 	 * ignore it without any impact.
1389 	 */
1390 	if (cap_read_drain(iommu->cap))
1391 		val |= DMA_TLB_READ_DRAIN;
1392 #endif
1393 	if (cap_write_drain(iommu->cap))
1394 		val |= DMA_TLB_WRITE_DRAIN;
1395 
1396 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1397 	/* Note: Only uses first TLB reg currently */
1398 	if (val_iva)
1399 		dmar_writeq(iommu->reg + tlb_offset, val_iva);
1400 	dmar_writeq(iommu->reg + tlb_offset + 8, val);
1401 
1402 	/* Make sure hardware complete it */
1403 	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1404 		dmar_readq, (!(val & DMA_TLB_IVT)), val);
1405 
1406 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1407 
1408 	/* check IOTLB invalidation granularity */
1409 	if (DMA_TLB_IAIG(val) == 0)
1410 		pr_err("Flush IOTLB failed\n");
1411 	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1412 		pr_debug("TLB flush request %Lx, actual %Lx\n",
1413 			(unsigned long long)DMA_TLB_IIRG(type),
1414 			(unsigned long long)DMA_TLB_IAIG(val));
1415 }
1416 
1417 static struct device_domain_info *
iommu_support_dev_iotlb(struct dmar_domain * domain,struct intel_iommu * iommu,u8 bus,u8 devfn)1418 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1419 			 u8 bus, u8 devfn)
1420 {
1421 	struct device_domain_info *info;
1422 
1423 	assert_spin_locked(&device_domain_lock);
1424 
1425 	if (!iommu->qi)
1426 		return NULL;
1427 
1428 	list_for_each_entry(info, &domain->devices, link)
1429 		if (info->iommu == iommu && info->bus == bus &&
1430 		    info->devfn == devfn) {
1431 			if (info->ats_supported && info->dev)
1432 				return info;
1433 			break;
1434 		}
1435 
1436 	return NULL;
1437 }
1438 
domain_update_iotlb(struct dmar_domain * domain)1439 static void domain_update_iotlb(struct dmar_domain *domain)
1440 {
1441 	struct device_domain_info *info;
1442 	bool has_iotlb_device = false;
1443 
1444 	assert_spin_locked(&device_domain_lock);
1445 
1446 	list_for_each_entry(info, &domain->devices, link) {
1447 		struct pci_dev *pdev;
1448 
1449 		if (!info->dev || !dev_is_pci(info->dev))
1450 			continue;
1451 
1452 		pdev = to_pci_dev(info->dev);
1453 		if (pdev->ats_enabled) {
1454 			has_iotlb_device = true;
1455 			break;
1456 		}
1457 	}
1458 
1459 	domain->has_iotlb_device = has_iotlb_device;
1460 }
1461 
iommu_enable_dev_iotlb(struct device_domain_info * info)1462 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1463 {
1464 	struct pci_dev *pdev;
1465 
1466 	assert_spin_locked(&device_domain_lock);
1467 
1468 	if (!info || !dev_is_pci(info->dev))
1469 		return;
1470 
1471 	pdev = to_pci_dev(info->dev);
1472 	/* For IOMMU that supports device IOTLB throttling (DIT), we assign
1473 	 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
1474 	 * queue depth at PF level. If DIT is not set, PFSID will be treated as
1475 	 * reserved, which should be set to 0.
1476 	 */
1477 	if (!ecap_dit(info->iommu->ecap))
1478 		info->pfsid = 0;
1479 	else {
1480 		struct pci_dev *pf_pdev;
1481 
1482 		/* pdev will be returned if device is not a vf */
1483 		pf_pdev = pci_physfn(pdev);
1484 		info->pfsid = PCI_DEVID(pf_pdev->bus->number, pf_pdev->devfn);
1485 	}
1486 
1487 #ifdef CONFIG_INTEL_IOMMU_SVM
1488 	/* The PCIe spec, in its wisdom, declares that the behaviour of
1489 	   the device if you enable PASID support after ATS support is
1490 	   undefined. So always enable PASID support on devices which
1491 	   have it, even if we can't yet know if we're ever going to
1492 	   use it. */
1493 	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1494 		info->pasid_enabled = 1;
1495 
1496 	if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1497 		info->pri_enabled = 1;
1498 #endif
1499 	if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1500 		info->ats_enabled = 1;
1501 		domain_update_iotlb(info->domain);
1502 		info->ats_qdep = pci_ats_queue_depth(pdev);
1503 	}
1504 }
1505 
iommu_disable_dev_iotlb(struct device_domain_info * info)1506 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1507 {
1508 	struct pci_dev *pdev;
1509 
1510 	assert_spin_locked(&device_domain_lock);
1511 
1512 	if (!dev_is_pci(info->dev))
1513 		return;
1514 
1515 	pdev = to_pci_dev(info->dev);
1516 
1517 	if (info->ats_enabled) {
1518 		pci_disable_ats(pdev);
1519 		info->ats_enabled = 0;
1520 		domain_update_iotlb(info->domain);
1521 	}
1522 #ifdef CONFIG_INTEL_IOMMU_SVM
1523 	if (info->pri_enabled) {
1524 		pci_disable_pri(pdev);
1525 		info->pri_enabled = 0;
1526 	}
1527 	if (info->pasid_enabled) {
1528 		pci_disable_pasid(pdev);
1529 		info->pasid_enabled = 0;
1530 	}
1531 #endif
1532 }
1533 
iommu_flush_dev_iotlb(struct dmar_domain * domain,u64 addr,unsigned mask)1534 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1535 				  u64 addr, unsigned mask)
1536 {
1537 	u16 sid, qdep;
1538 	unsigned long flags;
1539 	struct device_domain_info *info;
1540 
1541 	if (!domain->has_iotlb_device)
1542 		return;
1543 
1544 	spin_lock_irqsave(&device_domain_lock, flags);
1545 	list_for_each_entry(info, &domain->devices, link) {
1546 		if (!info->ats_enabled)
1547 			continue;
1548 
1549 		sid = info->bus << 8 | info->devfn;
1550 		qdep = info->ats_qdep;
1551 		qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
1552 				qdep, addr, mask);
1553 	}
1554 	spin_unlock_irqrestore(&device_domain_lock, flags);
1555 }
1556 
iommu_flush_iotlb_psi(struct intel_iommu * iommu,struct dmar_domain * domain,unsigned long pfn,unsigned int pages,int ih,int map)1557 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1558 				  struct dmar_domain *domain,
1559 				  unsigned long pfn, unsigned int pages,
1560 				  int ih, int map)
1561 {
1562 	unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1563 	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1564 	u16 did = domain->iommu_did[iommu->seq_id];
1565 
1566 	BUG_ON(pages == 0);
1567 
1568 	if (ih)
1569 		ih = 1 << 6;
1570 	/*
1571 	 * Fallback to domain selective flush if no PSI support or the size is
1572 	 * too big.
1573 	 * PSI requires page size to be 2 ^ x, and the base address is naturally
1574 	 * aligned to the size
1575 	 */
1576 	if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1577 		iommu->flush.flush_iotlb(iommu, did, 0, 0,
1578 						DMA_TLB_DSI_FLUSH);
1579 	else
1580 		iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1581 						DMA_TLB_PSI_FLUSH);
1582 
1583 	/*
1584 	 * In caching mode, changes of pages from non-present to present require
1585 	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1586 	 */
1587 	if (!cap_caching_mode(iommu->cap) || !map)
1588 		iommu_flush_dev_iotlb(domain, addr, mask);
1589 }
1590 
1591 /* Notification for newly created mappings */
__mapping_notify_one(struct intel_iommu * iommu,struct dmar_domain * domain,unsigned long pfn,unsigned int pages)1592 static inline void __mapping_notify_one(struct intel_iommu *iommu,
1593 					struct dmar_domain *domain,
1594 					unsigned long pfn, unsigned int pages)
1595 {
1596 	/* It's a non-present to present mapping. Only flush if caching mode */
1597 	if (cap_caching_mode(iommu->cap))
1598 		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
1599 	else
1600 		iommu_flush_write_buffer(iommu);
1601 }
1602 
iommu_flush_iova(struct iova_domain * iovad)1603 static void iommu_flush_iova(struct iova_domain *iovad)
1604 {
1605 	struct dmar_domain *domain;
1606 	int idx;
1607 
1608 	domain = container_of(iovad, struct dmar_domain, iovad);
1609 
1610 	for_each_domain_iommu(idx, domain) {
1611 		struct intel_iommu *iommu = g_iommus[idx];
1612 		u16 did = domain->iommu_did[iommu->seq_id];
1613 
1614 		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1615 
1616 		if (!cap_caching_mode(iommu->cap))
1617 			iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1618 					      0, MAX_AGAW_PFN_WIDTH);
1619 	}
1620 }
1621 
iommu_disable_protect_mem_regions(struct intel_iommu * iommu)1622 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1623 {
1624 	u32 pmen;
1625 	unsigned long flags;
1626 
1627 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1628 	pmen = readl(iommu->reg + DMAR_PMEN_REG);
1629 	pmen &= ~DMA_PMEN_EPM;
1630 	writel(pmen, iommu->reg + DMAR_PMEN_REG);
1631 
1632 	/* wait for the protected region status bit to clear */
1633 	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1634 		readl, !(pmen & DMA_PMEN_PRS), pmen);
1635 
1636 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1637 }
1638 
iommu_enable_translation(struct intel_iommu * iommu)1639 static void iommu_enable_translation(struct intel_iommu *iommu)
1640 {
1641 	u32 sts;
1642 	unsigned long flags;
1643 
1644 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1645 	iommu->gcmd |= DMA_GCMD_TE;
1646 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1647 
1648 	/* Make sure hardware complete it */
1649 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1650 		      readl, (sts & DMA_GSTS_TES), sts);
1651 
1652 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1653 }
1654 
iommu_disable_translation(struct intel_iommu * iommu)1655 static void iommu_disable_translation(struct intel_iommu *iommu)
1656 {
1657 	u32 sts;
1658 	unsigned long flag;
1659 
1660 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1661 	iommu->gcmd &= ~DMA_GCMD_TE;
1662 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1663 
1664 	/* Make sure hardware complete it */
1665 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1666 		      readl, (!(sts & DMA_GSTS_TES)), sts);
1667 
1668 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1669 }
1670 
1671 
iommu_init_domains(struct intel_iommu * iommu)1672 static int iommu_init_domains(struct intel_iommu *iommu)
1673 {
1674 	u32 ndomains, nlongs;
1675 	size_t size;
1676 
1677 	ndomains = cap_ndoms(iommu->cap);
1678 	pr_debug("%s: Number of Domains supported <%d>\n",
1679 		 iommu->name, ndomains);
1680 	nlongs = BITS_TO_LONGS(ndomains);
1681 
1682 	spin_lock_init(&iommu->lock);
1683 
1684 	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1685 	if (!iommu->domain_ids) {
1686 		pr_err("%s: Allocating domain id array failed\n",
1687 		       iommu->name);
1688 		return -ENOMEM;
1689 	}
1690 
1691 	size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1692 	iommu->domains = kzalloc(size, GFP_KERNEL);
1693 
1694 	if (iommu->domains) {
1695 		size = 256 * sizeof(struct dmar_domain *);
1696 		iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1697 	}
1698 
1699 	if (!iommu->domains || !iommu->domains[0]) {
1700 		pr_err("%s: Allocating domain array failed\n",
1701 		       iommu->name);
1702 		kfree(iommu->domain_ids);
1703 		kfree(iommu->domains);
1704 		iommu->domain_ids = NULL;
1705 		iommu->domains    = NULL;
1706 		return -ENOMEM;
1707 	}
1708 
1709 
1710 
1711 	/*
1712 	 * If Caching mode is set, then invalid translations are tagged
1713 	 * with domain-id 0, hence we need to pre-allocate it. We also
1714 	 * use domain-id 0 as a marker for non-allocated domain-id, so
1715 	 * make sure it is not used for a real domain.
1716 	 */
1717 	set_bit(0, iommu->domain_ids);
1718 
1719 	return 0;
1720 }
1721 
disable_dmar_iommu(struct intel_iommu * iommu)1722 static void disable_dmar_iommu(struct intel_iommu *iommu)
1723 {
1724 	struct device_domain_info *info, *tmp;
1725 	unsigned long flags;
1726 
1727 	if (!iommu->domains || !iommu->domain_ids)
1728 		return;
1729 
1730 again:
1731 	spin_lock_irqsave(&device_domain_lock, flags);
1732 	list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1733 		struct dmar_domain *domain;
1734 
1735 		if (info->iommu != iommu)
1736 			continue;
1737 
1738 		if (!info->dev || !info->domain)
1739 			continue;
1740 
1741 		domain = info->domain;
1742 
1743 		__dmar_remove_one_dev_info(info);
1744 
1745 		if (!domain_type_is_vm_or_si(domain)) {
1746 			/*
1747 			 * The domain_exit() function  can't be called under
1748 			 * device_domain_lock, as it takes this lock itself.
1749 			 * So release the lock here and re-run the loop
1750 			 * afterwards.
