1 /*
2  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3  * Author: Joerg Roedel <jroedel@suse.de>
4  *         Leo Duran <leo.duran@amd.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/acpi.h>
23 #include <linux/amba/bus.h>
24 #include <linux/platform_device.h>
25 #include <linux/pci-ats.h>
26 #include <linux/bitmap.h>
27 #include <linux/slab.h>
28 #include <linux/debugfs.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/dma-direct.h>
32 #include <linux/iommu-helper.h>
33 #include <linux/iommu.h>
34 #include <linux/delay.h>
35 #include <linux/amd-iommu.h>
36 #include <linux/notifier.h>
37 #include <linux/export.h>
38 #include <linux/irq.h>
39 #include <linux/msi.h>
40 #include <linux/dma-contiguous.h>
41 #include <linux/irqdomain.h>
42 #include <linux/percpu.h>
43 #include <linux/iova.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/io_apic.h>
46 #include <asm/apic.h>
47 #include <asm/hw_irq.h>
48 #include <asm/msidef.h>
49 #include <asm/proto.h>
50 #include <asm/iommu.h>
51 #include <asm/gart.h>
52 #include <asm/dma.h>
53 
54 #include "amd_iommu_proto.h"
55 #include "amd_iommu_types.h"
56 #include "irq_remapping.h"
57 
58 #define AMD_IOMMU_MAPPING_ERROR	0
59 
60 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
61 
62 #define LOOP_TIMEOUT	100000
63 
64 /* IO virtual address start page frame number */
65 #define IOVA_START_PFN		(1)
66 #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
67 
68 /* Reserved IOVA ranges */
69 #define MSI_RANGE_START		(0xfee00000)
70 #define MSI_RANGE_END		(0xfeefffff)
71 #define HT_RANGE_START		(0xfd00000000ULL)
72 #define HT_RANGE_END		(0xffffffffffULL)
73 
74 /*
75  * This bitmap is used to advertise the page sizes our hardware support
76  * to the IOMMU core, which will then use this information to split
77  * physically contiguous memory regions it is mapping into page sizes
78  * that we support.
79  *
80  * 512GB Pages are not supported due to a hardware bug
81  */
82 #define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
83 
84 static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
85 static DEFINE_SPINLOCK(pd_bitmap_lock);
86 
87 /* List of all available dev_data structures */
88 static LLIST_HEAD(dev_data_list);
89 
90 LIST_HEAD(ioapic_map);
91 LIST_HEAD(hpet_map);
92 LIST_HEAD(acpihid_map);
93 
94 /*
95  * Domain for untranslated devices - only allocated
96  * if iommu=pt passed on kernel cmd line.
97  */
98 const struct iommu_ops amd_iommu_ops;
99 
100 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
101 int amd_iommu_max_glx_val = -1;
102 
103 static const struct dma_map_ops amd_iommu_dma_ops;
104 
105 /*
106  * general struct to manage commands send to an IOMMU
107  */
108 struct iommu_cmd {
109 	u32 data[4];
110 };
111 
112 struct kmem_cache *amd_iommu_irq_cache;
113 
114 static void update_domain(struct protection_domain *domain);
115 static int protection_domain_init(struct protection_domain *domain);
116 static void detach_device(struct device *dev);
117 static void iova_domain_flush_tlb(struct iova_domain *iovad);
118 
119 /*
120  * Data container for a dma_ops specific protection domain
121  */
122 struct dma_ops_domain {
123 	/* generic protection domain information */
124 	struct protection_domain domain;
125 
126 	/* IOVA RB-Tree */
127 	struct iova_domain iovad;
128 };
129 
130 static struct iova_domain reserved_iova_ranges;
131 static struct lock_class_key reserved_rbtree_key;
132 
133 /****************************************************************************
134  *
135  * Helper functions
136  *
137  ****************************************************************************/
138 
match_hid_uid(struct device * dev,struct acpihid_map_entry * entry)139 static inline int match_hid_uid(struct device *dev,
