1 /*
2 * Copyright © 2006-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
18 * Joerg Roedel <jroedel@suse.de>
19 */
20
21 #define pr_fmt(fmt) "DMAR: " fmt
22
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/debugfs.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/memory.h>
36 #include <linux/cpu.h>
37 #include <linux/timer.h>
38 #include <linux/io.h>
39 #include <linux/iova.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/tboot.h>
44 #include <linux/dmi.h>
45 #include <linux/pci-ats.h>
46 #include <linux/memblock.h>
47 #include <linux/dma-contiguous.h>
48 #include <linux/dma-direct.h>
49 #include <linux/crash_dump.h>
50 #include <asm/irq_remapping.h>
51 #include <asm/cacheflush.h>
52 #include <asm/iommu.h>
53
54 #include "irq_remapping.h"
55 #include "intel-pasid.h"
56
57 #define ROOT_SIZE VTD_PAGE_SIZE
58 #define CONTEXT_SIZE VTD_PAGE_SIZE
59
60 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
61 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
62 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
63 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
64
65 #define IOAPIC_RANGE_START (0xfee00000)
66 #define IOAPIC_RANGE_END (0xfeefffff)
67 #define IOVA_START_ADDR (0x1000)
68
69 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
70
71 #define MAX_AGAW_WIDTH 64
72 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
73
74 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
75 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
76
77 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
78 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
79 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
80 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
81 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
82
83 /* IO virtual address start page frame number */
84 #define IOVA_START_PFN (1)
85
86 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
87
88 /* page table handling */
89 #define LEVEL_STRIDE (9)
90 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
91
92 /*
93 * This bitmap is used to advertise the page sizes our hardware support
94 * to the IOMMU core, which will then use this information to split
95 * physically contiguous memory regions it is mapping into page sizes
96 * that we support.
97 *
98 * Traditionally the IOMMU core just handed us the mappings directly,
99 * after making sure the size is an order of a 4KiB page and that the
100 * mapping has natural alignment.
101 *
102 * To retain this behavior, we currently advertise that we support
103 * all page sizes that are an order of 4KiB.
104 *
105 * If at some point we'd like to utilize the IOMMU core's new behavior,
106 * we could change this to advertise the real page sizes we support.
107 */
108 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
109
agaw_to_level(int agaw)110 static inline int agaw_to_level(int agaw)
111 {
112 return agaw + 2;
113 }
114
agaw_to_width(int agaw)115 static inline int agaw_to_width(int agaw)
116 {
117 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
118 }
119
width_to_agaw(int width)120 static inline int width_to_agaw(int width)
121 {
122 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
123 }
124
level_to_offset_bits(int level)125 static inline unsigned int level_to_offset_bits(int level)
126 {
127 return (level - 1) * LEVEL_STRIDE;
128 }
129
pfn_level_offset(unsigned long pfn,int level)130 static inline int pfn_level_offset(unsigned long pfn, int level)
131 {
132 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
133 }
134
level_mask(int level)135 static inline unsigned long level_mask(int level)
136 {
137 return -1UL << level_to_offset_bits(level);
138 }
139
level_size(int level)140 static inline unsigned long level_size(int level)
141 {
142 return 1UL << level_to_offset_bits(level);
143 }
144
align_to_level(unsigned long pfn,int level)145 static inline unsigned long align_to_level(unsigned long pfn, int level)
146 {
147 return (pfn + level_size(level) - 1) & level_mask(level);
148 }
149
lvl_to_nr_pages(unsigned int lvl)150 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
151 {
152 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
153 }
154
155 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
156 are never going to work. */
dma_to_mm_pfn(unsigned long dma_pfn)157 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
158 {
159 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
160 }
161
mm_to_dma_pfn(unsigned long mm_pfn)162 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
163 {
164 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
165 }
page_to_dma_pfn(struct page * pg)166 static inline unsigned long page_to_dma_pfn(struct page *pg)
167 {
168 return mm_to_dma_pfn(page_to_pfn(pg));
169 }
virt_to_dma_pfn(void * p)170 static inline unsigned long virt_to_dma_pfn(void *p)
171 {
172 return page_to_dma_pfn(virt_to_page(p));
173 }
174
175 /* global iommu list, set NULL for ignored DMAR units */
176 static struct intel_iommu **g_iommus;
177
178 static void __init check_tylersburg_isoch(void);
179 static int rwbf_quirk;
180
181 /*
182 * set to 1 to panic kernel if can't successfully enable VT-d
183 * (used when kernel is launched w/ TXT)
184 */
185 static int force_on = 0;
186 int intel_iommu_tboot_noforce;
187
188 /*
189 * 0: Present
190 * 1-11: Reserved
191 * 12-63: Context Ptr (12 - (haw-1))
192 * 64-127: Reserved
193 */
194 struct root_entry {
195 u64 lo;
196 u64 hi;
197 };
198 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
199
200 /*
201 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
202 * if marked present.
203 */
root_entry_lctp(struct root_entry * re)204 static phys_addr_t root_entry_lctp(struct root_entry *re)
205 {
206 if (!(re->lo & 1))
207 return 0;
208
209 return re->lo & VTD_PAGE_MASK;
210 }
211
212 /*
213 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
214 * if marked present.
215 */
root_entry_uctp(struct root_entry * re)216 static phys_addr_t root_entry_uctp(struct root_entry *re)
217 {
218 if (!(re->hi & 1))
219 return 0;
220
221 return re->hi & VTD_PAGE_MASK;
222 }
223 /*
224 * low 64 bits:
225 * 0: present
226 * 1: fault processing disable
227 * 2-3: translation type
228 * 12-63: address space root
229 * high 64 bits:
230 * 0-2: address width
231 * 3-6: aval
232 * 8-23: domain id
233 */
234 struct context_entry {
235 u64 lo;
236 u64 hi;
237 };
238
context_clear_pasid_enable(struct context_entry * context)239 static inline void context_clear_pasid_enable(struct context_entry *context)
240 {
241 context->lo &= ~(1ULL << 11);
242 }
243
context_pasid_enabled(struct context_entry * context)244 static inline bool context_pasid_enabled(struct context_entry *context)
245 {
246 return !!(context->lo & (1ULL << 11));
247 }
248
context_set_copied(struct context_entry * context)249 static inline void context_set_copied(struct context_entry *context)
250 {
251 context->hi |= (1ull << 3);
252 }
253
context_copied(struct context_entry * context)254 static inline bool context_copied(struct context_entry *context)
255 {
256 return !!(context->hi & (1ULL << 3));
257 }
258
__context_present(struct context_entry * context)259 static inline bool __context_present(struct context_entry *context)
260 {
261 return (context->lo & 1);
262 }
263
context_present(struct context_entry * context)264 static inline bool context_present(struct context_entry *context)
265 {
266 return context_pasid_enabled(context) ?
267 __context_present(context) :
268 __context_present(context) && !context_copied(context);
269 }
270
context_set_present(struct context_entry * context)271 static inline void context_set_present(struct context_entry *context)
272 {
273 context->lo |= 1;
274 }
275
context_set_fault_enable(struct context_entry * context)276 static inline void context_set_fault_enable(struct context_entry *context)
277 {
278 context->lo &= (((u64)-1) << 2) | 1;
279 }
280
context_set_translation_type(struct context_entry * context,unsigned long value)281 static inline void context_set_translation_type(struct context_entry *context,
282 unsigned long value)
283 {
284 context->lo &= (((u64)-1) << 4) | 3;
285 context->lo |= (value & 3) << 2;
286 }
287
context_set_address_root(struct context_entry * context,unsigned long value)288 static inline void context_set_address_root(struct context_entry *context,
289 unsigned long value)
290 {
291 context->lo &= ~VTD_PAGE_MASK;
292 context->lo |= value & VTD_PAGE_MASK;
293 }
294
context_set_address_width(struct context_entry * context,unsigned long value)295 static inline void context_set_address_width(struct context_entry *context,
296 unsigned long value)
297 {
298 context->hi |= value & 7;
299 }
300
context_set_domain_id(struct context_entry * context,unsigned long value)301 static inline void context_set_domain_id(struct context_entry *context,
302 unsigned long value)
303 {
304 context->hi |= (value & ((1 << 16) - 1)) << 8;
305 }
306
context_domain_id(struct context_entry * c)307 static inline int context_domain_id(struct context_entry *c)
308 {
309 return((c->hi >> 8) & 0xffff);
310 }
311
context_clear_entry(struct context_entry * context)312 static inline void context_clear_entry(struct context_entry *context)
313 {
314 context->lo = 0;
315 context->hi = 0;
316 }
317
318 /*
319 * 0: readable
320 * 1: writable
321 * 2-6: reserved
322 * 7: super page
323 * 8-10: available
324 * 11: snoop behavior
325 * 12-63: Host physcial address
326 */
327 struct dma_pte {
328 u64 val;
329 };
330
dma_clear_pte(struct dma_pte * pte)331 static inline void dma_clear_pte(struct dma_pte *pte)
332 {
333 pte->val = 0;
334 }
335
dma_pte_addr(struct dma_pte * pte)336 static inline u64 dma_pte_addr(struct dma_pte *pte)
337 {
338 #ifdef CONFIG_64BIT
339 return pte->val & VTD_PAGE_MASK;
340 #else
341 /* Must have a full atomic 64-bit read */
342 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
343 #endif
344 }
345
dma_pte_present(struct dma_pte * pte)346 static inline bool dma_pte_present(struct dma_pte *pte)
347 {
348 return (pte->val & 3) != 0;
349 }
350
dma_pte_superpage(struct dma_pte * pte)351 static inline bool dma_pte_superpage(struct dma_pte *pte)
352 {
353 return (pte->val & DMA_PTE_LARGE_PAGE);
354 }
355
first_pte_in_page(struct dma_pte * pte)356 static inline int first_pte_in_page(struct dma_pte *pte)
357 {
358 return !((unsigned long)pte & ~VTD_PAGE_MASK);
359 }
360
361 /*
362 * This domain is a statically identity mapping domain.
363 * 1. This domain creats a static 1:1 mapping to all usable memory.
364 * 2. It maps to each iommu if successful.
365 * 3. Each iommu mapps to this domain if successful.
366 */
367 static struct dmar_domain *si_domain;
368 static int hw_pass_through = 1;
369
370 /*
371 * Domain represents a virtual machine, more than one devices
372 * across iommus may be owned in one domain, e.g. kvm guest.
373 */
374 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
375
376 /* si_domain contains mulitple devices */
377 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
378
379 #define for_each_domain_iommu(idx, domain) \
380 for (idx = 0; idx < g_num_of_iommus; idx++) \
381 if (domain->iommu_refcnt[idx])
382
383 struct dmar_rmrr_unit {
384 struct list_head list; /* list of rmrr units */
385 struct acpi_dmar_header *hdr; /* ACPI header */
386 u64 base_address; /* reserved base address*/
387 u64 end_address; /* reserved end address */
388 struct dmar_dev_scope *devices; /* target devices */
389 int devices_cnt; /* target device count */
390 struct iommu_resv_region *resv; /* reserved region handle */
391 };
392
393 struct dmar_atsr_unit {
394 struct list_head list; /* list of ATSR units */
395 struct acpi_dmar_header *hdr; /* ACPI header */
396 struct dmar_dev_scope *devices; /* target devices */
397 int devices_cnt; /* target device count */
398 u8 include_all:1; /* include all ports */
399 };
400
401 static LIST_HEAD(dmar_atsr_units);
402 static LIST_HEAD(dmar_rmrr_units);
403
404 #define for_each_rmrr_units(rmrr) \
405 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
406
407 /* bitmap for indexing intel_iommus */
408 static int g_num_of_iommus;
409
410 static void domain_exit(struct dmar_domain *domain);
411 static void domain_remove_dev_info(struct dmar_domain *domain);
412 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
413 struct device *dev);
414 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
415 static void domain_context_clear(struct intel_iommu *iommu,
416 struct device *dev);
417 static int domain_detach_iommu(struct dmar_domain *domain,
418 struct intel_iommu *iommu);
419
420 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
421 int dmar_disabled = 0;
422 #else
423 int dmar_disabled = 1;
424 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
425
426 int intel_iommu_enabled = 0;
427 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
428
429 static int dmar_map_gfx = 1;
430 static int dmar_forcedac;
431 static int intel_iommu_strict;
432 static int intel_iommu_superpage = 1;
433 static int intel_iommu_ecs = 1;
434 static int intel_iommu_pasid28;
435 static int iommu_identity_mapping;
436
437 #define IDENTMAP_ALL 1
438 #define IDENTMAP_GFX 2
439 #define IDENTMAP_AZALIA 4
440
441 /* Broadwell and Skylake have broken ECS support — normal so-called "second
442 * level" translation of DMA requests-without-PASID doesn't actually happen
443 * unless you also set the NESTE bit in an extended context-entry. Which of
444 * course means that SVM doesn't work because it's trying to do nested
445 * translation of the physical addresses it finds in the process page tables,
446 * through the IOVA->phys mapping found in the "second level" page tables.
447 *
448 * The VT-d specification was retroactively changed to change the definition
449 * of the capability bits and pretend that Broadwell/Skylake never happened...
450 * but unfortunately the wrong bit was changed. It's ECS which is broken, but
451 * for some reason it was the PASID capability bit which was redefined (from
452 * bit 28 on BDW/SKL to bit 40 in future).
453 *
454 * So our test for ECS needs to eschew those implementations which set the old
455 * PASID capabiity bit 28, since those are the ones on which ECS is broken.
456 * Unless we are working around the 'pasid28' limitations, that is, by putting
457 * the device into passthrough mode for normal DMA and thus masking the bug.
458 */
459 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
460 (intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap)))
461 /* PASID support is thus enabled if ECS is enabled and *either* of the old
462 * or new capability bits are set. */
463 #define pasid_enabled(iommu) (ecs_enabled(iommu) && \
464 (ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap)))
465
466 int intel_iommu_gfx_mapped;
467 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
468
469 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
470 static DEFINE_SPINLOCK(device_domain_lock);
471 static LIST_HEAD(device_domain_list);
472
473 /*
474 * Iterate over elements in device_domain_list and call the specified
475 * callback @fn against each element. This helper should only be used
476 * in the context where the device_domain_lock has already been holden.
477 */
for_each_device_domain(int (* fn)(struct device_domain_info * info,void * data),void * data)478 int for_each_device_domain(int (*fn)(struct device_domain_info *info,
479 void *data), void *data)
480 {
481 int ret = 0;
482 struct device_domain_info *info;
483
484 assert_spin_locked(&device_domain_lock);
485 list_for_each_entry(info, &device_domain_list, global) {
486 ret = fn(info, data);
487 if (ret)
488 return ret;
489 }
490
491 return 0;
492 }
493
494 const struct iommu_ops intel_iommu_ops;
495
translation_pre_enabled(struct intel_iommu * iommu)496 static bool translation_pre_enabled(struct intel_iommu *iommu)
497 {
498 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
499 }
500
clear_translation_pre_enabled(struct intel_iommu * iommu)501 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
502 {
503 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
504 }
505
init_translation_status(struct intel_iommu * iommu)506 static void init_translation_status(struct intel_iommu *iommu)
507 {
508 u32 gsts;
509
510 gsts = readl(iommu->reg + DMAR_GSTS_REG);
511 if (gsts & DMA_GSTS_TES)
512 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
513 }
514
515 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
to_dmar_domain(struct iommu_domain * dom)516 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
517 {
518 return container_of(dom, struct dmar_domain, domain);
519 }
520
intel_iommu_setup(char * str)521 static int __init intel_iommu_setup(char *str)
522 {
523 if (!str)
524 return -EINVAL;
525 while (*str) {
526 if (!strncmp(str, "on", 2)) {
527 dmar_disabled = 0;
528 pr_info("IOMMU enabled\n");
529 } else if (!strncmp(str, "off", 3)) {
530 dmar_disabled = 1;
531 pr_info("IOMMU disabled\n");
532 } else if (!strncmp(str, "igfx_off", 8)) {
533 dmar_map_gfx = 0;
534 pr_info("Disable GFX device mapping\n");
535 } else if (!strncmp(str, "forcedac", 8)) {
536 pr_info("Forcing DAC for PCI devices\n");
537 dmar_forcedac = 1;
538 } else if (!strncmp(str, "strict", 6)) {
539 pr_info("Disable batched IOTLB flush\n");
540 intel_iommu_strict = 1;
541 } else if (!strncmp(str, "sp_off", 6)) {
542 pr_info("Disable supported super page\n");
543 intel_iommu_superpage = 0;
544 } else if (!strncmp(str, "ecs_off", 7)) {
545 printk(KERN_INFO
546 "Intel-IOMMU: disable extended context table support\n");
547 intel_iommu_ecs = 0;
548 } else if (!strncmp(str, "pasid28", 7)) {
549 printk(KERN_INFO
550 "Intel-IOMMU: enable pre-production PASID support\n");
551 intel_iommu_pasid28 = 1;
552 iommu_identity_mapping |= IDENTMAP_GFX;
553 } else if (!strncmp(str, "tboot_noforce", 13)) {
554 printk(KERN_INFO
555 "Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
556 intel_iommu_tboot_noforce = 1;
557 }
558
559 str += strcspn(str, ",");
560 while (*str == ',')
561 str++;
562 }
563 return 0;
564 }
565 __setup("intel_iommu=", intel_iommu_setup);
566
567 static struct kmem_cache *iommu_domain_cache;
568 static struct kmem_cache *iommu_devinfo_cache;
569
get_iommu_domain(struct intel_iommu * iommu,u16 did)570 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
571 {
572 struct dmar_domain **domains;
573 int idx = did >> 8;
574
575 domains = iommu->domains[idx];
576 if (!domains)
577 return NULL;
578
579 return domains[did & 0xff];
580 }
581
set_iommu_domain(struct intel_iommu * iommu,u16 did,struct dmar_domain * domain)582 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
583 struct dmar_domain *domain)
584 {
585 struct dmar_domain **domains;
586 int idx = did >> 8;
587
588 if (!iommu->domains[idx]) {
589 size_t size = 256 * sizeof(struct dmar_domain *);
590 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
591 }
592
593 domains = iommu->domains[idx];
594 if (WARN_ON(!domains))
595 return;
596 else
597 domains[did & 0xff] = domain;
598 }
599
alloc_pgtable_page(int node)600 void *alloc_pgtable_page(int node)
601 {
602 struct page *page;
603 void *vaddr = NULL;
604
605 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
606 if (page)
607 vaddr = page_address(page);
608 return vaddr;
609 }
610
free_pgtable_page(void * vaddr)611 void free_pgtable_page(void *vaddr)
612 {
613 free_page((unsigned long)vaddr);
614 }
615
alloc_domain_mem(void)616 static inline void *alloc_domain_mem(void)
617 {
618 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
619 }
620
free_domain_mem(void * vaddr)621 static void free_domain_mem(void *vaddr)
622 {
623 kmem_cache_free(iommu_domain_cache, vaddr);
624 }
625
alloc_devinfo_mem(void)626 static inline void * alloc_devinfo_mem(void)
627 {
628 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
629 }
630
free_devinfo_mem(void * vaddr)631 static inline void free_devinfo_mem(void *vaddr)
632 {
633 kmem_cache_free(iommu_devinfo_cache, vaddr);
634 }
635
domain_type_is_vm(struct dmar_domain * domain)636 static inline int domain_type_is_vm(struct dmar_domain *domain)
637 {
638 return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
639 }
640
domain_type_is_si(struct dmar_domain * domain)641 static inline int domain_type_is_si(struct dmar_domain *domain)
642 {
643 return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
644 }
645
domain_type_is_vm_or_si(struct dmar_domain * domain)646 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
647 {
648 return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
649 DOMAIN_FLAG_STATIC_IDENTITY);
650 }
651
domain_pfn_supported(struct dmar_domain * domain,unsigned long pfn)652 static inline int domain_pfn_supported(struct dmar_domain *domain,
653 unsigned long pfn)
654 {
655 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
656
657 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
658 }
659
__iommu_calculate_agaw(struct intel_iommu * iommu,int max_gaw)660 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
661 {
662 unsigned long sagaw;
663 int agaw = -1;
664
665 sagaw = cap_sagaw(iommu->cap);
666 for (agaw = width_to_agaw(max_gaw);
667 agaw >= 0; agaw--) {
668 if (test_bit(agaw, &sagaw))
669 break;
670 }
671
672 return agaw;
673 }
674
675 /*
676 * Calculate max SAGAW for each iommu.
677 */
iommu_calculate_max_sagaw(struct intel_iommu * iommu)678 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
679 {
680 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
681 }
682
683 /*
684 * calculate agaw for each iommu.
685 * "SAGAW" may be different across iommus, use a default agaw, and
686 * get a supported less agaw for iommus that don't support the default agaw.
