1 /*
2 * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9
10 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
11 #define DEBUG
12 #endif
13
14 #include <linux/clk.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/io.h>
18 #include <linux/iommu.h>
19 #include <linux/interrupt.h>
20 #include <linux/kmemleak.h>
21 #include <linux/list.h>
22 #include <linux/of.h>
23 #include <linux/of_iommu.h>
24 #include <linux/of_platform.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/slab.h>
28 #include <linux/dma-iommu.h>
29
30 typedef u32 sysmmu_iova_t;
31 typedef u32 sysmmu_pte_t;
32
33 /* We do not consider super section mapping (16MB) */
34 #define SECT_ORDER 20
35 #define LPAGE_ORDER 16
36 #define SPAGE_ORDER 12
37
38 #define SECT_SIZE (1 << SECT_ORDER)
39 #define LPAGE_SIZE (1 << LPAGE_ORDER)
40 #define SPAGE_SIZE (1 << SPAGE_ORDER)
41
42 #define SECT_MASK (~(SECT_SIZE - 1))
43 #define LPAGE_MASK (~(LPAGE_SIZE - 1))
44 #define SPAGE_MASK (~(SPAGE_SIZE - 1))
45
46 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
47 ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
48 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
49 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
50 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
51 ((*(sent) & 3) == 1))
52 #define lv1ent_section(sent) ((*(sent) & 3) == 2)
53
54 #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
55 #define lv2ent_small(pent) ((*(pent) & 2) == 2)
56 #define lv2ent_large(pent) ((*(pent) & 3) == 1)
57
58 /*
59 * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
60 * v5.0 introduced support for 36bit physical address space by shifting
61 * all page entry values by 4 bits.
62 * All SYSMMU controllers in the system support the address spaces of the same
63 * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
64 * value (0 or 4).
65 */
66 static short PG_ENT_SHIFT = -1;
67 #define SYSMMU_PG_ENT_SHIFT 0
68 #define SYSMMU_V5_PG_ENT_SHIFT 4
69
70 static const sysmmu_pte_t *LV1_PROT;
71 static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
72 ((0 << 15) | (0 << 10)), /* no access */
73 ((1 << 15) | (1 << 10)), /* IOMMU_READ only */
74 ((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
75 ((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
76 };
77 static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
78 (0 << 4), /* no access */
79 (1 << 4), /* IOMMU_READ only */
80 (2 << 4), /* IOMMU_WRITE only */
81 (3 << 4), /* IOMMU_READ | IOMMU_WRITE */
82 };
83
84 static const sysmmu_pte_t *LV2_PROT;
85 static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
86 ((0 << 9) | (0 << 4)), /* no access */
87 ((1 << 9) | (1 << 4)), /* IOMMU_READ only */
88 ((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
89 ((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
90 };
91 static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
92 (0 << 2), /* no access */
93 (1 << 2), /* IOMMU_READ only */
94 (2 << 2), /* IOMMU_WRITE only */
95 (3 << 2), /* IOMMU_READ | IOMMU_WRITE */
96 };
97
98 #define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
99
100 #define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
101 #define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
102 #define section_offs(iova) (iova & (SECT_SIZE - 1))
103 #define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
104 #define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
105 #define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
106 #define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
107
108 #define NUM_LV1ENTRIES 4096
109 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
110
lv1ent_offset(sysmmu_iova_t iova)111 static u32 lv1ent_offset(sysmmu_iova_t iova)
112 {
113 return iova >> SECT_ORDER;
114 }
115
lv2ent_offset(sysmmu_iova_t iova)116 static u32 lv2ent_offset(sysmmu_iova_t iova)
117 {
118 return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
119 }
120
121 #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
122 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
123
124 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
125 #define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
126
127 #define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
128 #define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
129 #define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
130 #define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
131
132 #define CTRL_ENABLE 0x5
133 #define CTRL_BLOCK 0x7
134 #define CTRL_DISABLE 0x0
135
136 #define CFG_LRU 0x1
137 #define CFG_EAP (1 << 2)
138 #define CFG_QOS(n) ((n & 0xF) << 7)
139 #define CFG_ACGEN (1 << 24) /* System MMU 3.3 only */
140 #define CFG_SYSSEL (1 << 22) /* System MMU 3.2 only */
141 #define CFG_FLPDCACHE (1 << 20) /* System MMU 3.2+ only */
142
143 /* common registers */
144 #define REG_MMU_CTRL 0x000
145 #define REG_MMU_CFG 0x004
146 #define REG_MMU_STATUS 0x008
147 #define REG_MMU_VERSION 0x034
148
149 #define MMU_MAJ_VER(val) ((val) >> 7)
150 #define MMU_MIN_VER(val) ((val) & 0x7F)
151 #define MMU_RAW_VER(reg) (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
152
153 #define MAKE_MMU_VER(maj, min) ((((maj) & 0xF) << 7) | ((min) & 0x7F))
154
155 /* v1.x - v3.x registers */
156 #define REG_MMU_FLUSH 0x00C
157 #define REG_MMU_FLUSH_ENTRY 0x010
158 #define REG_PT_BASE_ADDR 0x014
159 #define REG_INT_STATUS 0x018
160 #define REG_INT_CLEAR 0x01C
161
162 #define REG_PAGE_FAULT_ADDR 0x024
163 #define REG_AW_FAULT_ADDR 0x028
164 #define REG_AR_FAULT_ADDR 0x02C
165 #define REG_DEFAULT_SLAVE_ADDR 0x030
166
167 /* v5.x registers */
168 #define REG_V5_PT_BASE_PFN 0x00C
169 #define REG_V5_MMU_FLUSH_ALL 0x010
170 #define REG_V5_MMU_FLUSH_ENTRY 0x014
171 #define REG_V5_MMU_FLUSH_RANGE 0x018
172 #define REG_V5_MMU_FLUSH_START 0x020
173 #define REG_V5_MMU_FLUSH_END 0x024
174 #define REG_V5_INT_STATUS 0x060
175 #define REG_V5_INT_CLEAR 0x064
176 #define REG_V5_FAULT_AR_VA 0x070
177 #define REG_V5_FAULT_AW_VA 0x080
178