1751 			 */
1752 			spin_unlock_irqrestore(&device_domain_lock, flags);
1753 			domain_exit(domain);
1754 			goto again;
1755 		}
1756 	}
1757 	spin_unlock_irqrestore(&device_domain_lock, flags);
1758 
1759 	if (iommu->gcmd & DMA_GCMD_TE)
1760 		iommu_disable_translation(iommu);
1761 }
1762 
free_dmar_iommu(struct intel_iommu * iommu)1763 static void free_dmar_iommu(struct intel_iommu *iommu)
1764 {
1765 	if ((iommu->domains) && (iommu->domain_ids)) {
1766 		int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1767 		int i;
1768 
1769 		for (i = 0; i < elems; i++)
1770 			kfree(iommu->domains[i]);
1771 		kfree(iommu->domains);
1772 		kfree(iommu->domain_ids);
1773 		iommu->domains = NULL;
1774 		iommu->domain_ids = NULL;
1775 	}
1776 
1777 	g_iommus[iommu->seq_id] = NULL;
1778 
1779 	/* free context mapping */
1780 	free_context_table(iommu);
1781 
1782 #ifdef CONFIG_INTEL_IOMMU_SVM
1783 	if (pasid_enabled(iommu)) {
1784 		if (ecap_prs(iommu->ecap))
1785 			intel_svm_finish_prq(iommu);
1786 		intel_svm_exit(iommu);
1787 	}
1788 #endif
1789 }
1790 
alloc_domain(int flags)1791 static struct dmar_domain *alloc_domain(int flags)
1792 {
1793 	struct dmar_domain *domain;
1794 
1795 	domain = alloc_domain_mem();
1796 	if (!domain)
1797 		return NULL;
1798 
1799 	memset(domain, 0, sizeof(*domain));
1800 	domain->nid = -1;
1801 	domain->flags = flags;
1802 	domain->has_iotlb_device = false;
1803 	INIT_LIST_HEAD(&domain->devices);
1804 
1805 	return domain;
1806 }
1807 
1808 /* Must be called with iommu->lock */
domain_attach_iommu(struct dmar_domain * domain,struct intel_iommu * iommu)1809 static int domain_attach_iommu(struct dmar_domain *domain,
1810 			       struct intel_iommu *iommu)
1811 {
1812 	unsigned long ndomains;
1813 	int num;
1814 
1815 	assert_spin_locked(&device_domain_lock);
1816 	assert_spin_locked(&iommu->lock);
1817 
1818 	domain->iommu_refcnt[iommu->seq_id] += 1;
1819 	domain->iommu_count += 1;
1820 	if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1821 		ndomains = cap_ndoms(iommu->cap);
1822 		num      = find_first_zero_bit(iommu->domain_ids, ndomains);
1823 
1824 		if (num >= ndomains) {
1825 			pr_err("%s: No free domain ids\n", iommu->name);
1826 			domain->iommu_refcnt[iommu->seq_id] -= 1;
1827 			domain->iommu_count -= 1;
1828 			return -ENOSPC;
1829 		}
1830 
1831 		set_bit(num, iommu->domain_ids);
1832 		set_iommu_domain(iommu, num, domain);
1833 
1834 		domain->iommu_did[iommu->seq_id] = num;
1835 		domain->nid			 = iommu->node;
1836 
1837 		domain_update_iommu_cap(domain);
1838 	}
1839 
1840 	return 0;
1841 }
1842 
domain_detach_iommu(struct dmar_domain * domain,struct intel_iommu * iommu)1843 static int domain_detach_iommu(struct dmar_domain *domain,
1844 			       struct intel_iommu *iommu)
1845 {
1846 	int num, count = INT_MAX;
1847 
1848 	assert_spin_locked(&device_domain_lock);
1849 	assert_spin_locked(&iommu->lock);
1850 
1851 	domain->iommu_refcnt[iommu->seq_id] -= 1;
1852 	count = --domain->iommu_count;
1853 	if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1854 		num = domain->iommu_did[iommu->seq_id];
1855 		clear_bit(num, iommu->domain_ids);
1856 		set_iommu_domain(iommu, num, NULL);
1857 
1858 		domain_update_iommu_cap(domain);
1859 		domain->iommu_did[iommu->seq_id] = 0;
1860 	}
1861 
1862 	return count;
1863 }
1864 
1865 static struct iova_domain reserved_iova_list;
1866 static struct lock_class_key reserved_rbtree_key;
1867 
dmar_init_reserved_ranges(void)1868 static int dmar_init_reserved_ranges(void)
1869 {
1870 	struct pci_dev *pdev = NULL;
1871 	struct iova *iova;
1872 	int i;
1873 
1874 	init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1875 
1876 	lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1877 		&reserved_rbtree_key);
1878 
1879 	/* IOAPIC ranges shouldn't be accessed by DMA */
1880 	iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1881 		IOVA_PFN(IOAPIC_RANGE_END));
1882 	if (!iova) {
1883 		pr_err("Reserve IOAPIC range failed\n");
1884 		return -ENODEV;
1885 	}
1886 
1887 	/* Reserve all PCI MMIO to avoid peer-to-peer access */
1888 	for_each_pci_dev(pdev) {
1889 		struct resource *r;
1890 
1891 		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1892 			r = &pdev->resource[i];
1893 			if (!r->flags || !(r->flags & IORESOURCE_MEM))
1894 				continue;
1895 			iova = reserve_iova(&reserved_iova_list,
1896 					    IOVA_PFN(r->start),
1897 					    IOVA_PFN(r->end));
1898 			if (!iova) {
1899 				pr_err("Reserve iova failed\n");
1900 				return -ENODEV;
1901 			}
1902 		}
1903 	}
1904 	return 0;
1905 }
1906 
domain_reserve_special_ranges(struct dmar_domain * domain)1907 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1908 {
1909 	copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1910 }
1911 
guestwidth_to_adjustwidth(int gaw)1912 static inline int guestwidth_to_adjustwidth(int gaw)
1913 {
1914 	int agaw;
1915 	int r = (gaw - 12) % 9;
1916 
1917 	if (r == 0)
1918 		agaw = gaw;
1919 	else
1920 		agaw = gaw + 9 - r;
1921 	if (agaw > 64)
1922 		agaw = 64;
1923 	return agaw;
1924 }
1925 
domain_init(struct dmar_domain * domain,struct intel_iommu * iommu,int guest_width)1926 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1927 		       int guest_width)
1928 {
1929 	int adjust_width, agaw;
1930 	unsigned long sagaw;
1931 	int err;
1932 
1933 	init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
1934 
1935 	err = init_iova_flush_queue(&domain->iovad,
1936 				    iommu_flush_iova, iova_entry_free);
1937 	if (err)
1938 		return err;
1939 
1940 	domain_reserve_special_ranges(domain);
1941 
1942 	/* calculate AGAW */
1943 	if (guest_width > cap_mgaw(iommu->cap))
1944 		guest_width = cap_mgaw(iommu->cap);
1945 	domain->gaw = guest_width;
1946 	adjust_width = guestwidth_to_adjustwidth(guest_width);
1947 	agaw = width_to_agaw(adjust_width);
1948 	sagaw = cap_sagaw(iommu->cap);
1949 	if (!test_bit(agaw, &sagaw)) {
1950 		/* hardware doesn't support it, choose a bigger one */
1951 		pr_debug("Hardware doesn't support agaw %d\n", agaw);
1952 		agaw = find_next_bit(&sagaw, 5, agaw);
1953 		if (agaw >= 5)
1954 			return -ENODEV;
1955 	}
1956 	domain->agaw = agaw;
1957 
1958 	if (ecap_coherent(iommu->ecap))
1959 		domain->iommu_coherency = 1;
1960 	else
1961 		domain->iommu_coherency = 0;
1962 
1963 	if (ecap_sc_support(iommu->ecap))
1964 		domain->iommu_snooping = 1;
1965 	else
1966 		domain->iommu_snooping = 0;
1967 
1968 	if (intel_iommu_superpage)
1969 		domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1970 	else
1971 		domain->iommu_superpage = 0;
1972 
1973 	domain->nid = iommu->node;
1974 
1975 	/* always allocate the top pgd */
1976 	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1977 	if (!domain->pgd)
1978 		return -ENOMEM;
1979 	__iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1980 	return 0;
1981 }
1982 
domain_exit(struct dmar_domain * domain)1983 static void domain_exit(struct dmar_domain *domain)
1984 {
1985 	struct page *freelist = NULL;
1986 
1987 	/* Domain 0 is reserved, so dont process it */
1988 	if (!domain)
1989 		return;
1990 
1991 	/* Remove associated devices and clear attached or cached domains */
1992 	rcu_read_lock();
1993 	domain_remove_dev_info(domain);
1994 	rcu_read_unlock();
1995 
1996 	/* destroy iovas */
1997 	put_iova_domain(&domain->iovad);
1998 
1999 	freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
2000 
2001 	dma_free_pagelist(freelist);
2002 
2003 	free_domain_mem(domain);
2004 }
2005 
domain_context_mapping_one(struct dmar_domain * domain,struct intel_iommu * iommu,u8 bus,u8 devfn)2006 static int domain_context_mapping_one(struct dmar_domain *domain,
2007 				      struct intel_iommu *iommu,
2008 				      u8 bus, u8 devfn)
2009 {
2010 	u16 did = domain->iommu_did[iommu->seq_id];
2011 	int translation = CONTEXT_TT_MULTI_LEVEL;
2012 	struct device_domain_info *info = NULL;
2013 	struct context_entry *context;
2014 	unsigned long flags;
2015 	struct dma_pte *pgd;
2016 	int ret, agaw;
2017 
2018 	WARN_ON(did == 0);
2019 
2020 	if (hw_pass_through && domain_type_is_si(domain))
2021 		translation = CONTEXT_TT_PASS_THROUGH;
2022 
2023 	pr_debug("Set context mapping for %02x:%02x.%d\n",
2024 		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
2025 
2026 	BUG_ON(!domain->pgd);
2027 
2028 	spin_lock_irqsave(&device_domain_lock, flags);
2029 	spin_lock(&iommu->lock);
2030 
2031 	ret = -ENOMEM;
2032 	context = iommu_context_addr(iommu, bus, devfn, 1);
2033 	if (!context)
2034 		goto out_unlock;
2035 
2036 	ret = 0;
2037 	if (context_present(context))
2038 		goto out_unlock;
2039 
2040 	/*
2041 	 * For kdump cases, old valid entries may be cached due to the
2042 	 * in-flight DMA and copied pgtable, but there is no unmapping
2043 	 * behaviour for them, thus we need an explicit cache flush for
2044 	 * the newly-mapped device. For kdump, at this point, the device
2045 	 * is supposed to finish reset at its driver probe stage, so no
2046 	 * in-flight DMA will exist, and we don't need to worry anymore
2047 	 * hereafter.
2048 	 */
2049 	if (context_copied(context)) {
2050 		u16 did_old = context_domain_id(context);
2051 
2052 		if (did_old < cap_ndoms(iommu->cap)) {
2053 			iommu->flush.flush_context(iommu, did_old,
2054 						   (((u16)bus) << 8) | devfn,
2055 						   DMA_CCMD_MASK_NOBIT,
2056 						   DMA_CCMD_DEVICE_INVL);
2057 			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
2058 						 DMA_TLB_DSI_FLUSH);
2059 		}
2060 	}
2061 
2062 	pgd = domain->pgd;
2063 
2064 	context_clear_entry(context);
2065 	context_set_domain_id(context, did);
2066 
2067 	/*
2068 	 * Skip top levels of page tables for iommu which has less agaw
2069 	 * than default.  Unnecessary for PT mode.
2070 	 */
2071 	if (translation != CONTEXT_TT_PASS_THROUGH) {
2072 		for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
2073 			ret = -ENOMEM;
2074 			pgd = phys_to_virt(dma_pte_addr(pgd));
2075 			if (!dma_pte_present(pgd))
2076 				goto out_unlock;
2077 		}
2078 
2079 		info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2080 		if (info && info->ats_supported)
2081 			translation = CONTEXT_TT_DEV_IOTLB;
2082 		else
2083 			translation = CONTEXT_TT_MULTI_LEVEL;
2084 
2085 		context_set_address_root(context, virt_to_phys(pgd));
2086 		context_set_address_width(context, iommu->agaw);
2087 	} else {
2088 		/*
2089 		 * In pass through mode, AW must be programmed to
2090 		 * indicate the largest AGAW value supported by
2091 		 * hardware. And ASR is ignored by hardware.
2092 		 */
2093 		context_set_address_width(context, iommu->msagaw);
2094 	}
2095 
2096 	context_set_translation_type(context, translation);
2097 	context_set_fault_enable(context);
2098 	context_set_present(context);
2099 	domain_flush_cache(domain, context, sizeof(*context));
2100 
2101 	/*
2102 	 * It's a non-present to present mapping. If hardware doesn't cache
2103 	 * non-present entry we only need to flush the write-buffer. If the
2104 	 * _does_ cache non-present entries, then it does so in the special
2105 	 * domain #0, which we have to flush:
2106 	 */
2107 	if (cap_caching_mode(iommu->cap)) {
2108 		iommu->flush.flush_context(iommu, 0,
2109 					   (((u16)bus) << 8) | devfn,
2110 					   DMA_CCMD_MASK_NOBIT,
2111 					   DMA_CCMD_DEVICE_INVL);
2112 		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2113 	} else {
2114 		iommu_flush_write_buffer(iommu);
2115 	}
2116 	iommu_enable_dev_iotlb(info);
2117 
2118 	ret = 0;
2119 
2120 out_unlock:
2121 	spin_unlock(&iommu->lock);
2122 	spin_unlock_irqrestore(&device_domain_lock, flags);
2123 
2124 	return ret;
2125 }
2126 
2127 struct domain_context_mapping_data {
2128 	struct dmar_domain *domain;
2129 	struct intel_iommu *iommu;
2130 };
2131 
domain_context_mapping_cb(struct pci_dev * pdev,u16 alias,void * opaque)2132 static int domain_context_mapping_cb(struct pci_dev *pdev,
2133 				     u16 alias, void *opaque)
2134 {
2135 	struct domain_context_mapping_data *data = opaque;
2136 
2137 	return domain_context_mapping_one(data->domain, data->iommu,
2138 					  PCI_BUS_NUM(alias), alias & 0xff);
2139 }
2140 
2141 static int
domain_context_mapping(struct dmar_domain * domain,struct device * dev)2142 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2143 {
2144 	struct intel_iommu *iommu;
2145 	u8 bus, devfn;
2146 	struct domain_context_mapping_data data;
2147 
2148 	iommu = device_to_iommu(dev, &bus, &devfn);
2149 	if (!iommu)
2150 		return -ENODEV;
2151 
2152 	if (!dev_is_pci(dev))
2153 		return domain_context_mapping_one(domain, iommu, bus, devfn);
2154 
2155 	data.domain = domain;
2156 	data.iommu = iommu;
2157 
2158 	return pci_for_each_dma_alias(to_pci_dev(dev),
2159 				      &domain_context_mapping_cb, &data);
2160 }
2161 
domain_context_mapped_cb(struct pci_dev * pdev,u16 alias,void * opaque)2162 static int domain_context_mapped_cb(struct pci_dev *pdev,
2163 				    u16 alias, void *opaque)
2164 {
2165 	struct intel_iommu *iommu = opaque;
2166 
2167 	return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2168 }
2169 
domain_context_mapped(struct device * dev)2170 static int domain_context_mapped(struct device *dev)
2171 {
2172 	struct intel_iommu *iommu;
2173 	u8 bus, devfn;
2174 
2175 	iommu = device_to_iommu(dev, &bus, &devfn);
2176 	if (!iommu)
2177 		return -ENODEV;
2178 
2179 	if (!dev_is_pci(dev))
2180 		return device_context_mapped(iommu, bus, devfn);
2181 
2182 	return !pci_for_each_dma_alias(to_pci_dev(dev),
2183 				       domain_context_mapped_cb, iommu);
2184 }
2185 
2186 /* Returns a number of VTD pages, but aligned to MM page size */
aligned_nrpages(unsigned long host_addr,size_t size)2187 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2188 					    size_t size)
2189 {
2190 	host_addr &= ~PAGE_MASK;
2191 	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2192 }
2193 
2194 /* Return largest possible superpage level for a given mapping */
hardware_largepage_caps(struct dmar_domain * domain,unsigned long iov_pfn,unsigned long phy_pfn,unsigned long pages)2195 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2196 					  unsigned long iov_pfn,
2197 					  unsigned long phy_pfn,
2198 					  unsigned long pages)
2199 {
2200 	int support, level = 1;
2201 	unsigned long pfnmerge;
2202 
2203 	support = domain->iommu_superpage;
2204 
2205 	/* To use a large page, the virtual *and* physical addresses
2206 	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2207 	   of them will mean we have to use smaller pages. So just
2208 	   merge them and check both at once. */
2209 	pfnmerge = iov_pfn | phy_pfn;
2210 
2211 	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2212 		pages >>= VTD_STRIDE_SHIFT;
2213 		if (!pages)
2214 			break;
2215 		pfnmerge >>= VTD_STRIDE_SHIFT;
2216 		level++;
2217 		support--;
2218 	}
2219 	return level;
2220 }
2221 
__domain_mapping(struct dmar_domain * domain,unsigned long iov_pfn,struct scatterlist * sg,unsigned long phys_pfn,unsigned long nr_pages,int prot)2222 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2223 			    struct scatterlist *sg, unsigned long phys_pfn,
2224 			    unsigned long nr_pages, int prot)
2225 {
2226 	struct dma_pte *first_pte = NULL, *pte = NULL;
2227 	phys_addr_t uninitialized_var(pteval);
2228 	unsigned long sg_res = 0;
2229 	unsigned int largepage_lvl = 0;
2230 	unsigned long lvl_pages = 0;
2231 
2232 	BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2233 
2234 	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2235 		return -EINVAL;
2236 
2237 	prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2238 
2239 	if (!sg) {
2240 		sg_res = nr_pages;
2241 		pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2242 	}
2243 
2244 	while (nr_pages > 0) {
2245 		uint64_t tmp;
2246 
2247 		if (!sg_res) {
2248 			unsigned int pgoff = sg->offset & ~PAGE_MASK;
2249 
2250 			sg_res = aligned_nrpages(sg->offset, sg->length);
2251 			sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2252 			sg->dma_length = sg->length;
2253 			pteval = (sg_phys(sg) - pgoff) | prot;
2254 			phys_pfn = pteval >> VTD_PAGE_SHIFT;
2255 		}
2256 
2257 		if (!pte) {
2258 			largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2259 
2260 			first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2261 			if (!pte)
2262 				return -ENOMEM;
2263 			/* It is large page*/
2264 			if (largepage_lvl > 1) {
2265 				unsigned long nr_superpages, end_pfn;
2266 
2267 				pteval |= DMA_PTE_LARGE_PAGE;
2268 				lvl_pages = lvl_to_nr_pages(largepage_lvl);
2269 
2270 				nr_superpages = sg_res / lvl_pages;
2271 				end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2272 
2273 				/*
2274 				 * Ensure that old small page tables are
2275 				 * removed to make room for superpage(s).
2276 				 * We're adding new large pages, so make sure
2277 				 * we don't remove their parent tables.
2278 				 */
2279 				dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
2280 						       largepage_lvl + 1);
2281 			} else {
2282 				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2283 			}
2284 
2285 		}
2286 		/* We don't need lock here, nobody else
2287 		 * touches the iova range
2288 		 */
2289 		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2290 		if (tmp) {
2291 			static int dumps = 5;
2292 			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2293 				iov_pfn, tmp, (unsigned long long)pteval);
2294 			if (dumps) {
2295 				dumps--;
2296 				debug_dma_dump_mappings(NULL);
2297 			}
2298 			WARN_ON(1);
2299 		}
2300 
2301 		lvl_pages = lvl_to_nr_pages(largepage_lvl);
2302 
2303 		BUG_ON(nr_pages < lvl_pages);
2304 		BUG_ON(sg_res < lvl_pages);
2305 
2306 		nr_pages -= lvl_pages;
2307 		iov_pfn += lvl_pages;
2308 		phys_pfn += lvl_pages;
2309 		pteval += lvl_pages * VTD_PAGE_SIZE;
2310 		sg_res -= lvl_pages;
2311 
2312 		/* If the next PTE would be the first in a new page, then we
2313 		   need to flush the cache on the entries we've just written.
2314 		   And then we'll need to recalculate 'pte', so clear it and
2315 		   let it get set again in the if (!pte) block above.