687 */
iommu_calculate_agaw(struct intel_iommu * iommu)688 int iommu_calculate_agaw(struct intel_iommu *iommu)
689 {
690 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
691 }
692
693 /* This functionin only returns single iommu in a domain */
domain_get_iommu(struct dmar_domain * domain)694 struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
695 {
696 int iommu_id;
697
698 /* si_domain and vm domain should not get here. */
699 BUG_ON(domain_type_is_vm_or_si(domain));
700 for_each_domain_iommu(iommu_id, domain)
701 break;
702
703 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
704 return NULL;
705
706 return g_iommus[iommu_id];
707 }
708
domain_update_iommu_coherency(struct dmar_domain * domain)709 static void domain_update_iommu_coherency(struct dmar_domain *domain)
710 {
711 struct dmar_drhd_unit *drhd;
712 struct intel_iommu *iommu;
713 bool found = false;
714 int i;
715
716 domain->iommu_coherency = 1;
717
718 for_each_domain_iommu(i, domain) {
719 found = true;
720 if (!ecap_coherent(g_iommus[i]->ecap)) {
721 domain->iommu_coherency = 0;
722 break;
723 }
724 }
725 if (found)
726 return;
727
728 /* No hardware attached; use lowest common denominator */
729 rcu_read_lock();
730 for_each_active_iommu(iommu, drhd) {
731 if (!ecap_coherent(iommu->ecap)) {
732 domain->iommu_coherency = 0;
733 break;
734 }
735 }
736 rcu_read_unlock();
737 }
738
domain_update_iommu_snooping(struct intel_iommu * skip)739 static int domain_update_iommu_snooping(struct intel_iommu *skip)
740 {
741 struct dmar_drhd_unit *drhd;
742 struct intel_iommu *iommu;
743 int ret = 1;
744
745 rcu_read_lock();
746 for_each_active_iommu(iommu, drhd) {
747 if (iommu != skip) {
748 if (!ecap_sc_support(iommu->ecap)) {
749 ret = 0;
750 break;
751 }
752 }
753 }
754 rcu_read_unlock();
755
756 return ret;
757 }
758
domain_update_iommu_superpage(struct intel_iommu * skip)759 static int domain_update_iommu_superpage(struct intel_iommu *skip)
760 {
761 struct dmar_drhd_unit *drhd;
762 struct intel_iommu *iommu;
763 int mask = 0xf;
764
765 if (!intel_iommu_superpage) {
766 return 0;
767 }
768
769 /* set iommu_superpage to the smallest common denominator */
770 rcu_read_lock();
771 for_each_active_iommu(iommu, drhd) {
772 if (iommu != skip) {
773 mask &= cap_super_page_val(iommu->cap);
774 if (!mask)
775 break;
776 }
777 }
778 rcu_read_unlock();
779
780 return fls(mask);
781 }
782
783 /* Some capabilities may be different across iommus */
domain_update_iommu_cap(struct dmar_domain * domain)784 static void domain_update_iommu_cap(struct dmar_domain *domain)
785 {
786 domain_update_iommu_coherency(domain);
787 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
788 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
789 }
790
iommu_context_addr(struct intel_iommu * iommu,u8 bus,u8 devfn,int alloc)791 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
792 u8 bus, u8 devfn, int alloc)
793 {
794 struct root_entry *root = &iommu->root_entry[bus];
795 struct context_entry *context;
796 u64 *entry;
797
798 entry = &root->lo;
799 if (ecs_enabled(iommu)) {
800 if (devfn >= 0x80) {
801 devfn -= 0x80;
802 entry = &root->hi;
803 }
804 devfn *= 2;
805 }
806 if (*entry & 1)
807 context = phys_to_virt(*entry & VTD_PAGE_MASK);
808 else {
809 unsigned long phy_addr;
810 if (!alloc)
811 return NULL;
812
813 context = alloc_pgtable_page(iommu->node);
814 if (!context)
815 return NULL;
816
817 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
818 phy_addr = virt_to_phys((void *)context);
819 *entry = phy_addr | 1;
820 __iommu_flush_cache(iommu, entry, sizeof(*entry));
821 }
822 return &context[devfn];
823 }
824
iommu_dummy(struct device * dev)825 static int iommu_dummy(struct device *dev)
826 {
827 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
828 }
829
device_to_iommu(struct device * dev,u8 * bus,u8 * devfn)830 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
831 {
832 struct dmar_drhd_unit *drhd = NULL;
833 struct intel_iommu *iommu;
834 struct device *tmp;
835 struct pci_dev *ptmp, *pdev = NULL;
836 u16 segment = 0;
837 int i;
838
839 if (iommu_dummy(dev))
840 return NULL;
841
842 if (dev_is_pci(dev)) {
843 struct pci_dev *pf_pdev;
844
845 pdev = to_pci_dev(dev);
846
847 #ifdef CONFIG_X86
848 /* VMD child devices currently cannot be handled individually */
849 if (is_vmd(pdev->bus))
850 return NULL;
851 #endif
852
853 /* VFs aren't listed in scope tables; we need to look up
854 * the PF instead to find the IOMMU. */
855 pf_pdev = pci_physfn(pdev);
856 dev = &pf_pdev->dev;
857 segment = pci_domain_nr(pdev->bus);
858 } else if (has_acpi_companion(dev))
859 dev = &ACPI_COMPANION(dev)->dev;
860
861 rcu_read_lock();
862 for_each_active_iommu(iommu, drhd) {
863 if (pdev && segment != drhd->segment)
864 continue;
865
866 for_each_active_dev_scope(drhd->devices,
867 drhd->devices_cnt, i, tmp) {
868 if (tmp == dev) {
869 /* For a VF use its original BDF# not that of the PF
870 * which we used for the IOMMU lookup. Strictly speaking
871 * we could do this for all PCI devices; we only need to
872 * get the BDF# from the scope table for ACPI matches. */
873 if (pdev && pdev->is_virtfn)
874 goto got_pdev;
875
876 *bus = drhd->devices[i].bus;
877 *devfn = drhd->devices[i].devfn;
878 goto out;
879 }
880
881 if (!pdev || !dev_is_pci(tmp))
882 continue;
883
884 ptmp = to_pci_dev(tmp);
885 if (ptmp->subordinate &&
886 ptmp->subordinate->number <= pdev->bus->number &&
887 ptmp->subordinate->busn_res.end >= pdev->bus->number)
888 goto got_pdev;
889 }
890
891 if (pdev && drhd->include_all) {
892 got_pdev:
893 *bus = pdev->bus->number;
894 *devfn = pdev->devfn;
895 goto out;
896 }
897 }
898 iommu = NULL;
899 out:
900 rcu_read_unlock();
901
902 return iommu;
903 }
904
domain_flush_cache(struct dmar_domain * domain,void * addr,int size)905 static void domain_flush_cache(struct dmar_domain *domain,
906 void *addr, int size)
907 {
908 if (!domain->iommu_coherency)
909 clflush_cache_range(addr, size);
910 }
911
device_context_mapped(struct intel_iommu * iommu,u8 bus,u8 devfn)912 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
913 {
914 struct context_entry *context;
915 int ret = 0;
916 unsigned long flags;
917
918 spin_lock_irqsave(&iommu->lock, flags);
919 context = iommu_context_addr(iommu, bus, devfn, 0);
920 if (context)
921 ret = context_present(context);
922 spin_unlock_irqrestore(&iommu->lock, flags);
923 return ret;
924 }
925
free_context_table(struct intel_iommu * iommu)926 static void free_context_table(struct intel_iommu *iommu)
927 {
928 int i;
929 unsigned long flags;
930 struct context_entry *context;
931
932 spin_lock_irqsave(&iommu->lock, flags);
933 if (!iommu->root_entry) {
934 goto out;
935 }
936 for (i = 0; i < ROOT_ENTRY_NR; i++) {
937 context = iommu_context_addr(iommu, i, 0, 0);
938 if (context)
939 free_pgtable_page(context);
940
941 if (!ecs_enabled(iommu))
942 continue;
943
944 context = iommu_context_addr(iommu, i, 0x80, 0);
945 if (context)
946 free_pgtable_page(context);
947
948 }
949 free_pgtable_page(iommu->root_entry);
950 iommu->root_entry = NULL;
951 out:
952 spin_unlock_irqrestore(&iommu->lock, flags);
953 }
954
pfn_to_dma_pte(struct dmar_domain * domain,unsigned long pfn,int * target_level)955 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
956 unsigned long pfn, int *target_level)
957 {
958 struct dma_pte *parent, *pte = NULL;
959 int level = agaw_to_level(domain->agaw);
960 int offset;
961
962 BUG_ON(!domain->pgd);
963
964 if (!domain_pfn_supported(domain, pfn))
965 /* Address beyond IOMMU's addressing capabilities. */
966 return NULL;
967
968 parent = domain->pgd;
969
970 while (1) {
971 void *tmp_page;
972
973 offset = pfn_level_offset(pfn, level);
974 pte = &parent[offset];
975 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
976 break;
977 if (level == *target_level)
978 break;
979
980 if (!dma_pte_present(pte)) {
981 uint64_t pteval;
982
983 tmp_page = alloc_pgtable_page(domain->nid);
984
985 if (!tmp_page)
986 return NULL;
987
988 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
989 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
990 if (cmpxchg64(&pte->val, 0ULL, pteval))
991 /* Someone else set it while we were thinking; use theirs. */
992 free_pgtable_page(tmp_page);
993 else
994 domain_flush_cache(domain, pte, sizeof(*pte));
995 }
996 if (level == 1)
997 break;
998
999 parent = phys_to_virt(dma_pte_addr(pte));
1000 level--;
1001 }
1002
1003 if (!*target_level)
1004 *target_level = level;
1005
1006 return pte;
1007 }
1008
1009
1010 /* return address's pte at specific level */
dma_pfn_level_pte(struct dmar_domain * domain,unsigned long pfn,int level,int * large_page)1011 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1012 unsigned long pfn,
1013 int level, int *large_page)
1014 {
1015 struct dma_pte *parent, *pte = NULL;
1016 int total = agaw_to_level(domain->agaw);
1017 int offset;
1018
1019 parent = domain->pgd;
1020 while (level <= total) {
1021 offset = pfn_level_offset(pfn, total);
1022 pte = &parent[offset];
1023 if (level == total)
1024 return pte;
1025
1026 if (!dma_pte_present(pte)) {
1027 *large_page = total;
1028 break;
1029 }
1030
1031 if (dma_pte_superpage(pte)) {
1032 *large_page = total;
1033 return pte;
1034 }
1035
1036 parent = phys_to_virt(dma_pte_addr(pte));
1037 total--;
1038 }
1039 return NULL;
1040 }
1041
1042 /* clear last level pte, a tlb flush should be followed */
dma_pte_clear_range(struct dmar_domain * domain,unsigned long start_pfn,unsigned long last_pfn)1043 static void dma_pte_clear_range(struct dmar_domain *domain,
1044 unsigned long start_pfn,
1045 unsigned long last_pfn)
1046 {
1047 unsigned int large_page = 1;
1048 struct dma_pte *first_pte, *pte;
1049
1050 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1051 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1052 BUG_ON(start_pfn > last_pfn);
1053
1054 /* we don't need lock here; nobody else touches the iova range */
1055 do {
1056 large_page = 1;
1057 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1058 if (!pte) {
1059 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1060 continue;
1061 }
1062 do {
1063 dma_clear_pte(pte);
1064 start_pfn += lvl_to_nr_pages(large_page);
1065 pte++;
1066 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1067
1068 domain_flush_cache(domain, first_pte,
1069 (void *)pte - (void *)first_pte);
1070
1071 } while (start_pfn && start_pfn <= last_pfn);
1072 }
1073
dma_pte_free_level(struct dmar_domain * domain,int level,int retain_level,struct dma_pte * pte,unsigned long pfn,unsigned long start_pfn,unsigned long last_pfn)1074 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1075 int retain_level, struct dma_pte *pte,
1076 unsigned long pfn, unsigned long start_pfn,
1077 unsigned long last_pfn)
1078 {
1079 pfn = max(start_pfn, pfn);
1080 pte = &pte[pfn_level_offset(pfn, level)];
1081
1082 do {
1083 unsigned long level_pfn;
1084 struct dma_pte *level_pte;
1085
1086 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1087 goto next;
1088
1089 level_pfn = pfn & level_mask(level);
1090 level_pte = phys_to_virt(dma_pte_addr(pte));
1091
1092 if (level > 2) {
1093 dma_pte_free_level(domain, level - 1, retain_level,
1094 level_pte, level_pfn, start_pfn,
1095 last_pfn);
1096 }
1097
1098 /*
1099 * Free the page table if we're below the level we want to
1100 * retain and the range covers the entire table.
1101 */
1102 if (level < retain_level && !(start_pfn > level_pfn ||
1103 last_pfn < level_pfn + level_size(level) - 1)) {
1104 dma_clear_pte(pte);
1105 domain_flush_cache(domain, pte, sizeof(*pte));
1106 free_pgtable_page(level_pte);
1107 }
1108 next:
1109 pfn += level_size(level);
1110 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1111 }
1112
1113 /*
1114 * clear last level (leaf) ptes and free page table pages below the
1115 * level we wish to keep intact.
1116 */
dma_pte_free_pagetable(struct dmar_domain * domain,unsigned long start_pfn,unsigned long last_pfn,int retain_level)1117 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1118 unsigned long start_pfn,
1119 unsigned long last_pfn,
1120 int retain_level)
1121 {
1122 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1123 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1124 BUG_ON(start_pfn > last_pfn);
1125
1126 dma_pte_clear_range(domain, start_pfn, last_pfn);
1127
1128 /* We don't need lock here; nobody else touches the iova range */
1129 dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1130 domain->pgd, 0, start_pfn, last_pfn);
1131
1132 /* free pgd */
1133 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1134 free_pgtable_page(domain->pgd);
1135 domain->pgd = NULL;
1136 }
1137 }
1138
1139 /* When a page at a given level is being unlinked from its parent, we don't
1140 need to *modify* it at all. All we need to do is make a list of all the
1141 pages which can be freed just as soon as we've flushed the IOTLB and we
1142 know the hardware page-walk will no longer touch them.
1143 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1144 be freed. */
dma_pte_list_pagetables(struct dmar_domain * domain,int level,struct dma_pte * pte,struct page * freelist)1145 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1146 int level, struct dma_pte *pte,
1147 struct page *freelist)
1148 {
1149 struct page *pg;
1150
1151 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1152 pg->freelist = freelist;
1153 freelist = pg;
1154
1155 if (level == 1)
1156 return freelist;
1157
1158 pte = page_address(pg);
1159 do {
1160 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1161 freelist = dma_pte_list_pagetables(domain, level - 1,
1162 pte, freelist);
1163 pte++;
1164 } while (!first_pte_in_page(pte));
1165
1166 return freelist;
1167 }
1168
dma_pte_clear_level(struct dmar_domain * domain,int level,struct dma_pte * pte,unsigned long pfn,unsigned long start_pfn,unsigned long last_pfn,struct page * freelist)1169 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1170 struct dma_pte *pte, unsigned long pfn,
1171 unsigned long start_pfn,
1172 unsigned long last_pfn,
1173 struct page *freelist)
1174 {
1175 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1176
1177 pfn = max(start_pfn, pfn);
1178 pte = &pte[pfn_level_offset(pfn, level)];
1179
1180 do {
1181 unsigned long level_pfn;
1182
1183 if (!dma_pte_present(pte))
1184 goto next;
1185
1186 level_pfn = pfn & level_mask(level);
1187
1188 /* If range covers entire pagetable, free it */
1189 if (start_pfn <= level_pfn &&
1190 last_pfn >= level_pfn + level_size(level) - 1) {
1191 /* These suborbinate page tables are going away entirely. Don't
1192 bother to clear them; we're just going to *free* them. */
1193 if (level > 1 && !dma_pte_superpage(pte))
1194 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1195
1196 dma_clear_pte(pte);
1197 if (!first_pte)
1198 first_pte = pte;
1199 last_pte = pte;
1200 } else if (level > 1) {
1201 /* Recurse down into a level that isn't *entirely* obsolete */
1202 freelist = dma_pte_clear_level(domain, level - 1,
1203 phys_to_virt(dma_pte_addr(pte)),
1204 level_pfn, start_pfn, last_pfn,
1205 freelist);
1206 }
1207 next:
1208 pfn += level_size(level);
1209 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1210
1211 if (first_pte)
1212 domain_flush_cache(domain, first_pte,
1213 (void *)++last_pte - (void *)first_pte);
1214
1215 return freelist;
1216 }
1217
1218 /* We can't just free the pages because the IOMMU may still be walking
1219 the page tables, and may have cached the intermediate levels. The
1220 pages can only be freed after the IOTLB flush has been done. */
domain_unmap(struct dmar_domain * domain,unsigned long start_pfn,unsigned long last_pfn)1221 static struct page *domain_unmap(struct dmar_domain *domain,
1222 unsigned long start_pfn,
1223 unsigned long last_pfn)
1224 {
1225 struct page *freelist = NULL;
1226
1227 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1228 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1229 BUG_ON(start_pfn > last_pfn);
1230
1231 /* we don't need lock here; nobody else touches the iova range */
1232 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1233 domain->pgd, 0, start_pfn, last_pfn, NULL);
1234
1235 /* free pgd */
1236 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1237 struct page *pgd_page = virt_to_page(domain->pgd);
1238 pgd_page->freelist = freelist;
1239 freelist = pgd_page;
1240
1241 domain->pgd = NULL;
1242 }
1243
1244 return freelist;
1245 }
1246
dma_free_pagelist(struct page * freelist)1247 static void dma_free_pagelist(struct page *freelist)
1248 {
1249 struct page *pg;
1250
1251 while ((pg = freelist)) {
1252 freelist = pg->freelist;
1253 free_pgtable_page(page_address(pg));
1254 }
1255 }
1256
iova_entry_free(unsigned long data)1257 static void iova_entry_free(unsigned long data)
1258 {
1259 struct page *freelist = (struct page *)data;
1260
1261 dma_free_pagelist(freelist);
1262 }
1263
1264 /* iommu handling */
iommu_alloc_root_entry(struct intel_iommu * iommu)1265 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1266 {
1267 struct root_entry *root;
1268 unsigned long flags;
1269
1270 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1271 if (!root) {
1272 pr_err("Allocating root entry for %s failed\n",
1273 iommu->name);
1274 return -ENOMEM;
1275 }
1276
1277 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1278
1279 spin_lock_irqsave(&iommu->lock, flags);
1280 iommu->root_entry = root;
1281 spin_unlock_irqrestore(&iommu->lock, flags);
1282
1283 return 0;
1284 }
1285
iommu_set_root_entry(struct intel_iommu * iommu)1286 static void iommu_set_root_entry(struct intel_iommu *iommu)
1287 {
1288 u64 addr;
1289 u32 sts;
1290 unsigned long flag;
1291
1292 addr = virt_to_phys(iommu->root_entry);
1293 if (ecs_enabled(iommu))
1294 addr |= DMA_RTADDR_RTT;
1295
1296 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1297 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1298
1299 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1300
1301 /* Make sure hardware complete it */
1302 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1303 readl, (sts & DMA_GSTS_RTPS), sts);
1304
1305 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1306 }
1307
iommu_flush_write_buffer(struct intel_iommu * iommu)1308 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1309 {
1310 u32 val;
1311 unsigned long flag;
1312
1313 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1314 return;
1315
1316 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1317 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1318
1319 /* Make sure hardware complete it */
1320 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1321 readl, (!(val & DMA_GSTS_WBFS)), val);
1322
1323 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1324 }
1325
1326 /* return value determine if we need a write buffer flush */
__iommu_flush_context(struct intel_iommu * iommu,u16 did,u16 source_id,u8 function_mask,u64 type)1327 static void __iommu_flush_context(struct intel_iommu *iommu,
1328 u16 did, u16 source_id, u8 function_mask,
1329 u64 type)
1330 {
1331 u64 val = 0;
1332 unsigned long flag;
1333
1334 switch (type) {
1335 case DMA_CCMD_GLOBAL_INVL:
1336 val = DMA_CCMD_GLOBAL_INVL;
1337 break;
1338 case DMA_CCMD_DOMAIN_INVL:
1339 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1340 break;
1341 case DMA_CCMD_DEVICE_INVL:
1342 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1343 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1344 break;
1345 default:
1346 BUG();
1347 }
1348 val |= DMA_CCMD_ICC;
1349
1350 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1351 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1352
1353 /* Make sure hardware complete it */
1354 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1355 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1356
1357 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1358 }
1359
1360 /* return value determine if we need a write buffer flush */
__iommu_flush_iotlb(struct intel_iommu * iommu,u16 did,u64 addr,unsigned int size_order,u64 type)1361 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1362 u64 addr, unsigned int size_order, u64 type)
1363 {
1364 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1365 u64 val = 0, val_iva = 0;
1366 unsigned long flag;
1367
1368 switch (type) {
1369 case DMA_TLB_GLOBAL_FLUSH:
1370 /* global flush doesn't need set IVA_REG */
1371 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1372 break;
1373 case DMA_TLB_DSI_FLUSH:
1374 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1375 break;
1376 case DMA_TLB_PSI_FLUSH:
1377 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1378 /* IH bit is passed in as part of address */
1379 val_iva = size_order | addr;
1380 break;
1381 default:
1382 BUG();
1383 }
1384 /* Note: set drain read/write */
1385 #if 0
1386 /*
1387 * This is probably to be super secure.. Looks like we can
1388 * ignore it without any impact.