179 #define has_sysmmu(dev) (dev->archdata.iommu != NULL)
180
181 static struct device *dma_dev;
182 static struct kmem_cache *lv2table_kmem_cache;
183 static sysmmu_pte_t *zero_lv2_table;
184 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
185
section_entry(sysmmu_pte_t * pgtable,sysmmu_iova_t iova)186 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
187 {
188 return pgtable + lv1ent_offset(iova);
189 }
190
page_entry(sysmmu_pte_t * sent,sysmmu_iova_t iova)191 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
192 {
193 return (sysmmu_pte_t *)phys_to_virt(
194 lv2table_base(sent)) + lv2ent_offset(iova);
195 }
196
197 /*
198 * IOMMU fault information register
199 */
200 struct sysmmu_fault_info {
201 unsigned int bit; /* bit number in STATUS register */
202 unsigned short addr_reg; /* register to read VA fault address */
203 const char *name; /* human readable fault name */
204 unsigned int type; /* fault type for report_iommu_fault */
205 };
206
207 static const struct sysmmu_fault_info sysmmu_faults[] = {
208 { 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
209 { 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
210 { 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
211 { 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
212 { 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
213 { 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
214 { 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
215 { 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
216 };
217
218 static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
219 { 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
220 { 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
221 { 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
222 { 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
223 { 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
224 { 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
225 { 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
226 { 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
227 { 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
228 { 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
229 };
230
231 /*
232 * This structure is attached to dev.archdata.iommu of the master device
233 * on device add, contains a list of SYSMMU controllers defined by device tree,
234 * which are bound to given master device. It is usually referenced by 'owner'
235 * pointer.
236 */
237 struct exynos_iommu_owner {
238 struct list_head controllers; /* list of sysmmu_drvdata.owner_node */
239 struct iommu_domain *domain; /* domain this device is attached */
240 struct mutex rpm_lock; /* for runtime pm of all sysmmus */
241 };
242
243 /*
244 * This structure exynos specific generalization of struct iommu_domain.
245 * It contains list of SYSMMU controllers from all master devices, which has
246 * been attached to this domain and page tables of IO address space defined by
247 * it. It is usually referenced by 'domain' pointer.
248 */
249 struct exynos_iommu_domain {
250 struct list_head clients; /* list of sysmmu_drvdata.domain_node */
251 sysmmu_pte_t *pgtable; /* lv1 page table, 16KB */
252 short *lv2entcnt; /* free lv2 entry counter for each section */
253 spinlock_t lock; /* lock for modyfying list of clients */
254 spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
255 struct iommu_domain domain; /* generic domain data structure */
256 };
257
258 /*
259 * This structure hold all data of a single SYSMMU controller, this includes
260 * hw resources like registers and clocks, pointers and list nodes to connect
261 * it to all other structures, internal state and parameters read from device
262 * tree. It is usually referenced by 'data' pointer.
263 */
264 struct sysmmu_drvdata {
265 struct device *sysmmu; /* SYSMMU controller device */
266 struct device *master; /* master device (owner) */
267 struct device_link *link; /* runtime PM link to master */
268 void __iomem *sfrbase; /* our registers */
269 struct clk *clk; /* SYSMMU's clock */
270 struct clk *aclk; /* SYSMMU's aclk clock */
271 struct clk *pclk; /* SYSMMU's pclk clock */
272 struct clk *clk_master; /* master's device clock */
273 spinlock_t lock; /* lock for modyfying state */
274 bool active; /* current status */
275 struct exynos_iommu_domain *domain; /* domain we belong to */
276 struct list_head domain_node; /* node for domain clients list */
277 struct list_head owner_node; /* node for owner controllers list */
278 phys_addr_t pgtable; /* assigned page table structure */
279 unsigned int version; /* our version */
280
281 struct iommu_device iommu; /* IOMMU core handle */
282 };
283
to_exynos_domain(struct iommu_domain * dom)284 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
285 {
286 return container_of(dom, struct exynos_iommu_domain, domain);
287 }
288
sysmmu_unblock(struct sysmmu_drvdata * data)289 static void sysmmu_unblock(struct sysmmu_drvdata *data)
290 {
291 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
292 }
293
sysmmu_block(struct sysmmu_drvdata * data)294 static bool sysmmu_block(struct sysmmu_drvdata *data)
295 {
296 int i = 120;
297
298 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
299 while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
300 --i;
301
302 if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
303 sysmmu_unblock(data);
304 return false;
305 }
306
307 return true;
308 }
309
__sysmmu_tlb_invalidate(struct sysmmu_drvdata * data)310 static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
311 {
312 if (MMU_MAJ_VER(data->version) < 5)
313 writel(0x1, data->sfrbase + REG_MMU_FLUSH);
314 else
315 writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL);
316 }
317
__sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata * data,sysmmu_iova_t iova,unsigned int num_inv)318 static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
319 sysmmu_iova_t iova, unsigned int num_inv)
320 {
321 unsigned int i;
322
323 if (MMU_MAJ_VER(data->version) < 5) {
324 for (i = 0; i < num_inv; i++) {