2316 
2317 		   If we're done (!nr_pages) we need to flush the cache too.
2318 
2319 		   Also if we've been setting superpages, we may need to
2320 		   recalculate 'pte' and switch back to smaller pages for the
2321 		   end of the mapping, if the trailing size is not enough to
2322 		   use another superpage (i.e. sg_res < lvl_pages). */
2323 		pte++;
2324 		if (!nr_pages || first_pte_in_page(pte) ||
2325 		    (largepage_lvl > 1 && sg_res < lvl_pages)) {
2326 			domain_flush_cache(domain, first_pte,
2327 					   (void *)pte - (void *)first_pte);
2328 			pte = NULL;
2329 		}
2330 
2331 		if (!sg_res && nr_pages)
2332 			sg = sg_next(sg);
2333 	}
2334 	return 0;
2335 }
2336 
domain_mapping(struct dmar_domain * domain,unsigned long iov_pfn,struct scatterlist * sg,unsigned long phys_pfn,unsigned long nr_pages,int prot)2337 static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2338                          struct scatterlist *sg, unsigned long phys_pfn,
2339                          unsigned long nr_pages, int prot)
2340 {
2341        int ret;
2342        struct intel_iommu *iommu;
2343 
2344        /* Do the real mapping first */
2345        ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
2346        if (ret)
2347                return ret;
2348 
2349        /* Notify about the new mapping */
2350        if (domain_type_is_vm(domain)) {
2351 	       /* VM typed domains can have more than one IOMMUs */
2352 	       int iommu_id;
2353 	       for_each_domain_iommu(iommu_id, domain) {
2354 		       iommu = g_iommus[iommu_id];
2355 		       __mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
2356 	       }
2357        } else {
2358 	       /* General domains only have one IOMMU */
2359 	       iommu = domain_get_iommu(domain);
2360 	       __mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
2361        }
2362 
2363        return 0;
2364 }
2365 
domain_sg_mapping(struct dmar_domain * domain,unsigned long iov_pfn,struct scatterlist * sg,unsigned long nr_pages,int prot)2366 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2367 				    struct scatterlist *sg, unsigned long nr_pages,
2368 				    int prot)
2369 {
2370 	return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2371 }
2372 
domain_pfn_mapping(struct dmar_domain * domain,unsigned long iov_pfn,unsigned long phys_pfn,unsigned long nr_pages,int prot)2373 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2374 				     unsigned long phys_pfn, unsigned long nr_pages,
2375 				     int prot)
2376 {
2377 	return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2378 }
2379 
domain_context_clear_one(struct intel_iommu * iommu,u8 bus,u8 devfn)2380 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2381 {
2382 	unsigned long flags;
2383 	struct context_entry *context;
2384 	u16 did_old;
2385 
2386 	if (!iommu)
2387 		return;
2388 
2389 	spin_lock_irqsave(&iommu->lock, flags);
2390 	context = iommu_context_addr(iommu, bus, devfn, 0);
2391 	if (!context) {
2392 		spin_unlock_irqrestore(&iommu->lock, flags);
2393 		return;
2394 	}
2395 	did_old = context_domain_id(context);
2396 	context_clear_entry(context);
2397 	__iommu_flush_cache(iommu, context, sizeof(*context));
2398 	spin_unlock_irqrestore(&iommu->lock, flags);
2399 	iommu->flush.flush_context(iommu,
2400 				   did_old,
2401 				   (((u16)bus) << 8) | devfn,
2402 				   DMA_CCMD_MASK_NOBIT,
2403 				   DMA_CCMD_DEVICE_INVL);
2404 	iommu->flush.flush_iotlb(iommu,
2405 				 did_old,
2406 				 0,
2407 				 0,
2408 				 DMA_TLB_DSI_FLUSH);
2409 }
2410 
unlink_domain_info(struct device_domain_info * info)2411 static inline void unlink_domain_info(struct device_domain_info *info)
2412 {
2413 	assert_spin_locked(&device_domain_lock);
2414 	list_del(&info->link);
2415 	list_del(&info->global);
2416 	if (info->dev)
2417 		info->dev->archdata.iommu = NULL;
2418 }
2419 
domain_remove_dev_info(struct dmar_domain * domain)2420 static void domain_remove_dev_info(struct dmar_domain *domain)
2421 {
2422 	struct device_domain_info *info, *tmp;
2423 	unsigned long flags;
2424 
2425 	spin_lock_irqsave(&device_domain_lock, flags);
2426 	list_for_each_entry_safe(info, tmp, &domain->devices, link)
2427 		__dmar_remove_one_dev_info(info);
2428 	spin_unlock_irqrestore(&device_domain_lock, flags);
2429 }
2430 
2431 /*
2432  * find_domain
2433  * Note: we use struct device->archdata.iommu stores the info
2434  */
find_domain(struct device * dev)2435 static struct dmar_domain *find_domain(struct device *dev)
2436 {
2437 	struct device_domain_info *info;
2438 
2439 	/* No lock here, assumes no domain exit in normal case */
2440 	info = dev->archdata.iommu;
2441 	if (likely(info))
2442 		return info->domain;
2443 	return NULL;
2444 }
2445 
2446 static inline struct device_domain_info *
dmar_search_domain_by_dev_info(int segment,int bus,int devfn)2447 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2448 {
2449 	struct device_domain_info *info;
2450 
2451 	list_for_each_entry(info, &device_domain_list, global)
2452 		if (info->iommu->segment == segment && info->bus == bus &&
2453 		    info->devfn == devfn)
2454 			return info;
2455 
2456 	return NULL;
2457 }
2458 
dmar_insert_one_dev_info(struct intel_iommu * iommu,int bus,int devfn,struct device * dev,struct dmar_domain * domain)2459 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2460 						    int bus, int devfn,
2461 						    struct device *dev,
2462 						    struct dmar_domain *domain)
2463 {
2464 	struct dmar_domain *found = NULL;
2465 	struct device_domain_info *info;
2466 	unsigned long flags;
2467 	int ret;
2468 
2469 	info = alloc_devinfo_mem();
2470 	if (!info)
2471 		return NULL;
2472 
2473 	info->bus = bus;
2474 	info->devfn = devfn;
2475 	info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2476 	info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2477 	info->ats_qdep = 0;
2478 	info->dev = dev;
2479 	info->domain = domain;
2480 	info->iommu = iommu;
2481 	info->pasid_table = NULL;
2482 
2483 	if (dev && dev_is_pci(dev)) {
2484 		struct pci_dev *pdev = to_pci_dev(info->dev);
2485 
2486 		if (!pci_ats_disabled() &&
2487 		    ecap_dev_iotlb_support(iommu->ecap) &&
2488 		    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2489 		    dmar_find_matched_atsr_unit(pdev))
2490 			info->ats_supported = 1;
2491 
2492 		if (ecs_enabled(iommu)) {
2493 			if (pasid_enabled(iommu)) {
2494 				int features = pci_pasid_features(pdev);
2495 				if (features >= 0)
2496 					info->pasid_supported = features | 1;
2497 			}
2498 
2499 			if (info->ats_supported && ecap_prs(iommu->ecap) &&
2500 			    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2501 				info->pri_supported = 1;
2502 		}
2503 	}
2504 
2505 	spin_lock_irqsave(&device_domain_lock, flags);
2506 	if (dev)
2507 		found = find_domain(dev);
2508 
2509 	if (!found) {
2510 		struct device_domain_info *info2;
2511 		info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2512 		if (info2) {
2513 			found      = info2->domain;
2514 			info2->dev = dev;
2515 		}
2516 	}
2517 
2518 	if (found) {
2519 		spin_unlock_irqrestore(&device_domain_lock, flags);
2520 		free_devinfo_mem(info);
2521 		/* Caller must free the original domain */
2522 		return found;
2523 	}
2524 
2525 	spin_lock(&iommu->lock);
2526 	ret = domain_attach_iommu(domain, iommu);
2527 	spin_unlock(&iommu->lock);
2528 
2529 	if (ret) {
2530 		spin_unlock_irqrestore(&device_domain_lock, flags);
2531 		free_devinfo_mem(info);
2532 		return NULL;
2533 	}
2534 
2535 	list_add(&info->link, &domain->devices);
2536 	list_add(&info->global, &device_domain_list);
2537 	if (dev)
2538 		dev->archdata.iommu = info;
2539 
2540 	if (dev && dev_is_pci(dev) && info->pasid_supported) {
2541 		ret = intel_pasid_alloc_table(dev);
2542 		if (ret) {
2543 			pr_warn("No pasid table for %s, pasid disabled\n",
2544 				dev_name(dev));
2545 			info->pasid_supported = 0;
2546 		}
2547 	}
2548 	spin_unlock_irqrestore(&device_domain_lock, flags);
2549 
2550 	if (dev && domain_context_mapping(domain, dev)) {
2551 		pr_err("Domain context map for %s failed\n", dev_name(dev));
2552 		dmar_remove_one_dev_info(domain, dev);
2553 		return NULL;
2554 	}
2555 
2556 	return domain;
2557 }
2558 
get_last_alias(struct pci_dev * pdev,u16 alias,void * opaque)2559 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2560 {
2561 	*(u16 *)opaque = alias;
2562 	return 0;
2563 }
2564 
find_or_alloc_domain(struct device * dev,int gaw)2565 static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2566 {
2567 	struct device_domain_info *info = NULL;
2568 	struct dmar_domain *domain = NULL;
2569 	struct intel_iommu *iommu;
2570 	u16 dma_alias;
2571 	unsigned long flags;
2572 	u8 bus, devfn;
2573 
2574 	iommu = device_to_iommu(dev, &bus, &devfn);
2575 	if (!iommu)
2576 		return NULL;
2577 
2578 	if (dev_is_pci(dev)) {
2579 		struct pci_dev *pdev = to_pci_dev(dev);
2580 
2581 		pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2582 
2583 		spin_lock_irqsave(&device_domain_lock, flags);
2584 		info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2585 						      PCI_BUS_NUM(dma_alias),
2586 						      dma_alias & 0xff);
2587 		if (info) {
2588 			iommu = info->iommu;
2589 			domain = info->domain;
2590 		}
2591 		spin_unlock_irqrestore(&device_domain_lock, flags);
2592 
2593 		/* DMA alias already has a domain, use it */
2594 		if (info)
2595 			goto out;
2596 	}
2597 
2598 	/* Allocate and initialize new domain for the device */
2599 	domain = alloc_domain(0);
2600 	if (!domain)
2601 		return NULL;
2602 	if (domain_init(domain, iommu, gaw)) {
2603 		domain_exit(domain);
2604 		return NULL;
2605 	}
2606 
2607 out:
2608 
2609 	return domain;
2610 }
2611 
set_domain_for_dev(struct device * dev,struct dmar_domain * domain)2612 static struct dmar_domain *set_domain_for_dev(struct device *dev,
2613 					      struct dmar_domain *domain)
2614 {
2615 	struct intel_iommu *iommu;
2616 	struct dmar_domain *tmp;
2617 	u16 req_id, dma_alias;
2618 	u8 bus, devfn;
2619 
2620 	iommu = device_to_iommu(dev, &bus, &devfn);
2621 	if (!iommu)
2622 		return NULL;
2623 
2624 	req_id = ((u16)bus << 8) | devfn;
2625 
2626 	if (dev_is_pci(dev)) {
2627 		struct pci_dev *pdev = to_pci_dev(dev);
2628 
2629 		pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2630 
2631 		/* register PCI DMA alias device */
2632 		if (req_id != dma_alias) {
2633 			tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2634 					dma_alias & 0xff, NULL, domain);
2635 
2636 			if (!tmp || tmp != domain)
2637 				return tmp;
2638 		}
2639 	}
2640 
2641 	tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2642 	if (!tmp || tmp != domain)
2643 		return tmp;
2644 
2645 	return domain;
2646 }
2647 
get_domain_for_dev(struct device * dev,int gaw)2648 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2649 {
2650 	struct dmar_domain *domain, *tmp;
2651 
2652 	domain = find_domain(dev);
2653 	if (domain)
2654 		goto out;
2655 
2656 	domain = find_or_alloc_domain(dev, gaw);
2657 	if (!domain)
2658 		goto out;
2659 
2660 	tmp = set_domain_for_dev(dev, domain);
2661 	if (!tmp || domain != tmp) {
2662 		domain_exit(domain);
2663 		domain = tmp;
2664 	}
2665 
2666 out:
2667 
2668 	return domain;
2669 }
2670 
iommu_domain_identity_map(struct dmar_domain * domain,unsigned long long start,unsigned long long end)2671 static int iommu_domain_identity_map(struct dmar_domain *domain,
2672 				     unsigned long long start,
2673 				     unsigned long long end)
2674 {
2675 	unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2676 	unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2677 
2678 	if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2679 			  dma_to_mm_pfn(last_vpfn))) {
2680 		pr_err("Reserving iova failed\n");
2681 		return -ENOMEM;
2682 	}
2683 
2684 	pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2685 	/*
2686 	 * RMRR range might have overlap with physical memory range,
2687 	 * clear it first
2688 	 */
2689 	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2690 
2691 	return __domain_mapping(domain, first_vpfn, NULL,
2692 				first_vpfn, last_vpfn - first_vpfn + 1,
2693 				DMA_PTE_READ|DMA_PTE_WRITE);
2694 }
2695 
domain_prepare_identity_map(struct device * dev,struct dmar_domain * domain,unsigned long long start,unsigned long long end)2696 static int domain_prepare_identity_map(struct device *dev,
2697 				       struct dmar_domain *domain,
2698 				       unsigned long long start,
2699 				       unsigned long long end)
2700 {
2701 	/* For _hardware_ passthrough, don't bother. But for software
2702 	   passthrough, we do it anyway -- it may indicate a memory
2703 	   range which is reserved in E820, so which didn't get set
2704 	   up to start with in si_domain */
2705 	if (domain == si_domain && hw_pass_through) {
2706 		pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2707 			dev_name(dev), start, end);
2708 		return 0;
2709 	}
2710 
2711 	pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2712 		dev_name(dev), start, end);
2713 
2714 	if (end < start) {
2715 		WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2716 			"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2717 			dmi_get_system_info(DMI_BIOS_VENDOR),
2718 			dmi_get_system_info(DMI_BIOS_VERSION),
2719 		     dmi_get_system_info(DMI_PRODUCT_VERSION));
2720 		return -EIO;
2721 	}
2722 
2723 	if (end >> agaw_to_width(domain->agaw)) {
2724 		WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2725 		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2726 		     agaw_to_width(domain->agaw),
2727 		     dmi_get_system_info(DMI_BIOS_VENDOR),
2728 		     dmi_get_system_info(DMI_BIOS_VERSION),
2729 		     dmi_get_system_info(DMI_PRODUCT_VERSION));
2730 		return -EIO;
2731 	}
2732 
2733 	return iommu_domain_identity_map(domain, start, end);
2734 }
2735 
iommu_prepare_identity_map(struct device * dev,unsigned long long start,unsigned long long end)2736 static int iommu_prepare_identity_map(struct device *dev,
2737 				      unsigned long long start,
2738 				      unsigned long long end)
2739 {
2740 	struct dmar_domain *domain;
2741 	int ret;
2742 
2743 	domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2744 	if (!domain)
2745 		return -ENOMEM;
2746 
2747 	ret = domain_prepare_identity_map(dev, domain, start, end);
2748 	if (ret)
2749 		domain_exit(domain);
2750 
2751 	return ret;
2752 }
2753 
iommu_prepare_rmrr_dev(struct dmar_rmrr_unit * rmrr,struct device * dev)2754 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2755 					 struct device *dev)
2756 {
2757 	if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2758 		return 0;
2759 	return iommu_prepare_identity_map(dev, rmrr->base_address,
2760 					  rmrr->end_address);
2761 }
2762 
2763 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
iommu_prepare_isa(void)2764 static inline void iommu_prepare_isa(void)
2765 {
2766 	struct pci_dev *pdev;
2767 	int ret;
2768 
2769 	pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2770 	if (!pdev)
2771 		return;
2772 
2773 	pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2774 	ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2775 
2776 	if (ret)
2777 		pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2778 
2779 	pci_dev_put(pdev);
2780 }
2781 #else
iommu_prepare_isa(void)2782 static inline void iommu_prepare_isa(void)
2783 {
2784 	return;
2785 }
2786 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2787 
2788 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2789 
si_domain_init(int hw)2790 static int __init si_domain_init(int hw)
2791 {
2792 	int nid, ret = 0;
2793 
2794 	si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2795 	if (!si_domain)
2796 		return -EFAULT;
2797 
2798 	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2799 		domain_exit(si_domain);
2800 		return -EFAULT;
2801 	}
2802 
2803 	pr_debug("Identity mapping domain allocated\n");
2804 
2805 	if (hw)
2806 		return 0;
2807 
2808 	for_each_online_node(nid) {
2809 		unsigned long start_pfn, end_pfn;
2810 		int i;
2811 
2812 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2813 			ret = iommu_domain_identity_map(si_domain,
2814 					PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2815 			if (ret)
2816 				return ret;
2817 		}
2818 	}
2819 
2820 	return 0;
2821 }
2822 
identity_mapping(struct device * dev)2823 static int identity_mapping(struct device *dev)
2824 {
2825 	struct device_domain_info *info;
2826 
2827 	if (likely(!iommu_identity_mapping))
2828 		return 0;
2829 
2830 	info = dev->archdata.iommu;
2831 	if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2832 		return (info->domain == si_domain);
2833 
2834 	return 0;
2835 }
2836 
domain_add_dev_info(struct dmar_domain * domain,struct device * dev)2837 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2838 {
2839 	struct dmar_domain *ndomain;
2840 	struct intel_iommu *iommu;
2841 	u8 bus, devfn;
2842 
2843 	iommu = device_to_iommu(dev, &bus, &devfn);
2844 	if (!iommu)
2845 		return -ENODEV;
2846 
2847 	ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2848 	if (ndomain != domain)
2849 		return -EBUSY;
2850 
2851 	return 0;
2852 }
2853 
device_has_rmrr(struct device * dev)2854 static bool device_has_rmrr(struct device *dev)
2855 {
2856 	struct dmar_rmrr_unit *rmrr;
2857 	struct device *tmp;
2858 	int i;
2859 
2860 	rcu_read_lock();
2861 	for_each_rmrr_units(rmrr) {
2862 		/*
2863 		 * Return TRUE if this RMRR contains the device that
2864 		 * is passed in.
2865 		 */
2866 		for_each_active_dev_scope(rmrr->devices,
2867 					  rmrr->devices_cnt, i, tmp)
2868 			if (tmp == dev) {
2869 				rcu_read_unlock();
2870 				return true;
2871 			}
2872 	}
2873 	rcu_read_unlock();
2874 	return false;
2875 }
2876 
2877 /*
2878  * There are a couple cases where we need to restrict the functionality of
2879  * devices associated with RMRRs.  The first is when evaluating a device for
2880  * identity mapping because problems exist when devices are moved in and out
2881  * of domains and their respective RMRR information is lost.  This means that
2882  * a device with associated RMRRs will never be in a "passthrough" domain.
2883  * The second is use of the device through the IOMMU API.  This interface
2884  * expects to have full control of the IOVA space for the device.  We cannot
2885  * satisfy both the requirement that RMRR access is maintained and have an
2886  * unencumbered IOVA space.  We also have no ability to quiesce the device's
2887  * use of the RMRR space or even inform the IOMMU API user of the restriction.
2888  * We therefore prevent devices associated with an RMRR from participating in
2889  * the IOMMU API, which eliminates them from device assignment.
2890  *
2891  * In both cases we assume that PCI USB devices with RMRRs have them largely
2892  * for historical reasons and that the RMRR space is not actively used post
2893  * boot.  This exclusion may change if vendors begin to abuse it.