1389 */
1390 if (cap_read_drain(iommu->cap))
1391 val |= DMA_TLB_READ_DRAIN;
1392 #endif
1393 if (cap_write_drain(iommu->cap))
1394 val |= DMA_TLB_WRITE_DRAIN;
1395
1396 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1397 /* Note: Only uses first TLB reg currently */
1398 if (val_iva)
1399 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1400 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1401
1402 /* Make sure hardware complete it */
1403 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1404 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1405
1406 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1407
1408 /* check IOTLB invalidation granularity */
1409 if (DMA_TLB_IAIG(val) == 0)
1410 pr_err("Flush IOTLB failed\n");
1411 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1412 pr_debug("TLB flush request %Lx, actual %Lx\n",
1413 (unsigned long long)DMA_TLB_IIRG(type),
1414 (unsigned long long)DMA_TLB_IAIG(val));
1415 }
1416
1417 static struct device_domain_info *
iommu_support_dev_iotlb(struct dmar_domain * domain,struct intel_iommu * iommu,u8 bus,u8 devfn)1418 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1419 u8 bus, u8 devfn)
1420 {
1421 struct device_domain_info *info;
1422
1423 assert_spin_locked(&device_domain_lock);
1424
1425 if (!iommu->qi)
1426 return NULL;
1427
1428 list_for_each_entry(info, &domain->devices, link)
1429 if (info->iommu == iommu && info->bus == bus &&
1430 info->devfn == devfn) {
1431 if (info->ats_supported && info->dev)
1432 return info;
1433 break;
1434 }
1435
1436 return NULL;
1437 }
1438
domain_update_iotlb(struct dmar_domain * domain)1439 static void domain_update_iotlb(struct dmar_domain *domain)
1440 {
1441 struct device_domain_info *info;
1442 bool has_iotlb_device = false;
1443
1444 assert_spin_locked(&device_domain_lock);
1445
1446 list_for_each_entry(info, &domain->devices, link) {
1447 struct pci_dev *pdev;
1448
1449 if (!info->dev || !dev_is_pci(info->dev))
1450 continue;
1451
1452 pdev = to_pci_dev(info->dev);
1453 if (pdev->ats_enabled) {
1454 has_iotlb_device = true;
1455 break;
1456 }
1457 }
1458
1459 domain->has_iotlb_device = has_iotlb_device;
1460 }
1461
iommu_enable_dev_iotlb(struct device_domain_info * info)1462 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1463 {
1464 struct pci_dev *pdev;
1465
1466 assert_spin_locked(&device_domain_lock);
1467
1468 if (!info || !dev_is_pci(info->dev))
1469 return;
1470
1471 pdev = to_pci_dev(info->dev);
1472 /* For IOMMU that supports device IOTLB throttling (DIT), we assign
1473 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
1474 * queue depth at PF level. If DIT is not set, PFSID will be treated as
1475 * reserved, which should be set to 0.
1476 */
1477 if (!ecap_dit(info->iommu->ecap))
1478 info->pfsid = 0;
1479 else {
1480 struct pci_dev *pf_pdev;
1481
1482 /* pdev will be returned if device is not a vf */
1483 pf_pdev = pci_physfn(pdev);
1484 info->pfsid = PCI_DEVID(pf_pdev->bus->number, pf_pdev->devfn);
1485 }
1486
1487 #ifdef CONFIG_INTEL_IOMMU_SVM
1488 /* The PCIe spec, in its wisdom, declares that the behaviour of
1489 the device if you enable PASID support after ATS support is
1490 undefined. So always enable PASID support on devices which
1491 have it, even if we can't yet know if we're ever going to
1492 use it. */
1493 if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1494 info->pasid_enabled = 1;
1495
1496 if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1497 info->pri_enabled = 1;
1498 #endif
1499 if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1500 info->ats_enabled = 1;
1501 domain_update_iotlb(info->domain);
1502 info->ats_qdep = pci_ats_queue_depth(pdev);
1503 }
1504 }
1505
iommu_disable_dev_iotlb(struct device_domain_info * info)1506 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1507 {
1508 struct pci_dev *pdev;
1509
1510 assert_spin_locked(&device_domain_lock);
1511
1512 if (!dev_is_pci(info->dev))
1513 return;
1514
1515 pdev = to_pci_dev(info->dev);
1516
1517 if (info->ats_enabled) {
1518 pci_disable_ats(pdev);
1519 info->ats_enabled = 0;
1520 domain_update_iotlb(info->domain);
1521 }
1522 #ifdef CONFIG_INTEL_IOMMU_SVM
1523 if (info->pri_enabled) {
1524 pci_disable_pri(pdev);
1525 info->pri_enabled = 0;
1526 }
1527 if (info->pasid_enabled) {
1528 pci_disable_pasid(pdev);
1529 info->pasid_enabled = 0;
1530 }
1531 #endif
1532 }
1533
iommu_flush_dev_iotlb(struct dmar_domain * domain,u64 addr,unsigned mask)1534 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1535 u64 addr, unsigned mask)
1536 {
1537 u16 sid, qdep;
1538 unsigned long flags;
1539 struct device_domain_info *info;
1540
1541 if (!domain->has_iotlb_device)
1542 return;
1543
1544 spin_lock_irqsave(&device_domain_lock, flags);
1545 list_for_each_entry(info, &domain->devices, link) {
1546 if (!info->ats_enabled)
1547 continue;
1548
1549 sid = info->bus << 8 | info->devfn;
1550 qdep = info->ats_qdep;
1551 qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
1552 qdep, addr, mask);
1553 }
1554 spin_unlock_irqrestore(&device_domain_lock, flags);
1555 }
1556
iommu_flush_iotlb_psi(struct intel_iommu * iommu,struct dmar_domain * domain,unsigned long pfn,unsigned int pages,int ih,int map)1557 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1558 struct dmar_domain *domain,
1559 unsigned long pfn, unsigned int pages,
1560 int ih, int map)
1561 {
1562 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1563 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1564 u16 did = domain->iommu_did[iommu->seq_id];
1565
1566 BUG_ON(pages == 0);
1567
1568 if (ih)
1569 ih = 1 << 6;
1570 /*
1571 * Fallback to domain selective flush if no PSI support or the size is
1572 * too big.
1573 * PSI requires page size to be 2 ^ x, and the base address is naturally
1574 * aligned to the size
1575 */
1576 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1577 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1578 DMA_TLB_DSI_FLUSH);
1579 else
1580 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1581 DMA_TLB_PSI_FLUSH);
1582
1583 /*
1584 * In caching mode, changes of pages from non-present to present require
1585 * flush. However, device IOTLB doesn't need to be flushed in this case.
1586 */
1587 if (!cap_caching_mode(iommu->cap) || !map)
1588 iommu_flush_dev_iotlb(domain, addr, mask);
1589 }
1590
1591 /* Notification for newly created mappings */
__mapping_notify_one(struct intel_iommu * iommu,struct dmar_domain * domain,unsigned long pfn,unsigned int pages)1592 static inline void __mapping_notify_one(struct intel_iommu *iommu,
1593 struct dmar_domain *domain,
1594 unsigned long pfn, unsigned int pages)
1595 {
1596 /* It's a non-present to present mapping. Only flush if caching mode */
1597 if (cap_caching_mode(iommu->cap))
1598 iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
1599 else
1600 iommu_flush_write_buffer(iommu);
1601 }
1602
iommu_flush_iova(struct iova_domain * iovad)1603 static void iommu_flush_iova(struct iova_domain *iovad)
1604 {
1605 struct dmar_domain *domain;
1606 int idx;
1607
1608 domain = container_of(iovad, struct dmar_domain, iovad);
1609
1610 for_each_domain_iommu(idx, domain) {
1611 struct intel_iommu *iommu = g_iommus[idx];
1612 u16 did = domain->iommu_did[iommu->seq_id];
1613
1614 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1615
1616 if (!cap_caching_mode(iommu->cap))
1617 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1618 0, MAX_AGAW_PFN_WIDTH);
1619 }
1620 }
1621
iommu_disable_protect_mem_regions(struct intel_iommu * iommu)1622 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1623 {
1624 u32 pmen;
1625 unsigned long flags;
1626
1627 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1628 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1629 pmen &= ~DMA_PMEN_EPM;
1630 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1631
1632 /* wait for the protected region status bit to clear */
1633 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1634 readl, !(pmen & DMA_PMEN_PRS), pmen);
1635
1636 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1637 }
1638
iommu_enable_translation(struct intel_iommu * iommu)1639 static void iommu_enable_translation(struct intel_iommu *iommu)
1640 {
1641 u32 sts;
1642 unsigned long flags;
1643
1644 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1645 iommu->gcmd |= DMA_GCMD_TE;
1646 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1647
1648 /* Make sure hardware complete it */
1649 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1650 readl, (sts & DMA_GSTS_TES), sts);
1651
1652 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1653 }
1654
iommu_disable_translation(struct intel_iommu * iommu)1655 static void iommu_disable_translation(struct intel_iommu *iommu)
1656 {
1657 u32 sts;
1658 unsigned long flag;
1659
1660 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1661 iommu->gcmd &= ~DMA_GCMD_TE;
1662 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1663
1664 /* Make sure hardware complete it */
1665 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1666 readl, (!(sts & DMA_GSTS_TES)), sts);
1667
1668 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1669 }
1670
1671
iommu_init_domains(struct intel_iommu * iommu)1672 static int iommu_init_domains(struct intel_iommu *iommu)
1673 {
1674 u32 ndomains, nlongs;
1675 size_t size;
1676
1677 ndomains = cap_ndoms(iommu->cap);
1678 pr_debug("%s: Number of Domains supported <%d>\n",
1679 iommu->name, ndomains);
1680 nlongs = BITS_TO_LONGS(ndomains);
1681
1682 spin_lock_init(&iommu->lock);
1683
1684 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1685 if (!iommu->domain_ids) {
1686 pr_err("%s: Allocating domain id array failed\n",
1687 iommu->name);
1688 return -ENOMEM;
1689 }
1690
1691 size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1692 iommu->domains = kzalloc(size, GFP_KERNEL);
1693
1694 if (iommu->domains) {
1695 size = 256 * sizeof(struct dmar_domain *);
1696 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1697 }
1698
1699 if (!iommu->domains || !iommu->domains[0]) {
1700 pr_err("%s: Allocating domain array failed\n",
1701 iommu->name);
1702 kfree(iommu->domain_ids);
1703 kfree(iommu->domains);
1704 iommu->domain_ids = NULL;
1705 iommu->domains = NULL;
1706 return -ENOMEM;
1707 }
1708
1709
1710
1711 /*
1712 * If Caching mode is set, then invalid translations are tagged
1713 * with domain-id 0, hence we need to pre-allocate it. We also
1714 * use domain-id 0 as a marker for non-allocated domain-id, so
1715 * make sure it is not used for a real domain.
1716 */
1717 set_bit(0, iommu->domain_ids);
1718
1719 return 0;
1720 }
1721
disable_dmar_iommu(struct intel_iommu * iommu)1722 static void disable_dmar_iommu(struct intel_iommu *iommu)
1723 {
1724 struct device_domain_info *info, *tmp;
1725 unsigned long flags;
1726
1727 if (!iommu->domains || !iommu->domain_ids)
1728 return;
1729
1730 again:
1731 spin_lock_irqsave(&device_domain_lock, flags);
1732 list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1733 struct dmar_domain *domain;
1734
1735 if (info->iommu != iommu)
1736 continue;
1737
1738 if (!info->dev || !info->domain)
1739 continue;
1740
1741 domain = info->domain;
1742
1743 __dmar_remove_one_dev_info(info);
1744
1745 if (!domain_type_is_vm_or_si(domain)) {
1746 /*
1747 * The domain_exit() function can't be called under
1748 * device_domain_lock, as it takes this lock itself.
1749 * So release the lock here and re-run the loop
1750 * afterwards.
1751 */
1752 spin_unlock_irqrestore(&device_domain_lock, flags);
1753 domain_exit(domain);
1754 goto again;
1755 }
1756 }
1757 spin_unlock_irqrestore(&device_domain_lock, flags);
1758
1759 if (iommu->gcmd & DMA_GCMD_TE)
1760 iommu_disable_translation(iommu);
1761 }
1762
free_dmar_iommu(struct intel_iommu * iommu)1763 static void free_dmar_iommu(struct intel_iommu *iommu)
1764 {
1765 if ((iommu->domains) && (iommu->domain_ids)) {
1766 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1767 int i;
1768
1769 for (i = 0; i < elems; i++)
1770 kfree(iommu->domains[i]);
1771 kfree(iommu->domains);
1772 kfree(iommu->domain_ids);
1773 iommu->domains = NULL;
1774 iommu->domain_ids = NULL;
1775 }
1776
1777 g_iommus[iommu->seq_id] = NULL;
1778
1779 /* free context mapping */
1780 free_context_table(iommu);
1781
1782 #ifdef CONFIG_INTEL_IOMMU_SVM
1783 if (pasid_enabled(iommu)) {
1784 if (ecap_prs(iommu->ecap))
1785 intel_svm_finish_prq(iommu);
1786 intel_svm_exit(iommu);
1787 }
1788 #endif
1789 }
1790
alloc_domain(int flags)1791 static struct dmar_domain *alloc_domain(int flags)
1792 {
1793 struct dmar_domain *domain;
1794
1795 domain = alloc_domain_mem();
1796 if (!domain)
1797 return NULL;
1798
1799 memset(domain, 0, sizeof(*domain));
1800 domain->nid = -1;
1801 domain->flags = flags;
1802 domain->has_iotlb_device = false;
1803 INIT_LIST_HEAD(&domain->devices);
1804
1805 return domain;
1806 }
1807
1808 /* Must be called with iommu->lock */
domain_attach_iommu(struct dmar_domain * domain,struct intel_iommu * iommu)1809 static int domain_attach_iommu(struct dmar_domain *domain,
1810 struct intel_iommu *iommu)
1811 {
1812 unsigned long ndomains;
1813 int num;
1814
1815 assert_spin_locked(&device_domain_lock);
1816 assert_spin_locked(&iommu->lock);
1817
1818 domain->iommu_refcnt[iommu->seq_id] += 1;
1819 domain->iommu_count += 1;
1820 if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1821 ndomains = cap_ndoms(iommu->cap);
1822 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1823
1824 if (num >= ndomains) {
1825 pr_err("%s: No free domain ids\n", iommu->name);
1826 domain->iommu_refcnt[iommu->seq_id] -= 1;
1827 domain->iommu_count -= 1;
1828 return -ENOSPC;
1829 }
1830
1831 set_bit(num, iommu->domain_ids);
1832 set_iommu_domain(iommu, num, domain);
1833
1834 domain->iommu_did[iommu->seq_id] = num;
1835 domain->nid = iommu->node;
1836
1837 domain_update_iommu_cap(domain);
1838 }
1839
1840 return 0;
1841 }
1842
domain_detach_iommu(struct dmar_domain * domain,struct intel_iommu * iommu)1843 static int domain_detach_iommu(struct dmar_domain *domain,
1844 struct intel_iommu *iommu)
1845 {
1846 int num, count = INT_MAX;
1847
1848 assert_spin_locked(&device_domain_lock);
1849 assert_spin_locked(&iommu->lock);
1850
1851 domain->iommu_refcnt[iommu->seq_id] -= 1;
1852 count = --domain->iommu_count;
1853 if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1854 num = domain->iommu_did[iommu->seq_id];
1855 clear_bit(num, iommu->domain_ids);
1856 set_iommu_domain(iommu, num, NULL);
1857
1858 domain_update_iommu_cap(domain);
1859 domain->iommu_did[iommu->seq_id] = 0;
1860 }
1861
1862 return count;
1863 }
1864
1865 static struct iova_domain reserved_iova_list;
1866 static struct lock_class_key reserved_rbtree_key;
1867
dmar_init_reserved_ranges(void)1868 static int dmar_init_reserved_ranges(void)
1869 {
1870 struct pci_dev *pdev = NULL;
1871 struct iova *iova;
1872 int i;
1873
1874 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1875
1876 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1877 &reserved_rbtree_key);
1878
1879 /* IOAPIC ranges shouldn't be accessed by DMA */
1880 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1881 IOVA_PFN(IOAPIC_RANGE_END));
1882 if (!iova) {
1883 pr_err("Reserve IOAPIC range failed\n");
1884 return -ENODEV;
1885 }
1886
1887 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1888 for_each_pci_dev(pdev) {
1889 struct resource *r;
1890
1891 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1892 r = &pdev->resource[i];
1893 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1894 continue;
1895 iova = reserve_iova(&reserved_iova_list,
1896 IOVA_PFN(r->start),
1897 IOVA_PFN(r->end));
1898 if (!iova) {
1899 pr_err("Reserve iova failed\n");
1900 return -ENODEV;
1901 }
1902 }
1903 }
1904 return 0;
1905 }
1906
domain_reserve_special_ranges(struct dmar_domain * domain)1907 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1908 {
1909 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1910 }
1911
guestwidth_to_adjustwidth(int gaw)1912 static inline int guestwidth_to_adjustwidth(int gaw)
1913 {
1914 int agaw;
1915 int r = (gaw - 12) % 9;
1916
1917 if (r == 0)
1918 agaw = gaw;
1919 else
1920 agaw = gaw + 9 - r;
1921 if (agaw > 64)
1922 agaw = 64;
1923 return agaw;
1924 }
1925
domain_init(struct dmar_domain * domain,struct intel_iommu * iommu,int guest_width)1926 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1927 int guest_width)
1928 {
1929 int adjust_width, agaw;
1930 unsigned long sagaw;
1931 int err;
1932
1933 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
1934
1935 err = init_iova_flush_queue(&domain->iovad,
1936 iommu_flush_iova, iova_entry_free);
1937 if (err)
1938 return err;
1939
1940 domain_reserve_special_ranges(domain);
1941
1942 /* calculate AGAW */
1943 if (guest_width > cap_mgaw(iommu->cap))
1944 guest_width = cap_mgaw(iommu->cap);
1945 domain->gaw = guest_width;
1946 adjust_width = guestwidth_to_adjustwidth(guest_width);
1947 agaw = width_to_agaw(adjust_width);
1948 sagaw = cap_sagaw(iommu->cap);
1949 if (!test_bit(agaw, &sagaw)) {
1950 /* hardware doesn't support it, choose a bigger one */
1951 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1952 agaw = find_next_bit(&sagaw, 5, agaw);
1953 if (agaw >= 5)
1954 return -ENODEV;
1955 }
1956 domain->agaw = agaw;
1957
1958 if (ecap_coherent(iommu->ecap))
1959 domain->iommu_coherency = 1;
1960 else
1961 domain->iommu_coherency = 0;
1962
1963 if (ecap_sc_support(iommu->ecap))
1964 domain->iommu_snooping = 1;
1965 else
1966 domain->iommu_snooping = 0;
1967
1968 if (intel_iommu_superpage)
1969 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1970 else
1971 domain->iommu_superpage = 0;
1972
1973 domain->nid = iommu->node;
1974
1975 /* always allocate the top pgd */
1976 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1977 if (!domain->pgd)
1978 return -ENOMEM;
1979 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1980 return 0;
1981 }
1982
domain_exit(struct dmar_domain * domain)1983 static void domain_exit(struct dmar_domain *domain)
1984 {
1985 struct page *freelist = NULL;
1986
1987 /* Domain 0 is reserved, so dont process it */
1988 if (!domain)
1989 return;
1990
1991 /* Remove associated devices and clear attached or cached domains */
1992 rcu_read_lock();
1993 domain_remove_dev_info(domain);
1994 rcu_read_unlock();
1995
1996 /* destroy iovas */
1997 put_iova_domain(&domain->iovad);
1998
1999 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
2000
2001 dma_free_pagelist(freelist);
2002
2003 free_domain_mem(domain);
2004 }
2005
domain_context_mapping_one(struct dmar_domain * domain,struct intel_iommu * iommu,u8 bus,u8 devfn)2006 static int domain_context_mapping_one(struct dmar_domain *domain,
2007 struct intel_iommu *iommu,
2008 u8 bus, u8 devfn)
2009 {
2010 u16 did = domain->iommu_did[iommu->seq_id];
2011 int translation = CONTEXT_TT_MULTI_LEVEL;
2012 struct device_domain_info *info = NULL;
2013 struct context_entry *context;
2014 unsigned long flags;
2015 struct dma_pte *pgd;
2016 int ret, agaw;
2017
2018 WARN_ON(did == 0);
2019
2020 if (hw_pass_through && domain_type_is_si(domain))
2021 translation = CONTEXT_TT_PASS_THROUGH;
2022
2023 pr_debug("Set context mapping for %02x:%02x.%d\n",
2024 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
2025
2026 BUG_ON(!domain->pgd);
2027
2028 spin_lock_irqsave(&device_domain_lock, flags);
2029 spin_lock(&iommu->lock);
2030
2031 ret = -ENOMEM;
2032 context = iommu_context_addr(iommu, bus, devfn, 1);
2033 if (!context)
2034 goto out_unlock;
2035
2036 ret = 0;
2037 if (context_present(context))
2038 goto out_unlock;
2039
2040 /*
2041 * For kdump cases, old valid entries may be cached due to the
2042 * in-flight DMA and copied pgtable, but there is no unmapping
2043 * behaviour for them, thus we need an explicit cache flush for
2044 * the newly-mapped device. For kdump, at this point, the device
2045 * is supposed to finish reset at its driver probe stage, so no
2046 * in-flight DMA will exist, and we don't need to worry anymore
2047 * hereafter.
2048 */
2049 if (context_copied(context)) {
2050 u16 did_old = context_domain_id(context);
2051
2052 if (did_old < cap_ndoms(iommu->cap)) {
2053 iommu->flush.flush_context(iommu, did_old,
2054 (((u16)bus) << 8) | devfn,
2055 DMA_CCMD_MASK_NOBIT,
2056 DMA_CCMD_DEVICE_INVL);
2057 iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
2058 DMA_TLB_DSI_FLUSH);
2059 }
2060 }
2061
2062 pgd = domain->pgd;
2063
2064 context_clear_entry(context);
2065 context_set_domain_id(context, did);
2066
2067 /*
2068 * Skip top levels of page tables for iommu which has less agaw
2069 * than default. Unnecessary for PT mode.