325 writel((iova & SPAGE_MASK) | 1,
326 data->sfrbase + REG_MMU_FLUSH_ENTRY);
327 iova += SPAGE_SIZE;
328 }
329 } else {
330 if (num_inv == 1) {
331 writel((iova & SPAGE_MASK) | 1,
332 data->sfrbase + REG_V5_MMU_FLUSH_ENTRY);
333 } else {
334 writel((iova & SPAGE_MASK),
335 data->sfrbase + REG_V5_MMU_FLUSH_START);
336 writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
337 data->sfrbase + REG_V5_MMU_FLUSH_END);
338 writel(1, data->sfrbase + REG_V5_MMU_FLUSH_RANGE);
339 }
340 }
341 }
342
__sysmmu_set_ptbase(struct sysmmu_drvdata * data,phys_addr_t pgd)343 static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
344 {
345 if (MMU_MAJ_VER(data->version) < 5)
346 writel(pgd, data->sfrbase + REG_PT_BASE_ADDR);
347 else
348 writel(pgd >> PAGE_SHIFT,
349 data->sfrbase + REG_V5_PT_BASE_PFN);
350
351 __sysmmu_tlb_invalidate(data);
352 }
353
__sysmmu_enable_clocks(struct sysmmu_drvdata * data)354 static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
355 {
356 BUG_ON(clk_prepare_enable(data->clk_master));
357 BUG_ON(clk_prepare_enable(data->clk));
358 BUG_ON(clk_prepare_enable(data->pclk));
359 BUG_ON(clk_prepare_enable(data->aclk));
360 }
361
__sysmmu_disable_clocks(struct sysmmu_drvdata * data)362 static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
363 {
364 clk_disable_unprepare(data->aclk);
365 clk_disable_unprepare(data->pclk);
366 clk_disable_unprepare(data->clk);
367 clk_disable_unprepare(data->clk_master);
368 }
369
__sysmmu_get_version(struct sysmmu_drvdata * data)370 static void __sysmmu_get_version(struct sysmmu_drvdata *data)
371 {
372 u32 ver;
373
374 __sysmmu_enable_clocks(data);
375
376 ver = readl(data->sfrbase + REG_MMU_VERSION);
377
378 /* controllers on some SoCs don't report proper version */
379 if (ver == 0x80000001u)
380 data->version = MAKE_MMU_VER(1, 0);
381 else
382 data->version = MMU_RAW_VER(ver);
383
384 dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
385 MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
386
387 __sysmmu_disable_clocks(data);
388 }
389
show_fault_information(struct sysmmu_drvdata * data,const struct sysmmu_fault_info * finfo,sysmmu_iova_t fault_addr)390 static void show_fault_information(struct sysmmu_drvdata *data,
391 const struct sysmmu_fault_info *finfo,
392 sysmmu_iova_t fault_addr)
393 {
394 sysmmu_pte_t *ent;
395
396 dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n",
397 dev_name(data->master), finfo->name, fault_addr);
398 dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
399 ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
400 dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
401 if (lv1ent_page(ent)) {
402 ent = page_entry(ent, fault_addr);
403 dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
404 }
405 }
406
exynos_sysmmu_irq(int irq,void * dev_id)407 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
408 {
409 /* SYSMMU is in blocked state when interrupt occurred. */
410 struct sysmmu_drvdata *data = dev_id;
411 const struct sysmmu_fault_info *finfo;
412 unsigned int i, n, itype;
413 sysmmu_iova_t fault_addr = -1;
414 unsigned short reg_status, reg_clear;
415 int ret = -ENOSYS;
416
417 WARN_ON(!data->active);
418
419 if (MMU_MAJ_VER(data->version) < 5) {
420 reg_status = REG_INT_STATUS;
421 reg_clear = REG_INT_CLEAR;
422 finfo = sysmmu_faults;
423 n = ARRAY_SIZE(sysmmu_faults);
424 } else {
425 reg_status = REG_V5_INT_STATUS;
426 reg_clear = REG_V5_INT_CLEAR;
427 finfo = sysmmu_v5_faults;
428 n = ARRAY_SIZE(sysmmu_v5_faults);
429 }
430
431 spin_lock(&data->lock);
432
433 clk_enable(data->clk_master);
434
435 itype = __ffs(readl(data->sfrbase + reg_status));
436 for (i = 0; i < n; i++, finfo++)
437 if (finfo->bit == itype)
438 break;
439 /* unknown/unsupported fault */
440 BUG_ON(i == n);
441
442 /* print debug message */
443 fault_addr = readl(data->sfrbase + finfo->addr_reg);
444 show_fault_information(data, finfo, fault_addr);
445
446 if (data->domain)
447 ret = report_iommu_fault(&data->domain->domain,
448 data->master, fault_addr, finfo->type);
449 /* fault is not recovered by fault handler */
450 BUG_ON(ret != 0);
451
452 writel(1 << itype, data->sfrbase + reg_clear);
453
454 sysmmu_unblock(data);
455
456 clk_disable(data->clk_master);
457
458 spin_unlock(&data->lock);
459
460 return IRQ_HANDLED;
461 }
462
__sysmmu_disable(struct sysmmu_drvdata * data)463 static void __sysmmu_disable(struct sysmmu_drvdata *data)
464 {
465 unsigned long flags;
466
467 clk_enable(data->clk_master);
468
469 spin_lock_irqsave(&data->lock, flags);
470 writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
471 writel(0, data->sfrbase + REG_MMU_CFG);
472 data->active = false;
473 spin_unlock_irqrestore(&data->lock, flags);
474
475 __sysmmu_disable_clocks(data);
476 }
477
__sysmmu_init_config(struct sysmmu_drvdata * data)478 static void __sysmmu_init_config(struct sysmmu_drvdata *data)
479 {
480 unsigned int cfg;
481
482 if (data->version <= MAKE_MMU_VER(3, 1))
483 cfg = CFG_LRU | CFG_QOS(15);
484 else if (data->version <= MAKE_MMU_VER(3, 2))
485 cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
486 else
487 cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
488
489 cfg |= CFG_EAP; /* enable access protection bits check */
490
491 writel(cfg, data->sfrbase + REG_MMU_CFG);
492 }
493
__sysmmu_enable(struct sysmmu_drvdata * data)494 static void __sysmmu_enable(struct sysmmu_drvdata *data)
495 {
496 unsigned long flags;
497
498 __sysmmu_enable_clocks(data);
499
500 spin_lock_irqsave(&data->lock, flags);
501 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
502 __sysmmu_init_config(data);
503 __sysmmu_set_ptbase(data, data->pgtable);
504 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
505 data->active = true;
506 spin_unlock_irqrestore(&data->lock, flags);
507
508 /*
509 * SYSMMU driver keeps master's clock enabled only for the short
510 * time, while accessing the registers. For performing address
511 * translation during DMA transaction it relies on the client
512 * driver to enable it.