2894  *
2895  * The same exception is made for graphics devices, with the requirement that
2896  * any use of the RMRR regions will be torn down before assigning the device
2897  * to a guest.
2898  */
device_is_rmrr_locked(struct device * dev)2899 static bool device_is_rmrr_locked(struct device *dev)
2900 {
2901 	if (!device_has_rmrr(dev))
2902 		return false;
2903 
2904 	if (dev_is_pci(dev)) {
2905 		struct pci_dev *pdev = to_pci_dev(dev);
2906 
2907 		if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2908 			return false;
2909 	}
2910 
2911 	return true;
2912 }
2913 
iommu_should_identity_map(struct device * dev,int startup)2914 static int iommu_should_identity_map(struct device *dev, int startup)
2915 {
2916 
2917 	if (dev_is_pci(dev)) {
2918 		struct pci_dev *pdev = to_pci_dev(dev);
2919 
2920 		if (device_is_rmrr_locked(dev))
2921 			return 0;
2922 
2923 		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2924 			return 1;
2925 
2926 		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2927 			return 1;
2928 
2929 		if (!(iommu_identity_mapping & IDENTMAP_ALL))
2930 			return 0;
2931 
2932 		/*
2933 		 * We want to start off with all devices in the 1:1 domain, and
2934 		 * take them out later if we find they can't access all of memory.
2935 		 *
2936 		 * However, we can't do this for PCI devices behind bridges,
2937 		 * because all PCI devices behind the same bridge will end up
2938 		 * with the same source-id on their transactions.
2939 		 *
2940 		 * Practically speaking, we can't change things around for these
2941 		 * devices at run-time, because we can't be sure there'll be no
2942 		 * DMA transactions in flight for any of their siblings.
2943 		 *
2944 		 * So PCI devices (unless they're on the root bus) as well as
2945 		 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2946 		 * the 1:1 domain, just in _case_ one of their siblings turns out
2947 		 * not to be able to map all of memory.
2948 		 */
2949 		if (!pci_is_pcie(pdev)) {
2950 			if (!pci_is_root_bus(pdev->bus))
2951 				return 0;
2952 			if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2953 				return 0;
2954 		} else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2955 			return 0;
2956 	} else {
2957 		if (device_has_rmrr(dev))
2958 			return 0;
2959 	}
2960 
2961 	/*
2962 	 * At boot time, we don't yet know if devices will be 64-bit capable.
2963 	 * Assume that they will — if they turn out not to be, then we can
2964 	 * take them out of the 1:1 domain later.
2965 	 */
2966 	if (!startup) {
2967 		/*
2968 		 * If the device's dma_mask is less than the system's memory
2969 		 * size then this is not a candidate for identity mapping.
2970 		 */
2971 		u64 dma_mask = *dev->dma_mask;
2972 
2973 		if (dev->coherent_dma_mask &&
2974 		    dev->coherent_dma_mask < dma_mask)
2975 			dma_mask = dev->coherent_dma_mask;
2976 
2977 		return dma_mask >= dma_get_required_mask(dev);
2978 	}
2979 
2980 	return 1;
2981 }
2982 
dev_prepare_static_identity_mapping(struct device * dev,int hw)2983 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2984 {
2985 	int ret;
2986 
2987 	if (!iommu_should_identity_map(dev, 1))
2988 		return 0;
2989 
2990 	ret = domain_add_dev_info(si_domain, dev);
2991 	if (!ret)
2992 		pr_info("%s identity mapping for device %s\n",
2993 			hw ? "Hardware" : "Software", dev_name(dev));
2994 	else if (ret == -ENODEV)
2995 		/* device not associated with an iommu */
2996 		ret = 0;
2997 
2998 	return ret;
2999 }
3000 
3001 
iommu_prepare_static_identity_mapping(int hw)3002 static int __init iommu_prepare_static_identity_mapping(int hw)
3003 {
3004 	struct pci_dev *pdev = NULL;
3005 	struct dmar_drhd_unit *drhd;
3006 	struct intel_iommu *iommu;
3007 	struct device *dev;
3008 	int i;
3009 	int ret = 0;
3010 
3011 	for_each_pci_dev(pdev) {
3012 		ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
3013 		if (ret)
3014 			return ret;
3015 	}
3016 
3017 	for_each_active_iommu(iommu, drhd)
3018 		for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
3019 			struct acpi_device_physical_node *pn;
3020 			struct acpi_device *adev;
3021 
3022 			if (dev->bus != &acpi_bus_type)
3023 				continue;
3024 
3025 			adev= to_acpi_device(dev);
3026 			mutex_lock(&adev->physical_node_lock);
3027 			list_for_each_entry(pn, &adev->physical_node_list, node) {
3028 				ret = dev_prepare_static_identity_mapping(pn->dev, hw);
3029 				if (ret)
3030 					break;
3031 			}
3032 			mutex_unlock(&adev->physical_node_lock);
3033 			if (ret)
3034 				return ret;
3035 		}
3036 
3037 	return 0;
3038 }
3039 
intel_iommu_init_qi(struct intel_iommu * iommu)3040 static void intel_iommu_init_qi(struct intel_iommu *iommu)
3041 {
3042 	/*
3043 	 * Start from the sane iommu hardware state.
3044 	 * If the queued invalidation is already initialized by us
3045 	 * (for example, while enabling interrupt-remapping) then
3046 	 * we got the things already rolling from a sane state.
3047 	 */
3048 	if (!iommu->qi) {
3049 		/*
3050 		 * Clear any previous faults.
3051 		 */
3052 		dmar_fault(-1, iommu);
3053 		/*
3054 		 * Disable queued invalidation if supported and already enabled
3055 		 * before OS handover.
3056 		 */
3057 		dmar_disable_qi(iommu);
3058 	}
3059 
3060 	if (dmar_enable_qi(iommu)) {
3061 		/*
3062 		 * Queued Invalidate not enabled, use Register Based Invalidate
3063 		 */
3064 		iommu->flush.flush_context = __iommu_flush_context;
3065 		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
3066 		pr_info("%s: Using Register based invalidation\n",
3067 			iommu->name);
3068 	} else {
3069 		iommu->flush.flush_context = qi_flush_context;
3070 		iommu->flush.flush_iotlb = qi_flush_iotlb;
3071 		pr_info("%s: Using Queued invalidation\n", iommu->name);
3072 	}
3073 }
3074 
copy_context_table(struct intel_iommu * iommu,struct root_entry * old_re,struct context_entry ** tbl,int bus,bool ext)3075 static int copy_context_table(struct intel_iommu *iommu,
3076 			      struct root_entry *old_re,
3077 			      struct context_entry **tbl,
3078 			      int bus, bool ext)
3079 {
3080 	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3081 	struct context_entry *new_ce = NULL, ce;
3082 	struct context_entry *old_ce = NULL;
3083 	struct root_entry re;
3084 	phys_addr_t old_ce_phys;
3085 
3086 	tbl_idx = ext ? bus * 2 : bus;
3087 	memcpy(&re, old_re, sizeof(re));
3088 
3089 	for (devfn = 0; devfn < 256; devfn++) {
3090 		/* First calculate the correct index */
3091 		idx = (ext ? devfn * 2 : devfn) % 256;
3092 
3093 		if (idx == 0) {
3094 			/* First save what we may have and clean up */
3095 			if (new_ce) {
3096 				tbl[tbl_idx] = new_ce;
3097 				__iommu_flush_cache(iommu, new_ce,
3098 						    VTD_PAGE_SIZE);
3099 				pos = 1;
3100 			}
3101 
3102 			if (old_ce)
3103 				iounmap(old_ce);
3104 
3105 			ret = 0;
3106 			if (devfn < 0x80)
3107 				old_ce_phys = root_entry_lctp(&re);
3108 			else
3109 				old_ce_phys = root_entry_uctp(&re);
3110 
3111 			if (!old_ce_phys) {
3112 				if (ext && devfn == 0) {
3113 					/* No LCTP, try UCTP */
3114 					devfn = 0x7f;
3115 					continue;
3116 				} else {
3117 					goto out;
3118 				}
3119 			}
3120 
3121 			ret = -ENOMEM;
3122 			old_ce = memremap(old_ce_phys, PAGE_SIZE,
3123 					MEMREMAP_WB);
3124 			if (!old_ce)
3125 				goto out;
3126 
3127 			new_ce = alloc_pgtable_page(iommu->node);
3128 			if (!new_ce)
3129 				goto out_unmap;
3130 
3131 			ret = 0;
3132 		}
3133 
3134 		/* Now copy the context entry */
3135 		memcpy(&ce, old_ce + idx, sizeof(ce));
3136 
3137 		if (!__context_present(&ce))
3138 			continue;
3139 
3140 		did = context_domain_id(&ce);
3141 		if (did >= 0 && did < cap_ndoms(iommu->cap))
3142 			set_bit(did, iommu->domain_ids);
3143 
3144 		/*
3145 		 * We need a marker for copied context entries. This
3146 		 * marker needs to work for the old format as well as
3147 		 * for extended context entries.
3148 		 *
3149 		 * Bit 67 of the context entry is used. In the old
3150 		 * format this bit is available to software, in the
3151 		 * extended format it is the PGE bit, but PGE is ignored
3152 		 * by HW if PASIDs are disabled (and thus still
3153 		 * available).
3154 		 *
3155 		 * So disable PASIDs first and then mark the entry
3156 		 * copied. This means that we don't copy PASID
3157 		 * translations from the old kernel, but this is fine as
3158 		 * faults there are not fatal.
3159 		 */
3160 		context_clear_pasid_enable(&ce);
3161 		context_set_copied(&ce);
3162 
3163 		new_ce[idx] = ce;
3164 	}
3165 
3166 	tbl[tbl_idx + pos] = new_ce;
3167 
3168 	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3169 
3170 out_unmap:
3171 	memunmap(old_ce);
3172 
3173 out:
3174 	return ret;
3175 }
3176 
copy_translation_tables(struct intel_iommu * iommu)3177 static int copy_translation_tables(struct intel_iommu *iommu)
3178 {
3179 	struct context_entry **ctxt_tbls;
3180 	struct root_entry *old_rt;
3181 	phys_addr_t old_rt_phys;
3182 	int ctxt_table_entries;
3183 	unsigned long flags;
3184 	u64 rtaddr_reg;
3185 	int bus, ret;
3186 	bool new_ext, ext;
3187 
3188 	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3189 	ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3190 	new_ext    = !!ecap_ecs(iommu->ecap);
3191 
3192 	/*
3193 	 * The RTT bit can only be changed when translation is disabled,
3194 	 * but disabling translation means to open a window for data
3195 	 * corruption. So bail out and don't copy anything if we would
3196 	 * have to change the bit.
3197 	 */
3198 	if (new_ext != ext)
3199 		return -EINVAL;
3200 
3201 	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3202 	if (!old_rt_phys)
3203 		return -EINVAL;
3204 
3205 	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3206 	if (!old_rt)
3207 		return -ENOMEM;
3208 
3209 	/* This is too big for the stack - allocate it from slab */
3210 	ctxt_table_entries = ext ? 512 : 256;
3211 	ret = -ENOMEM;
3212 	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3213 	if (!ctxt_tbls)
3214 		goto out_unmap;
3215 
3216 	for (bus = 0; bus < 256; bus++) {
3217 		ret = copy_context_table(iommu, &old_rt[bus],
3218 					 ctxt_tbls, bus, ext);
3219 		if (ret) {
3220 			pr_err("%s: Failed to copy context table for bus %d\n",
3221 				iommu->name, bus);
3222 			continue;
3223 		}
3224 	}
3225 
3226 	spin_lock_irqsave(&iommu->lock, flags);
3227 
3228 	/* Context tables are copied, now write them to the root_entry table */
3229 	for (bus = 0; bus < 256; bus++) {
3230 		int idx = ext ? bus * 2 : bus;
3231 		u64 val;
3232 
3233 		if (ctxt_tbls[idx]) {
3234 			val = virt_to_phys(ctxt_tbls[idx]) | 1;
3235 			iommu->root_entry[bus].lo = val;
3236 		}
3237 
3238 		if (!ext || !ctxt_tbls[idx + 1])
3239 			continue;
3240 
3241 		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3242 		iommu->root_entry[bus].hi = val;
3243 	}
3244 
3245 	spin_unlock_irqrestore(&iommu->lock, flags);
3246 
3247 	kfree(ctxt_tbls);
3248 
3249 	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3250 
3251 	ret = 0;
3252 
3253 out_unmap:
3254 	memunmap(old_rt);
3255 
3256 	return ret;
3257 }
3258 
init_dmars(void)3259 static int __init init_dmars(void)
3260 {
3261 	struct dmar_drhd_unit *drhd;
3262 	struct dmar_rmrr_unit *rmrr;
3263 	bool copied_tables = false;
3264 	struct device *dev;
3265 	struct intel_iommu *iommu;
3266 	int i, ret;
3267 
3268 	/*
3269 	 * for each drhd
3270 	 *    allocate root
3271 	 *    initialize and program root entry to not present
3272 	 * endfor
3273 	 */
3274 	for_each_drhd_unit(drhd) {
3275 		/*
3276 		 * lock not needed as this is only incremented in the single
3277 		 * threaded kernel __init code path all other access are read
3278 		 * only
3279 		 */
3280 		if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3281 			g_num_of_iommus++;
3282 			continue;
3283 		}
3284 		pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3285 	}
3286 
3287 	/* Preallocate enough resources for IOMMU hot-addition */
3288 	if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3289 		g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3290 
3291 	g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3292 			GFP_KERNEL);
3293 	if (!g_iommus) {
3294 		pr_err("Allocating global iommu array failed\n");
3295 		ret = -ENOMEM;
3296 		goto error;
3297 	}
3298 
3299 	for_each_active_iommu(iommu, drhd) {
3300 		/*
3301 		 * Find the max pasid size of all IOMMU's in the system.
3302 		 * We need to ensure the system pasid table is no bigger
3303 		 * than the smallest supported.
3304 		 */
3305 		if (pasid_enabled(iommu)) {
3306 			u32 temp = 2 << ecap_pss(iommu->ecap);
3307 
3308 			intel_pasid_max_id = min_t(u32, temp,
3309 						   intel_pasid_max_id);
3310 		}
3311 
3312 		g_iommus[iommu->seq_id] = iommu;
3313 
3314 		intel_iommu_init_qi(iommu);
3315 
3316 		ret = iommu_init_domains(iommu);
3317 		if (ret)
3318 			goto free_iommu;
3319 
3320 		init_translation_status(iommu);
3321 
3322 		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3323 			iommu_disable_translation(iommu);
3324 			clear_translation_pre_enabled(iommu);
3325 			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3326 				iommu->name);
3327 		}
3328 
3329 		/*
3330 		 * TBD:
3331 		 * we could share the same root & context tables
3332 		 * among all IOMMU's. Need to Split it later.
3333 		 */
3334 		ret = iommu_alloc_root_entry(iommu);
3335 		if (ret)
3336 			goto free_iommu;
3337 
3338 		if (translation_pre_enabled(iommu)) {
3339 			pr_info("Translation already enabled - trying to copy translation structures\n");
3340 
3341 			ret = copy_translation_tables(iommu);
3342 			if (ret) {
3343 				/*
3344 				 * We found the IOMMU with translation
3345 				 * enabled - but failed to copy over the
3346 				 * old root-entry table. Try to proceed
3347 				 * by disabling translation now and
3348 				 * allocating a clean root-entry table.
3349 				 * This might cause DMAR faults, but
3350 				 * probably the dump will still succeed.
3351 				 */
3352 				pr_err("Failed to copy translation tables from previous kernel for %s\n",
3353 				       iommu->name);
3354 				iommu_disable_translation(iommu);
3355 				clear_translation_pre_enabled(iommu);
3356 			} else {
3357 				pr_info("Copied translation tables from previous kernel for %s\n",
3358 					iommu->name);
3359 				copied_tables = true;
3360 			}
3361 		}
3362 
3363 		if (!ecap_pass_through(iommu->ecap))
3364 			hw_pass_through = 0;
3365 #ifdef CONFIG_INTEL_IOMMU_SVM
3366 		if (pasid_enabled(iommu))
3367 			intel_svm_init(iommu);
3368 #endif
3369 	}
3370 
3371 	/*
3372 	 * Now that qi is enabled on all iommus, set the root entry and flush
3373 	 * caches. This is required on some Intel X58 chipsets, otherwise the
3374 	 * flush_context function will loop forever and the boot hangs.
3375 	 */
3376 	for_each_active_iommu(iommu, drhd) {
3377 		iommu_flush_write_buffer(iommu);
3378 		iommu_set_root_entry(iommu);
3379 		iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3380 		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3381 	}
3382 
3383 	if (iommu_pass_through)
3384 		iommu_identity_mapping |= IDENTMAP_ALL;
3385 
3386 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3387 	iommu_identity_mapping |= IDENTMAP_GFX;
3388 #endif
3389 
3390 	check_tylersburg_isoch();
3391 
3392 	if (iommu_identity_mapping) {
3393 		ret = si_domain_init(hw_pass_through);
3394 		if (ret)
3395 			goto free_iommu;
3396 	}
3397 
3398 
3399 	/*
3400 	 * If we copied translations from a previous kernel in the kdump
3401 	 * case, we can not assign the devices to domains now, as that
3402 	 * would eliminate the old mappings. So skip this part and defer
3403 	 * the assignment to device driver initialization time.
3404 	 */
3405 	if (copied_tables)
3406 		goto domains_done;
3407 
3408 	/*
3409 	 * If pass through is not set or not enabled, setup context entries for
3410 	 * identity mappings for rmrr, gfx, and isa and may fall back to static
3411 	 * identity mapping if iommu_identity_mapping is set.