2070 */
2071 if (translation != CONTEXT_TT_PASS_THROUGH) {
2072 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
2073 ret = -ENOMEM;
2074 pgd = phys_to_virt(dma_pte_addr(pgd));
2075 if (!dma_pte_present(pgd))
2076 goto out_unlock;
2077 }
2078
2079 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2080 if (info && info->ats_supported)
2081 translation = CONTEXT_TT_DEV_IOTLB;
2082 else
2083 translation = CONTEXT_TT_MULTI_LEVEL;
2084
2085 context_set_address_root(context, virt_to_phys(pgd));
2086 context_set_address_width(context, iommu->agaw);
2087 } else {
2088 /*
2089 * In pass through mode, AW must be programmed to
2090 * indicate the largest AGAW value supported by
2091 * hardware. And ASR is ignored by hardware.
2092 */
2093 context_set_address_width(context, iommu->msagaw);
2094 }
2095
2096 context_set_translation_type(context, translation);
2097 context_set_fault_enable(context);
2098 context_set_present(context);
2099 domain_flush_cache(domain, context, sizeof(*context));
2100
2101 /*
2102 * It's a non-present to present mapping. If hardware doesn't cache
2103 * non-present entry we only need to flush the write-buffer. If the
2104 * _does_ cache non-present entries, then it does so in the special
2105 * domain #0, which we have to flush:
2106 */
2107 if (cap_caching_mode(iommu->cap)) {
2108 iommu->flush.flush_context(iommu, 0,
2109 (((u16)bus) << 8) | devfn,
2110 DMA_CCMD_MASK_NOBIT,
2111 DMA_CCMD_DEVICE_INVL);
2112 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2113 } else {
2114 iommu_flush_write_buffer(iommu);
2115 }
2116 iommu_enable_dev_iotlb(info);
2117
2118 ret = 0;
2119
2120 out_unlock:
2121 spin_unlock(&iommu->lock);
2122 spin_unlock_irqrestore(&device_domain_lock, flags);
2123
2124 return ret;
2125 }
2126
2127 struct domain_context_mapping_data {
2128 struct dmar_domain *domain;
2129 struct intel_iommu *iommu;
2130 };
2131
domain_context_mapping_cb(struct pci_dev * pdev,u16 alias,void * opaque)2132 static int domain_context_mapping_cb(struct pci_dev *pdev,
2133 u16 alias, void *opaque)
2134 {
2135 struct domain_context_mapping_data *data = opaque;
2136
2137 return domain_context_mapping_one(data->domain, data->iommu,
2138 PCI_BUS_NUM(alias), alias & 0xff);
2139 }
2140
2141 static int
domain_context_mapping(struct dmar_domain * domain,struct device * dev)2142 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2143 {
2144 struct intel_iommu *iommu;
2145 u8 bus, devfn;
2146 struct domain_context_mapping_data data;
2147
2148 iommu = device_to_iommu(dev, &bus, &devfn);
2149 if (!iommu)
2150 return -ENODEV;
2151
2152 if (!dev_is_pci(dev))
2153 return domain_context_mapping_one(domain, iommu, bus, devfn);
2154
2155 data.domain = domain;
2156 data.iommu = iommu;
2157
2158 return pci_for_each_dma_alias(to_pci_dev(dev),
2159 &domain_context_mapping_cb, &data);
2160 }
2161
domain_context_mapped_cb(struct pci_dev * pdev,u16 alias,void * opaque)2162 static int domain_context_mapped_cb(struct pci_dev *pdev,
2163 u16 alias, void *opaque)
2164 {
2165 struct intel_iommu *iommu = opaque;
2166
2167 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2168 }
2169
domain_context_mapped(struct device * dev)2170 static int domain_context_mapped(struct device *dev)
2171 {
2172 struct intel_iommu *iommu;
2173 u8 bus, devfn;
2174
2175 iommu = device_to_iommu(dev, &bus, &devfn);
2176 if (!iommu)
2177 return -ENODEV;
2178
2179 if (!dev_is_pci(dev))
2180 return device_context_mapped(iommu, bus, devfn);
2181
2182 return !pci_for_each_dma_alias(to_pci_dev(dev),
2183 domain_context_mapped_cb, iommu);
2184 }
2185
2186 /* Returns a number of VTD pages, but aligned to MM page size */
aligned_nrpages(unsigned long host_addr,size_t size)2187 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2188 size_t size)
2189 {
2190 host_addr &= ~PAGE_MASK;
2191 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2192 }
2193
2194 /* Return largest possible superpage level for a given mapping */
hardware_largepage_caps(struct dmar_domain * domain,unsigned long iov_pfn,unsigned long phy_pfn,unsigned long pages)2195 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2196 unsigned long iov_pfn,
2197 unsigned long phy_pfn,
2198 unsigned long pages)
2199 {
2200 int support, level = 1;
2201 unsigned long pfnmerge;
2202
2203 support = domain->iommu_superpage;
2204
2205 /* To use a large page, the virtual *and* physical addresses
2206 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2207 of them will mean we have to use smaller pages. So just
2208 merge them and check both at once. */
2209 pfnmerge = iov_pfn | phy_pfn;
2210
2211 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2212 pages >>= VTD_STRIDE_SHIFT;
2213 if (!pages)
2214 break;
2215 pfnmerge >>= VTD_STRIDE_SHIFT;
2216 level++;
2217 support--;
2218 }
2219 return level;
2220 }
2221
__domain_mapping(struct dmar_domain * domain,unsigned long iov_pfn,struct scatterlist * sg,unsigned long phys_pfn,unsigned long nr_pages,int prot)2222 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2223 struct scatterlist *sg, unsigned long phys_pfn,
2224 unsigned long nr_pages, int prot)
2225 {
2226 struct dma_pte *first_pte = NULL, *pte = NULL;
2227 phys_addr_t uninitialized_var(pteval);
2228 unsigned long sg_res = 0;
2229 unsigned int largepage_lvl = 0;
2230 unsigned long lvl_pages = 0;
2231
2232 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2233
2234 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2235 return -EINVAL;
2236
2237 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2238
2239 if (!sg) {
2240 sg_res = nr_pages;
2241 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2242 }
2243
2244 while (nr_pages > 0) {
2245 uint64_t tmp;
2246
2247 if (!sg_res) {
2248 unsigned int pgoff = sg->offset & ~PAGE_MASK;
2249
2250 sg_res = aligned_nrpages(sg->offset, sg->length);
2251 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2252 sg->dma_length = sg->length;
2253 pteval = (sg_phys(sg) - pgoff) | prot;
2254 phys_pfn = pteval >> VTD_PAGE_SHIFT;
2255 }
2256
2257 if (!pte) {
2258 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2259
2260 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2261 if (!pte)
2262 return -ENOMEM;
2263 /* It is large page*/
2264 if (largepage_lvl > 1) {
2265 unsigned long nr_superpages, end_pfn;
2266
2267 pteval |= DMA_PTE_LARGE_PAGE;
2268 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2269
2270 nr_superpages = sg_res / lvl_pages;
2271 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2272
2273 /*
2274 * Ensure that old small page tables are
2275 * removed to make room for superpage(s).
2276 * We're adding new large pages, so make sure
2277 * we don't remove their parent tables.
2278 */
2279 dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
2280 largepage_lvl + 1);
2281 } else {
2282 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2283 }
2284
2285 }
2286 /* We don't need lock here, nobody else
2287 * touches the iova range
2288 */
2289 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2290 if (tmp) {
2291 static int dumps = 5;
2292 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2293 iov_pfn, tmp, (unsigned long long)pteval);
2294 if (dumps) {
2295 dumps--;
2296 debug_dma_dump_mappings(NULL);
2297 }
2298 WARN_ON(1);
2299 }
2300
2301 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2302
2303 BUG_ON(nr_pages < lvl_pages);
2304 BUG_ON(sg_res < lvl_pages);
2305
2306 nr_pages -= lvl_pages;
2307 iov_pfn += lvl_pages;
2308 phys_pfn += lvl_pages;
2309 pteval += lvl_pages * VTD_PAGE_SIZE;
2310 sg_res -= lvl_pages;
2311
2312 /* If the next PTE would be the first in a new page, then we
2313 need to flush the cache on the entries we've just written.
2314 And then we'll need to recalculate 'pte', so clear it and
2315 let it get set again in the if (!pte) block above.
2316
2317 If we're done (!nr_pages) we need to flush the cache too.
2318
2319 Also if we've been setting superpages, we may need to
2320 recalculate 'pte' and switch back to smaller pages for the
2321 end of the mapping, if the trailing size is not enough to
2322 use another superpage (i.e. sg_res < lvl_pages). */
2323 pte++;
2324 if (!nr_pages || first_pte_in_page(pte) ||
2325 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2326 domain_flush_cache(domain, first_pte,
2327 (void *)pte - (void *)first_pte);
2328 pte = NULL;
2329 }
2330
2331 if (!sg_res && nr_pages)
2332 sg = sg_next(sg);
2333 }
2334 return 0;
2335 }
2336
domain_mapping(struct dmar_domain * domain,unsigned long iov_pfn,struct scatterlist * sg,unsigned long phys_pfn,unsigned long nr_pages,int prot)2337 static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2338 struct scatterlist *sg, unsigned long phys_pfn,
2339 unsigned long nr_pages, int prot)
2340 {
2341 int ret;
2342 struct intel_iommu *iommu;
2343
2344 /* Do the real mapping first */
2345 ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
2346 if (ret)
2347 return ret;
2348
2349 /* Notify about the new mapping */
2350 if (domain_type_is_vm(domain)) {
2351 /* VM typed domains can have more than one IOMMUs */
2352 int iommu_id;
2353 for_each_domain_iommu(iommu_id, domain) {
2354 iommu = g_iommus[iommu_id];
2355 __mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
2356 }
2357 } else {
2358 /* General domains only have one IOMMU */
2359 iommu = domain_get_iommu(domain);
2360 __mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
2361 }
2362
2363 return 0;
2364 }
2365
domain_sg_mapping(struct dmar_domain * domain,unsigned long iov_pfn,struct scatterlist * sg,unsigned long nr_pages,int prot)2366 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2367 struct scatterlist *sg, unsigned long nr_pages,
2368 int prot)
2369 {
2370 return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2371 }
2372
domain_pfn_mapping(struct dmar_domain * domain,unsigned long iov_pfn,unsigned long phys_pfn,unsigned long nr_pages,int prot)2373 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2374 unsigned long phys_pfn, unsigned long nr_pages,
2375 int prot)
2376 {
2377 return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2378 }
2379
domain_context_clear_one(struct intel_iommu * iommu,u8 bus,u8 devfn)2380 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2381 {
2382 unsigned long flags;
2383 struct context_entry *context;
2384 u16 did_old;
2385
2386 if (!iommu)
2387 return;
2388
2389 spin_lock_irqsave(&iommu->lock, flags);
2390 context = iommu_context_addr(iommu, bus, devfn, 0);
2391 if (!context) {
2392 spin_unlock_irqrestore(&iommu->lock, flags);
2393 return;
2394 }
2395 did_old = context_domain_id(context);
2396 context_clear_entry(context);
2397 __iommu_flush_cache(iommu, context, sizeof(*context));
2398 spin_unlock_irqrestore(&iommu->lock, flags);
2399 iommu->flush.flush_context(iommu,
2400 did_old,
2401 (((u16)bus) << 8) | devfn,
2402 DMA_CCMD_MASK_NOBIT,
2403 DMA_CCMD_DEVICE_INVL);
2404 iommu->flush.flush_iotlb(iommu,
2405 did_old,
2406 0,
2407 0,
2408 DMA_TLB_DSI_FLUSH);
2409 }
2410
unlink_domain_info(struct device_domain_info * info)2411 static inline void unlink_domain_info(struct device_domain_info *info)
2412 {
2413 assert_spin_locked(&device_domain_lock);
2414 list_del(&info->link);
2415 list_del(&info->global);
2416 if (info->dev)
2417 info->dev->archdata.iommu = NULL;
2418 }
2419
domain_remove_dev_info(struct dmar_domain * domain)2420 static void domain_remove_dev_info(struct dmar_domain *domain)
2421 {
2422 struct device_domain_info *info, *tmp;
2423 unsigned long flags;
2424
2425 spin_lock_irqsave(&device_domain_lock, flags);
2426 list_for_each_entry_safe(info, tmp, &domain->devices, link)
2427 __dmar_remove_one_dev_info(info);
2428 spin_unlock_irqrestore(&device_domain_lock, flags);
2429 }
2430
2431 /*
2432 * find_domain
2433 * Note: we use struct device->archdata.iommu stores the info
2434 */
find_domain(struct device * dev)2435 static struct dmar_domain *find_domain(struct device *dev)
2436 {
2437 struct device_domain_info *info;
2438
2439 /* No lock here, assumes no domain exit in normal case */
2440 info = dev->archdata.iommu;
2441 if (likely(info))
2442 return info->domain;
2443 return NULL;
2444 }
2445
2446 static inline struct device_domain_info *
dmar_search_domain_by_dev_info(int segment,int bus,int devfn)2447 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2448 {
2449 struct device_domain_info *info;
2450
2451 list_for_each_entry(info, &device_domain_list, global)
2452 if (info->iommu->segment == segment && info->bus == bus &&
2453 info->devfn == devfn)
2454 return info;
2455
2456 return NULL;
2457 }
2458
dmar_insert_one_dev_info(struct intel_iommu * iommu,int bus,int devfn,struct device * dev,struct dmar_domain * domain)2459 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2460 int bus, int devfn,
2461 struct device *dev,
2462 struct dmar_domain *domain)
2463 {
2464 struct dmar_domain *found = NULL;
2465 struct device_domain_info *info;
2466 unsigned long flags;
2467 int ret;
2468
2469 info = alloc_devinfo_mem();
2470 if (!info)
2471 return NULL;
2472
2473 info->bus = bus;
2474 info->devfn = devfn;
2475 info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2476 info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2477 info->ats_qdep = 0;
2478 info->dev = dev;
2479 info->domain = domain;
2480 info->iommu = iommu;
2481 info->pasid_table = NULL;
2482
2483 if (dev && dev_is_pci(dev)) {
2484 struct pci_dev *pdev = to_pci_dev(info->dev);
2485
2486 if (!pci_ats_disabled() &&
2487 ecap_dev_iotlb_support(iommu->ecap) &&
2488 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2489 dmar_find_matched_atsr_unit(pdev))
2490 info->ats_supported = 1;
2491
2492 if (ecs_enabled(iommu)) {
2493 if (pasid_enabled(iommu)) {
2494 int features = pci_pasid_features(pdev);
2495 if (features >= 0)
2496 info->pasid_supported = features | 1;
2497 }
2498
2499 if (info->ats_supported && ecap_prs(iommu->ecap) &&
2500 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2501 info->pri_supported = 1;
2502 }
2503 }
2504
2505 spin_lock_irqsave(&device_domain_lock, flags);
2506 if (dev)
2507 found = find_domain(dev);
2508
2509 if (!found) {
2510 struct device_domain_info *info2;
2511 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2512 if (info2) {
2513 found = info2->domain;
2514 info2->dev = dev;
2515 }
2516 }
2517
2518 if (found) {
2519 spin_unlock_irqrestore(&device_domain_lock, flags);
2520 free_devinfo_mem(info);
2521 /* Caller must free the original domain */
2522 return found;
2523 }
2524
2525 spin_lock(&iommu->lock);
2526 ret = domain_attach_iommu(domain, iommu);
2527 spin_unlock(&iommu->lock);
2528
2529 if (ret) {
2530 spin_unlock_irqrestore(&device_domain_lock, flags);
2531 free_devinfo_mem(info);
2532 return NULL;
2533 }
2534
2535 list_add(&info->link, &domain->devices);
2536 list_add(&info->global, &device_domain_list);
2537 if (dev)
2538 dev->archdata.iommu = info;
2539
2540 if (dev && dev_is_pci(dev) && info->pasid_supported) {
2541 ret = intel_pasid_alloc_table(dev);
2542 if (ret) {
2543 pr_warn("No pasid table for %s, pasid disabled\n",
2544 dev_name(dev));
2545 info->pasid_supported = 0;
2546 }
2547 }
2548 spin_unlock_irqrestore(&device_domain_lock, flags);
2549
2550 if (dev && domain_context_mapping(domain, dev)) {
2551 pr_err("Domain context map for %s failed\n", dev_name(dev));
2552 dmar_remove_one_dev_info(domain, dev);
2553 return NULL;
2554 }
2555
2556 return domain;
2557 }
2558
get_last_alias(struct pci_dev * pdev,u16 alias,void * opaque)2559 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2560 {
2561 *(u16 *)opaque = alias;
2562 return 0;
2563 }
2564
find_or_alloc_domain(struct device * dev,int gaw)2565 static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2566 {
2567 struct device_domain_info *info = NULL;
2568 struct dmar_domain *domain = NULL;
2569 struct intel_iommu *iommu;
2570 u16 dma_alias;
2571 unsigned long flags;
2572 u8 bus, devfn;
2573
2574 iommu = device_to_iommu(dev, &bus, &devfn);
2575 if (!iommu)
2576 return NULL;
2577
2578 if (dev_is_pci(dev)) {
2579 struct pci_dev *pdev = to_pci_dev(dev);
2580
2581 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2582
2583 spin_lock_irqsave(&device_domain_lock, flags);
2584 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2585 PCI_BUS_NUM(dma_alias),
2586 dma_alias & 0xff);
2587 if (info) {
2588 iommu = info->iommu;
2589 domain = info->domain;
2590 }
2591 spin_unlock_irqrestore(&device_domain_lock, flags);
2592
2593 /* DMA alias already has a domain, use it */
2594 if (info)
2595 goto out;
2596 }
2597
2598 /* Allocate and initialize new domain for the device */
2599 domain = alloc_domain(0);
2600 if (!domain)
2601 return NULL;
2602 if (domain_init(domain, iommu, gaw)) {
2603 domain_exit(domain);
2604 return NULL;
2605 }
2606
2607 out:
2608
2609 return domain;
2610 }
2611
set_domain_for_dev(struct device * dev,struct dmar_domain * domain)2612 static struct dmar_domain *set_domain_for_dev(struct device *dev,
2613 struct dmar_domain *domain)
2614 {
2615 struct intel_iommu *iommu;
2616 struct dmar_domain *tmp;
2617 u16 req_id, dma_alias;
2618 u8 bus, devfn;
2619
2620 iommu = device_to_iommu(dev, &bus, &devfn);
2621 if (!iommu)
2622 return NULL;
2623
2624 req_id = ((u16)bus << 8) | devfn;
2625
2626 if (dev_is_pci(dev)) {
2627 struct pci_dev *pdev = to_pci_dev(dev);
2628
2629 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2630
2631 /* register PCI DMA alias device */
2632 if (req_id != dma_alias) {
2633 tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2634 dma_alias & 0xff, NULL, domain);
2635
2636 if (!tmp || tmp != domain)
2637 return tmp;
2638 }
2639 }
2640
2641 tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2642 if (!tmp || tmp != domain)
2643 return tmp;
2644
2645 return domain;
2646 }
2647
get_domain_for_dev(struct device * dev,int gaw)2648 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2649 {
2650 struct dmar_domain *domain, *tmp;
2651
2652 domain = find_domain(dev);
2653 if (domain)
2654 goto out;
2655
2656 domain = find_or_alloc_domain(dev, gaw);
2657 if (!domain)
2658 goto out;
2659
2660 tmp = set_domain_for_dev(dev, domain);
2661 if (!tmp || domain != tmp) {
2662 domain_exit(domain);
2663 domain = tmp;
2664 }
2665
2666 out:
2667
2668 return domain;
2669 }
2670
iommu_domain_identity_map(struct dmar_domain * domain,unsigned long long start,unsigned long long end)2671 static int iommu_domain_identity_map(struct dmar_domain *domain,
2672 unsigned long long start,
2673 unsigned long long end)
2674 {
2675 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2676 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2677
2678 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2679 dma_to_mm_pfn(last_vpfn))) {
2680 pr_err("Reserving iova failed\n");
2681 return -ENOMEM;
2682 }
2683
2684 pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2685 /*
2686 * RMRR range might have overlap with physical memory range,
2687 * clear it first
2688 */
2689 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2690
2691 return __domain_mapping(domain, first_vpfn, NULL,
2692 first_vpfn, last_vpfn - first_vpfn + 1,
2693 DMA_PTE_READ|DMA_PTE_WRITE);
2694 }
2695
domain_prepare_identity_map(struct device * dev,struct dmar_domain * domain,unsigned long long start,unsigned long long end)2696 static int domain_prepare_identity_map(struct device *dev,
2697 struct dmar_domain *domain,
2698 unsigned long long start,
2699 unsigned long long end)
2700 {
2701 /* For _hardware_ passthrough, don't bother. But for software
2702 passthrough, we do it anyway -- it may indicate a memory
2703 range which is reserved in E820, so which didn't get set
2704 up to start with in si_domain */
2705 if (domain == si_domain && hw_pass_through) {
2706 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2707 dev_name(dev), start, end);
2708 return 0;
2709 }
2710
2711 pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2712 dev_name(dev), start, end);
2713
2714 if (end < start) {
2715 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2716 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2717 dmi_get_system_info(DMI_BIOS_VENDOR),
2718 dmi_get_system_info(DMI_BIOS_VERSION),
2719 dmi_get_system_info(DMI_PRODUCT_VERSION));
2720 return -EIO;
2721 }
2722
2723 if (end >> agaw_to_width(domain->agaw)) {
2724 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2725 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2726 agaw_to_width(domain->agaw),
2727 dmi_get_system_info(DMI_BIOS_VENDOR),
2728 dmi_get_system_info(DMI_BIOS_VERSION),
2729 dmi_get_system_info(DMI_PRODUCT_VERSION));
2730 return -EIO;
2731 }
2732
2733 return iommu_domain_identity_map(domain, start, end);
2734 }
2735
iommu_prepare_identity_map(struct device * dev,unsigned long long start,unsigned long long end)2736 static int iommu_prepare_identity_map(struct device *dev,
2737 unsigned long long start,
2738 unsigned long long end)
2739 {
2740 struct dmar_domain *domain;
2741 int ret;
2742
2743 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2744 if (!domain)
2745 return -ENOMEM;
2746
2747 ret = domain_prepare_identity_map(dev, domain, start, end);
2748 if (ret)
2749 domain_exit(domain);
2750
2751 return ret;
2752 }
2753
iommu_prepare_rmrr_dev(struct dmar_rmrr_unit * rmrr,struct device * dev)2754 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2755 struct device *dev)
2756 {
2757 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2758 return 0;
2759 return iommu_prepare_identity_map(dev, rmrr->base_address,
2760 rmrr->end_address);
2761 }
2762
2763 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
iommu_prepare_isa(void)2764 static inline void iommu_prepare_isa(void)
2765 {
2766 struct pci_dev *pdev;
2767 int ret;
2768
2769 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2770 if (!pdev)
2771 return;
2772
2773 pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2774 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2775
2776 if (ret)
2777 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2778
2779 pci_dev_put(pdev);
2780 }
2781 #else
iommu_prepare_isa(void)2782 static inline void iommu_prepare_isa(void)
2783 {
2784 return;
2785 }
2786 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2787
2788 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2789
si_domain_init(int hw)2790 static int __init si_domain_init(int hw)
2791 {
2792 int nid, ret = 0;
2793
2794 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2795 if (!si_domain)
2796 return -EFAULT;
2797
2798 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2799 domain_exit(si_domain);
2800 return -EFAULT;
2801 }
2802
2803 pr_debug("Identity mapping domain allocated\n");
2804
2805 if (hw)
2806 return 0;
2807
2808 for_each_online_node(nid) {
2809 unsigned long start_pfn, end_pfn;
2810 int i;
2811
2812 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2813 ret = iommu_domain_identity_map(si_domain,
2814 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2815 if (ret)
2816 return ret;
2817 }
2818 }
2819
2820 return 0;
2821 }
2822
identity_mapping(struct device * dev)2823 static int identity_mapping(struct device *dev)
2824 {
2825 struct device_domain_info *info;
2826
2827 if (likely(!iommu_identity_mapping))
2828 return 0;
2829
2830 info = dev->archdata.iommu;
2831 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2832 return (info->domain == si_domain);
2833
2834 return 0;
2835 }
2836
domain_add_dev_info(struct dmar_domain * domain,struct device * dev)2837 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2838 {
2839 struct dmar_domain *ndomain;
2840 struct intel_iommu *iommu;
2841 u8 bus, devfn;
2842
2843 iommu = device_to_iommu(dev, &bus, &devfn);
2844 if (!iommu)
2845 return -ENODEV;
2846
2847 ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2848 if (ndomain != domain)
2849 return -EBUSY;
2850
2851 return 0;
2852 }
2853
device_has_rmrr(struct device * dev)2854 static bool device_has_rmrr(struct device *dev)
2855 {
2856 struct dmar_rmrr_unit *rmrr;
2857 struct device *tmp;
2858 int i;
2859
2860 rcu_read_lock();
2861 for_each_rmrr_units(rmrr) {
2862 /*
2863 * Return TRUE if this RMRR contains the device that
2864 * is passed in.