513 */
514 clk_disable(data->clk_master);
515 }
516
sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata * data,sysmmu_iova_t iova)517 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
518 sysmmu_iova_t iova)
519 {
520 unsigned long flags;
521
522 spin_lock_irqsave(&data->lock, flags);
523 if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
524 clk_enable(data->clk_master);
525 if (sysmmu_block(data)) {
526 if (data->version >= MAKE_MMU_VER(5, 0))
527 __sysmmu_tlb_invalidate(data);
528 else
529 __sysmmu_tlb_invalidate_entry(data, iova, 1);
530 sysmmu_unblock(data);
531 }
532 clk_disable(data->clk_master);
533 }
534 spin_unlock_irqrestore(&data->lock, flags);
535 }
536
sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata * data,sysmmu_iova_t iova,size_t size)537 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
538 sysmmu_iova_t iova, size_t size)
539 {
540 unsigned long flags;
541
542 spin_lock_irqsave(&data->lock, flags);
543 if (data->active) {
544 unsigned int num_inv = 1;
545
546 clk_enable(data->clk_master);
547
548 /*
549 * L2TLB invalidation required
550 * 4KB page: 1 invalidation
551 * 64KB page: 16 invalidations
552 * 1MB page: 64 invalidations
553 * because it is set-associative TLB
554 * with 8-way and 64 sets.
555 * 1MB page can be cached in one of all sets.
556 * 64KB page can be one of 16 consecutive sets.
557 */
558 if (MMU_MAJ_VER(data->version) == 2)
559 num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
560
561 if (sysmmu_block(data)) {
562 __sysmmu_tlb_invalidate_entry(data, iova, num_inv);
563 sysmmu_unblock(data);
564 }
565 clk_disable(data->clk_master);
566 }
567 spin_unlock_irqrestore(&data->lock, flags);
568 }
569
570 static const struct iommu_ops exynos_iommu_ops;
571
exynos_sysmmu_probe(struct platform_device * pdev)572 static int __init exynos_sysmmu_probe(struct platform_device *pdev)
573 {
574 int irq, ret;
575 struct device *dev = &pdev->dev;
576 struct sysmmu_drvdata *data;
577 struct resource *res;
578
579 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
580 if (!data)
581 return -ENOMEM;
582
583 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
584 data->sfrbase = devm_ioremap_resource(dev, res);
585 if (IS_ERR(data->sfrbase))
586 return PTR_ERR(data->sfrbase);
587
588 irq = platform_get_irq(pdev, 0);
589 if (irq <= 0) {
590 dev_err(dev, "Unable to find IRQ resource\n");
591 return irq;
592 }
593
594 ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
595 dev_name(dev), data);
596 if (ret) {
597 dev_err(dev, "Unabled to register handler of irq %d\n", irq);
598 return ret;
599 }
600
601 data->clk = devm_clk_get(dev, "sysmmu");
602 if (PTR_ERR(data->clk) == -ENOENT)
603 data->clk = NULL;
604 else if (IS_ERR(data->clk))
605 return PTR_ERR(data->clk);
606
607 data->aclk = devm_clk_get(dev, "aclk");
608 if (PTR_ERR(data->aclk) == -ENOENT)
609 data->aclk = NULL;
610 else if (IS_ERR(data->aclk))
611 return PTR_ERR(data->aclk);
612
613 data->pclk = devm_clk_get(dev, "pclk");
614 if (PTR_ERR(data->pclk) == -ENOENT)
615 data->pclk = NULL;
616 else if (IS_ERR(data->pclk))
617 return PTR_ERR(data->pclk);
618
619 if (!data->clk && (!data->aclk || !data->pclk)) {
620 dev_err(dev, "Failed to get device clock(s)!\n");
621 return -ENOSYS;
622 }
623
624 data->clk_master = devm_clk_get(dev, "master");
625 if (PTR_ERR(data->clk_master) == -ENOENT)
626 data->clk_master = NULL;
627 else if (IS_ERR(data->clk_master))
628 return PTR_ERR(data->clk_master);
629
630 data->sysmmu = dev;
631 spin_lock_init(&data->lock);
632
633 ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
634 dev_name(data->sysmmu));
635 if (ret)
636 return ret;
637
638 iommu_device_set_ops(&data->iommu, &exynos_iommu_ops);
639 iommu_device_set_fwnode(&data->iommu, &dev->of_node->fwnode);
640
641 ret = iommu_device_register(&data->iommu);
642 if (ret)
643 return ret;
644
645 platform_set_drvdata(pdev, data);
646
647 __sysmmu_get_version(data);
648 if (PG_ENT_SHIFT < 0) {
649 if (MMU_MAJ_VER(data->version) < 5) {
650 PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
651 LV1_PROT = SYSMMU_LV1_PROT;
652 LV2_PROT = SYSMMU_LV2_PROT;
653 } else {
654 PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
655 LV1_PROT = SYSMMU_V5_LV1_PROT;
656 LV2_PROT = SYSMMU_V5_LV2_PROT;
657 }
658 }
659
660 /*
661 * use the first registered sysmmu device for performing
662 * dma mapping operations on iommu page tables (cpu cache flush)
663 */
664 if (!dma_dev)
665 dma_dev = &pdev->dev;
666
667 pm_runtime_enable(dev);
668
669 return 0;
670 }
671
exynos_sysmmu_suspend(struct device * dev)672 static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
673 {
674 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
675 struct device *master = data->master;
676
677 if (master) {
678 struct exynos_iommu_owner *owner = master->archdata.iommu;
679
680 mutex_lock(&owner->rpm_lock);
681 if (data->domain) {
682 dev_dbg(data->sysmmu, "saving state\n");
683 __sysmmu_disable(data);
684 }
685 mutex_unlock(&owner->rpm_lock);
686 }
687 return 0;
688 }
689
exynos_sysmmu_resume(struct device * dev)690 static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
691 {
692 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
693 struct device *master = data->master;
694
695 if (master) {
696 struct exynos_iommu_owner *owner = master->archdata.iommu;
697
698 mutex_lock(&owner->rpm_lock);
699 if (data->domain) {
700 dev_dbg(data->sysmmu, "restoring state\n");
701 __sysmmu_enable(data);
702 }
703 mutex_unlock(&owner->rpm_lock);
704 }
705 return 0;
706 }