3412 	 */
3413 	if (iommu_identity_mapping) {
3414 		ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3415 		if (ret) {
3416 			pr_crit("Failed to setup IOMMU pass-through\n");
3417 			goto free_iommu;
3418 		}
3419 	}
3420 	/*
3421 	 * For each rmrr
3422 	 *   for each dev attached to rmrr
3423 	 *   do
3424 	 *     locate drhd for dev, alloc domain for dev
3425 	 *     allocate free domain
3426 	 *     allocate page table entries for rmrr
3427 	 *     if context not allocated for bus
3428 	 *           allocate and init context
3429 	 *           set present in root table for this bus
3430 	 *     init context with domain, translation etc
3431 	 *    endfor
3432 	 * endfor
3433 	 */
3434 	pr_info("Setting RMRR:\n");
3435 	for_each_rmrr_units(rmrr) {
3436 		/* some BIOS lists non-exist devices in DMAR table. */
3437 		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3438 					  i, dev) {
3439 			ret = iommu_prepare_rmrr_dev(rmrr, dev);
3440 			if (ret)
3441 				pr_err("Mapping reserved region failed\n");
3442 		}
3443 	}
3444 
3445 	iommu_prepare_isa();
3446 
3447 domains_done:
3448 
3449 	/*
3450 	 * for each drhd
3451 	 *   enable fault log
3452 	 *   global invalidate context cache
3453 	 *   global invalidate iotlb
3454 	 *   enable translation
3455 	 */
3456 	for_each_iommu(iommu, drhd) {
3457 		if (drhd->ignored) {
3458 			/*
3459 			 * we always have to disable PMRs or DMA may fail on
3460 			 * this device
3461 			 */
3462 			if (force_on)
3463 				iommu_disable_protect_mem_regions(iommu);
3464 			continue;
3465 		}
3466 
3467 		iommu_flush_write_buffer(iommu);
3468 
3469 #ifdef CONFIG_INTEL_IOMMU_SVM
3470 		if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
3471 			ret = intel_svm_enable_prq(iommu);
3472 			if (ret)
3473 				goto free_iommu;
3474 		}
3475 #endif
3476 		ret = dmar_set_interrupt(iommu);
3477 		if (ret)
3478 			goto free_iommu;
3479 
3480 		if (!translation_pre_enabled(iommu))
3481 			iommu_enable_translation(iommu);
3482 
3483 		iommu_disable_protect_mem_regions(iommu);
3484 	}
3485 
3486 	return 0;
3487 
3488 free_iommu:
3489 	for_each_active_iommu(iommu, drhd) {
3490 		disable_dmar_iommu(iommu);
3491 		free_dmar_iommu(iommu);
3492 	}
3493 
3494 	kfree(g_iommus);
3495 
3496 error:
3497 	return ret;
3498 }
3499 
3500 /* This takes a number of _MM_ pages, not VTD pages */
intel_alloc_iova(struct device * dev,struct dmar_domain * domain,unsigned long nrpages,uint64_t dma_mask)3501 static unsigned long intel_alloc_iova(struct device *dev,
3502 				     struct dmar_domain *domain,
3503 				     unsigned long nrpages, uint64_t dma_mask)
3504 {
3505 	unsigned long iova_pfn = 0;
3506 
3507 	/* Restrict dma_mask to the width that the iommu can handle */
3508 	dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3509 	/* Ensure we reserve the whole size-aligned region */
3510 	nrpages = __roundup_pow_of_two(nrpages);
3511 
3512 	if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3513 		/*
3514 		 * First try to allocate an io virtual address in
3515 		 * DMA_BIT_MASK(32) and if that fails then try allocating
3516 		 * from higher range
3517 		 */
3518 		iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3519 					   IOVA_PFN(DMA_BIT_MASK(32)), false);
3520 		if (iova_pfn)
3521 			return iova_pfn;
3522 	}
3523 	iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3524 				   IOVA_PFN(dma_mask), true);
3525 	if (unlikely(!iova_pfn)) {
3526 		pr_err("Allocating %ld-page iova for %s failed",
3527 		       nrpages, dev_name(dev));
3528 		return 0;
3529 	}
3530 
3531 	return iova_pfn;
3532 }
3533 
get_valid_domain_for_dev(struct device * dev)3534 struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3535 {
3536 	struct dmar_domain *domain, *tmp;
3537 	struct dmar_rmrr_unit *rmrr;
3538 	struct device *i_dev;
3539 	int i, ret;
3540 
3541 	domain = find_domain(dev);
3542 	if (domain)
3543 		goto out;
3544 
3545 	domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3546 	if (!domain)
3547 		goto out;
3548 
3549 	/* We have a new domain - setup possible RMRRs for the device */
3550 	rcu_read_lock();
3551 	for_each_rmrr_units(rmrr) {
3552 		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3553 					  i, i_dev) {
3554 			if (i_dev != dev)
3555 				continue;
3556 
3557 			ret = domain_prepare_identity_map(dev, domain,
3558 							  rmrr->base_address,
3559 							  rmrr->end_address);
3560 			if (ret)
3561 				dev_err(dev, "Mapping reserved region failed\n");
3562 		}
3563 	}
3564 	rcu_read_unlock();
3565 
3566 	tmp = set_domain_for_dev(dev, domain);
3567 	if (!tmp || domain != tmp) {
3568 		domain_exit(domain);
3569 		domain = tmp;
3570 	}
3571 
3572 out:
3573 
3574 	if (!domain)
3575 		pr_err("Allocating domain for %s failed\n", dev_name(dev));
3576 
3577 
3578 	return domain;
3579 }
3580 
3581 /* Check if the dev needs to go through non-identity map and unmap process.*/
iommu_no_mapping(struct device * dev)3582 static int iommu_no_mapping(struct device *dev)
3583 {
3584 	int found;
3585 
3586 	if (iommu_dummy(dev))
3587 		return 1;
3588 
3589 	if (!iommu_identity_mapping)
3590 		return 0;
3591 
3592 	found = identity_mapping(dev);
3593 	if (found) {
3594 		if (iommu_should_identity_map(dev, 0))
3595 			return 1;
3596 		else {
3597 			/*
3598 			 * 32 bit DMA is removed from si_domain and fall back
3599 			 * to non-identity mapping.
3600 			 */
3601 			dmar_remove_one_dev_info(si_domain, dev);
3602 			pr_info("32bit %s uses non-identity mapping\n",
3603 				dev_name(dev));
3604 			return 0;
3605 		}
3606 	} else {
3607 		/*
3608 		 * In case of a detached 64 bit DMA device from vm, the device
3609 		 * is put into si_domain for identity mapping.
3610 		 */
3611 		if (iommu_should_identity_map(dev, 0)) {
3612 			int ret;
3613 			ret = domain_add_dev_info(si_domain, dev);
3614 			if (!ret) {
3615 				pr_info("64bit %s uses identity mapping\n",
3616 					dev_name(dev));
3617 				return 1;
3618 			}
3619 		}
3620 	}
3621 
3622 	return 0;
3623 }
3624 
__intel_map_single(struct device * dev,phys_addr_t paddr,size_t size,int dir,u64 dma_mask)3625 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3626 				     size_t size, int dir, u64 dma_mask)
3627 {
3628 	struct dmar_domain *domain;
3629 	phys_addr_t start_paddr;
3630 	unsigned long iova_pfn;
3631 	int prot = 0;
3632 	int ret;
3633 	struct intel_iommu *iommu;
3634 	unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3635 
3636 	BUG_ON(dir == DMA_NONE);
3637 
3638 	if (iommu_no_mapping(dev))
3639 		return paddr;
3640 
3641 	domain = get_valid_domain_for_dev(dev);
3642 	if (!domain)
3643 		return 0;
3644 
3645 	iommu = domain_get_iommu(domain);
3646 	size = aligned_nrpages(paddr, size);
3647 
3648 	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3649 	if (!iova_pfn)
3650 		goto error;
3651 
3652 	/*
3653 	 * Check if DMAR supports zero-length reads on write only
3654 	 * mappings..
3655 	 */
3656 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3657 			!cap_zlr(iommu->cap))
3658 		prot |= DMA_PTE_READ;
3659 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3660 		prot |= DMA_PTE_WRITE;
3661 	/*
3662 	 * paddr - (paddr + size) might be partial page, we should map the whole
3663 	 * page.  Note: if two part of one page are separately mapped, we
3664 	 * might have two guest_addr mapping to the same host paddr, but this
3665 	 * is not a big problem
3666 	 */
3667 	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3668 				 mm_to_dma_pfn(paddr_pfn), size, prot);
3669 	if (ret)
3670 		goto error;
3671 
3672 	start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3673 	start_paddr += paddr & ~PAGE_MASK;
3674 	return start_paddr;
3675 
3676 error:
3677 	if (iova_pfn)
3678 		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3679 	pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3680 		dev_name(dev), size, (unsigned long long)paddr, dir);
3681 	return 0;
3682 }
3683 
intel_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)3684 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3685 				 unsigned long offset, size_t size,
3686 				 enum dma_data_direction dir,
3687 				 unsigned long attrs)
3688 {
3689 	return __intel_map_single(dev, page_to_phys(page) + offset, size,
3690 				  dir, *dev->dma_mask);
3691 }
3692 
intel_unmap(struct device * dev,dma_addr_t dev_addr,size_t size)3693 static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3694 {
3695 	struct dmar_domain *domain;
3696 	unsigned long start_pfn, last_pfn;
3697 	unsigned long nrpages;
3698 	unsigned long iova_pfn;
3699 	struct intel_iommu *iommu;
3700 	struct page *freelist;
3701 
3702 	if (iommu_no_mapping(dev))
3703 		return;
3704 
3705 	domain = find_domain(dev);
3706 	BUG_ON(!domain);
3707 
3708 	iommu = domain_get_iommu(domain);
3709 
3710 	iova_pfn = IOVA_PFN(dev_addr);
3711 
3712 	nrpages = aligned_nrpages(dev_addr, size);
3713 	start_pfn = mm_to_dma_pfn(iova_pfn);
3714 	last_pfn = start_pfn + nrpages - 1;
3715 
3716 	pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3717 		 dev_name(dev), start_pfn, last_pfn);
3718 
3719 	freelist = domain_unmap(domain, start_pfn, last_pfn);
3720 
3721 	if (intel_iommu_strict) {
3722 		iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3723 				      nrpages, !freelist, 0);
3724 		/* free iova */
3725 		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3726 		dma_free_pagelist(freelist);
3727 	} else {
3728 		queue_iova(&domain->iovad, iova_pfn, nrpages,
3729 			   (unsigned long)freelist);
3730 		/*
3731 		 * queue up the release of the unmap to save the 1/6th of the
3732 		 * cpu used up by the iotlb flush operation...
3733 		 */
3734 	}
3735 }
3736 
intel_unmap_page(struct device * dev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)3737 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3738 			     size_t size, enum dma_data_direction dir,
3739 			     unsigned long attrs)
3740 {
3741 	intel_unmap(dev, dev_addr, size);
3742 }
3743 
intel_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flags,unsigned long attrs)3744 static void *intel_alloc_coherent(struct device *dev, size_t size,
3745 				  dma_addr_t *dma_handle, gfp_t flags,
3746 				  unsigned long attrs)
3747 {
3748 	struct page *page = NULL;
3749 	int order;
3750 
3751 	size = PAGE_ALIGN(size);
3752 	order = get_order(size);
3753 
3754 	if (!iommu_no_mapping(dev))
3755 		flags &= ~(GFP_DMA | GFP_DMA32);
3756 	else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3757 		if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3758 			flags |= GFP_DMA;
3759 		else
3760 			flags |= GFP_DMA32;
3761 	}
3762 
3763 	if (gfpflags_allow_blocking(flags)) {
3764 		unsigned int count = size >> PAGE_SHIFT;
3765 
3766 		page = dma_alloc_from_contiguous(dev, count, order,
3767 						 flags & __GFP_NOWARN);
3768 		if (page && iommu_no_mapping(dev) &&
3769 		    page_to_phys(page) + size > dev->coherent_dma_mask) {
3770 			dma_release_from_contiguous(dev, page, count);
3771 			page = NULL;
3772 		}
3773 	}
3774 
3775 	if (!page)
3776 		page = alloc_pages(flags, order);
3777 	if (!page)
3778 		return NULL;
3779 	memset(page_address(page), 0, size);
3780 
3781 	*dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3782 					 DMA_BIDIRECTIONAL,
3783 					 dev->coherent_dma_mask);
3784 	if (*dma_handle)
3785 		return page_address(page);
3786 	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3787 		__free_pages(page, order);
3788 
3789 	return NULL;
3790 }
3791 
intel_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle,unsigned long attrs)3792 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3793 				dma_addr_t dma_handle, unsigned long attrs)
3794 {
3795 	int order;
3796 	struct page *page = virt_to_page(vaddr);
3797 
3798 	size = PAGE_ALIGN(size);
3799 	order = get_order(size);
3800 
3801 	intel_unmap(dev, dma_handle, size);
3802 	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3803 		__free_pages(page, order);
3804 }
3805 
intel_unmap_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,unsigned long attrs)3806 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3807 			   int nelems, enum dma_data_direction dir,
3808 			   unsigned long attrs)
3809 {
3810 	dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3811 	unsigned long nrpages = 0;
3812 	struct scatterlist *sg;
3813 	int i;
3814 
3815 	for_each_sg(sglist, sg, nelems, i) {
3816 		nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3817 	}
3818 
3819 	intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3820 }
3821 
intel_nontranslate_map_sg(struct device * hddev,struct scatterlist * sglist,int nelems,int dir)3822 static int intel_nontranslate_map_sg(struct device *hddev,
3823 	struct scatterlist *sglist, int nelems, int dir)
3824 {
3825 	int i;
3826 	struct scatterlist *sg;
3827 
3828 	for_each_sg(sglist, sg, nelems, i) {
3829 		BUG_ON(!sg_page(sg));
3830 		sg->dma_address = sg_phys(sg);
3831 		sg->dma_length = sg->length;
3832 	}
3833 	return nelems;
3834 }
3835 
intel_map_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,unsigned long attrs)3836 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3837 			enum dma_data_direction dir, unsigned long attrs)
3838 {
3839 	int i;
3840 	struct dmar_domain *domain;
3841 	size_t size = 0;
3842 	int prot = 0;
3843 	unsigned long iova_pfn;
3844 	int ret;
3845 	struct scatterlist *sg;
3846 	unsigned long start_vpfn;
3847 	struct intel_iommu *iommu;
3848 
3849 	BUG_ON(dir == DMA_NONE);
3850 	if (iommu_no_mapping(dev))
3851 		return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3852 
3853 	domain = get_valid_domain_for_dev(dev);
3854 	if (!domain)
3855 		return 0;
3856 
3857 	iommu = domain_get_iommu(domain);
3858 
3859 	for_each_sg(sglist, sg, nelems, i)
3860 		size += aligned_nrpages(sg->offset, sg->length);
3861 
3862 	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3863 				*dev->dma_mask);
3864 	if (!iova_pfn) {
3865 		sglist->dma_length = 0;
3866 		return 0;
3867 	}
3868 
3869 	/*
3870 	 * Check if DMAR supports zero-length reads on write only
3871 	 * mappings..
3872 	 */
3873 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3874 			!cap_zlr(iommu->cap))
3875 		prot |= DMA_PTE_READ;
3876 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3877 		prot |= DMA_PTE_WRITE;
3878 
3879 	start_vpfn = mm_to_dma_pfn(iova_pfn);
3880 
3881 	ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3882 	if (unlikely(ret)) {
3883 		dma_pte_free_pagetable(domain, start_vpfn,
3884 				       start_vpfn + size - 1,
3885 				       agaw_to_level(domain->agaw) + 1);
3886 		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3887 		return 0;
3888 	}
3889 
3890 	return nelems;
3891 }
3892 
intel_mapping_error(struct device * dev,dma_addr_t dma_addr)3893 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3894 {
3895 	return !dma_addr;
3896 }
3897 
3898 const struct dma_map_ops intel_dma_ops = {
3899 	.alloc = intel_alloc_coherent,
3900 	.free = intel_free_coherent,
3901 	.map_sg = intel_map_sg,
3902 	.unmap_sg = intel_unmap_sg,
3903 	.map_page = intel_map_page,
3904 	.unmap_page = intel_unmap_page,
3905 	.mapping_error = intel_mapping_error,
3906 #ifdef CONFIG_X86
3907 	.dma_supported = dma_direct_supported,
3908 #endif
3909 };
3910 
iommu_domain_cache_init(void)3911 static inline int iommu_domain_cache_init(void)
3912 {
3913 	int ret = 0;
3914 
3915 	iommu_domain_cache = kmem_cache_create("iommu_domain",
3916 					 sizeof(struct dmar_domain),
3917 					 0,
3918 					 SLAB_HWCACHE_ALIGN,
3919 
3920 					 NULL);
3921 	if (!iommu_domain_cache) {
3922 		pr_err("Couldn't create iommu_domain cache\n");
3923 		ret = -ENOMEM;
3924 	}
3925 
3926 	return ret;
3927 }
3928 
iommu_devinfo_cache_init(void)3929 static inline int iommu_devinfo_cache_init(void)
3930 {
3931 	int ret = 0;
3932 
3933 	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3934 					 sizeof(struct device_domain_info),
3935 					 0,
3936 					 SLAB_HWCACHE_ALIGN,
3937 					 NULL);
3938 	if (!iommu_devinfo_cache) {
3939 		pr_err("Couldn't create devinfo cache\n");
3940 		ret = -ENOMEM;
3941 	}
3942 
3943 	return ret;
3944 }
3945 
iommu_init_mempool(void)3946 static int __init iommu_init_mempool(void)
3947 {
3948 	int ret;
3949 	ret = iova_cache_get();
3950 	if (ret)
3951 		return ret;
3952 
3953 	ret = iommu_domain_cache_init();
3954 	if (ret)
3955 		goto domain_error;
3956 
3957 	ret = iommu_devinfo_cache_init();
3958 	if (!ret)
3959 		return ret;
3960 
3961 	kmem_cache_destroy(iommu_domain_cache);
3962 domain_error:
3963 	iova_cache_put();
3964 
3965 	return -ENOMEM;
3966 }
3967 
iommu_exit_mempool(void)3968 static void __init iommu_exit_mempool(void)
3969 {
3970 	kmem_cache_destroy(iommu_devinfo_cache);
3971 	kmem_cache_destroy(iommu_domain_cache);
3972 	iova_cache_put();
3973 }
3974 
quirk_ioat_snb_local_iommu(struct pci_dev * pdev)3975 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3976 {
3977 	struct dmar_drhd_unit *drhd;
3978 	u32 vtbar;
3979 	int rc;
3980 
3981 	/* We know that this device on this chipset has its own IOMMU.