2865 */
2866 for_each_active_dev_scope(rmrr->devices,
2867 rmrr->devices_cnt, i, tmp)
2868 if (tmp == dev) {
2869 rcu_read_unlock();
2870 return true;
2871 }
2872 }
2873 rcu_read_unlock();
2874 return false;
2875 }
2876
2877 /*
2878 * There are a couple cases where we need to restrict the functionality of
2879 * devices associated with RMRRs. The first is when evaluating a device for
2880 * identity mapping because problems exist when devices are moved in and out
2881 * of domains and their respective RMRR information is lost. This means that
2882 * a device with associated RMRRs will never be in a "passthrough" domain.
2883 * The second is use of the device through the IOMMU API. This interface
2884 * expects to have full control of the IOVA space for the device. We cannot
2885 * satisfy both the requirement that RMRR access is maintained and have an
2886 * unencumbered IOVA space. We also have no ability to quiesce the device's
2887 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2888 * We therefore prevent devices associated with an RMRR from participating in
2889 * the IOMMU API, which eliminates them from device assignment.
2890 *
2891 * In both cases we assume that PCI USB devices with RMRRs have them largely
2892 * for historical reasons and that the RMRR space is not actively used post
2893 * boot. This exclusion may change if vendors begin to abuse it.
2894 *
2895 * The same exception is made for graphics devices, with the requirement that
2896 * any use of the RMRR regions will be torn down before assigning the device
2897 * to a guest.
2898 */
device_is_rmrr_locked(struct device * dev)2899 static bool device_is_rmrr_locked(struct device *dev)
2900 {
2901 if (!device_has_rmrr(dev))
2902 return false;
2903
2904 if (dev_is_pci(dev)) {
2905 struct pci_dev *pdev = to_pci_dev(dev);
2906
2907 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2908 return false;
2909 }
2910
2911 return true;
2912 }
2913
iommu_should_identity_map(struct device * dev,int startup)2914 static int iommu_should_identity_map(struct device *dev, int startup)
2915 {
2916
2917 if (dev_is_pci(dev)) {
2918 struct pci_dev *pdev = to_pci_dev(dev);
2919
2920 if (device_is_rmrr_locked(dev))
2921 return 0;
2922
2923 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2924 return 1;
2925
2926 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2927 return 1;
2928
2929 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2930 return 0;
2931
2932 /*
2933 * We want to start off with all devices in the 1:1 domain, and
2934 * take them out later if we find they can't access all of memory.
2935 *
2936 * However, we can't do this for PCI devices behind bridges,
2937 * because all PCI devices behind the same bridge will end up
2938 * with the same source-id on their transactions.
2939 *
2940 * Practically speaking, we can't change things around for these
2941 * devices at run-time, because we can't be sure there'll be no
2942 * DMA transactions in flight for any of their siblings.
2943 *
2944 * So PCI devices (unless they're on the root bus) as well as
2945 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2946 * the 1:1 domain, just in _case_ one of their siblings turns out
2947 * not to be able to map all of memory.
2948 */
2949 if (!pci_is_pcie(pdev)) {
2950 if (!pci_is_root_bus(pdev->bus))
2951 return 0;
2952 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2953 return 0;
2954 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2955 return 0;
2956 } else {
2957 if (device_has_rmrr(dev))
2958 return 0;
2959 }
2960
2961 /*
2962 * At boot time, we don't yet know if devices will be 64-bit capable.
2963 * Assume that they will — if they turn out not to be, then we can
2964 * take them out of the 1:1 domain later.
2965 */
2966 if (!startup) {
2967 /*
2968 * If the device's dma_mask is less than the system's memory
2969 * size then this is not a candidate for identity mapping.
2970 */
2971 u64 dma_mask = *dev->dma_mask;
2972
2973 if (dev->coherent_dma_mask &&
2974 dev->coherent_dma_mask < dma_mask)
2975 dma_mask = dev->coherent_dma_mask;
2976
2977 return dma_mask >= dma_get_required_mask(dev);
2978 }
2979
2980 return 1;
2981 }
2982
dev_prepare_static_identity_mapping(struct device * dev,int hw)2983 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2984 {
2985 int ret;
2986
2987 if (!iommu_should_identity_map(dev, 1))
2988 return 0;
2989
2990 ret = domain_add_dev_info(si_domain, dev);
2991 if (!ret)
2992 pr_info("%s identity mapping for device %s\n",
2993 hw ? "Hardware" : "Software", dev_name(dev));
2994 else if (ret == -ENODEV)
2995 /* device not associated with an iommu */
2996 ret = 0;
2997
2998 return ret;
2999 }
3000
3001
iommu_prepare_static_identity_mapping(int hw)3002 static int __init iommu_prepare_static_identity_mapping(int hw)
3003 {
3004 struct pci_dev *pdev = NULL;
3005 struct dmar_drhd_unit *drhd;
3006 struct intel_iommu *iommu;
3007 struct device *dev;
3008 int i;
3009 int ret = 0;
3010
3011 for_each_pci_dev(pdev) {
3012 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
3013 if (ret)
3014 return ret;
3015 }
3016
3017 for_each_active_iommu(iommu, drhd)
3018 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
3019 struct acpi_device_physical_node *pn;
3020 struct acpi_device *adev;
3021
3022 if (dev->bus != &acpi_bus_type)
3023 continue;
3024
3025 adev= to_acpi_device(dev);
3026 mutex_lock(&adev->physical_node_lock);
3027 list_for_each_entry(pn, &adev->physical_node_list, node) {
3028 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
3029 if (ret)
3030 break;
3031 }
3032 mutex_unlock(&adev->physical_node_lock);
3033 if (ret)
3034 return ret;
3035 }
3036
3037 return 0;
3038 }
3039
intel_iommu_init_qi(struct intel_iommu * iommu)3040 static void intel_iommu_init_qi(struct intel_iommu *iommu)
3041 {
3042 /*
3043 * Start from the sane iommu hardware state.
3044 * If the queued invalidation is already initialized by us
3045 * (for example, while enabling interrupt-remapping) then
3046 * we got the things already rolling from a sane state.
3047 */
3048 if (!iommu->qi) {
3049 /*
3050 * Clear any previous faults.
3051 */
3052 dmar_fault(-1, iommu);
3053 /*
3054 * Disable queued invalidation if supported and already enabled
3055 * before OS handover.
3056 */
3057 dmar_disable_qi(iommu);
3058 }
3059
3060 if (dmar_enable_qi(iommu)) {
3061 /*
3062 * Queued Invalidate not enabled, use Register Based Invalidate
3063 */
3064 iommu->flush.flush_context = __iommu_flush_context;
3065 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
3066 pr_info("%s: Using Register based invalidation\n",
3067 iommu->name);
3068 } else {
3069 iommu->flush.flush_context = qi_flush_context;
3070 iommu->flush.flush_iotlb = qi_flush_iotlb;
3071 pr_info("%s: Using Queued invalidation\n", iommu->name);
3072 }
3073 }
3074
copy_context_table(struct intel_iommu * iommu,struct root_entry * old_re,struct context_entry ** tbl,int bus,bool ext)3075 static int copy_context_table(struct intel_iommu *iommu,
3076 struct root_entry *old_re,
3077 struct context_entry **tbl,
3078 int bus, bool ext)
3079 {
3080 int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3081 struct context_entry *new_ce = NULL, ce;
3082 struct context_entry *old_ce = NULL;
3083 struct root_entry re;
3084 phys_addr_t old_ce_phys;
3085
3086 tbl_idx = ext ? bus * 2 : bus;
3087 memcpy(&re, old_re, sizeof(re));
3088
3089 for (devfn = 0; devfn < 256; devfn++) {
3090 /* First calculate the correct index */
3091 idx = (ext ? devfn * 2 : devfn) % 256;
3092
3093 if (idx == 0) {
3094 /* First save what we may have and clean up */
3095 if (new_ce) {
3096 tbl[tbl_idx] = new_ce;
3097 __iommu_flush_cache(iommu, new_ce,
3098 VTD_PAGE_SIZE);
3099 pos = 1;
3100 }
3101
3102 if (old_ce)
3103 iounmap(old_ce);
3104
3105 ret = 0;
3106 if (devfn < 0x80)
3107 old_ce_phys = root_entry_lctp(&re);
3108 else
3109 old_ce_phys = root_entry_uctp(&re);
3110
3111 if (!old_ce_phys) {
3112 if (ext && devfn == 0) {
3113 /* No LCTP, try UCTP */
3114 devfn = 0x7f;
3115 continue;
3116 } else {
3117 goto out;
3118 }
3119 }
3120
3121 ret = -ENOMEM;
3122 old_ce = memremap(old_ce_phys, PAGE_SIZE,
3123 MEMREMAP_WB);
3124 if (!old_ce)
3125 goto out;
3126
3127 new_ce = alloc_pgtable_page(iommu->node);
3128 if (!new_ce)
3129 goto out_unmap;
3130
3131 ret = 0;
3132 }
3133
3134 /* Now copy the context entry */
3135 memcpy(&ce, old_ce + idx, sizeof(ce));
3136
3137 if (!__context_present(&ce))
3138 continue;
3139
3140 did = context_domain_id(&ce);
3141 if (did >= 0 && did < cap_ndoms(iommu->cap))
3142 set_bit(did, iommu->domain_ids);
3143
3144 /*
3145 * We need a marker for copied context entries. This
3146 * marker needs to work for the old format as well as
3147 * for extended context entries.
3148 *
3149 * Bit 67 of the context entry is used. In the old
3150 * format this bit is available to software, in the
3151 * extended format it is the PGE bit, but PGE is ignored
3152 * by HW if PASIDs are disabled (and thus still
3153 * available).
3154 *
3155 * So disable PASIDs first and then mark the entry
3156 * copied. This means that we don't copy PASID
3157 * translations from the old kernel, but this is fine as
3158 * faults there are not fatal.
3159 */
3160 context_clear_pasid_enable(&ce);
3161 context_set_copied(&ce);
3162
3163 new_ce[idx] = ce;
3164 }
3165
3166 tbl[tbl_idx + pos] = new_ce;
3167
3168 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3169
3170 out_unmap:
3171 memunmap(old_ce);
3172
3173 out:
3174 return ret;
3175 }
3176
copy_translation_tables(struct intel_iommu * iommu)3177 static int copy_translation_tables(struct intel_iommu *iommu)
3178 {
3179 struct context_entry **ctxt_tbls;
3180 struct root_entry *old_rt;
3181 phys_addr_t old_rt_phys;
3182 int ctxt_table_entries;
3183 unsigned long flags;
3184 u64 rtaddr_reg;
3185 int bus, ret;
3186 bool new_ext, ext;
3187
3188 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3189 ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
3190 new_ext = !!ecap_ecs(iommu->ecap);
3191
3192 /*
3193 * The RTT bit can only be changed when translation is disabled,
3194 * but disabling translation means to open a window for data
3195 * corruption. So bail out and don't copy anything if we would
3196 * have to change the bit.
3197 */
3198 if (new_ext != ext)
3199 return -EINVAL;
3200
3201 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3202 if (!old_rt_phys)
3203 return -EINVAL;
3204
3205 old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3206 if (!old_rt)
3207 return -ENOMEM;
3208
3209 /* This is too big for the stack - allocate it from slab */
3210 ctxt_table_entries = ext ? 512 : 256;
3211 ret = -ENOMEM;
3212 ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3213 if (!ctxt_tbls)
3214 goto out_unmap;
3215
3216 for (bus = 0; bus < 256; bus++) {
3217 ret = copy_context_table(iommu, &old_rt[bus],
3218 ctxt_tbls, bus, ext);
3219 if (ret) {
3220 pr_err("%s: Failed to copy context table for bus %d\n",
3221 iommu->name, bus);
3222 continue;
3223 }
3224 }
3225
3226 spin_lock_irqsave(&iommu->lock, flags);
3227
3228 /* Context tables are copied, now write them to the root_entry table */
3229 for (bus = 0; bus < 256; bus++) {
3230 int idx = ext ? bus * 2 : bus;
3231 u64 val;
3232
3233 if (ctxt_tbls[idx]) {
3234 val = virt_to_phys(ctxt_tbls[idx]) | 1;
3235 iommu->root_entry[bus].lo = val;
3236 }
3237
3238 if (!ext || !ctxt_tbls[idx + 1])
3239 continue;
3240
3241 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3242 iommu->root_entry[bus].hi = val;
3243 }
3244
3245 spin_unlock_irqrestore(&iommu->lock, flags);
3246
3247 kfree(ctxt_tbls);
3248
3249 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3250
3251 ret = 0;
3252
3253 out_unmap:
3254 memunmap(old_rt);
3255
3256 return ret;
3257 }
3258
init_dmars(void)3259 static int __init init_dmars(void)
3260 {
3261 struct dmar_drhd_unit *drhd;
3262 struct dmar_rmrr_unit *rmrr;
3263 bool copied_tables = false;
3264 struct device *dev;
3265 struct intel_iommu *iommu;
3266 int i, ret;
3267
3268 /*
3269 * for each drhd
3270 * allocate root
3271 * initialize and program root entry to not present
3272 * endfor
3273 */
3274 for_each_drhd_unit(drhd) {
3275 /*
3276 * lock not needed as this is only incremented in the single
3277 * threaded kernel __init code path all other access are read
3278 * only
3279 */
3280 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3281 g_num_of_iommus++;
3282 continue;
3283 }
3284 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3285 }
3286
3287 /* Preallocate enough resources for IOMMU hot-addition */
3288 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3289 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3290
3291 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3292 GFP_KERNEL);
3293 if (!g_iommus) {
3294 pr_err("Allocating global iommu array failed\n");
3295 ret = -ENOMEM;
3296 goto error;
3297 }
3298
3299 for_each_active_iommu(iommu, drhd) {
3300 /*
3301 * Find the max pasid size of all IOMMU's in the system.
3302 * We need to ensure the system pasid table is no bigger
3303 * than the smallest supported.
3304 */
3305 if (pasid_enabled(iommu)) {
3306 u32 temp = 2 << ecap_pss(iommu->ecap);
3307
3308 intel_pasid_max_id = min_t(u32, temp,
3309 intel_pasid_max_id);
3310 }
3311
3312 g_iommus[iommu->seq_id] = iommu;
3313
3314 intel_iommu_init_qi(iommu);
3315
3316 ret = iommu_init_domains(iommu);
3317 if (ret)
3318 goto free_iommu;
3319
3320 init_translation_status(iommu);
3321
3322 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3323 iommu_disable_translation(iommu);
3324 clear_translation_pre_enabled(iommu);
3325 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3326 iommu->name);
3327 }
3328
3329 /*
3330 * TBD:
3331 * we could share the same root & context tables
3332 * among all IOMMU's. Need to Split it later.
3333 */
3334 ret = iommu_alloc_root_entry(iommu);
3335 if (ret)
3336 goto free_iommu;
3337
3338 if (translation_pre_enabled(iommu)) {
3339 pr_info("Translation already enabled - trying to copy translation structures\n");
3340
3341 ret = copy_translation_tables(iommu);
3342 if (ret) {
3343 /*
3344 * We found the IOMMU with translation
3345 * enabled - but failed to copy over the
3346 * old root-entry table. Try to proceed
3347 * by disabling translation now and
3348 * allocating a clean root-entry table.
3349 * This might cause DMAR faults, but
3350 * probably the dump will still succeed.
3351 */
3352 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3353 iommu->name);
3354 iommu_disable_translation(iommu);
3355 clear_translation_pre_enabled(iommu);
3356 } else {
3357 pr_info("Copied translation tables from previous kernel for %s\n",
3358 iommu->name);
3359 copied_tables = true;
3360 }
3361 }
3362
3363 if (!ecap_pass_through(iommu->ecap))
3364 hw_pass_through = 0;
3365 #ifdef CONFIG_INTEL_IOMMU_SVM
3366 if (pasid_enabled(iommu))
3367 intel_svm_init(iommu);
3368 #endif
3369 }
3370
3371 /*
3372 * Now that qi is enabled on all iommus, set the root entry and flush
3373 * caches. This is required on some Intel X58 chipsets, otherwise the
3374 * flush_context function will loop forever and the boot hangs.
3375 */
3376 for_each_active_iommu(iommu, drhd) {
3377 iommu_flush_write_buffer(iommu);
3378 iommu_set_root_entry(iommu);
3379 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3380 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3381 }
3382
3383 if (iommu_pass_through)
3384 iommu_identity_mapping |= IDENTMAP_ALL;
3385
3386 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3387 iommu_identity_mapping |= IDENTMAP_GFX;
3388 #endif
3389
3390 check_tylersburg_isoch();
3391
3392 if (iommu_identity_mapping) {
3393 ret = si_domain_init(hw_pass_through);
3394 if (ret)
3395 goto free_iommu;
3396 }
3397
3398
3399 /*
3400 * If we copied translations from a previous kernel in the kdump
3401 * case, we can not assign the devices to domains now, as that
3402 * would eliminate the old mappings. So skip this part and defer
3403 * the assignment to device driver initialization time.
3404 */
3405 if (copied_tables)
3406 goto domains_done;
3407
3408 /*
3409 * If pass through is not set or not enabled, setup context entries for
3410 * identity mappings for rmrr, gfx, and isa and may fall back to static
3411 * identity mapping if iommu_identity_mapping is set.