707
708 static const struct dev_pm_ops sysmmu_pm_ops = {
709 SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
710 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
711 pm_runtime_force_resume)
712 };
713
714 static const struct of_device_id sysmmu_of_match[] = {
715 { .compatible = "samsung,exynos-sysmmu", },
716 { },
717 };
718
719 static struct platform_driver exynos_sysmmu_driver __refdata = {
720 .probe = exynos_sysmmu_probe,
721 .driver = {
722 .name = "exynos-sysmmu",
723 .of_match_table = sysmmu_of_match,
724 .pm = &sysmmu_pm_ops,
725 .suppress_bind_attrs = true,
726 }
727 };
728
update_pte(sysmmu_pte_t * ent,sysmmu_pte_t val)729 static inline void update_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
730 {
731 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
732 DMA_TO_DEVICE);
733 *ent = cpu_to_le32(val);
734 dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
735 DMA_TO_DEVICE);
736 }
737
exynos_iommu_domain_alloc(unsigned type)738 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
739 {
740 struct exynos_iommu_domain *domain;
741 dma_addr_t handle;
742 int i;
743
744 /* Check if correct PTE offsets are initialized */
745 BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
746
747 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
748 if (!domain)
749 return NULL;
750
751 if (type == IOMMU_DOMAIN_DMA) {
752 if (iommu_get_dma_cookie(&domain->domain) != 0)
753 goto err_pgtable;
754 } else if (type != IOMMU_DOMAIN_UNMANAGED) {
755 goto err_pgtable;
756 }
757
758 domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
759 if (!domain->pgtable)
760 goto err_dma_cookie;
761
762 domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
763 if (!domain->lv2entcnt)
764 goto err_counter;
765
766 /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
767 for (i = 0; i < NUM_LV1ENTRIES; i++)
768 domain->pgtable[i] = ZERO_LV2LINK;
769
770 handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
771 DMA_TO_DEVICE);
772 /* For mapping page table entries we rely on dma == phys */
773 BUG_ON(handle != virt_to_phys(domain->pgtable));
774 if (dma_mapping_error(dma_dev, handle))
775 goto err_lv2ent;
776
777 spin_lock_init(&domain->lock);
778 spin_lock_init(&domain->pgtablelock);
779 INIT_LIST_HEAD(&domain->clients);
780
781 domain->domain.geometry.aperture_start = 0;
782 domain->domain.geometry.aperture_end = ~0UL;
783 domain->domain.geometry.force_aperture = true;
784
785 return &domain->domain;
786
787 err_lv2ent:
788 free_pages((unsigned long)domain->lv2entcnt, 1);
789 err_counter:
790 free_pages((unsigned long)domain->pgtable, 2);
791 err_dma_cookie:
792 if (type == IOMMU_DOMAIN_DMA)
793 iommu_put_dma_cookie(&domain->domain);
794 err_pgtable:
795 kfree(domain);
796 return NULL;
797 }
798
exynos_iommu_domain_free(struct iommu_domain * iommu_domain)799 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
800 {
801 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
802 struct sysmmu_drvdata *data, *next;
803 unsigned long flags;
804 int i;
805
806 WARN_ON(!list_empty(&domain->clients));
807
808 spin_lock_irqsave(&domain->lock, flags);
809
810 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
811 spin_lock(&data->lock);
812 __sysmmu_disable(data);
813 data->pgtable = 0;
814 data->domain = NULL;
815 list_del_init(&data->domain_node);
816 spin_unlock(&data->lock);
817 }
818
819 spin_unlock_irqrestore(&domain->lock, flags);
820
821 if (iommu_domain->type == IOMMU_DOMAIN_DMA)
822 iommu_put_dma_cookie(iommu_domain);
823
824 dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
825 DMA_TO_DEVICE);
826
827 for (i = 0; i < NUM_LV1ENTRIES; i++)
828 if (lv1ent_page(domain->pgtable + i)) {
829 phys_addr_t base = lv2table_base(domain->pgtable + i);
830
831 dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
832 DMA_TO_DEVICE);
833 kmem_cache_free(lv2table_kmem_cache,
834 phys_to_virt(base));
835 }
836
837 free_pages((unsigned long)domain->pgtable, 2);
838 free_pages((unsigned long)domain->lv2entcnt, 1);
839 kfree(domain);
840 }
841
exynos_iommu_detach_device(struct iommu_domain * iommu_domain,struct device * dev)842 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
843 struct device *dev)
844 {
845 struct exynos_iommu_owner *owner = dev->archdata.iommu;
846 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
847 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
848 struct sysmmu_drvdata *data, *next;
849 unsigned long flags;
850
851 if (!has_sysmmu(dev) || owner->domain != iommu_domain)
852 return;
853
854 mutex_lock(&owner->rpm_lock);
855
856 list_for_each_entry(data, &owner->controllers, owner_node) {
857 pm_runtime_get_noresume(data->sysmmu);
858 if (pm_runtime_active(data->sysmmu))
859 __sysmmu_disable(data);
860 pm_runtime_put(data->sysmmu);
861 }
862
863 spin_lock_irqsave(&domain->lock, flags);
864 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
865 spin_lock(&data->lock);
866 data->pgtable = 0;
867 data->domain = NULL;
868 list_del_init(&data->domain_node);
869 spin_unlock(&data->lock);
870 }
871 owner->domain = NULL;
872 spin_unlock_irqrestore(&domain->lock, flags);
873
874 mutex_unlock(&owner->rpm_lock);
875
876 dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
877 &pagetable);
878 }
879
exynos_iommu_attach_device(struct iommu_domain * iommu_domain,struct device * dev)880 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
881 struct device *dev)
882 {
883 struct exynos_iommu_owner *owner = dev->archdata.iommu;
884 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