140 				struct acpihid_map_entry *entry)
141 {
142 	const char *hid, *uid;
143 
144 	hid = acpi_device_hid(ACPI_COMPANION(dev));
145 	uid = acpi_device_uid(ACPI_COMPANION(dev));
146 
147 	if (!hid || !(*hid))
148 		return -ENODEV;
149 
150 	if (!uid || !(*uid))
151 		return strcmp(hid, entry->hid);
152 
153 	if (!(*entry->uid))
154 		return strcmp(hid, entry->hid);
155 
156 	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
157 }
158 
get_pci_device_id(struct device * dev)159 static inline u16 get_pci_device_id(struct device *dev)
160 {
161 	struct pci_dev *pdev = to_pci_dev(dev);
162 
163 	return PCI_DEVID(pdev->bus->number, pdev->devfn);
164 }
165 
get_acpihid_device_id(struct device * dev,struct acpihid_map_entry ** entry)166 static inline int get_acpihid_device_id(struct device *dev,
167 					struct acpihid_map_entry **entry)
168 {
169 	struct acpihid_map_entry *p;
170 
171 	list_for_each_entry(p, &acpihid_map, list) {
172 		if (!match_hid_uid(dev, p)) {
173 			if (entry)
174 				*entry = p;
175 			return p->devid;
176 		}
177 	}
178 	return -EINVAL;
179 }
180 
get_device_id(struct device * dev)181 static inline int get_device_id(struct device *dev)
182 {
183 	int devid;
184 
185 	if (dev_is_pci(dev))
186 		devid = get_pci_device_id(dev);
187 	else
188 		devid = get_acpihid_device_id(dev, NULL);
189 
190 	return devid;
191 }
192 
to_pdomain(struct iommu_domain * dom)193 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
194 {
195 	return container_of(dom, struct protection_domain, domain);
196 }
197 
to_dma_ops_domain(struct protection_domain * domain)198 static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
199 {
200 	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
201 	return container_of(domain, struct dma_ops_domain, domain);
202 }
203 
alloc_dev_data(u16 devid)204 static struct iommu_dev_data *alloc_dev_data(u16 devid)
205 {
206 	struct iommu_dev_data *dev_data;
207 
208 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
209 	if (!dev_data)
210 		return NULL;
211 
212 	dev_data->devid = devid;
213 	ratelimit_default_init(&dev_data->rs);
214 
215 	llist_add(&dev_data->dev_data_list, &dev_data_list);
216 	return dev_data;
217 }
218 
search_dev_data(u16 devid)219 static struct iommu_dev_data *search_dev_data(u16 devid)
220 {
221 	struct iommu_dev_data *dev_data;
222 	struct llist_node *node;
223 
224 	if (llist_empty(&dev_data_list))
225 		return NULL;
226 
227 	node = dev_data_list.first;
228 	llist_for_each_entry(dev_data, node, dev_data_list) {
229 		if (dev_data->devid == devid)
230 			return dev_data;
231 	}
232 
233 	return NULL;
234 }
235 
__last_alias(struct pci_dev * pdev,u16 alias,void * data)236 static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
237 {
238 	*(u16 *)data = alias;
239 	return 0;
240 }
241 
get_alias(struct device * dev)242 static u16 get_alias(struct device *dev)
243 {
244 	struct pci_dev *pdev = to_pci_dev(dev);
245 	u16 devid, ivrs_alias, pci_alias;
246 
247 	/* The callers make sure that get_device_id() does not fail here */
248 	devid = get_device_id(dev);
249 
250 	/* For ACPI HID devices, we simply return the devid as such */
251 	if (!dev_is_pci(dev))
252 		return devid;
253 
254 	ivrs_alias = amd_iommu_alias_table[devid];
255 
256 	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
257 
258 	if (ivrs_alias == pci_alias)
259 		return ivrs_alias;
260 
261 	/*
262 	 * DMA alias showdown
263 	 *
264 	 * The IVRS is fairly reliable in telling us about aliases, but it
265 	 * can't know about every screwy device.  If we don't have an IVRS
266 	 * reported alias, use the PCI reported alias.  In that case we may
267 	 * still need to initialize the rlookup and dev_table entries if the
268 	 * alias is to a non-existent device.