3412 */
3413 if (iommu_identity_mapping) {
3414 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3415 if (ret) {
3416 pr_crit("Failed to setup IOMMU pass-through\n");
3417 goto free_iommu;
3418 }
3419 }
3420 /*
3421 * For each rmrr
3422 * for each dev attached to rmrr
3423 * do
3424 * locate drhd for dev, alloc domain for dev
3425 * allocate free domain
3426 * allocate page table entries for rmrr
3427 * if context not allocated for bus
3428 * allocate and init context
3429 * set present in root table for this bus
3430 * init context with domain, translation etc
3431 * endfor
3432 * endfor
3433 */
3434 pr_info("Setting RMRR:\n");
3435 for_each_rmrr_units(rmrr) {
3436 /* some BIOS lists non-exist devices in DMAR table. */
3437 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3438 i, dev) {
3439 ret = iommu_prepare_rmrr_dev(rmrr, dev);
3440 if (ret)
3441 pr_err("Mapping reserved region failed\n");
3442 }
3443 }
3444
3445 iommu_prepare_isa();
3446
3447 domains_done:
3448
3449 /*
3450 * for each drhd
3451 * enable fault log
3452 * global invalidate context cache
3453 * global invalidate iotlb
3454 * enable translation
3455 */
3456 for_each_iommu(iommu, drhd) {
3457 if (drhd->ignored) {
3458 /*
3459 * we always have to disable PMRs or DMA may fail on
3460 * this device
3461 */
3462 if (force_on)
3463 iommu_disable_protect_mem_regions(iommu);
3464 continue;
3465 }
3466
3467 iommu_flush_write_buffer(iommu);
3468
3469 #ifdef CONFIG_INTEL_IOMMU_SVM
3470 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
3471 ret = intel_svm_enable_prq(iommu);
3472 if (ret)
3473 goto free_iommu;
3474 }
3475 #endif
3476 ret = dmar_set_interrupt(iommu);
3477 if (ret)
3478 goto free_iommu;
3479
3480 if (!translation_pre_enabled(iommu))
3481 iommu_enable_translation(iommu);
3482
3483 iommu_disable_protect_mem_regions(iommu);
3484 }
3485
3486 return 0;
3487
3488 free_iommu:
3489 for_each_active_iommu(iommu, drhd) {
3490 disable_dmar_iommu(iommu);
3491 free_dmar_iommu(iommu);
3492 }
3493
3494 kfree(g_iommus);
3495
3496 error:
3497 return ret;
3498 }
3499
3500 /* This takes a number of _MM_ pages, not VTD pages */
intel_alloc_iova(struct device * dev,struct dmar_domain * domain,unsigned long nrpages,uint64_t dma_mask)3501 static unsigned long intel_alloc_iova(struct device *dev,
3502 struct dmar_domain *domain,
3503 unsigned long nrpages, uint64_t dma_mask)
3504 {
3505 unsigned long iova_pfn = 0;
3506
3507 /* Restrict dma_mask to the width that the iommu can handle */
3508 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3509 /* Ensure we reserve the whole size-aligned region */
3510 nrpages = __roundup_pow_of_two(nrpages);
3511
3512 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3513 /*
3514 * First try to allocate an io virtual address in
3515 * DMA_BIT_MASK(32) and if that fails then try allocating
3516 * from higher range
3517 */
3518 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3519 IOVA_PFN(DMA_BIT_MASK(32)), false);
3520 if (iova_pfn)
3521 return iova_pfn;
3522 }
3523 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3524 IOVA_PFN(dma_mask), true);
3525 if (unlikely(!iova_pfn)) {
3526 pr_err("Allocating %ld-page iova for %s failed",
3527 nrpages, dev_name(dev));
3528 return 0;
3529 }
3530
3531 return iova_pfn;
3532 }
3533
get_valid_domain_for_dev(struct device * dev)3534 struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3535 {
3536 struct dmar_domain *domain, *tmp;
3537 struct dmar_rmrr_unit *rmrr;
3538 struct device *i_dev;
3539 int i, ret;
3540
3541 domain = find_domain(dev);
3542 if (domain)
3543 goto out;
3544
3545 domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3546 if (!domain)
3547 goto out;
3548
3549 /* We have a new domain - setup possible RMRRs for the device */
3550 rcu_read_lock();
3551 for_each_rmrr_units(rmrr) {
3552 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3553 i, i_dev) {
3554 if (i_dev != dev)
3555 continue;
3556
3557 ret = domain_prepare_identity_map(dev, domain,
3558 rmrr->base_address,
3559 rmrr->end_address);
3560 if (ret)
3561 dev_err(dev, "Mapping reserved region failed\n");
3562 }
3563 }
3564 rcu_read_unlock();
3565
3566 tmp = set_domain_for_dev(dev, domain);
3567 if (!tmp || domain != tmp) {
3568 domain_exit(domain);
3569 domain = tmp;
3570 }
3571
3572 out:
3573
3574 if (!domain)
3575 pr_err("Allocating domain for %s failed\n", dev_name(dev));
3576
3577
3578 return domain;
3579 }
3580
3581 /* Check if the dev needs to go through non-identity map and unmap process.*/
iommu_no_mapping(struct device * dev)3582 static int iommu_no_mapping(struct device *dev)
3583 {
3584 int found;
3585
3586 if (iommu_dummy(dev))
3587 return 1;
3588
3589 if (!iommu_identity_mapping)
3590 return 0;
3591
3592 found = identity_mapping(dev);
3593 if (found) {
3594 if (iommu_should_identity_map(dev, 0))
3595 return 1;
3596 else {
3597 /*
3598 * 32 bit DMA is removed from si_domain and fall back
3599 * to non-identity mapping.
3600 */
3601 dmar_remove_one_dev_info(si_domain, dev);
3602 pr_info("32bit %s uses non-identity mapping\n",
3603 dev_name(dev));
3604 return 0;
3605 }
3606 } else {
3607 /*
3608 * In case of a detached 64 bit DMA device from vm, the device
3609 * is put into si_domain for identity mapping.
3610 */
3611 if (iommu_should_identity_map(dev, 0)) {
3612 int ret;
3613 ret = domain_add_dev_info(si_domain, dev);
3614 if (!ret) {
3615 pr_info("64bit %s uses identity mapping\n",
3616 dev_name(dev));
3617 return 1;
3618 }
3619 }
3620 }
3621
3622 return 0;
3623 }
3624
__intel_map_single(struct device * dev,phys_addr_t paddr,size_t size,int dir,u64 dma_mask)3625 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3626 size_t size, int dir, u64 dma_mask)
3627 {
3628 struct dmar_domain *domain;
3629 phys_addr_t start_paddr;
3630 unsigned long iova_pfn;
3631 int prot = 0;
3632 int ret;
3633 struct intel_iommu *iommu;
3634 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3635
3636 BUG_ON(dir == DMA_NONE);
3637
3638 if (iommu_no_mapping(dev))
3639 return paddr;
3640
3641 domain = get_valid_domain_for_dev(dev);
3642 if (!domain)
3643 return 0;
3644
3645 iommu = domain_get_iommu(domain);
3646 size = aligned_nrpages(paddr, size);
3647
3648 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3649 if (!iova_pfn)
3650 goto error;
3651
3652 /*
3653 * Check if DMAR supports zero-length reads on write only
3654 * mappings..
3655 */
3656 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3657 !cap_zlr(iommu->cap))
3658 prot |= DMA_PTE_READ;
3659 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3660 prot |= DMA_PTE_WRITE;
3661 /*
3662 * paddr - (paddr + size) might be partial page, we should map the whole
3663 * page. Note: if two part of one page are separately mapped, we
3664 * might have two guest_addr mapping to the same host paddr, but this
3665 * is not a big problem
3666 */
3667 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3668 mm_to_dma_pfn(paddr_pfn), size, prot);
3669 if (ret)
3670 goto error;
3671
3672 start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3673 start_paddr += paddr & ~PAGE_MASK;
3674 return start_paddr;
3675
3676 error:
3677 if (iova_pfn)
3678 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3679 pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3680 dev_name(dev), size, (unsigned long long)paddr, dir);
3681 return 0;
3682 }
3683
intel_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)3684 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3685 unsigned long offset, size_t size,
3686 enum dma_data_direction dir,
3687 unsigned long attrs)
3688 {
3689 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3690 dir, *dev->dma_mask);
3691 }
3692
intel_unmap(struct device * dev,dma_addr_t dev_addr,size_t size)3693 static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3694 {
3695 struct dmar_domain *domain;
3696 unsigned long start_pfn, last_pfn;
3697 unsigned long nrpages;
3698 unsigned long iova_pfn;
3699 struct intel_iommu *iommu;
3700 struct page *freelist;
3701
3702 if (iommu_no_mapping(dev))
3703 return;
3704
3705 domain = find_domain(dev);
3706 BUG_ON(!domain);
3707
3708 iommu = domain_get_iommu(domain);
3709
3710 iova_pfn = IOVA_PFN(dev_addr);
3711
3712 nrpages = aligned_nrpages(dev_addr, size);
3713 start_pfn = mm_to_dma_pfn(iova_pfn);
3714 last_pfn = start_pfn + nrpages - 1;
3715
3716 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3717 dev_name(dev), start_pfn, last_pfn);
3718
3719 freelist = domain_unmap(domain, start_pfn, last_pfn);
3720
3721 if (intel_iommu_strict) {
3722 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3723 nrpages, !freelist, 0);
3724 /* free iova */
3725 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3726 dma_free_pagelist(freelist);
3727 } else {
3728 queue_iova(&domain->iovad, iova_pfn, nrpages,
3729 (unsigned long)freelist);
3730 /*
3731 * queue up the release of the unmap to save the 1/6th of the
3732 * cpu used up by the iotlb flush operation...
3733 */
3734 }
3735 }
3736
intel_unmap_page(struct device * dev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)3737 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3738 size_t size, enum dma_data_direction dir,
3739 unsigned long attrs)
3740 {
3741 intel_unmap(dev, dev_addr, size);
3742 }
3743
intel_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flags,unsigned long attrs)3744 static void *intel_alloc_coherent(struct device *dev, size_t size,
3745 dma_addr_t *dma_handle, gfp_t flags,
3746 unsigned long attrs)
3747 {
3748 struct page *page = NULL;
3749 int order;
3750
3751 size = PAGE_ALIGN(size);
3752 order = get_order(size);
3753
3754 if (!iommu_no_mapping(dev))
3755 flags &= ~(GFP_DMA | GFP_DMA32);
3756 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3757 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3758 flags |= GFP_DMA;
3759 else
3760 flags |= GFP_DMA32;
3761 }
3762
3763 if (gfpflags_allow_blocking(flags)) {
3764 unsigned int count = size >> PAGE_SHIFT;
3765
3766 page = dma_alloc_from_contiguous(dev, count, order,
3767 flags & __GFP_NOWARN);
3768 if (page && iommu_no_mapping(dev) &&
3769 page_to_phys(page) + size > dev->coherent_dma_mask) {
3770 dma_release_from_contiguous(dev, page, count);
3771 page = NULL;
3772 }
3773 }
3774
3775 if (!page)
3776 page = alloc_pages(flags, order);
3777 if (!page)
3778 return NULL;
3779 memset(page_address(page), 0, size);
3780
3781 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3782 DMA_BIDIRECTIONAL,
3783 dev->coherent_dma_mask);
3784 if (*dma_handle)
3785 return page_address(page);
3786 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3787 __free_pages(page, order);
3788
3789 return NULL;
3790 }
3791
intel_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle,unsigned long attrs)3792 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3793 dma_addr_t dma_handle, unsigned long attrs)
3794 {
3795 int order;
3796 struct page *page = virt_to_page(vaddr);
3797
3798 size = PAGE_ALIGN(size);
3799 order = get_order(size);
3800
3801 intel_unmap(dev, dma_handle, size);
3802 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3803 __free_pages(page, order);
3804 }
3805
intel_unmap_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,unsigned long attrs)3806 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3807 int nelems, enum dma_data_direction dir,
3808 unsigned long attrs)
3809 {
3810 dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3811 unsigned long nrpages = 0;
3812 struct scatterlist *sg;
3813 int i;
3814
3815 for_each_sg(sglist, sg, nelems, i) {
3816 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3817 }
3818
3819 intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3820 }
3821
intel_nontranslate_map_sg(struct device * hddev,struct scatterlist * sglist,int nelems,int dir)3822 static int intel_nontranslate_map_sg(struct device *hddev,
3823 struct scatterlist *sglist, int nelems, int dir)
3824 {
3825 int i;
3826 struct scatterlist *sg;
3827
3828 for_each_sg(sglist, sg, nelems, i) {
3829 BUG_ON(!sg_page(sg));
3830 sg->dma_address = sg_phys(sg);
3831 sg->dma_length = sg->length;
3832 }
3833 return nelems;
3834 }
3835
intel_map_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,unsigned long attrs)3836 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3837 enum dma_data_direction dir, unsigned long attrs)
3838 {
3839 int i;
3840 struct dmar_domain *domain;
3841 size_t size = 0;
3842 int prot = 0;
3843 unsigned long iova_pfn;
3844 int ret;
3845 struct scatterlist *sg;
3846 unsigned long start_vpfn;
3847 struct intel_iommu *iommu;
3848
3849 BUG_ON(dir == DMA_NONE);
3850 if (iommu_no_mapping(dev))
3851 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3852
3853 domain = get_valid_domain_for_dev(dev);
3854 if (!domain)
3855 return 0;
3856
3857 iommu = domain_get_iommu(domain);
3858
3859 for_each_sg(sglist, sg, nelems, i)
3860 size += aligned_nrpages(sg->offset, sg->length);
3861
3862 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3863 *dev->dma_mask);
3864 if (!iova_pfn) {
3865 sglist->dma_length = 0;
3866 return 0;
3867 }
3868
3869 /*
3870 * Check if DMAR supports zero-length reads on write only
3871 * mappings..
3872 */
3873 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3874 !cap_zlr(iommu->cap))
3875 prot |= DMA_PTE_READ;
3876 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3877 prot |= DMA_PTE_WRITE;
3878
3879 start_vpfn = mm_to_dma_pfn(iova_pfn);
3880
3881 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3882 if (unlikely(ret)) {
3883 dma_pte_free_pagetable(domain, start_vpfn,
3884 start_vpfn + size - 1,
3885 agaw_to_level(domain->agaw) + 1);
3886 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3887 return 0;
3888 }
3889
3890 return nelems;
3891 }
3892
intel_mapping_error(struct device * dev,dma_addr_t dma_addr)3893 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3894 {
3895 return !dma_addr;
3896 }
3897
3898 const struct dma_map_ops intel_dma_ops = {
3899 .alloc = intel_alloc_coherent,
3900 .free = intel_free_coherent,
3901 .map_sg = intel_map_sg,
3902 .unmap_sg = intel_unmap_sg,
3903 .map_page = intel_map_page,
3904 .unmap_page = intel_unmap_page,
3905 .mapping_error = intel_mapping_error,
3906 #ifdef CONFIG_X86
3907 .dma_supported = dma_direct_supported,
3908 #endif
3909 };
3910
iommu_domain_cache_init(void)3911 static inline int iommu_domain_cache_init(void)
3912 {
3913 int ret = 0;
3914
3915 iommu_domain_cache = kmem_cache_create("iommu_domain",
3916 sizeof(struct dmar_domain),
3917 0,
3918 SLAB_HWCACHE_ALIGN,
3919
3920 NULL);
3921 if (!iommu_domain_cache) {
3922 pr_err("Couldn't create iommu_domain cache\n");
3923 ret = -ENOMEM;
3924 }
3925
3926 return ret;
3927 }
3928
iommu_devinfo_cache_init(void)3929 static inline int iommu_devinfo_cache_init(void)
3930 {
3931 int ret = 0;
3932
3933 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3934 sizeof(struct device_domain_info),
3935 0,
3936 SLAB_HWCACHE_ALIGN,
3937 NULL);
3938 if (!iommu_devinfo_cache) {
3939 pr_err("Couldn't create devinfo cache\n");
3940 ret = -ENOMEM;
3941 }
3942
3943 return ret;
3944 }
3945
iommu_init_mempool(void)3946 static int __init iommu_init_mempool(void)
3947 {
3948 int ret;
3949 ret = iova_cache_get();
3950 if (ret)
3951 return ret;
3952
3953 ret = iommu_domain_cache_init();
3954 if (ret)
3955 goto domain_error;
3956
3957 ret = iommu_devinfo_cache_init();
3958 if (!ret)
3959 return ret;
3960
3961 kmem_cache_destroy(iommu_domain_cache);
3962 domain_error:
3963 iova_cache_put();
3964
3965 return -ENOMEM;
3966 }
3967
iommu_exit_mempool(void)3968 static void __init iommu_exit_mempool(void)
3969 {
3970 kmem_cache_destroy(iommu_devinfo_cache);
3971 kmem_cache_destroy(iommu_domain_cache);
3972 iova_cache_put();
3973 }
3974
quirk_ioat_snb_local_iommu(struct pci_dev * pdev)3975 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3976 {
3977 struct dmar_drhd_unit *drhd;
3978 u32 vtbar;
3979 int rc;
3980
3981 /* We know that this device on this chipset has its own IOMMU.
3982 * If we find it under a different IOMMU, then the BIOS is lying
3983 * to us. Hope that the IOMMU for this device is actually
3984 * disabled, and it needs no translation...
3985 */
3986 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3987 if (rc) {
3988 /* "can't" happen */
3989 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3990 return;
3991 }
3992 vtbar &= 0xffff0000;
3993
3994 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3995 drhd = dmar_find_matched_drhd_unit(pdev);
3996 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3997 TAINT_FIRMWARE_WORKAROUND,
3998 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3999 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4000 }
4001 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
4002
init_no_remapping_devices(void)4003 static void __init init_no_remapping_devices(void)
4004 {
4005 struct dmar_drhd_unit *drhd;
4006 struct device *dev;
4007 int i;
4008
4009 for_each_drhd_unit(drhd) {
4010 if (!drhd->include_all) {
4011 for_each_active_dev_scope(drhd->devices,
4012 drhd->devices_cnt, i, dev)
4013 break;
4014 /* ignore DMAR unit if no devices exist */
4015 if (i == drhd->devices_cnt)
4016 drhd->ignored = 1;
4017 }
4018 }
4019
4020 for_each_active_drhd_unit(drhd) {
4021 if (drhd->include_all)
4022 continue;
4023
4024 for_each_active_dev_scope(drhd->devices,
4025 drhd->devices_cnt, i, dev)
4026 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4027 break;
4028 if (i < drhd->devices_cnt)
4029 continue;
4030
4031 /* This IOMMU has *only* gfx devices. Either bypass it or
4032 set the gfx_mapped flag, as appropriate */
4033 if (dmar_map_gfx) {
4034 intel_iommu_gfx_mapped = 1;
4035 } else {
4036 drhd->ignored = 1;
4037 for_each_active_dev_scope(drhd->devices,
4038 drhd->devices_cnt, i, dev)
4039 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4040 }
4041 }
4042 }
4043
4044 #ifdef CONFIG_SUSPEND
init_iommu_hw(void)4045 static int init_iommu_hw(void)
4046 {
4047 struct dmar_drhd_unit *drhd;
4048 struct intel_iommu *iommu = NULL;
4049
4050 for_each_active_iommu(iommu, drhd)
4051 if (iommu->qi)
4052 dmar_reenable_qi(iommu);
4053
4054 for_each_iommu(iommu, drhd) {
4055 if (drhd->ignored) {
4056 /*
4057 * we always have to disable PMRs or DMA may fail on
4058 * this device
4059 */
4060 if (force_on)
4061 iommu_disable_protect_mem_regions(iommu);
4062 continue;
4063 }
4064
4065 iommu_flush_write_buffer(iommu);
4066
4067 iommu_set_root_entry(iommu);
4068
4069 iommu->flush.flush_context(iommu, 0, 0, 0,
4070 DMA_CCMD_GLOBAL_INVL);
4071 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4072 iommu_enable_translation(iommu);
4073 iommu_disable_protect_mem_regions(iommu);
4074 }
4075
4076 return 0;
4077 }
4078
iommu_flush_all(void)4079 static void iommu_flush_all(void)
4080 {
4081 struct dmar_drhd_unit *drhd;
4082 struct intel_iommu *iommu;
4083
4084 for_each_active_iommu(iommu, drhd) {
4085 iommu->flush.flush_context(iommu, 0, 0, 0,
4086 DMA_CCMD_GLOBAL_INVL);
4087 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4088 DMA_TLB_GLOBAL_FLUSH);
4089 }
4090 }
4091
iommu_suspend(void)4092 static int iommu_suspend(void)
4093 {
4094 struct dmar_drhd_unit *drhd;
4095 struct intel_iommu *iommu = NULL;
4096 unsigned long flag;
4097
4098 for_each_active_iommu(iommu, drhd) {
4099 iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
4100 GFP_ATOMIC);
4101 if (!iommu->iommu_state)
4102 goto nomem;
4103 }
4104
4105 iommu_flush_all();
4106
4107 for_each_active_iommu(iommu, drhd) {
4108 iommu_disable_translation(iommu);
4109
4110 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4111
4112 iommu->iommu_state[SR_DMAR_FECTL_REG] =
4113 readl(iommu->reg + DMAR_FECTL_REG);
4114 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4115 readl(iommu->reg + DMAR_FEDATA_REG);
4116 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4117 readl(iommu->reg + DMAR_FEADDR_REG);
4118 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4119 readl(iommu->reg + DMAR_FEUADDR_REG);
4120
4121 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4122 }
4123 return 0;
4124
4125 nomem:
4126 for_each_active_iommu(iommu, drhd)
4127 kfree(iommu->iommu_state);
4128
4129 return -ENOMEM;
4130 }
4131
iommu_resume(void)4132 static void iommu_resume(void)
4133 {
4134 struct dmar_drhd_unit *drhd;
4135 struct intel_iommu *iommu = NULL;
4136 unsigned long flag;
4137
4138 if (init_iommu_hw()) {
4139 if (force_on)
4140 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4141 else
4142 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4143 return;
4144 }
4145
4146 for_each_active_iommu(iommu, drhd) {
4147
4148 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4149
4150 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4151 iommu->reg + DMAR_FECTL_REG);
4152 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4153 iommu->reg + DMAR_FEDATA_REG);
4154 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4155 iommu->reg + DMAR_FEADDR_REG);
4156 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4157 iommu->reg + DMAR_FEUADDR_REG);
4158
4159 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4160 }
4161
4162 for_each_active_iommu(iommu, drhd)
4163 kfree(iommu->iommu_state);
4164 }
4165
4166 static struct syscore_ops iommu_syscore_ops = {
4167 .resume = iommu_resume,
4168 .suspend = iommu_suspend,
4169 };
4170
init_iommu_pm_ops(void)4171 static void __init init_iommu_pm_ops(void)
4172 {
4173 register_syscore_ops(&iommu_syscore_ops);
4174 }
4175
4176 #else
init_iommu_pm_ops(void)4177 static inline void init_iommu_pm_ops(void) {}
4178 #endif /* CONFIG_PM */
4179
4180
dmar_parse_one_rmrr(struct acpi_dmar_header * header,void * arg)4181 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4182 {
4183 struct acpi_dmar_reserved_memory *rmrr;
4184 int prot = DMA_PTE_READ|DMA_PTE_WRITE;
4185 struct dmar_rmrr_unit *rmrru;
4186 size_t length;
4187
4188 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4189 if (!rmrru)
4190 goto out;
4191
4192 rmrru->hdr = header;
4193 rmrr = (struct acpi_dmar_reserved_memory *)header;
4194 rmrru->base_address = rmrr->base_address;
4195 rmrru->end_address = rmrr->end_address;
4196
4197 length = rmrr->end_address - rmrr->base_address + 1;
4198 rmrru->resv = iommu_alloc_resv_region(rmrr->base_address, length, prot,
4199 IOMMU_RESV_DIRECT);
4200 if (!rmrru->resv)
4201 goto free_rmrru;
4202
4203 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4204 ((void *)rmrr) + rmrr->header.length,
4205 &rmrru->devices_cnt);
4206 if (rmrru->devices_cnt && rmrru->devices == NULL)
4207 goto free_all;
4208
4209 list_add(&rmrru->list, &dmar_rmrr_units);
4210
4211 return 0;
4212 free_all:
4213 kfree(rmrru->resv);
4214 free_rmrru:
4215 kfree(rmrru);
4216 out:
4217 return -ENOMEM;
4218 }
4219
dmar_find_atsr(struct acpi_dmar_atsr * atsr)4220 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4221 {
4222 struct dmar_atsr_unit *atsru;
4223 struct acpi_dmar_atsr *tmp;
4224
4225 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4226 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4227 if (atsr->segment != tmp->segment)
4228 continue;
4229 if (atsr->header.length != tmp->header.length)
4230 continue;
4231 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4232 return atsru;
4233 }
4234
4235 return NULL;
4236 }
4237
dmar_parse_one_atsr(struct acpi_dmar_header * hdr,void * arg)4238 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4239 {
4240 struct acpi_dmar_atsr *atsr;
4241 struct dmar_atsr_unit *atsru;
4242
4243 if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4244 return 0;
4245
4246 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4247 atsru = dmar_find_atsr(atsr);
4248 if (atsru)
4249 return 0;
4250
4251 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4252 if (!atsru)
4253 return -ENOMEM;
4254
4255 /*
4256 * If memory is allocated from slab by ACPI _DSM method, we need to
4257 * copy the memory content because the memory buffer will be freed
4258 * on return.