885 struct sysmmu_drvdata *data;
886 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
887 unsigned long flags;
888
889 if (!has_sysmmu(dev))
890 return -ENODEV;
891
892 if (owner->domain)
893 exynos_iommu_detach_device(owner->domain, dev);
894
895 mutex_lock(&owner->rpm_lock);
896
897 spin_lock_irqsave(&domain->lock, flags);
898 list_for_each_entry(data, &owner->controllers, owner_node) {
899 spin_lock(&data->lock);
900 data->pgtable = pagetable;
901 data->domain = domain;
902 list_add_tail(&data->domain_node, &domain->clients);
903 spin_unlock(&data->lock);
904 }
905 owner->domain = iommu_domain;
906 spin_unlock_irqrestore(&domain->lock, flags);
907
908 list_for_each_entry(data, &owner->controllers, owner_node) {
909 pm_runtime_get_noresume(data->sysmmu);
910 if (pm_runtime_active(data->sysmmu))
911 __sysmmu_enable(data);
912 pm_runtime_put(data->sysmmu);
913 }
914
915 mutex_unlock(&owner->rpm_lock);
916
917 dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
918 &pagetable);
919
920 return 0;
921 }
922
alloc_lv2entry(struct exynos_iommu_domain * domain,sysmmu_pte_t * sent,sysmmu_iova_t iova,short * pgcounter)923 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
924 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
925 {
926 if (lv1ent_section(sent)) {
927 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
928 return ERR_PTR(-EADDRINUSE);
929 }
930
931 if (lv1ent_fault(sent)) {
932 dma_addr_t handle;
933 sysmmu_pte_t *pent;
934 bool need_flush_flpd_cache = lv1ent_zero(sent);
935
936 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
937 BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
938 if (!pent)
939 return ERR_PTR(-ENOMEM);
940
941 update_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
942 kmemleak_ignore(pent);
943 *pgcounter = NUM_LV2ENTRIES;
944 handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
945 DMA_TO_DEVICE);
946 if (dma_mapping_error(dma_dev, handle)) {
947 kmem_cache_free(lv2table_kmem_cache, pent);
948 return ERR_PTR(-EADDRINUSE);
949 }
950
951 /*
952 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
953 * FLPD cache may cache the address of zero_l2_table. This
954 * function replaces the zero_l2_table with new L2 page table
955 * to write valid mappings.
956 * Accessing the valid area may cause page fault since FLPD
957 * cache may still cache zero_l2_table for the valid area
958 * instead of new L2 page table that has the mapping
959 * information of the valid area.
960 * Thus any replacement of zero_l2_table with other valid L2
961 * page table must involve FLPD cache invalidation for System
962 * MMU v3.3.
963 * FLPD cache invalidation is performed with TLB invalidation
964 * by VPN without blocking. It is safe to invalidate TLB without
965 * blocking because the target address of TLB invalidation is
966 * not currently mapped.
967 */
968 if (need_flush_flpd_cache) {
969 struct sysmmu_drvdata *data;
970
971 spin_lock(&domain->lock);
972 list_for_each_entry(data, &domain->clients, domain_node)
973 sysmmu_tlb_invalidate_flpdcache(data, iova);
974 spin_unlock(&domain->lock);
975 }
976 }
977
978 return page_entry(sent, iova);
979 }
980
lv1set_section(struct exynos_iommu_domain * domain,sysmmu_pte_t * sent,sysmmu_iova_t iova,phys_addr_t paddr,int prot,short * pgcnt)981 static int lv1set_section(struct exynos_iommu_domain *domain,
982 sysmmu_pte_t *sent, sysmmu_iova_t iova,
983 phys_addr_t paddr, int prot, short *pgcnt)
984 {
985 if (lv1ent_section(sent)) {
986 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
987 iova);
988 return -EADDRINUSE;
989 }
990
991 if (lv1ent_page(sent)) {
992 if (*pgcnt != NUM_LV2ENTRIES) {
993 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
994 iova);
995 return -EADDRINUSE;
996 }
997
998 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
999 *pgcnt = 0;
1000 }
1001
1002 update_pte(sent, mk_lv1ent_sect(paddr, prot));
1003
1004 spin_lock(&domain->lock);
1005 if (lv1ent_page_zero(sent)) {
1006 struct sysmmu_drvdata *data;
1007 /*
1008 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
1009 * entry by speculative prefetch of SLPD which has no mapping.
1010 */
1011 list_for_each_entry(data, &domain->clients, domain_node)
1012 sysmmu_tlb_invalidate_flpdcache(data, iova);
1013 }
1014 spin_unlock(&domain->lock);
1015
1016 return 0;
1017 }
1018
lv2set_page(sysmmu_pte_t * pent,phys_addr_t paddr,size_t size,int prot,short * pgcnt)1019 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1020 int prot, short *pgcnt)
1021 {
1022 if (size == SPAGE_SIZE) {
1023 if (WARN_ON(!lv2ent_fault(pent)))
1024 return -EADDRINUSE;
1025
1026 update_pte(pent, mk_lv2ent_spage(paddr, prot));
1027 *pgcnt -= 1;
1028 } else { /* size == LPAGE_SIZE */
1029 int i;
1030 dma_addr_t pent_base = virt_to_phys(pent);
1031
1032 dma_sync_single_for_cpu(dma_dev, pent_base,
1033 sizeof(*pent) * SPAGES_PER_LPAGE,
1034 DMA_TO_DEVICE);
1035 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1036 if (WARN_ON(!lv2ent_fault(pent))) {
1037 if (i > 0)
1038 memset(pent - i, 0, sizeof(*pent) * i);
1039 return -EADDRINUSE;
1040 }
1041
1042 *pent = mk_lv2ent_lpage(paddr, prot);
1043 }
1044 dma_sync_single_for_device(dma_dev, pent_base,
1045 sizeof(*pent) * SPAGES_PER_LPAGE,
1046 DMA_TO_DEVICE);
1047 *pgcnt -= SPAGES_PER_LPAGE;
1048 }
1049
1050 return 0;
1051 }
1052
1053 /*
1054 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1055 *
1056 * System MMU v3.x has advanced logic to improve address translation
1057 * performance with caching more page table entries by a page table walk.