269 	 */
270 	if (ivrs_alias == devid) {
271 		if (!amd_iommu_rlookup_table[pci_alias]) {
272 			amd_iommu_rlookup_table[pci_alias] =
273 				amd_iommu_rlookup_table[devid];
274 			memcpy(amd_iommu_dev_table[pci_alias].data,
275 			       amd_iommu_dev_table[devid].data,
276 			       sizeof(amd_iommu_dev_table[pci_alias].data));
277 		}
278 
279 		return pci_alias;
280 	}
281 
282 	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
283 		"for device %s[%04x:%04x], kernel reported alias "
284 		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
285 		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
286 		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
287 		PCI_FUNC(pci_alias));
288 
289 	/*
290 	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
291 	 * bus, then the IVRS table may know about a quirk that we don't.
292 	 */
293 	if (pci_alias == devid &&
294 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
295 		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
296 		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
297 			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
298 			dev_name(dev));
299 	}
300 
301 	return ivrs_alias;
302 }
303 
find_dev_data(u16 devid)304 static struct iommu_dev_data *find_dev_data(u16 devid)
305 {
306 	struct iommu_dev_data *dev_data;
307 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
308 
309 	dev_data = search_dev_data(devid);
310 
311 	if (dev_data == NULL) {
312 		dev_data = alloc_dev_data(devid);
313 		if (!dev_data)
314 			return NULL;
315 
316 		if (translation_pre_enabled(iommu))
317 			dev_data->defer_attach = true;
318 	}
319 
320 	return dev_data;
321 }
322 
get_dev_data(struct device * dev)323 struct iommu_dev_data *get_dev_data(struct device *dev)
324 {
325 	return dev->archdata.iommu;
326 }
327 EXPORT_SYMBOL(get_dev_data);
328 
329 /*
330 * Find or create an IOMMU group for a acpihid device.
331 */
acpihid_device_group(struct device * dev)332 static struct iommu_group *acpihid_device_group(struct device *dev)
333 {
334 	struct acpihid_map_entry *p, *entry = NULL;
335 	int devid;
336 
337 	devid = get_acpihid_device_id(dev, &entry);
338 	if (devid < 0)
339 		return ERR_PTR(devid);
340 
341 	list_for_each_entry(p, &acpihid_map, list) {
342 		if ((devid == p->devid) && p->group)
343 			entry->group = p->group;
344 	}
345 
346 	if (!entry->group)
347 		entry->group = generic_device_group(dev);
348 	else
349 		iommu_group_ref_get(entry->group);
350 
351 	return entry->group;
352 }
353 
pci_iommuv2_capable(struct pci_dev * pdev)354 static bool pci_iommuv2_capable(struct pci_dev *pdev)
355 {
356 	static const int caps[] = {
357 		PCI_EXT_CAP_ID_ATS,
358 		PCI_EXT_CAP_ID_PRI,
359 		PCI_EXT_CAP_ID_PASID,
360 	};
361 	int i, pos;
362 
363 	if (pci_ats_disabled())
364 		return false;
365 
366 	for (i = 0; i < 3; ++i) {
367 		pos = pci_find_ext_capability(pdev, caps[i]);
368 		if (pos == 0)
369 			return false;
370 	}
371 
372 	return true;
373 }
374 
pdev_pri_erratum(struct pci_dev * pdev,u32 erratum)375 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
376 {
377 	struct iommu_dev_data *dev_data;
378 
379 	dev_data = get_dev_data(&pdev->dev);
380 
381 	return dev_data->errata & (1 << erratum) ? true : false;
382 }
383 
384 /*
385  * This function checks if the driver got a valid device from the caller to
386  * avoid dereferencing invalid pointers.