4259 */
4260 atsru->hdr = (void *)(atsru + 1);
4261 memcpy(atsru->hdr, hdr, hdr->length);
4262 atsru->include_all = atsr->flags & 0x1;
4263 if (!atsru->include_all) {
4264 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4265 (void *)atsr + atsr->header.length,
4266 &atsru->devices_cnt);
4267 if (atsru->devices_cnt && atsru->devices == NULL) {
4268 kfree(atsru);
4269 return -ENOMEM;
4270 }
4271 }
4272
4273 list_add_rcu(&atsru->list, &dmar_atsr_units);
4274
4275 return 0;
4276 }
4277
intel_iommu_free_atsr(struct dmar_atsr_unit * atsru)4278 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4279 {
4280 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4281 kfree(atsru);
4282 }
4283
dmar_release_one_atsr(struct acpi_dmar_header * hdr,void * arg)4284 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4285 {
4286 struct acpi_dmar_atsr *atsr;
4287 struct dmar_atsr_unit *atsru;
4288
4289 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4290 atsru = dmar_find_atsr(atsr);
4291 if (atsru) {
4292 list_del_rcu(&atsru->list);
4293 synchronize_rcu();
4294 intel_iommu_free_atsr(atsru);
4295 }
4296
4297 return 0;
4298 }
4299
dmar_check_one_atsr(struct acpi_dmar_header * hdr,void * arg)4300 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4301 {
4302 int i;
4303 struct device *dev;
4304 struct acpi_dmar_atsr *atsr;
4305 struct dmar_atsr_unit *atsru;
4306
4307 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4308 atsru = dmar_find_atsr(atsr);
4309 if (!atsru)
4310 return 0;
4311
4312 if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4313 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4314 i, dev)
4315 return -EBUSY;
4316 }
4317
4318 return 0;
4319 }
4320
intel_iommu_add(struct dmar_drhd_unit * dmaru)4321 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4322 {
4323 int sp, ret = 0;
4324 struct intel_iommu *iommu = dmaru->iommu;
4325
4326 if (g_iommus[iommu->seq_id])
4327 return 0;
4328
4329 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4330 pr_warn("%s: Doesn't support hardware pass through.\n",
4331 iommu->name);
4332 return -ENXIO;
4333 }
4334 if (!ecap_sc_support(iommu->ecap) &&
4335 domain_update_iommu_snooping(iommu)) {
4336 pr_warn("%s: Doesn't support snooping.\n",
4337 iommu->name);
4338 return -ENXIO;
4339 }
4340 sp = domain_update_iommu_superpage(iommu) - 1;
4341 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4342 pr_warn("%s: Doesn't support large page.\n",
4343 iommu->name);
4344 return -ENXIO;
4345 }
4346
4347 /*
4348 * Disable translation if already enabled prior to OS handover.
4349 */
4350 if (iommu->gcmd & DMA_GCMD_TE)
4351 iommu_disable_translation(iommu);
4352
4353 g_iommus[iommu->seq_id] = iommu;
4354 ret = iommu_init_domains(iommu);
4355 if (ret == 0)
4356 ret = iommu_alloc_root_entry(iommu);
4357 if (ret)
4358 goto out;
4359
4360 #ifdef CONFIG_INTEL_IOMMU_SVM
4361 if (pasid_enabled(iommu))
4362 intel_svm_init(iommu);
4363 #endif
4364
4365 if (dmaru->ignored) {
4366 /*
4367 * we always have to disable PMRs or DMA may fail on this device
4368 */
4369 if (force_on)
4370 iommu_disable_protect_mem_regions(iommu);
4371 return 0;
4372 }
4373
4374 intel_iommu_init_qi(iommu);
4375 iommu_flush_write_buffer(iommu);
4376
4377 #ifdef CONFIG_INTEL_IOMMU_SVM
4378 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
4379 ret = intel_svm_enable_prq(iommu);
4380 if (ret)
4381 goto disable_iommu;
4382 }
4383 #endif
4384 ret = dmar_set_interrupt(iommu);
4385 if (ret)
4386 goto disable_iommu;
4387
4388 iommu_set_root_entry(iommu);
4389 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4390 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4391 iommu_enable_translation(iommu);
4392
4393 iommu_disable_protect_mem_regions(iommu);
4394 return 0;
4395
4396 disable_iommu:
4397 disable_dmar_iommu(iommu);
4398 out:
4399 free_dmar_iommu(iommu);
4400 return ret;
4401 }
4402
dmar_iommu_hotplug(struct dmar_drhd_unit * dmaru,bool insert)4403 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4404 {
4405 int ret = 0;
4406 struct intel_iommu *iommu = dmaru->iommu;
4407
4408 if (!intel_iommu_enabled)
4409 return 0;
4410 if (iommu == NULL)
4411 return -EINVAL;
4412
4413 if (insert) {
4414 ret = intel_iommu_add(dmaru);
4415 } else {
4416 disable_dmar_iommu(iommu);
4417 free_dmar_iommu(iommu);
4418 }
4419
4420 return ret;
4421 }
4422
intel_iommu_free_dmars(void)4423 static void intel_iommu_free_dmars(void)
4424 {
4425 struct dmar_rmrr_unit *rmrru, *rmrr_n;
4426 struct dmar_atsr_unit *atsru, *atsr_n;
4427
4428 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4429 list_del(&rmrru->list);
4430 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4431 kfree(rmrru->resv);
4432 kfree(rmrru);
4433 }
4434
4435 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4436 list_del(&atsru->list);
4437 intel_iommu_free_atsr(atsru);
4438 }
4439 }
4440
dmar_find_matched_atsr_unit(struct pci_dev * dev)4441 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4442 {
4443 int i, ret = 1;
4444 struct pci_bus *bus;
4445 struct pci_dev *bridge = NULL;
4446 struct device *tmp;
4447 struct acpi_dmar_atsr *atsr;
4448 struct dmar_atsr_unit *atsru;
4449
4450 dev = pci_physfn(dev);
4451 for (bus = dev->bus; bus; bus = bus->parent) {
4452 bridge = bus->self;
4453 /* If it's an integrated device, allow ATS */
4454 if (!bridge)
4455 return 1;
4456 /* Connected via non-PCIe: no ATS */
4457 if (!pci_is_pcie(bridge) ||
4458 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4459 return 0;
4460 /* If we found the root port, look it up in the ATSR */
4461 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4462 break;
4463 }
4464
4465 rcu_read_lock();
4466 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4467 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4468 if (atsr->segment != pci_domain_nr(dev->bus))
4469 continue;
4470
4471 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4472 if (tmp == &bridge->dev)
4473 goto out;
4474
4475 if (atsru->include_all)
4476 goto out;
4477 }
4478 ret = 0;
4479 out:
4480 rcu_read_unlock();
4481
4482 return ret;
4483 }
4484
dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info * info)4485 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4486 {
4487 int ret = 0;
4488 struct dmar_rmrr_unit *rmrru;
4489 struct dmar_atsr_unit *atsru;
4490 struct acpi_dmar_atsr *atsr;
4491 struct acpi_dmar_reserved_memory *rmrr;
4492
4493 if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4494 return 0;
4495
4496 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4497 rmrr = container_of(rmrru->hdr,
4498 struct acpi_dmar_reserved_memory, header);
4499 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4500 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4501 ((void *)rmrr) + rmrr->header.length,
4502 rmrr->segment, rmrru->devices,
4503 rmrru->devices_cnt);
4504 if(ret < 0)
4505 return ret;
4506 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4507 dmar_remove_dev_scope(info, rmrr->segment,
4508 rmrru->devices, rmrru->devices_cnt);
4509 }
4510 }
4511
4512 list_for_each_entry(atsru, &dmar_atsr_units, list) {
4513 if (atsru->include_all)
4514 continue;
4515
4516 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4517 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4518 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4519 (void *)atsr + atsr->header.length,
4520 atsr->segment, atsru->devices,
4521 atsru->devices_cnt);
4522 if (ret > 0)
4523 break;
4524 else if(ret < 0)
4525 return ret;
4526 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4527 if (dmar_remove_dev_scope(info, atsr->segment,
4528 atsru->devices, atsru->devices_cnt))
4529 break;
4530 }
4531 }
4532
4533 return 0;
4534 }
4535
4536 /*
4537 * Here we only respond to action of unbound device from driver.
4538 *
4539 * Added device is not attached to its DMAR domain here yet. That will happen
4540 * when mapping the device to iova.
4541 */
device_notifier(struct notifier_block * nb,unsigned long action,void * data)4542 static int device_notifier(struct notifier_block *nb,
4543 unsigned long action, void *data)
4544 {
4545 struct device *dev = data;
4546 struct dmar_domain *domain;
4547
4548 if (iommu_dummy(dev))
4549 return 0;
4550
4551 if (action != BUS_NOTIFY_REMOVED_DEVICE)
4552 return 0;
4553
4554 domain = find_domain(dev);
4555 if (!domain)
4556 return 0;
4557
4558 dmar_remove_one_dev_info(domain, dev);
4559 if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4560 domain_exit(domain);
4561
4562 return 0;
4563 }
4564
4565 static struct notifier_block device_nb = {
4566 .notifier_call = device_notifier,
4567 };
4568
intel_iommu_memory_notifier(struct notifier_block * nb,unsigned long val,void * v)4569 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4570 unsigned long val, void *v)
4571 {
4572 struct memory_notify *mhp = v;
4573 unsigned long long start, end;
4574 unsigned long start_vpfn, last_vpfn;
4575
4576 switch (val) {
4577 case MEM_GOING_ONLINE:
4578 start = mhp->start_pfn << PAGE_SHIFT;
4579 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4580 if (iommu_domain_identity_map(si_domain, start, end)) {
4581 pr_warn("Failed to build identity map for [%llx-%llx]\n",
4582 start, end);
4583 return NOTIFY_BAD;
4584 }
4585 break;
4586
4587 case MEM_OFFLINE:
4588 case MEM_CANCEL_ONLINE:
4589 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4590 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4591 while (start_vpfn <= last_vpfn) {
4592 struct iova *iova;
4593 struct dmar_drhd_unit *drhd;
4594 struct intel_iommu *iommu;
4595 struct page *freelist;
4596
4597 iova = find_iova(&si_domain->iovad, start_vpfn);
4598 if (iova == NULL) {
4599 pr_debug("Failed get IOVA for PFN %lx\n",
4600 start_vpfn);
4601 break;
4602 }
4603
4604 iova = split_and_remove_iova(&si_domain->iovad, iova,
4605 start_vpfn, last_vpfn);
4606 if (iova == NULL) {
4607 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4608 start_vpfn, last_vpfn);
4609 return NOTIFY_BAD;
4610 }
4611
4612 freelist = domain_unmap(si_domain, iova->pfn_lo,
4613 iova->pfn_hi);
4614
4615 rcu_read_lock();
4616 for_each_active_iommu(iommu, drhd)
4617 iommu_flush_iotlb_psi(iommu, si_domain,
4618 iova->pfn_lo, iova_size(iova),
4619 !freelist, 0);
4620 rcu_read_unlock();
4621 dma_free_pagelist(freelist);
4622
4623 start_vpfn = iova->pfn_hi + 1;
4624 free_iova_mem(iova);
4625 }
4626 break;
4627 }
4628
4629 return NOTIFY_OK;
4630 }
4631
4632 static struct notifier_block intel_iommu_memory_nb = {
4633 .notifier_call = intel_iommu_memory_notifier,
4634 .priority = 0
4635 };
4636
free_all_cpu_cached_iovas(unsigned int cpu)4637 static void free_all_cpu_cached_iovas(unsigned int cpu)
4638 {
4639 int i;
4640
4641 for (i = 0; i < g_num_of_iommus; i++) {
4642 struct intel_iommu *iommu = g_iommus[i];
4643 struct dmar_domain *domain;
4644 int did;
4645
4646 if (!iommu)
4647 continue;
4648
4649 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4650 domain = get_iommu_domain(iommu, (u16)did);
4651
4652 if (!domain)
4653 continue;
4654 free_cpu_cached_iovas(cpu, &domain->iovad);
4655 }
4656 }
4657 }
4658
intel_iommu_cpu_dead(unsigned int cpu)4659 static int intel_iommu_cpu_dead(unsigned int cpu)
4660 {
4661 free_all_cpu_cached_iovas(cpu);
4662 return 0;
4663 }
4664
intel_disable_iommus(void)4665 static void intel_disable_iommus(void)
4666 {
4667 struct intel_iommu *iommu = NULL;
4668 struct dmar_drhd_unit *drhd;
4669
4670 for_each_iommu(iommu, drhd)
4671 iommu_disable_translation(iommu);
4672 }
4673
dev_to_intel_iommu(struct device * dev)4674 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
4675 {
4676 struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
4677
4678 return container_of(iommu_dev, struct intel_iommu, iommu);
4679 }
4680
intel_iommu_show_version(struct device * dev,struct device_attribute * attr,char * buf)4681 static ssize_t intel_iommu_show_version(struct device *dev,
4682 struct device_attribute *attr,
4683 char *buf)
4684 {
4685 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4686 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4687 return sprintf(buf, "%d:%d\n",
4688 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4689 }
4690 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4691
intel_iommu_show_address(struct device * dev,struct device_attribute * attr,char * buf)4692 static ssize_t intel_iommu_show_address(struct device *dev,
4693 struct device_attribute *attr,
4694 char *buf)
4695 {
4696 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4697 return sprintf(buf, "%llx\n", iommu->reg_phys);
4698 }
4699 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4700
intel_iommu_show_cap(struct device * dev,struct device_attribute * attr,char * buf)4701 static ssize_t intel_iommu_show_cap(struct device *dev,
4702 struct device_attribute *attr,
4703 char *buf)
4704 {
4705 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4706 return sprintf(buf, "%llx\n", iommu->cap);
4707 }
4708 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4709
intel_iommu_show_ecap(struct device * dev,struct device_attribute * attr,char * buf)4710 static ssize_t intel_iommu_show_ecap(struct device *dev,
4711 struct device_attribute *attr,
4712 char *buf)
4713 {
4714 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4715 return sprintf(buf, "%llx\n", iommu->ecap);
4716 }
4717 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4718
intel_iommu_show_ndoms(struct device * dev,struct device_attribute * attr,char * buf)4719 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4720 struct device_attribute *attr,
4721 char *buf)
4722 {
4723 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4724 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4725 }
4726 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4727
intel_iommu_show_ndoms_used(struct device * dev,struct device_attribute * attr,char * buf)4728 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4729 struct device_attribute *attr,
4730 char *buf)
4731 {
4732 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4733 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4734 cap_ndoms(iommu->cap)));
4735 }
4736 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4737
4738 static struct attribute *intel_iommu_attrs[] = {
4739 &dev_attr_version.attr,
4740 &dev_attr_address.attr,
4741 &dev_attr_cap.attr,
4742 &dev_attr_ecap.attr,
4743 &dev_attr_domains_supported.attr,
4744 &dev_attr_domains_used.attr,
4745 NULL,
4746 };
4747
4748 static struct attribute_group intel_iommu_group = {
4749 .name = "intel-iommu",
4750 .attrs = intel_iommu_attrs,
4751 };
4752
4753 const struct attribute_group *intel_iommu_groups[] = {
4754 &intel_iommu_group,
4755 NULL,
4756 };
4757
intel_iommu_init(void)4758 int __init intel_iommu_init(void)
4759 {
4760 int ret = -ENODEV;
4761 struct dmar_drhd_unit *drhd;
4762 struct intel_iommu *iommu;
4763
4764 /* VT-d is required for a TXT/tboot launch, so enforce that */
4765 force_on = tboot_force_iommu();
4766
4767 if (iommu_init_mempool()) {
4768 if (force_on)
4769 panic("tboot: Failed to initialize iommu memory\n");
4770 return -ENOMEM;
4771 }
4772
4773 down_write(&dmar_global_lock);
4774 if (dmar_table_init()) {
4775 if (force_on)
4776 panic("tboot: Failed to initialize DMAR table\n");
4777 goto out_free_dmar;
4778 }
4779
4780 if (dmar_dev_scope_init() < 0) {
4781 if (force_on)
4782 panic("tboot: Failed to initialize DMAR device scope\n");
4783 goto out_free_dmar;
4784 }
4785
4786 up_write(&dmar_global_lock);
4787
4788 /*
4789 * The bus notifier takes the dmar_global_lock, so lockdep will
4790 * complain later when we register it under the lock.
4791 */
4792 dmar_register_bus_notifier();
4793
4794 down_write(&dmar_global_lock);
4795
4796 if (no_iommu || dmar_disabled) {
4797 /*
4798 * We exit the function here to ensure IOMMU's remapping and
4799 * mempool aren't setup, which means that the IOMMU's PMRs
4800 * won't be disabled via the call to init_dmars(). So disable
4801 * it explicitly here. The PMRs were setup by tboot prior to
4802 * calling SENTER, but the kernel is expected to reset/tear
4803 * down the PMRs.
4804 */
4805 if (intel_iommu_tboot_noforce) {
4806 for_each_iommu(iommu, drhd)
4807 iommu_disable_protect_mem_regions(iommu);
4808 }
4809
4810 /*
4811 * Make sure the IOMMUs are switched off, even when we
4812 * boot into a kexec kernel and the previous kernel left
4813 * them enabled
4814 */
4815 intel_disable_iommus();
4816 goto out_free_dmar;
4817 }
4818
4819 if (list_empty(&dmar_rmrr_units))
4820 pr_info("No RMRR found\n");
4821
4822 if (list_empty(&dmar_atsr_units))
4823 pr_info("No ATSR found\n");
4824
4825 if (dmar_init_reserved_ranges()) {
4826 if (force_on)
4827 panic("tboot: Failed to reserve iommu ranges\n");
4828 goto out_free_reserved_range;
4829 }
4830
4831 init_no_remapping_devices();
4832
4833 ret = init_dmars();
4834 if (ret) {
4835 if (force_on)
4836 panic("tboot: Failed to initialize DMARs\n");
4837 pr_err("Initialization failed\n");
4838 goto out_free_reserved_range;
4839 }
4840 up_write(&dmar_global_lock);
4841 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4842
4843 #if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
4844 swiotlb = 0;
4845 #endif
4846 dma_ops = &intel_dma_ops;
4847
4848 init_iommu_pm_ops();
4849
4850 for_each_active_iommu(iommu, drhd) {
4851 iommu_device_sysfs_add(&iommu->iommu, NULL,
4852 intel_iommu_groups,
4853 "%s", iommu->name);
4854 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
4855 iommu_device_register(&iommu->iommu);
4856 }
4857
4858 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4859 bus_register_notifier(&pci_bus_type, &device_nb);
4860 if (si_domain && !hw_pass_through)
4861 register_memory_notifier(&intel_iommu_memory_nb);
4862 cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
4863 intel_iommu_cpu_dead);
4864 intel_iommu_enabled = 1;
4865
4866 return 0;
4867
4868 out_free_reserved_range:
4869 put_iova_domain(&reserved_iova_list);
4870 out_free_dmar:
4871 intel_iommu_free_dmars();
4872 up_write(&dmar_global_lock);
4873 iommu_exit_mempool();
4874 return ret;
4875 }
4876
domain_context_clear_one_cb(struct pci_dev * pdev,u16 alias,void * opaque)4877 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4878 {
4879 struct intel_iommu *iommu = opaque;
4880
4881 domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4882 return 0;
4883 }
4884
4885 /*
4886 * NB - intel-iommu lacks any sort of reference counting for the users of
4887 * dependent devices. If multiple endpoints have intersecting dependent
4888 * devices, unbinding the driver from any one of them will possibly leave
4889 * the others unable to operate.