1058 * However, the logic has a bug that while caching faulty page table entries,
1059 * System MMU reports page fault if the cached fault entry is hit even though
1060 * the fault entry is updated to a valid entry after the entry is cached.
1061 * To prevent caching faulty page table entries which may be updated to valid
1062 * entries later, the virtual memory manager should care about the workaround
1063 * for the problem. The following describes the workaround.
1064 *
1065 * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1066 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1067 *
1068 * Precisely, any start address of I/O virtual region must be aligned with
1069 * the following sizes for System MMU v3.1 and v3.2.
1070 * System MMU v3.1: 128KiB
1071 * System MMU v3.2: 256KiB
1072 *
1073 * Because System MMU v3.3 caches page table entries more aggressively, it needs
1074 * more workarounds.
1075 * - Any two consecutive I/O virtual regions must have a hole of size larger
1076 * than or equal to 128KiB.
1077 * - Start address of an I/O virtual region must be aligned by 128KiB.
1078 */
exynos_iommu_map(struct iommu_domain * iommu_domain,unsigned long l_iova,phys_addr_t paddr,size_t size,int prot)1079 static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1080 unsigned long l_iova, phys_addr_t paddr, size_t size,
1081 int prot)
1082 {
1083 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1084 sysmmu_pte_t *entry;
1085 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1086 unsigned long flags;
1087 int ret = -ENOMEM;
1088
1089 BUG_ON(domain->pgtable == NULL);
1090 prot &= SYSMMU_SUPPORTED_PROT_BITS;
1091
1092 spin_lock_irqsave(&domain->pgtablelock, flags);
1093
1094 entry = section_entry(domain->pgtable, iova);
1095
1096 if (size == SECT_SIZE) {
1097 ret = lv1set_section(domain, entry, iova, paddr, prot,
1098 &domain->lv2entcnt[lv1ent_offset(iova)]);
1099 } else {
1100 sysmmu_pte_t *pent;
1101
1102 pent = alloc_lv2entry(domain, entry, iova,
1103 &domain->lv2entcnt[lv1ent_offset(iova)]);
1104
1105 if (IS_ERR(pent))
1106 ret = PTR_ERR(pent);
1107 else
1108 ret = lv2set_page(pent, paddr, size, prot,
1109 &domain->lv2entcnt[lv1ent_offset(iova)]);
1110 }
1111
1112 if (ret)
1113 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1114 __func__, ret, size, iova);
1115
1116 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1117
1118 return ret;
1119 }
1120
exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain * domain,sysmmu_iova_t iova,size_t size)1121 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1122 sysmmu_iova_t iova, size_t size)
1123 {
1124 struct sysmmu_drvdata *data;
1125 unsigned long flags;
1126
1127 spin_lock_irqsave(&domain->lock, flags);
1128
1129 list_for_each_entry(data, &domain->clients, domain_node)
1130 sysmmu_tlb_invalidate_entry(data, iova, size);
1131
1132 spin_unlock_irqrestore(&domain->lock, flags);
1133 }
1134
exynos_iommu_unmap(struct iommu_domain * iommu_domain,unsigned long l_iova,size_t size)1135 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1136 unsigned long l_iova, size_t size)
1137 {
1138 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1139 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1140 sysmmu_pte_t *ent;
1141 size_t err_pgsize;
1142 unsigned long flags;
1143
1144 BUG_ON(domain->pgtable == NULL);
1145
1146 spin_lock_irqsave(&domain->pgtablelock, flags);
1147
1148 ent = section_entry(domain->pgtable, iova);
1149
1150 if (lv1ent_section(ent)) {
1151 if (WARN_ON(size < SECT_SIZE)) {
1152 err_pgsize = SECT_SIZE;
1153 goto err;
1154 }
1155
1156 /* workaround for h/w bug in System MMU v3.3 */
1157 update_pte(ent, ZERO_LV2LINK);
1158 size = SECT_SIZE;
1159 goto done;
1160 }
1161
1162 if (unlikely(lv1ent_fault(ent))) {
1163 if (size > SECT_SIZE)
1164 size = SECT_SIZE;
1165 goto done;
1166 }
1167
1168 /* lv1ent_page(sent) == true here */
1169
1170 ent = page_entry(ent, iova);
1171
1172 if (unlikely(lv2ent_fault(ent))) {
1173 size = SPAGE_SIZE;
1174 goto done;
1175 }
1176
1177 if (lv2ent_small(ent)) {
1178 update_pte(ent, 0);
1179 size = SPAGE_SIZE;
1180 domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1181 goto done;
1182 }
1183
1184 /* lv1ent_large(ent) == true here */
1185 if (WARN_ON(size < LPAGE_SIZE)) {
1186 err_pgsize = LPAGE_SIZE;
1187 goto err;
1188 }
1189
1190 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1191 sizeof(*ent) * SPAGES_PER_LPAGE,
1192 DMA_TO_DEVICE);
1193 memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1194 dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1195 sizeof(*ent) * SPAGES_PER_LPAGE,
1196 DMA_TO_DEVICE);
1197 size = LPAGE_SIZE;
1198 domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1199 done:
1200 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1201
1202 exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1203
1204 return size;
1205 err:
1206 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1207
1208 pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1209 __func__, size, iova, err_pgsize);
1210
1211 return 0;
1212 }
1213
exynos_iommu_iova_to_phys(struct iommu_domain * iommu_domain,dma_addr_t iova)1214 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1215 dma_addr_t iova)
1216 {
1217 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1218 sysmmu_pte_t *entry;
1219 unsigned long flags;
1220 phys_addr_t phys = 0;
1221
1222 spin_lock_irqsave(&domain->pgtablelock, flags);
1223
1224 entry = section_entry(domain->pgtable, iova);
1225
1226 if (lv1ent_section(entry)) {
1227 phys = section_phys(entry) + section_offs(iova);
1228 } else if (lv1ent_page(entry)) {
1229 entry = page_entry(entry, iova);
1230
1231 if (lv2ent_large(entry))
1232 phys = lpage_phys(entry) + lpage_offs(iova);
1233 else if (lv2ent_small(entry))
1234 phys = spage_phys(entry) + spage_offs(iova);
1235 }
1236
1237 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1238
1239 return phys;
1240 }
1241
exynos_iommu_add_device(struct device * dev)1242 static int exynos_iommu_add_device(struct device *dev)
1243 {
1244 struct exynos_iommu_owner *owner = dev->archdata.iommu;
1245 struct sysmmu_drvdata *data;
1246 struct iommu_group *group;
1247
1248 if (!has_sysmmu(dev))
1249 return -ENODEV;
1250
1251 group = iommu_group_get_for_dev(dev);
1252
1253 if (IS_ERR(group))
1254 return PTR_ERR(group);
1255
1256 list_for_each_entry(data, &owner->controllers, owner_node) {
1257 /*
1258 * SYSMMU will be runtime activated via device link
1259 * (dependency) to its master device, so there are no
1260 * direct calls to pm_runtime_get/put in this driver.