3982 	 * If we find it under a different IOMMU, then the BIOS is lying
3983 	 * to us. Hope that the IOMMU for this device is actually
3984 	 * disabled, and it needs no translation...
3985 	 */
3986 	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3987 	if (rc) {
3988 		/* "can't" happen */
3989 		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3990 		return;
3991 	}
3992 	vtbar &= 0xffff0000;
3993 
3994 	/* we know that the this iommu should be at offset 0xa000 from vtbar */
3995 	drhd = dmar_find_matched_drhd_unit(pdev);
3996 	if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3997 			    TAINT_FIRMWARE_WORKAROUND,
3998 			    "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3999 		pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4000 }
4001 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
4002 
init_no_remapping_devices(void)4003 static void __init init_no_remapping_devices(void)
4004 {
4005 	struct dmar_drhd_unit *drhd;
4006 	struct device *dev;
4007 	int i;
4008 
4009 	for_each_drhd_unit(drhd) {
4010 		if (!drhd->include_all) {
4011 			for_each_active_dev_scope(drhd->devices,
4012 						  drhd->devices_cnt, i, dev)
4013 				break;
4014 			/* ignore DMAR unit if no devices exist */
4015 			if (i == drhd->devices_cnt)
4016 				drhd->ignored = 1;
4017 		}
4018 	}
4019 
4020 	for_each_active_drhd_unit(drhd) {
4021 		if (drhd->include_all)
4022 			continue;
4023 
4024 		for_each_active_dev_scope(drhd->devices,
4025 					  drhd->devices_cnt, i, dev)
4026 			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4027 				break;
4028 		if (i < drhd->devices_cnt)
4029 			continue;
4030 
4031 		/* This IOMMU has *only* gfx devices. Either bypass it or
4032 		   set the gfx_mapped flag, as appropriate */
4033 		if (dmar_map_gfx) {
4034 			intel_iommu_gfx_mapped = 1;
4035 		} else {
4036 			drhd->ignored = 1;
4037 			for_each_active_dev_scope(drhd->devices,
4038 						  drhd->devices_cnt, i, dev)
4039 				dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4040 		}
4041 	}
4042 }
4043 
4044 #ifdef CONFIG_SUSPEND
init_iommu_hw(void)4045 static int init_iommu_hw(void)
4046 {
4047 	struct dmar_drhd_unit *drhd;
4048 	struct intel_iommu *iommu = NULL;
4049 
4050 	for_each_active_iommu(iommu, drhd)
4051 		if (iommu->qi)
4052 			dmar_reenable_qi(iommu);
4053 
4054 	for_each_iommu(iommu, drhd) {
4055 		if (drhd->ignored) {
4056 			/*
4057 			 * we always have to disable PMRs or DMA may fail on
4058 			 * this device
4059 			 */
4060 			if (force_on)
4061 				iommu_disable_protect_mem_regions(iommu);
4062 			continue;
4063 		}
4064 
4065 		iommu_flush_write_buffer(iommu);
4066 
4067 		iommu_set_root_entry(iommu);
4068 
4069 		iommu->flush.flush_context(iommu, 0, 0, 0,
4070 					   DMA_CCMD_GLOBAL_INVL);
4071 		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4072 		iommu_enable_translation(iommu);
4073 		iommu_disable_protect_mem_regions(iommu);
4074 	}
4075 
4076 	return 0;
4077 }
4078 
iommu_flush_all(void)4079 static void iommu_flush_all(void)
4080 {
4081 	struct dmar_drhd_unit *drhd;
4082 	struct intel_iommu *iommu;
4083 
4084 	for_each_active_iommu(iommu, drhd) {
4085 		iommu->flush.flush_context(iommu, 0, 0, 0,
4086 					   DMA_CCMD_GLOBAL_INVL);
4087 		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4088 					 DMA_TLB_GLOBAL_FLUSH);
4089 	}
4090 }
4091 
iommu_suspend(void)4092 static int iommu_suspend(void)
4093 {
4094 	struct dmar_drhd_unit *drhd;
4095 	struct intel_iommu *iommu = NULL;
4096 	unsigned long flag;
4097 
4098 	for_each_active_iommu(iommu, drhd) {
4099 		iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
4100 						 GFP_ATOMIC);
4101 		if (!iommu->iommu_state)
4102 			goto nomem;
4103 	}
4104 
4105 	iommu_flush_all();
4106 
4107 	for_each_active_iommu(iommu, drhd) {
4108 		iommu_disable_translation(iommu);
4109 
4110 		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4111 
4112 		iommu->iommu_state[SR_DMAR_FECTL_REG] =
4113 			readl(iommu->reg + DMAR_FECTL_REG);
4114 		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4115 			readl(iommu->reg + DMAR_FEDATA_REG);
4116 		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4117 			readl(iommu->reg + DMAR_FEADDR_REG);
4118 		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4119 			readl(iommu->reg + DMAR_FEUADDR_REG);
4120 
4121 		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4122 	}
4123 	return 0;
4124 
4125 nomem:
4126 	for_each_active_iommu(iommu, drhd)
4127 		kfree(iommu->iommu_state);
4128 
4129 	return -ENOMEM;
4130 }
4131 
iommu_resume(void)4132 static void iommu_resume(void)
4133 {
4134 	struct dmar_drhd_unit *drhd;
4135 	struct intel_iommu *iommu = NULL;
4136 	unsigned long flag;
4137 
4138 	if (init_iommu_hw()) {
4139 		if (force_on)
4140 			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4141 		else
4142 			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4143 		return;
4144 	}
4145 
4146 	for_each_active_iommu(iommu, drhd) {
4147 
4148 		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4149 
4150 		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4151 			iommu->reg + DMAR_FECTL_REG);
4152 		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4153 			iommu->reg + DMAR_FEDATA_REG);
4154 		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4155 			iommu->reg + DMAR_FEADDR_REG);
4156 		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4157 			iommu->reg + DMAR_FEUADDR_REG);
4158 
4159 		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4160 	}
4161 
4162 	for_each_active_iommu(iommu, drhd)
4163 		kfree(iommu->iommu_state);
4164 }
4165 
4166 static struct syscore_ops iommu_syscore_ops = {
4167 	.resume		= iommu_resume,
4168 	.suspend	= iommu_suspend,
4169 };
4170 
init_iommu_pm_ops(void)4171 static void __init init_iommu_pm_ops(void)
4172 {
4173 	register_syscore_ops(&iommu_syscore_ops);
4174 }
4175 
4176 #else
init_iommu_pm_ops(void)4177 static inline void init_iommu_pm_ops(void) {}
4178 #endif	/* CONFIG_PM */
4179 
4180 
dmar_parse_one_rmrr(struct acpi_dmar_header * header,void * arg)4181 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4182 {
4183 	struct acpi_dmar_reserved_memory *rmrr;
4184 	int prot = DMA_PTE_READ|DMA_PTE_WRITE;
4185 	struct dmar_rmrr_unit *rmrru;
4186 	size_t length;
4187 
4188 	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4189 	if (!rmrru)
4190 		goto out;
4191 
4192 	rmrru->hdr = header;
4193 	rmrr = (struct acpi_dmar_reserved_memory *)header;
4194 	rmrru->base_address = rmrr->base_address;
4195 	rmrru->end_address = rmrr->end_address;
4196 
4197 	length = rmrr->end_address - rmrr->base_address + 1;
4198 	rmrru->resv = iommu_alloc_resv_region(rmrr->base_address, length, prot,
4199 					      IOMMU_RESV_DIRECT);
4200 	if (!rmrru->resv)
4201 		goto free_rmrru;
4202 
4203 	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4204 				((void *)rmrr) + rmrr->header.length,
4205 				&rmrru->devices_cnt);
4206 	if (rmrru->devices_cnt && rmrru->devices == NULL)
4207 		goto free_all;
4208 
4209 	list_add(&rmrru->list, &dmar_rmrr_units);
4210 
4211 	return 0;
4212 free_all:
4213 	kfree(rmrru->resv);
4214 free_rmrru:
4215 	kfree(rmrru);
4216 out:
4217 	return -ENOMEM;
4218 }
4219 
dmar_find_atsr(struct acpi_dmar_atsr * atsr)4220 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4221 {
4222 	struct dmar_atsr_unit *atsru;
4223 	struct acpi_dmar_atsr *tmp;
4224 
4225 	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4226 		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4227 		if (atsr->segment != tmp->segment)
4228 			continue;
4229 		if (atsr->header.length != tmp->header.length)
4230 			continue;
4231 		if (memcmp(atsr, tmp, atsr->header.length) == 0)
4232 			return atsru;
4233 	}
4234 
4235 	return NULL;
4236 }
4237 
dmar_parse_one_atsr(struct acpi_dmar_header * hdr,void * arg)4238 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4239 {
4240 	struct acpi_dmar_atsr *atsr;
4241 	struct dmar_atsr_unit *atsru;
4242 
4243 	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4244 		return 0;
4245 
4246 	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4247 	atsru = dmar_find_atsr(atsr);
4248 	if (atsru)
4249 		return 0;
4250 
4251 	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4252 	if (!atsru)
4253 		return -ENOMEM;
4254 
4255 	/*
4256 	 * If memory is allocated from slab by ACPI _DSM method, we need to
4257 	 * copy the memory content because the memory buffer will be freed
4258 	 * on return.
4259 	 */
4260 	atsru->hdr = (void *)(atsru + 1);
4261 	memcpy(atsru->hdr, hdr, hdr->length);
4262 	atsru->include_all = atsr->flags & 0x1;
4263 	if (!atsru->include_all) {
4264 		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4265 				(void *)atsr + atsr->header.length,
4266 				&atsru->devices_cnt);
4267 		if (atsru->devices_cnt && atsru->devices == NULL) {
4268 			kfree(atsru);
4269 			return -ENOMEM;
4270 		}
4271 	}
4272 
4273 	list_add_rcu(&atsru->list, &dmar_atsr_units);
4274 
4275 	return 0;
4276 }
4277 
intel_iommu_free_atsr(struct dmar_atsr_unit * atsru)4278 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4279 {
4280 	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4281 	kfree(atsru);
4282 }
4283 
dmar_release_one_atsr(struct acpi_dmar_header * hdr,void * arg)4284 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4285 {
4286 	struct acpi_dmar_atsr *atsr;
4287 	struct dmar_atsr_unit *atsru;
4288 
4289 	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4290 	atsru = dmar_find_atsr(atsr);
4291 	if (atsru) {
4292 		list_del_rcu(&atsru->list);
4293 		synchronize_rcu();
4294 		intel_iommu_free_atsr(atsru);
4295 	}
4296 
4297 	return 0;
4298 }
4299 
dmar_check_one_atsr(struct acpi_dmar_header * hdr,void * arg)4300 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4301 {
4302 	int i;
4303 	struct device *dev;
4304 	struct acpi_dmar_atsr *atsr;
4305 	struct dmar_atsr_unit *atsru;
4306 
4307 	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4308 	atsru = dmar_find_atsr(atsr);
4309 	if (!atsru)
4310 		return 0;
4311 
4312 	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4313 		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4314 					  i, dev)
4315 			return -EBUSY;
4316 	}
4317 
4318 	return 0;
4319 }
4320 
intel_iommu_add(struct dmar_drhd_unit * dmaru)4321 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4322 {
4323 	int sp, ret = 0;
4324 	struct intel_iommu *iommu = dmaru->iommu;
4325 
4326 	if (g_iommus[iommu->seq_id])
4327 		return 0;
4328 
4329 	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4330 		pr_warn("%s: Doesn't support hardware pass through.\n",
4331 			iommu->name);
4332 		return -ENXIO;
4333 	}
4334 	if (!ecap_sc_support(iommu->ecap) &&
4335 	    domain_update_iommu_snooping(iommu)) {
4336 		pr_warn("%s: Doesn't support snooping.\n",
4337 			iommu->name);
4338 		return -ENXIO;
4339 	}
4340 	sp = domain_update_iommu_superpage(iommu) - 1;
4341 	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4342 		pr_warn("%s: Doesn't support large page.\n",
4343 			iommu->name);
4344 		return -ENXIO;
4345 	}
4346 
4347 	/*
4348 	 * Disable translation if already enabled prior to OS handover.
4349 	 */
4350 	if (iommu->gcmd & DMA_GCMD_TE)
4351 		iommu_disable_translation(iommu);
4352 
4353 	g_iommus[iommu->seq_id] = iommu;
4354 	ret = iommu_init_domains(iommu);
4355 	if (ret == 0)
4356 		ret = iommu_alloc_root_entry(iommu);
4357 	if (ret)
4358 		goto out;
4359 
4360 #ifdef CONFIG_INTEL_IOMMU_SVM
4361 	if (pasid_enabled(iommu))
4362 		intel_svm_init(iommu);
4363 #endif
4364 
4365 	if (dmaru->ignored) {
4366 		/*
4367 		 * we always have to disable PMRs or DMA may fail on this device
4368 		 */
4369 		if (force_on)
4370 			iommu_disable_protect_mem_regions(iommu);
4371 		return 0;
4372 	}
4373 
4374 	intel_iommu_init_qi(iommu);
4375 	iommu_flush_write_buffer(iommu);
4376 
4377 #ifdef CONFIG_INTEL_IOMMU_SVM
4378 	if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
4379 		ret = intel_svm_enable_prq(iommu);
4380 		if (ret)
4381 			goto disable_iommu;
4382 	}
4383 #endif
4384 	ret = dmar_set_interrupt(iommu);
4385 	if (ret)
4386 		goto disable_iommu;
4387 
4388 	iommu_set_root_entry(iommu);
4389 	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4390 	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4391 	iommu_enable_translation(iommu);
4392 
4393 	iommu_disable_protect_mem_regions(iommu);
4394 	return 0;
4395 
4396 disable_iommu:
4397 	disable_dmar_iommu(iommu);
4398 out:
4399 	free_dmar_iommu(iommu);
4400 	return ret;
4401 }
4402 
dmar_iommu_hotplug(struct dmar_drhd_unit * dmaru,bool insert)4403 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4404 {
4405 	int ret = 0;
4406 	struct intel_iommu *iommu = dmaru->iommu;
4407 
4408 	if (!intel_iommu_enabled)
4409 		return 0;
4410 	if (iommu == NULL)
4411 		return -EINVAL;
4412 
4413 	if (insert) {
4414 		ret = intel_iommu_add(dmaru);
4415 	} else {
4416 		disable_dmar_iommu(iommu);
4417 		free_dmar_iommu(iommu);
4418 	}
4419 
4420 	return ret;
4421 }
4422 
intel_iommu_free_dmars(void)4423 static void intel_iommu_free_dmars(void)
4424 {
4425 	struct dmar_rmrr_unit *rmrru, *rmrr_n;
4426 	struct dmar_atsr_unit *atsru, *atsr_n;
4427 
4428 	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4429 		list_del(&rmrru->list);
4430 		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4431 		kfree(rmrru->resv);
4432 		kfree(rmrru);
4433 	}
4434 
4435 	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4436 		list_del(&atsru->list);
4437 		intel_iommu_free_atsr(atsru);
4438 	}
4439 }
4440 
dmar_find_matched_atsr_unit(struct pci_dev * dev)4441 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4442 {
4443 	int i, ret = 1;
4444 	struct pci_bus *bus;
4445 	struct pci_dev *bridge = NULL;
4446 	struct device *tmp;
4447 	struct acpi_dmar_atsr *atsr;
4448 	struct dmar_atsr_unit *atsru;
4449 
4450 	dev = pci_physfn(dev);
4451 	for (bus = dev->bus; bus; bus = bus->parent) {
4452 		bridge = bus->self;
4453 		/* If it's an integrated device, allow ATS */
4454 		if (!bridge)
4455 			return 1;
4456 		/* Connected via non-PCIe: no ATS */
4457 		if (!pci_is_pcie(bridge) ||
4458 		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4459 			return 0;
4460 		/* If we found the root port, look it up in the ATSR */
4461 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4462 			break;
4463 	}
4464 
4465 	rcu_read_lock();
4466 	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4467 		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4468 		if (atsr->segment != pci_domain_nr(dev->bus))
4469 			continue;
4470 
4471 		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4472 			if (tmp == &bridge->dev)
4473 				goto out;
4474 
4475 		if (atsru->include_all)
4476 			goto out;
4477 	}
4478 	ret = 0;
4479 out:
4480 	rcu_read_unlock();
4481 
4482 	return ret;
4483 }
4484 
dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info * info)4485 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4486 {
4487 	int ret = 0;
4488 	struct dmar_rmrr_unit *rmrru;
4489 	struct dmar_atsr_unit *atsru;
4490 	struct acpi_dmar_atsr *atsr;
4491 	struct acpi_dmar_reserved_memory *rmrr;
4492 
4493 	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4494 		return 0;
4495 
4496 	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4497 		rmrr = container_of(rmrru->hdr,
4498 				    struct acpi_dmar_reserved_memory, header);
4499 		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4500 			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4501 				((void *)rmrr) + rmrr->header.length,
4502 				rmrr->segment, rmrru->devices,
4503 				rmrru->devices_cnt);
4504 			if(ret < 0)
4505 				return ret;
4506 		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4507 			dmar_remove_dev_scope(info, rmrr->segment,
4508 				rmrru->devices, rmrru->devices_cnt);
4509 		}
4510 	}
4511 
4512 	list_for_each_entry(atsru, &dmar_atsr_units, list) {
4513 		if (atsru->include_all)
4514 			continue;
4515 
4516 		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4517 		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4518 			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4519 					(void *)atsr + atsr->header.length,
4520 					atsr->segment, atsru->devices,
4521 					atsru->devices_cnt);
4522 			if (ret > 0)
4523 				break;
4524 			else if(ret < 0)
4525 				return ret;
4526 		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4527 			if (dmar_remove_dev_scope(info, atsr->segment,
4528 					atsru->devices, atsru->devices_cnt))
4529 				break;
4530 		}
4531 	}
4532 
4533 	return 0;
4534 }
4535 
4536 /*
4537  * Here we only respond to action of unbound device from driver.