4890 */
domain_context_clear(struct intel_iommu * iommu,struct device * dev)4891 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4892 {
4893 if (!iommu || !dev || !dev_is_pci(dev))
4894 return;
4895
4896 pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4897 }
4898
__dmar_remove_one_dev_info(struct device_domain_info * info)4899 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4900 {
4901 struct intel_iommu *iommu;
4902 unsigned long flags;
4903
4904 assert_spin_locked(&device_domain_lock);
4905
4906 if (WARN_ON(!info))
4907 return;
4908
4909 iommu = info->iommu;
4910
4911 if (info->dev) {
4912 iommu_disable_dev_iotlb(info);
4913 domain_context_clear(iommu, info->dev);
4914 intel_pasid_free_table(info->dev);
4915 }
4916
4917 unlink_domain_info(info);
4918
4919 spin_lock_irqsave(&iommu->lock, flags);
4920 domain_detach_iommu(info->domain, iommu);
4921 spin_unlock_irqrestore(&iommu->lock, flags);
4922
4923 free_devinfo_mem(info);
4924 }
4925
dmar_remove_one_dev_info(struct dmar_domain * domain,struct device * dev)4926 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4927 struct device *dev)
4928 {
4929 struct device_domain_info *info;
4930 unsigned long flags;
4931
4932 spin_lock_irqsave(&device_domain_lock, flags);
4933 info = dev->archdata.iommu;
4934 __dmar_remove_one_dev_info(info);
4935 spin_unlock_irqrestore(&device_domain_lock, flags);
4936 }
4937
md_domain_init(struct dmar_domain * domain,int guest_width)4938 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4939 {
4940 int adjust_width;
4941
4942 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
4943 domain_reserve_special_ranges(domain);
4944
4945 /* calculate AGAW */
4946 domain->gaw = guest_width;
4947 adjust_width = guestwidth_to_adjustwidth(guest_width);
4948 domain->agaw = width_to_agaw(adjust_width);
4949
4950 domain->iommu_coherency = 0;
4951 domain->iommu_snooping = 0;
4952 domain->iommu_superpage = 0;
4953 domain->max_addr = 0;
4954
4955 /* always allocate the top pgd */
4956 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4957 if (!domain->pgd)
4958 return -ENOMEM;
4959 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4960 return 0;
4961 }
4962
intel_iommu_domain_alloc(unsigned type)4963 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4964 {
4965 struct dmar_domain *dmar_domain;
4966 struct iommu_domain *domain;
4967
4968 if (type != IOMMU_DOMAIN_UNMANAGED)
4969 return NULL;
4970
4971 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4972 if (!dmar_domain) {
4973 pr_err("Can't allocate dmar_domain\n");
4974 return NULL;
4975 }
4976 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4977 pr_err("Domain initialization failed\n");
4978 domain_exit(dmar_domain);
4979 return NULL;
4980 }
4981 domain_update_iommu_cap(dmar_domain);
4982
4983 domain = &dmar_domain->domain;
4984 domain->geometry.aperture_start = 0;
4985 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4986 domain->geometry.force_aperture = true;
4987
4988 return domain;
4989 }
4990
intel_iommu_domain_free(struct iommu_domain * domain)4991 static void intel_iommu_domain_free(struct iommu_domain *domain)
4992 {
4993 domain_exit(to_dmar_domain(domain));
4994 }
4995
intel_iommu_attach_device(struct iommu_domain * domain,struct device * dev)4996 static int intel_iommu_attach_device(struct iommu_domain *domain,
4997 struct device *dev)
4998 {
4999 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5000 struct intel_iommu *iommu;
5001 int addr_width;
5002 u8 bus, devfn;
5003
5004 if (device_is_rmrr_locked(dev)) {
5005 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
5006 return -EPERM;
5007 }
5008
5009 /* normally dev is not mapped */
5010 if (unlikely(domain_context_mapped(dev))) {
5011 struct dmar_domain *old_domain;
5012
5013 old_domain = find_domain(dev);
5014 if (old_domain) {
5015 rcu_read_lock();
5016 dmar_remove_one_dev_info(old_domain, dev);
5017 rcu_read_unlock();
5018
5019 if (!domain_type_is_vm_or_si(old_domain) &&
5020 list_empty(&old_domain->devices))
5021 domain_exit(old_domain);
5022 }
5023 }
5024
5025 iommu = device_to_iommu(dev, &bus, &devfn);
5026 if (!iommu)
5027 return -ENODEV;
5028
5029 /* check if this iommu agaw is sufficient for max mapped address */
5030 addr_width = agaw_to_width(iommu->agaw);
5031 if (addr_width > cap_mgaw(iommu->cap))
5032 addr_width = cap_mgaw(iommu->cap);
5033
5034 if (dmar_domain->max_addr > (1LL << addr_width)) {
5035 pr_err("%s: iommu width (%d) is not "
5036 "sufficient for the mapped address (%llx)\n",
5037 __func__, addr_width, dmar_domain->max_addr);
5038 return -EFAULT;
5039 }
5040 dmar_domain->gaw = addr_width;
5041
5042 /*
5043 * Knock out extra levels of page tables if necessary
5044 */
5045 while (iommu->agaw < dmar_domain->agaw) {
5046 struct dma_pte *pte;
5047
5048 pte = dmar_domain->pgd;
5049 if (dma_pte_present(pte)) {
5050 dmar_domain->pgd = (struct dma_pte *)
5051 phys_to_virt(dma_pte_addr(pte));
5052 free_pgtable_page(pte);
5053 }
5054 dmar_domain->agaw--;
5055 }
5056
5057 return domain_add_dev_info(dmar_domain, dev);
5058 }
5059
intel_iommu_detach_device(struct iommu_domain * domain,struct device * dev)5060 static void intel_iommu_detach_device(struct iommu_domain *domain,
5061 struct device *dev)
5062 {
5063 dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
5064 }
5065
intel_iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t hpa,size_t size,int iommu_prot)5066 static int intel_iommu_map(struct iommu_domain *domain,
5067 unsigned long iova, phys_addr_t hpa,
5068 size_t size, int iommu_prot)
5069 {
5070 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5071 u64 max_addr;
5072 int prot = 0;
5073 int ret;
5074
5075 if (iommu_prot & IOMMU_READ)
5076 prot |= DMA_PTE_READ;
5077 if (iommu_prot & IOMMU_WRITE)
5078 prot |= DMA_PTE_WRITE;
5079 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5080 prot |= DMA_PTE_SNP;
5081
5082 max_addr = iova + size;
5083 if (dmar_domain->max_addr < max_addr) {
5084 u64 end;
5085
5086 /* check if minimum agaw is sufficient for mapped address */
5087 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5088 if (end < max_addr) {
5089 pr_err("%s: iommu width (%d) is not "
5090 "sufficient for the mapped address (%llx)\n",
5091 __func__, dmar_domain->gaw, max_addr);
5092 return -EFAULT;
5093 }
5094 dmar_domain->max_addr = max_addr;
5095 }
5096 /* Round up size to next multiple of PAGE_SIZE, if it and
5097 the low bits of hpa would take us onto the next page */
5098 size = aligned_nrpages(hpa, size);
5099 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5100 hpa >> VTD_PAGE_SHIFT, size, prot);
5101 return ret;
5102 }
5103
intel_iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size)5104 static size_t intel_iommu_unmap(struct iommu_domain *domain,
5105 unsigned long iova, size_t size)
5106 {
5107 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5108 struct page *freelist = NULL;
5109 unsigned long start_pfn, last_pfn;
5110 unsigned int npages;
5111 int iommu_id, level = 0;
5112
5113 /* Cope with horrid API which requires us to unmap more than the
5114 size argument if it happens to be a large-page mapping. */
5115 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5116
5117 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5118 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5119
5120 start_pfn = iova >> VTD_PAGE_SHIFT;
5121 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5122
5123 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5124
5125 npages = last_pfn - start_pfn + 1;
5126
5127 for_each_domain_iommu(iommu_id, dmar_domain)
5128 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5129 start_pfn, npages, !freelist, 0);
5130
5131 dma_free_pagelist(freelist);
5132
5133 if (dmar_domain->max_addr == iova + size)
5134 dmar_domain->max_addr = iova;
5135
5136 return size;
5137 }
5138
intel_iommu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)5139 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5140 dma_addr_t iova)
5141 {
5142 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5143 struct dma_pte *pte;
5144 int level = 0;
5145 u64 phys = 0;
5146
5147 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5148 if (pte)
5149 phys = dma_pte_addr(pte);
5150
5151 return phys;
5152 }
5153
intel_iommu_capable(enum iommu_cap cap)5154 static bool intel_iommu_capable(enum iommu_cap cap)
5155 {
5156 if (cap == IOMMU_CAP_CACHE_COHERENCY)
5157 return domain_update_iommu_snooping(NULL) == 1;
5158 if (cap == IOMMU_CAP_INTR_REMAP)
5159 return irq_remapping_enabled == 1;
5160
5161 return false;
5162 }
5163
intel_iommu_add_device(struct device * dev)5164 static int intel_iommu_add_device(struct device *dev)
5165 {
5166 struct intel_iommu *iommu;
5167 struct iommu_group *group;
5168 u8 bus, devfn;
5169
5170 iommu = device_to_iommu(dev, &bus, &devfn);
5171 if (!iommu)
5172 return -ENODEV;
5173
5174 iommu_device_link(&iommu->iommu, dev);
5175
5176 group = iommu_group_get_for_dev(dev);
5177
5178 if (IS_ERR(group))
5179 return PTR_ERR(group);
5180
5181 iommu_group_put(group);
5182 return 0;
5183 }
5184
intel_iommu_remove_device(struct device * dev)5185 static void intel_iommu_remove_device(struct device *dev)
5186 {
5187 struct intel_iommu *iommu;
5188 u8 bus, devfn;
5189
5190 iommu = device_to_iommu(dev, &bus, &devfn);
5191 if (!iommu)
5192 return;
5193
5194 iommu_group_remove_device(dev);
5195
5196 iommu_device_unlink(&iommu->iommu, dev);
5197 }
5198
intel_iommu_get_resv_regions(struct device * device,struct list_head * head)5199 static void intel_iommu_get_resv_regions(struct device *device,
5200 struct list_head *head)
5201 {
5202 struct iommu_resv_region *reg;
5203 struct dmar_rmrr_unit *rmrr;
5204 struct device *i_dev;
5205 int i;
5206
5207 rcu_read_lock();
5208 for_each_rmrr_units(rmrr) {
5209 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
5210 i, i_dev) {
5211 if (i_dev != device)
5212 continue;
5213
5214 list_add_tail(&rmrr->resv->list, head);
5215 }
5216 }
5217 rcu_read_unlock();
5218
5219 reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
5220 IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5221 0, IOMMU_RESV_MSI);
5222 if (!reg)
5223 return;
5224 list_add_tail(®->list, head);
5225 }
5226
intel_iommu_put_resv_regions(struct device * dev,struct list_head * head)5227 static void intel_iommu_put_resv_regions(struct device *dev,
5228 struct list_head *head)
5229 {
5230 struct iommu_resv_region *entry, *next;
5231
5232 list_for_each_entry_safe(entry, next, head, list) {
5233 if (entry->type == IOMMU_RESV_RESERVED)
5234 kfree(entry);
5235 }
5236 }
5237
5238 #ifdef CONFIG_INTEL_IOMMU_SVM
5239 #define MAX_NR_PASID_BITS (20)
intel_iommu_get_pts(struct device * dev)5240 static inline unsigned long intel_iommu_get_pts(struct device *dev)
5241 {
5242 int pts, max_pasid;
5243
5244 max_pasid = intel_pasid_get_dev_max_id(dev);
5245 pts = find_first_bit((unsigned long *)&max_pasid, MAX_NR_PASID_BITS);
5246 if (pts < 5)
5247 return 0;
5248
5249 return pts - 5;
5250 }
5251
intel_iommu_enable_pasid(struct intel_iommu * iommu,struct intel_svm_dev * sdev)5252 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct intel_svm_dev *sdev)
5253 {
5254 struct device_domain_info *info;
5255 struct context_entry *context;
5256 struct dmar_domain *domain;
5257 unsigned long flags;
5258 u64 ctx_lo;
5259 int ret;
5260
5261 domain = get_valid_domain_for_dev(sdev->dev);
5262 if (!domain)
5263 return -EINVAL;
5264
5265 spin_lock_irqsave(&device_domain_lock, flags);
5266 spin_lock(&iommu->lock);
5267
5268 ret = -EINVAL;
5269 info = sdev->dev->archdata.iommu;
5270 if (!info || !info->pasid_supported)
5271 goto out;
5272
5273 context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5274 if (WARN_ON(!context))
5275 goto out;
5276
5277 ctx_lo = context[0].lo;
5278
5279 sdev->did = domain->iommu_did[iommu->seq_id];
5280 sdev->sid = PCI_DEVID(info->bus, info->devfn);
5281
5282 if (!(ctx_lo & CONTEXT_PASIDE)) {
5283 if (iommu->pasid_state_table)
5284 context[1].hi = (u64)virt_to_phys(iommu->pasid_state_table);
5285 context[1].lo = (u64)virt_to_phys(info->pasid_table->table) |
5286 intel_iommu_get_pts(sdev->dev);
5287
5288 wmb();
5289 /* CONTEXT_TT_MULTI_LEVEL and CONTEXT_TT_DEV_IOTLB are both
5290 * extended to permit requests-with-PASID if the PASIDE bit
5291 * is set. which makes sense. For CONTEXT_TT_PASS_THROUGH,
5292 * however, the PASIDE bit is ignored and requests-with-PASID
5293 * are unconditionally blocked. Which makes less sense.
5294 * So convert from CONTEXT_TT_PASS_THROUGH to one of the new
5295 * "guest mode" translation types depending on whether ATS
5296 * is available or not. Annoyingly, we can't use the new
5297 * modes *unless* PASIDE is set. */
5298 if ((ctx_lo & CONTEXT_TT_MASK) == (CONTEXT_TT_PASS_THROUGH << 2)) {
5299 ctx_lo &= ~CONTEXT_TT_MASK;
5300 if (info->ats_supported)
5301 ctx_lo |= CONTEXT_TT_PT_PASID_DEV_IOTLB << 2;
5302 else
5303 ctx_lo |= CONTEXT_TT_PT_PASID << 2;
5304 }
5305 ctx_lo |= CONTEXT_PASIDE;
5306 if (iommu->pasid_state_table)
5307 ctx_lo |= CONTEXT_DINVE;
5308 if (info->pri_supported)
5309 ctx_lo |= CONTEXT_PRS;
5310 context[0].lo = ctx_lo;
5311 wmb();
5312 iommu->flush.flush_context(iommu, sdev->did, sdev->sid,
5313 DMA_CCMD_MASK_NOBIT,
5314 DMA_CCMD_DEVICE_INVL);
5315 }
5316
5317 /* Enable PASID support in the device, if it wasn't already */
5318 if (!info->pasid_enabled)
5319 iommu_enable_dev_iotlb(info);
5320
5321 if (info->ats_enabled) {
5322 sdev->dev_iotlb = 1;
5323 sdev->qdep = info->ats_qdep;
5324 if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
5325 sdev->qdep = 0;
5326 }
5327 ret = 0;
5328
5329 out:
5330 spin_unlock(&iommu->lock);
5331 spin_unlock_irqrestore(&device_domain_lock, flags);
5332
5333 return ret;
5334 }
5335
intel_svm_device_to_iommu(struct device * dev)5336 struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5337 {
5338 struct intel_iommu *iommu;
5339 u8 bus, devfn;
5340
5341 if (iommu_dummy(dev)) {
5342 dev_warn(dev,
5343 "No IOMMU translation for device; cannot enable SVM\n");
5344 return NULL;
5345 }
5346
5347 iommu = device_to_iommu(dev, &bus, &devfn);
5348 if ((!iommu)) {
5349 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5350 return NULL;
5351 }
5352
5353 return iommu;
5354 }
5355 #endif /* CONFIG_INTEL_IOMMU_SVM */
5356
5357 const struct iommu_ops intel_iommu_ops = {
5358 .capable = intel_iommu_capable,
5359 .domain_alloc = intel_iommu_domain_alloc,
5360 .domain_free = intel_iommu_domain_free,
5361 .attach_dev = intel_iommu_attach_device,
5362 .detach_dev = intel_iommu_detach_device,
5363 .map = intel_iommu_map,
5364 .unmap = intel_iommu_unmap,
5365 .iova_to_phys = intel_iommu_iova_to_phys,
5366 .add_device = intel_iommu_add_device,
5367 .remove_device = intel_iommu_remove_device,
5368 .get_resv_regions = intel_iommu_get_resv_regions,
5369 .put_resv_regions = intel_iommu_put_resv_regions,
5370 .device_group = pci_device_group,
5371 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
5372 };
5373
quirk_iommu_g4x_gfx(struct pci_dev * dev)5374 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5375 {
5376 /* G4x/GM45 integrated gfx dmar support is totally busted. */
5377 pr_info("Disabling IOMMU for graphics on this chipset\n");
5378 dmar_map_gfx = 0;
5379 }
5380
5381 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5382 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5383 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5384 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5385 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5386 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5387 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5388
quirk_iommu_rwbf(struct pci_dev * dev)5389 static void quirk_iommu_rwbf(struct pci_dev *dev)
5390 {
5391 /*
5392 * Mobile 4 Series Chipset neglects to set RWBF capability,
5393 * but needs it. Same seems to hold for the desktop versions.
5394 */
5395 pr_info("Forcing write-buffer flush capability\n");
5396 rwbf_quirk = 1;
5397 }
5398
5399 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5400 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5401 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5402 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5403 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5404 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5405 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5406
5407 #define GGC 0x52
5408 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
5409 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
5410 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
5411 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
5412 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
5413 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
5414 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
5415 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
5416
quirk_calpella_no_shadow_gtt(struct pci_dev * dev)5417 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5418 {
5419 unsigned short ggc;
5420
5421 if (pci_read_config_word(dev, GGC, &ggc))
5422 return;
5423
5424 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5425 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5426 dmar_map_gfx = 0;
5427 } else if (dmar_map_gfx) {
5428 /* we have to ensure the gfx device is idle before we flush */
5429 pr_info("Disabling batched IOTLB flush on Ironlake\n");
5430 intel_iommu_strict = 1;
5431 }
5432 }
5433 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5434 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5435 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5436 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5437
5438 /* On Tylersburg chipsets, some BIOSes have been known to enable the
5439 ISOCH DMAR unit for the Azalia sound device, but not give it any
5440 TLB entries, which causes it to deadlock. Check for that. We do
5441 this in a function called from init_dmars(), instead of in a PCI
5442 quirk, because we don't want to print the obnoxious "BIOS broken"
5443 message if VT-d is actually disabled.
5444 */
check_tylersburg_isoch(void)5445 static void __init check_tylersburg_isoch(void)
5446 {
5447 struct pci_dev *pdev;
5448 uint32_t vtisochctrl;
5449
5450 /* If there's no Azalia in the system anyway, forget it. */
5451 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5452 if (!pdev)
5453 return;
5454 pci_dev_put(pdev);
5455
5456 /* System Management Registers. Might be hidden, in which case
5457 we can't do the sanity check. But that's OK, because the
5458 known-broken BIOSes _don't_ actually hide it, so far. */
5459 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5460 if (!pdev)
5461 return;
5462
5463 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5464 pci_dev_put(pdev);
5465 return;
5466 }
5467
5468 pci_dev_put(pdev);
5469
5470 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5471 if (vtisochctrl & 1)
5472 return;
5473
5474 /* Drop all bits other than the number of TLB entries */
5475 vtisochctrl &= 0x1c;
5476
5477 /* If we have the recommended number of TLB entries (16), fine. */
5478 if (vtisochctrl == 0x10)
5479 return;
5480
5481 /* Zero TLB entries? You get to ride the short bus to school. */
5482 if (!vtisochctrl) {
5483 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5484 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5485 dmi_get_system_info(DMI_BIOS_VENDOR),
5486 dmi_get_system_info(DMI_BIOS_VERSION),
5487 dmi_get_system_info(DMI_PRODUCT_VERSION));
5488 iommu_identity_mapping |= IDENTMAP_AZALIA;
5489 return;
5490 }
5491
5492 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5493 vtisochctrl);
5494 }
5495