1261 */
1262 data->link = device_link_add(dev, data->sysmmu,
1263 DL_FLAG_PM_RUNTIME);
1264 }
1265 iommu_group_put(group);
1266
1267 return 0;
1268 }
1269
exynos_iommu_remove_device(struct device * dev)1270 static void exynos_iommu_remove_device(struct device *dev)
1271 {
1272 struct exynos_iommu_owner *owner = dev->archdata.iommu;
1273 struct sysmmu_drvdata *data;
1274
1275 if (!has_sysmmu(dev))
1276 return;
1277
1278 if (owner->domain) {
1279 struct iommu_group *group = iommu_group_get(dev);
1280
1281 if (group) {
1282 WARN_ON(owner->domain !=
1283 iommu_group_default_domain(group));
1284 exynos_iommu_detach_device(owner->domain, dev);
1285 iommu_group_put(group);
1286 }
1287 }
1288 iommu_group_remove_device(dev);
1289
1290 list_for_each_entry(data, &owner->controllers, owner_node)
1291 device_link_del(data->link);
1292 }
1293
exynos_iommu_of_xlate(struct device * dev,struct of_phandle_args * spec)1294 static int exynos_iommu_of_xlate(struct device *dev,
1295 struct of_phandle_args *spec)
1296 {
1297 struct exynos_iommu_owner *owner = dev->archdata.iommu;
1298 struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1299 struct sysmmu_drvdata *data, *entry;
1300
1301 if (!sysmmu)
1302 return -ENODEV;
1303
1304 data = platform_get_drvdata(sysmmu);
1305 if (!data)
1306 return -ENODEV;
1307
1308 if (!owner) {
1309 owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1310 if (!owner)
1311 return -ENOMEM;
1312
1313 INIT_LIST_HEAD(&owner->controllers);
1314 mutex_init(&owner->rpm_lock);
1315 dev->archdata.iommu = owner;
1316 }
1317
1318 list_for_each_entry(entry, &owner->controllers, owner_node)
1319 if (entry == data)
1320 return 0;
1321
1322 list_add_tail(&data->owner_node, &owner->controllers);
1323 data->master = dev;
1324
1325 return 0;
1326 }
1327
1328 static const struct iommu_ops exynos_iommu_ops = {
1329 .domain_alloc = exynos_iommu_domain_alloc,
1330 .domain_free = exynos_iommu_domain_free,
1331 .attach_dev = exynos_iommu_attach_device,
1332 .detach_dev = exynos_iommu_detach_device,
1333 .map = exynos_iommu_map,
1334 .unmap = exynos_iommu_unmap,
1335 .iova_to_phys = exynos_iommu_iova_to_phys,
1336 .device_group = generic_device_group,
1337 .add_device = exynos_iommu_add_device,
1338 .remove_device = exynos_iommu_remove_device,
1339 .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1340 .of_xlate = exynos_iommu_of_xlate,
1341 };
1342
exynos_iommu_init(void)1343 static int __init exynos_iommu_init(void)
1344 {
1345 struct device_node *np;
1346 int ret;
1347
1348 np = of_find_matching_node(NULL, sysmmu_of_match);
1349 if (!np)
1350 return 0;
1351
1352 of_node_put(np);
1353
1354 lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1355 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1356 if (!lv2table_kmem_cache) {
1357 pr_err("%s: Failed to create kmem cache\n", __func__);
1358 return -ENOMEM;
1359 }
1360
1361 ret = platform_driver_register(&exynos_sysmmu_driver);
1362 if (ret) {
1363 pr_err("%s: Failed to register driver\n", __func__);
1364 goto err_reg_driver;
1365 }
1366
1367 zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1368 if (zero_lv2_table == NULL) {
1369 pr_err("%s: Failed to allocate zero level2 page table\n",
1370 __func__);
1371 ret = -ENOMEM;
1372 goto err_zero_lv2;
1373 }
1374
1375 ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
1376 if (ret) {
1377 pr_err("%s: Failed to register exynos-iommu driver.\n",
1378 __func__);
1379 goto err_set_iommu;
1380 }
1381
1382 return 0;
1383 err_set_iommu:
1384 kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1385 err_zero_lv2:
1386 platform_driver_unregister(&exynos_sysmmu_driver);
1387 err_reg_driver:
1388 kmem_cache_destroy(lv2table_kmem_cache);
1389 return ret;
1390 }
1391 core_initcall(exynos_iommu_init);
1392