4538  *
4539  * Added device is not attached to its DMAR domain here yet. That will happen
4540  * when mapping the device to iova.
4541  */
device_notifier(struct notifier_block * nb,unsigned long action,void * data)4542 static int device_notifier(struct notifier_block *nb,
4543 				  unsigned long action, void *data)
4544 {
4545 	struct device *dev = data;
4546 	struct dmar_domain *domain;
4547 
4548 	if (iommu_dummy(dev))
4549 		return 0;
4550 
4551 	if (action != BUS_NOTIFY_REMOVED_DEVICE)
4552 		return 0;
4553 
4554 	domain = find_domain(dev);
4555 	if (!domain)
4556 		return 0;
4557 
4558 	dmar_remove_one_dev_info(domain, dev);
4559 	if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4560 		domain_exit(domain);
4561 
4562 	return 0;
4563 }
4564 
4565 static struct notifier_block device_nb = {
4566 	.notifier_call = device_notifier,
4567 };
4568 
intel_iommu_memory_notifier(struct notifier_block * nb,unsigned long val,void * v)4569 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4570 				       unsigned long val, void *v)
4571 {
4572 	struct memory_notify *mhp = v;
4573 	unsigned long long start, end;
4574 	unsigned long start_vpfn, last_vpfn;
4575 
4576 	switch (val) {
4577 	case MEM_GOING_ONLINE:
4578 		start = mhp->start_pfn << PAGE_SHIFT;
4579 		end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4580 		if (iommu_domain_identity_map(si_domain, start, end)) {
4581 			pr_warn("Failed to build identity map for [%llx-%llx]\n",
4582 				start, end);
4583 			return NOTIFY_BAD;
4584 		}
4585 		break;
4586 
4587 	case MEM_OFFLINE:
4588 	case MEM_CANCEL_ONLINE:
4589 		start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4590 		last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4591 		while (start_vpfn <= last_vpfn) {
4592 			struct iova *iova;
4593 			struct dmar_drhd_unit *drhd;
4594 			struct intel_iommu *iommu;
4595 			struct page *freelist;
4596 
4597 			iova = find_iova(&si_domain->iovad, start_vpfn);
4598 			if (iova == NULL) {
4599 				pr_debug("Failed get IOVA for PFN %lx\n",
4600 					 start_vpfn);
4601 				break;
4602 			}
4603 
4604 			iova = split_and_remove_iova(&si_domain->iovad, iova,
4605 						     start_vpfn, last_vpfn);
4606 			if (iova == NULL) {
4607 				pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4608 					start_vpfn, last_vpfn);
4609 				return NOTIFY_BAD;
4610 			}
4611 
4612 			freelist = domain_unmap(si_domain, iova->pfn_lo,
4613 					       iova->pfn_hi);
4614 
4615 			rcu_read_lock();
4616 			for_each_active_iommu(iommu, drhd)
4617 				iommu_flush_iotlb_psi(iommu, si_domain,
4618 					iova->pfn_lo, iova_size(iova),
4619 					!freelist, 0);
4620 			rcu_read_unlock();
4621 			dma_free_pagelist(freelist);
4622 
4623 			start_vpfn = iova->pfn_hi + 1;
4624 			free_iova_mem(iova);
4625 		}
4626 		break;
4627 	}
4628 
4629 	return NOTIFY_OK;
4630 }
4631 
4632 static struct notifier_block intel_iommu_memory_nb = {
4633 	.notifier_call = intel_iommu_memory_notifier,
4634 	.priority = 0
4635 };
4636 
free_all_cpu_cached_iovas(unsigned int cpu)4637 static void free_all_cpu_cached_iovas(unsigned int cpu)
4638 {
4639 	int i;
4640 
4641 	for (i = 0; i < g_num_of_iommus; i++) {
4642 		struct intel_iommu *iommu = g_iommus[i];
4643 		struct dmar_domain *domain;
4644 		int did;
4645 
4646 		if (!iommu)
4647 			continue;
4648 
4649 		for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4650 			domain = get_iommu_domain(iommu, (u16)did);
4651 
4652 			if (!domain)
4653 				continue;
4654 			free_cpu_cached_iovas(cpu, &domain->iovad);
4655 		}
4656 	}
4657 }
4658 
intel_iommu_cpu_dead(unsigned int cpu)4659 static int intel_iommu_cpu_dead(unsigned int cpu)
4660 {
4661 	free_all_cpu_cached_iovas(cpu);
4662 	return 0;
4663 }
4664 
intel_disable_iommus(void)4665 static void intel_disable_iommus(void)
4666 {
4667 	struct intel_iommu *iommu = NULL;
4668 	struct dmar_drhd_unit *drhd;
4669 
4670 	for_each_iommu(iommu, drhd)
4671 		iommu_disable_translation(iommu);
4672 }
4673 
dev_to_intel_iommu(struct device * dev)4674 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
4675 {
4676 	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
4677 
4678 	return container_of(iommu_dev, struct intel_iommu, iommu);
4679 }
4680 
intel_iommu_show_version(struct device * dev,struct device_attribute * attr,char * buf)4681 static ssize_t intel_iommu_show_version(struct device *dev,
4682 					struct device_attribute *attr,
4683 					char *buf)
4684 {
4685 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4686 	u32 ver = readl(iommu->reg + DMAR_VER_REG);
4687 	return sprintf(buf, "%d:%d\n",
4688 		       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4689 }
4690 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4691 
intel_iommu_show_address(struct device * dev,struct device_attribute * attr,char * buf)4692 static ssize_t intel_iommu_show_address(struct device *dev,
4693 					struct device_attribute *attr,
4694 					char *buf)
4695 {
4696 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4697 	return sprintf(buf, "%llx\n", iommu->reg_phys);
4698 }
4699 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4700 
intel_iommu_show_cap(struct device * dev,struct device_attribute * attr,char * buf)4701 static ssize_t intel_iommu_show_cap(struct device *dev,
4702 				    struct device_attribute *attr,
4703 				    char *buf)
4704 {
4705 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4706 	return sprintf(buf, "%llx\n", iommu->cap);
4707 }
4708 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4709 
intel_iommu_show_ecap(struct device * dev,struct device_attribute * attr,char * buf)4710 static ssize_t intel_iommu_show_ecap(struct device *dev,
4711 				    struct device_attribute *attr,
4712 				    char *buf)
4713 {
4714 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4715 	return sprintf(buf, "%llx\n", iommu->ecap);
4716 }
4717 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4718 
intel_iommu_show_ndoms(struct device * dev,struct device_attribute * attr,char * buf)4719 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4720 				      struct device_attribute *attr,
4721 				      char *buf)
4722 {
4723 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4724 	return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4725 }
4726 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4727 
intel_iommu_show_ndoms_used(struct device * dev,struct device_attribute * attr,char * buf)4728 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4729 					   struct device_attribute *attr,
4730 					   char *buf)
4731 {
4732 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4733 	return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4734 						  cap_ndoms(iommu->cap)));
4735 }
4736 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4737 
4738 static struct attribute *intel_iommu_attrs[] = {
4739 	&dev_attr_version.attr,
4740 	&dev_attr_address.attr,
4741 	&dev_attr_cap.attr,
4742 	&dev_attr_ecap.attr,
4743 	&dev_attr_domains_supported.attr,
4744 	&dev_attr_domains_used.attr,
4745 	NULL,
4746 };
4747 
4748 static struct attribute_group intel_iommu_group = {
4749 	.name = "intel-iommu",
4750 	.attrs = intel_iommu_attrs,
4751 };
4752 
4753 const struct attribute_group *intel_iommu_groups[] = {
4754 	&intel_iommu_group,
4755 	NULL,
4756 };
4757 
intel_iommu_init(void)4758 int __init intel_iommu_init(void)
4759 {
4760 	int ret = -ENODEV;
4761 	struct dmar_drhd_unit *drhd;
4762 	struct intel_iommu *iommu;
4763 
4764 	/* VT-d is required for a TXT/tboot launch, so enforce that */
4765 	force_on = tboot_force_iommu();
4766 
4767 	if (iommu_init_mempool()) {
4768 		if (force_on)
4769 			panic("tboot: Failed to initialize iommu memory\n");
4770 		return -ENOMEM;
4771 	}
4772 
4773 	down_write(&dmar_global_lock);
4774 	if (dmar_table_init()) {
4775 		if (force_on)
4776 			panic("tboot: Failed to initialize DMAR table\n");
4777 		goto out_free_dmar;
4778 	}
4779 
4780 	if (dmar_dev_scope_init() < 0) {
4781 		if (force_on)
4782 			panic("tboot: Failed to initialize DMAR device scope\n");
4783 		goto out_free_dmar;
4784 	}
4785 
4786 	up_write(&dmar_global_lock);
4787 
4788 	/*
4789 	 * The bus notifier takes the dmar_global_lock, so lockdep will
4790 	 * complain later when we register it under the lock.
4791 	 */
4792 	dmar_register_bus_notifier();
4793 
4794 	down_write(&dmar_global_lock);
4795 
4796 	if (no_iommu || dmar_disabled) {
4797 		/*
4798 		 * We exit the function here to ensure IOMMU's remapping and
4799 		 * mempool aren't setup, which means that the IOMMU's PMRs
4800 		 * won't be disabled via the call to init_dmars(). So disable
4801 		 * it explicitly here. The PMRs were setup by tboot prior to
4802 		 * calling SENTER, but the kernel is expected to reset/tear
4803 		 * down the PMRs.
4804 		 */
4805 		if (intel_iommu_tboot_noforce) {
4806 			for_each_iommu(iommu, drhd)
4807 				iommu_disable_protect_mem_regions(iommu);
4808 		}
4809 
4810 		/*
4811 		 * Make sure the IOMMUs are switched off, even when we
4812 		 * boot into a kexec kernel and the previous kernel left
4813 		 * them enabled
4814 		 */
4815 		intel_disable_iommus();
4816 		goto out_free_dmar;
4817 	}
4818 
4819 	if (list_empty(&dmar_rmrr_units))
4820 		pr_info("No RMRR found\n");
4821 
4822 	if (list_empty(&dmar_atsr_units))
4823 		pr_info("No ATSR found\n");
4824 
4825 	if (dmar_init_reserved_ranges()) {
4826 		if (force_on)
4827 			panic("tboot: Failed to reserve iommu ranges\n");
4828 		goto out_free_reserved_range;
4829 	}
4830 
4831 	init_no_remapping_devices();
4832 
4833 	ret = init_dmars();
4834 	if (ret) {
4835 		if (force_on)
4836 			panic("tboot: Failed to initialize DMARs\n");
4837 		pr_err("Initialization failed\n");
4838 		goto out_free_reserved_range;
4839 	}
4840 	up_write(&dmar_global_lock);
4841 	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4842 
4843 #if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
4844 	swiotlb = 0;
4845 #endif
4846 	dma_ops = &intel_dma_ops;
4847 
4848 	init_iommu_pm_ops();
4849 
4850 	for_each_active_iommu(iommu, drhd) {
4851 		iommu_device_sysfs_add(&iommu->iommu, NULL,
4852 				       intel_iommu_groups,
4853 				       "%s", iommu->name);
4854 		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
4855 		iommu_device_register(&iommu->iommu);
4856 	}
4857 
4858 	bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4859 	bus_register_notifier(&pci_bus_type, &device_nb);
4860 	if (si_domain && !hw_pass_through)
4861 		register_memory_notifier(&intel_iommu_memory_nb);
4862 	cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
4863 			  intel_iommu_cpu_dead);
4864 	intel_iommu_enabled = 1;
4865 
4866 	return 0;
4867 
4868 out_free_reserved_range:
4869 	put_iova_domain(&reserved_iova_list);
4870 out_free_dmar:
4871 	intel_iommu_free_dmars();
4872 	up_write(&dmar_global_lock);
4873 	iommu_exit_mempool();
4874 	return ret;
4875 }
4876 
domain_context_clear_one_cb(struct pci_dev * pdev,u16 alias,void * opaque)4877 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4878 {
4879 	struct intel_iommu *iommu = opaque;
4880 
4881 	domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4882 	return 0;
4883 }
4884 
4885 /*
4886  * NB - intel-iommu lacks any sort of reference counting for the users of
4887  * dependent devices.  If multiple endpoints have intersecting dependent
4888  * devices, unbinding the driver from any one of them will possibly leave
4889  * the others unable to operate.
4890  */
domain_context_clear(struct intel_iommu * iommu,struct device * dev)4891 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4892 {
4893 	if (!iommu || !dev || !dev_is_pci(dev))
4894 		return;
4895 
4896 	pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4897 }
4898 
__dmar_remove_one_dev_info(struct device_domain_info * info)4899 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4900 {
4901 	struct intel_iommu *iommu;
4902 	unsigned long flags;
4903 
4904 	assert_spin_locked(&device_domain_lock);
4905 
4906 	if (WARN_ON(!info))
4907 		return;
4908 
4909 	iommu = info->iommu;
4910 
4911 	if (info->dev) {
4912 		iommu_disable_dev_iotlb(info);
4913 		domain_context_clear(iommu, info->dev);
4914 		intel_pasid_free_table(info->dev);
4915 	}
4916 
4917 	unlink_domain_info(info);
4918 
4919 	spin_lock_irqsave(&iommu->lock, flags);
4920 	domain_detach_iommu(info->domain, iommu);
4921 	spin_unlock_irqrestore(&iommu->lock, flags);
4922 
4923 	free_devinfo_mem(info);
4924 }
4925 
dmar_remove_one_dev_info(struct dmar_domain * domain,struct device * dev)4926 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4927 				     struct device *dev)
4928 {
4929 	struct device_domain_info *info;
4930 	unsigned long flags;
4931 
4932 	spin_lock_irqsave(&device_domain_lock, flags);
4933 	info = dev->archdata.iommu;
4934 	__dmar_remove_one_dev_info(info);
4935 	spin_unlock_irqrestore(&device_domain_lock, flags);
4936 }
4937 
md_domain_init(struct dmar_domain * domain,int guest_width)4938 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4939 {
4940 	int adjust_width;
4941 
4942 	init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
4943 	domain_reserve_special_ranges(domain);
4944 
4945 	/* calculate AGAW */
4946 	domain->gaw = guest_width;
4947 	adjust_width = guestwidth_to_adjustwidth(guest_width);
4948 	domain->agaw = width_to_agaw(adjust_width);
4949 
4950 	domain->iommu_coherency = 0;
4951 	domain->iommu_snooping = 0;
4952 	domain->iommu_superpage = 0;
4953 	domain->max_addr = 0;
4954 
4955 	/* always allocate the top pgd */
4956 	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4957 	if (!domain->pgd)
4958 		return -ENOMEM;
4959 	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4960 	return 0;
4961 }
4962 
intel_iommu_domain_alloc(unsigned type)4963 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4964 {
4965 	struct dmar_domain *dmar_domain;
4966 	struct iommu_domain *domain;
4967 
4968 	if (type != IOMMU_DOMAIN_UNMANAGED)
4969 		return NULL;
4970 
4971 	dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4972 	if (!dmar_domain) {
4973 		pr_err("Can't allocate dmar_domain\n");
4974 		return NULL;
4975 	}
4976 	if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4977 		pr_err("Domain initialization failed\n");
4978 		domain_exit(dmar_domain);
4979 		return NULL;
4980 	}
4981 	domain_update_iommu_cap(dmar_domain);
4982 
4983 	domain = &dmar_domain->domain;
4984 	domain->geometry.aperture_start = 0;
4985 	domain->geometry.aperture_end   = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4986 	domain->geometry.force_aperture = true;
4987 
4988 	return domain;
4989 }
4990 
intel_iommu_domain_free(struct iommu_domain * domain)4991 static void intel_iommu_domain_free(struct iommu_domain *domain)
4992 {
4993 	domain_exit(to_dmar_domain(domain));
4994 }
4995 
intel_iommu_attach_device(struct iommu_domain * domain,struct device * dev)4996 static int intel_iommu_attach_device(struct iommu_domain *domain,
4997 				     struct device *dev)
4998 {
4999 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5000 	struct intel_iommu *iommu;
5001 	int addr_width;
5002 	u8 bus, devfn;
5003 
5004 	if (device_is_rmrr_locked(dev)) {
5005 		dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
5006 		return -EPERM;
5007 	}
5008 
5009 	/* normally dev is not mapped */
5010 	if (unlikely(domain_context_mapped(dev))) {
5011 		struct dmar_domain *old_domain;
5012 
5013 		old_domain = find_domain(dev);
5014 		if (old_domain) {
5015 			rcu_read_lock();
5016 			dmar_remove_one_dev_info(old_domain, dev);
5017 			rcu_read_unlock();
5018 
5019 			if (!domain_type_is_vm_or_si(old_domain) &&
5020 			     list_empty(&old_domain->devices))
5021 				domain_exit(old_domain);
5022 		}
5023 	}
5024 
5025 	iommu = device_to_iommu(dev, &bus, &devfn);
5026 	if (!iommu)
5027 		return -ENODEV;
5028 
5029 	/* check if this iommu agaw is sufficient for max mapped address */
5030 	addr_width = agaw_to_width(iommu->agaw);
5031 	if (addr_width > cap_mgaw(iommu->cap))
5032 		addr_width = cap_mgaw(iommu->cap);
5033 
5034 	if (dmar_domain->max_addr > (1LL << addr_width)) {
5035 		pr_err("%s: iommu width (%d) is not "
5036 		       "sufficient for the mapped address (%llx)\n",
5037 		       __func__, addr_width, dmar_domain->max_addr);
5038 		return -EFAULT;
5039 	}
5040 	dmar_domain->gaw = addr_width;
5041 
5042 	/*
5043 	 * Knock out extra levels of page tables if necessary
5044 	 */
5045 	while (iommu->agaw < dmar_domain->agaw) {
5046 		struct dma_pte *pte;
5047 
5048 		pte = dmar_domain->pgd;
5049 		if (dma_pte_present(pte)) {
5050 			dmar_domain->pgd = (struct dma_pte *)
5051 				phys_to_virt(dma_pte_addr(pte));
5052 			free_pgtable_page(pte);
5053 		}
5054 		dmar_domain->agaw--;
5055 	}
5056 
5057 	return domain_add_dev_info(dmar_domain, dev);
5058 }
5059 
intel_iommu_detach_device(struct iommu_domain * domain,struct device * dev)5060 static void intel_iommu_detach_device(struct iommu_domain *domain,
5061 				      struct device *dev)
5062 {
5063 	dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
5064 }
5065 
intel_iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t hpa,size_t size,int iommu_prot)5066 static int intel_iommu_map(struct iommu_domain *domain,
5067 			   unsigned long iova, phys_addr_t hpa,
5068 			   size_t size, int iommu_prot)
5069 {
5070 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5071 	u64 max_addr;
5072 	int prot = 0;
5073 	int ret;
5074 
5075 	if (iommu_prot & IOMMU_READ)
5076 		prot |= DMA_PTE_READ;
5077 	if (iommu_prot & IOMMU_WRITE)
5078 		prot |= DMA_PTE_WRITE;
5079 	if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5080 		prot |= DMA_PTE_SNP;
5081 
5082 	max_addr = iova + size;
5083 	if (dmar_domain->max_addr < max_addr) {
5084 		u64 end;
5085 
5086 		/* check if minimum agaw is sufficient for mapped address */
5087 		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5088 		if (end < max_addr) {
5089 			pr_err("%s: iommu width (%d) is not "
5090 			       "sufficient for the mapped address (%llx)\n",
5091 			       __func__, dmar_domain->gaw, max_addr);
5092 			return -EFAULT;
5093 		}
5094 		dmar_domain->max_addr = max_addr;
5095 	}
5096 	/* Round up size to next multiple of PAGE_SIZE, if it and
5097 	   the low bits of hpa would take us onto the next page */
5098 	size = aligned_nrpages(hpa, size);
5099 	ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5100 				 hpa >> VTD_PAGE_SHIFT, size, prot);
5101 	return ret;
5102 }
5103 
intel_iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size)5104 static size_t intel_iommu_unmap(struct iommu_domain *domain,
5105 				unsigned long iova, size_t size)
5106 {
5107 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5108 	struct page *freelist = NULL;
5109 	unsigned long start_pfn, last_pfn;
5110 	unsigned int npages;
5111 	int iommu_id, level = 0;
5112 
5113 	/* Cope with horrid API which requires us to unmap more than the
5114 	   size argument if it happens to be a large-page mapping. */
5115 	BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5116 
5117 	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5118 		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5119 
5120 	start_pfn = iova >> VTD_PAGE_SHIFT;
5121 	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5122 
5123 	freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5124 
5125 	npages = last_pfn - start_pfn + 1;
5126 
5127 	for_each_domain_iommu(iommu_id, dmar_domain)
5128 		iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5129 				      start_pfn, npages, !freelist, 0);
5130 
5131 	dma_free_pagelist(freelist);
5132 
5133 	if (dmar_domain->max_addr == iova + size)
5134 		dmar_domain->max_addr = iova;
5135 
5136 	return size;
5137 }
5138 
intel_iommu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)5139 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5140 					    dma_addr_t iova)
5141 {
5142 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5143 	struct dma_pte *pte;
5144 	int level = 0;
5145 	u64 phys = 0;
5146 
5147 	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5148 	if (pte)
5149 		phys = dma_pte_addr(pte);
5150 
5151 	return phys;
5152 }
5153 
intel_iommu_capable(enum iommu_cap cap)5154 static bool intel_iommu_capable(enum iommu_cap cap)
5155 {
5156 	if (cap == IOMMU_CAP_CACHE_COHERENCY)
5157 		return domain_update_iommu_snooping(NULL) == 1;
5158 	if (cap == IOMMU_CAP_INTR_REMAP)
5159 		return irq_remapping_enabled == 1;
5160 
5161 	return false;
5162 }
5163 
intel_iommu_add_device(struct device * dev)5164 static int intel_iommu_add_device(struct device *dev)
5165 {
5166 	struct intel_iommu *iommu;
5167 	struct iommu_group *group;
5168 	u8 bus, devfn;
5169 
5170 	iommu = device_to_iommu(dev, &bus, &devfn);
5171 	if (!iommu)
5172 		return -ENODEV;
5173 
5174 	iommu_device_link(&iommu->iommu, dev);
5175 
5176 	group = iommu_group_get_for_dev(dev);
5177 
5178 	if (IS_ERR(group))
5179 		return PTR_ERR(group);
5180 
5181 	iommu_group_put(group);
5182 	return 0;
5183 }
5184 
intel_iommu_remove_device(struct device * dev)5185 static void intel_iommu_remove_device(struct device *dev)
5186 {
5187 	struct intel_iommu *iommu;
5188 	u8 bus, devfn;
5189 
5190 	iommu = device_to_iommu(dev, &bus, &devfn);
5191 	if (!iommu)
5192 		return;
5193 
5194 	iommu_group_remove_device(dev);
5195 
5196 	iommu_device_unlink(&iommu->iommu, dev);
5197 }
5198 
intel_iommu_get_resv_regions(struct device * device,struct list_head * head)5199 static void intel_iommu_get_resv_regions(struct device *device,
5200 					 struct list_head *head)
5201 {
5202 	struct iommu_resv_region *reg;
5203 	struct dmar_rmrr_unit *rmrr;
5204 	struct device *i_dev;
5205 	int i;
5206 
5207 	rcu_read_lock();
5208 	for_each_rmrr_units(rmrr) {
5209 		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
5210 					  i, i_dev) {
5211 			if (i_dev != device)
5212 				continue;
5213 
5214 			list_add_tail(&rmrr->resv->list, head);
5215 		}
5216 	}
5217 	rcu_read_unlock();
5218 
5219 	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
5220 				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5221 				      0, IOMMU_RESV_MSI);
5222 	if (!reg)
5223 		return;
5224 	list_add_tail(&reg->list, head);
5225 }
5226 
intel_iommu_put_resv_regions(struct device * dev,struct list_head * head)5227 static void intel_iommu_put_resv_regions(struct device *dev,
5228 					 struct list_head *head)
5229 {
5230 	struct iommu_resv_region *entry, *next;
5231 
5232 	list_for_each_entry_safe(entry, next, head, list) {
5233 		if (entry->type == IOMMU_RESV_RESERVED)
5234 			kfree(entry);
5235 	}
5236 }
5237 
5238 #ifdef CONFIG_INTEL_IOMMU_SVM
5239 #define MAX_NR_PASID_BITS (20)
intel_iommu_get_pts(struct device * dev)5240 static inline unsigned long intel_iommu_get_pts(struct device *dev)
5241 {
5242 	int pts, max_pasid;
5243 
5244 	max_pasid = intel_pasid_get_dev_max_id(dev);
5245 	pts = find_first_bit((unsigned long *)&max_pasid, MAX_NR_PASID_BITS);
5246 	if (pts < 5)
5247 		return 0;
5248 
5249 	return pts - 5;
5250 }
5251 
intel_iommu_enable_pasid(struct intel_iommu * iommu,struct intel_svm_dev * sdev)5252 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct intel_svm_dev *sdev)
5253 {
5254 	struct device_domain_info *info;
5255 	struct context_entry *context;
5256 	struct dmar_domain *domain;
5257 	unsigned long flags;
5258 	u64 ctx_lo;
5259 	int ret;
5260 
5261 	domain = get_valid_domain_for_dev(sdev->dev);
5262 	if (!domain)
5263 		return -EINVAL;
5264 
5265 	spin_lock_irqsave(&device_domain_lock, flags);
5266 	spin_lock(&iommu->lock);
5267 
5268 	ret = -EINVAL;
5269 	info = sdev->dev->archdata.iommu;
5270 	if (!info || !info->pasid_supported)
5271 		goto out;
5272 
5273 	context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5274 	if (WARN_ON(!context))
5275 		goto out;
5276 
5277 	ctx_lo = context[0].lo;
5278 
5279 	sdev->did = domain->iommu_did[iommu->seq_id];
5280 	sdev->sid = PCI_DEVID(info->bus, info->devfn);
5281 
5282 	if (!(ctx_lo & CONTEXT_PASIDE)) {
5283 		if (iommu->pasid_state_table)
5284 			context[1].hi = (u64)virt_to_phys(iommu->pasid_state_table);
5285 		context[1].lo = (u64)virt_to_phys(info->pasid_table->table) |
5286 			intel_iommu_get_pts(sdev->dev);
5287 
5288 		wmb();
5289 		/* CONTEXT_TT_MULTI_LEVEL and CONTEXT_TT_DEV_IOTLB are both
5290 		 * extended to permit requests-with-PASID if the PASIDE bit
5291 		 * is set. which makes sense. For CONTEXT_TT_PASS_THROUGH,
5292 		 * however, the PASIDE bit is ignored and requests-with-PASID
5293 		 * are unconditionally blocked. Which makes less sense.
5294 		 * So convert from CONTEXT_TT_PASS_THROUGH to one of the new
5295 		 * "guest mode" translation types depending on whether ATS
5296 		 * is available or not. Annoyingly, we can't use the new
5297 		 * modes *unless* PASIDE is set. */
5298 		if ((ctx_lo & CONTEXT_TT_MASK) == (CONTEXT_TT_PASS_THROUGH << 2)) {
5299 			ctx_lo &= ~CONTEXT_TT_MASK;
5300 			if (info->ats_supported)
5301 				ctx_lo |= CONTEXT_TT_PT_PASID_DEV_IOTLB << 2;
5302 			else
5303 				ctx_lo |= CONTEXT_TT_PT_PASID << 2;
5304 		}
5305 		ctx_lo |= CONTEXT_PASIDE;
5306 		if (iommu->pasid_state_table)
5307 			ctx_lo |= CONTEXT_DINVE;
5308 		if (info->pri_supported)
5309 			ctx_lo |= CONTEXT_PRS;
5310 		context[0].lo = ctx_lo;
5311 		wmb();
5312 		iommu->flush.flush_context(iommu, sdev->did, sdev->sid,
5313 					   DMA_CCMD_MASK_NOBIT,
5314 					   DMA_CCMD_DEVICE_INVL);
5315 	}
5316 
5317 	/* Enable PASID support in the device, if it wasn't already */
5318 	if (!info->pasid_enabled)
5319 		iommu_enable_dev_iotlb(info);
5320 
5321 	if (info->ats_enabled) {
5322 		sdev->dev_iotlb = 1;
5323 		sdev->qdep = info->ats_qdep;
5324 		if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
5325 			sdev->qdep = 0;
5326 	}
5327 	ret = 0;
5328 
5329  out:
5330 	spin_unlock(&iommu->lock);
5331 	spin_unlock_irqrestore(&device_domain_lock, flags);
5332 
5333 	return ret;
5334 }
5335 
intel_svm_device_to_iommu(struct device * dev)5336 struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5337 {
5338 	struct intel_iommu *iommu;
5339 	u8 bus, devfn;
5340 
5341 	if (iommu_dummy(dev)) {
5342 		dev_warn(dev,
5343 			 "No IOMMU translation for device; cannot enable SVM\n");
5344 		return NULL;
5345 	}
5346 
5347 	iommu = device_to_iommu(dev, &bus, &devfn);
5348 	if ((!iommu)) {
5349 		dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5350 		return NULL;
5351 	}
5352 
5353 	return iommu;
5354 }
5355 #endif /* CONFIG_INTEL_IOMMU_SVM */
5356 
5357 const struct iommu_ops intel_iommu_ops = {
5358 	.capable		= intel_iommu_capable,
5359 	.domain_alloc		= intel_iommu_domain_alloc,
5360 	.domain_free		= intel_iommu_domain_free,
5361 	.attach_dev		= intel_iommu_attach_device,
5362 	.detach_dev		= intel_iommu_detach_device,
5363 	.map			= intel_iommu_map,
5364 	.unmap			= intel_iommu_unmap,
5365 	.iova_to_phys		= intel_iommu_iova_to_phys,
5366 	.add_device		= intel_iommu_add_device,
5367 	.remove_device		= intel_iommu_remove_device,
5368 	.get_resv_regions	= intel_iommu_get_resv_regions,
5369 	.put_resv_regions	= intel_iommu_put_resv_regions,
5370 	.device_group		= pci_device_group,
5371 	.pgsize_bitmap		= INTEL_IOMMU_PGSIZES,
5372 };
5373 
quirk_iommu_g4x_gfx(struct pci_dev * dev)5374 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5375 {
5376 	/* G4x/GM45 integrated gfx dmar support is totally busted. */
5377 	pr_info("Disabling IOMMU for graphics on this chipset\n");
5378 	dmar_map_gfx = 0;
5379 }
5380 
5381 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5382 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5383 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5384 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5385 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5386 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5387 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5388 
quirk_iommu_rwbf(struct pci_dev * dev)5389 static void quirk_iommu_rwbf(struct pci_dev *dev)
5390 {
5391 	/*
5392 	 * Mobile 4 Series Chipset neglects to set RWBF capability,
5393 	 * but needs it. Same seems to hold for the desktop versions.
5394 	 */
5395 	pr_info("Forcing write-buffer flush capability\n");
5396 	rwbf_quirk = 1;
5397 }
5398 
5399 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5400 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5401 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5402 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5403 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5404 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5405 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5406 
5407 #define GGC 0x52
5408 #define GGC_MEMORY_SIZE_MASK	(0xf << 8)
5409 #define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
5410 #define GGC_MEMORY_SIZE_1M	(0x1 << 8)
5411 #define GGC_MEMORY_SIZE_2M	(0x3 << 8)
5412 #define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
5413 #define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
5414 #define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
5415 #define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)
5416 
quirk_calpella_no_shadow_gtt(struct pci_dev * dev)5417 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5418 {
5419 	unsigned short ggc;
5420 
5421 	if (pci_read_config_word(dev, GGC, &ggc))
5422 		return;
5423 
5424 	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5425 		pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5426 		dmar_map_gfx = 0;
5427 	} else if (dmar_map_gfx) {
5428 		/* we have to ensure the gfx device is idle before we flush */
5429 		pr_info("Disabling batched IOTLB flush on Ironlake\n");
5430 		intel_iommu_strict = 1;
5431        }
5432 }
5433 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5434 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5435 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5436 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5437 
5438 /* On Tylersburg chipsets, some BIOSes have been known to enable the
5439    ISOCH DMAR unit for the Azalia sound device, but not give it any
5440    TLB entries, which causes it to deadlock. Check for that.  We do
5441    this in a function called from init_dmars(), instead of in a PCI
5442    quirk, because we don't want to print the obnoxious "BIOS broken"
5443    message if VT-d is actually disabled.
5444 */
check_tylersburg_isoch(void)5445 static void __init check_tylersburg_isoch(void)
5446 {
5447 	struct pci_dev *pdev;
5448 	uint32_t vtisochctrl;
5449 
5450 	/* If there's no Azalia in the system anyway, forget it. */
5451 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5452 	if (!pdev)
5453 		return;
5454 	pci_dev_put(pdev);
5455 
5456 	/* System Management Registers. Might be hidden, in which case
5457 	   we can't do the sanity check. But that's OK, because the
5458 	   known-broken BIOSes _don't_ actually hide it, so far. */
5459 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5460 	if (!pdev)
5461 		return;
5462 
5463 	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5464 		pci_dev_put(pdev);
5465 		return;
5466 	}
5467 
5468 	pci_dev_put(pdev);
5469 
5470 	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5471 	if (vtisochctrl & 1)
5472 		return;
5473 
5474 	/* Drop all bits other than the number of TLB entries */
5475 	vtisochctrl &= 0x1c;
5476 
5477 	/* If we have the recommended number of TLB entries (16), fine. */
5478 	if (vtisochctrl == 0x10)
5479 		return;
5480 
5481 	/* Zero TLB entries? You get to ride the short bus to school. */
5482 	if (!vtisochctrl) {
5483 		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5484 		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5485 		     dmi_get_system_info(DMI_BIOS_VENDOR),
5486 		     dmi_get_system_info(DMI_BIOS_VERSION),
5487 		     dmi_get_system_info(DMI_PRODUCT_VERSION));
5488 		iommu_identity_mapping |= IDENTMAP_AZALIA;
5489 		return;
5490 	}
5491 
5492 	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5493 	       vtisochctrl);
5494 }
5495