387  */
check_device(struct device * dev)388 static bool check_device(struct device *dev)
389 {
390 	int devid;
391 
392 	if (!dev || !dev->dma_mask)
393 		return false;
394 
395 	devid = get_device_id(dev);
396 	if (devid < 0)
397 		return false;
398 
399 	/* Out of our scope? */
400 	if (devid > amd_iommu_last_bdf)
401 		return false;
402 
403 	if (amd_iommu_rlookup_table[devid] == NULL)
404 		return false;
405 
406 	return true;
407 }
408 
init_iommu_group(struct device * dev)409 static void init_iommu_group(struct device *dev)
410 {
411 	struct iommu_group *group;
412 
413 	group = iommu_group_get_for_dev(dev);
414 	if (IS_ERR(group))
415 		return;
416 
417 	iommu_group_put(group);
418 }
419 
iommu_init_device(struct device * dev)420 static int iommu_init_device(struct device *dev)
421 {
422 	struct iommu_dev_data *dev_data;
423 	struct amd_iommu *iommu;
424 	int devid;
425 
426 	if (dev->archdata.iommu)
427 		return 0;
428 
429 	devid = get_device_id(dev);
430 	if (devid < 0)
431 		return devid;
432 
433 	iommu = amd_iommu_rlookup_table[devid];
434 
435 	dev_data = find_dev_data(devid);
436 	if (!dev_data)
437 		return -ENOMEM;
438 
439 	dev_data->alias = get_alias(dev);
440 
441 	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
442 		struct amd_iommu *iommu;
443 
444 		iommu = amd_iommu_rlookup_table[dev_data->devid];
445 		dev_data->iommu_v2 = iommu->is_iommu_v2;
446 	}
447 
448 	dev->archdata.iommu = dev_data;
449 
450 	iommu_device_link(&iommu->iommu, dev);
451 
452 	return 0;
453 }
454 
iommu_ignore_device(struct device * dev)455 static void iommu_ignore_device(struct device *dev)
456 {
457 	u16 alias;
458 	int devid;
459 
460 	devid = get_device_id(dev);
461 	if (devid < 0)
462 		return;
463 
464 	alias = get_alias(dev);
465 
466 	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
467 	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
468 
469 	amd_iommu_rlookup_table[devid] = NULL;
470 	amd_iommu_rlookup_table[alias] = NULL;
471 }
472 
iommu_uninit_device(struct device * dev)473 static void iommu_uninit_device(struct device *dev)
474 {
475 	struct iommu_dev_data *dev_data;
476 	struct amd_iommu *iommu;
477 	int devid;
478 
479 	devid = get_device_id(dev);
480 	if (devid < 0)
481 		return;
482 
483 	iommu = amd_iommu_rlookup_table[devid];
484 
485 	dev_data = search_dev_data(devid);
486 	if (!dev_data)
487 		return;
488 
489 	if (dev_data->domain)
490 		detach_device(dev);
491 
492 	iommu_device_unlink(&iommu->iommu, dev);
493 
494 	iommu_group_remove_device(dev);
495 
496 	/* Remove dma-ops */
497 	dev->dma_ops = NULL;
498 
499 	/*
500 	 * We keep dev_data around for unplugged devices and reuse it when the
501 	 * device is re-plugged - not doing so would introduce a ton of races.
502 	 */
503 }
504 
505 /****************************************************************************
506  *
507  * Interrupt handling functions
508  *
509  ****************************************************************************/
510 
dump_dte_entry(u16 devid)511 static void dump_dte_entry(u16 devid)
512 {
513 	int i;
514 
515 	for (i = 0; i < 4; ++i)
516 		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
517 			amd_iommu_dev_table[devid].data[i]);
518 }
519 
dump_command(unsigned long phys_addr)520 static void dump_command(unsigned long phys_addr)
521 {
522 	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
523 	int i;
524 
525 	for (i = 0; i < 4; ++i)
526 		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
527 }
528 
amd_iommu_report_page_fault(u16 devid,u16 domain_id,u64 address,int flags)529 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
530 					u64 address, int flags)
531 {
532 	struct iommu_dev_data *dev_data = NULL;
533 	struct pci_dev *pdev;
534 
535 	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
536 					   devid & 0xff);
537 	if (pdev)
538 		dev_data = get_dev_data(&pdev->dev);
539 
540 	if (dev_data && __ratelimit(&dev_data->rs)) {
541 		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
542 			domain_id, address, flags);
543 	} else if (printk_ratelimit()) {
544 		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
545 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
546 			domain_id, address, flags);
547 	}
548 
549 	if (pdev)
550 		pci_dev_put(pdev);
551 }
552 
iommu_print_event(struct amd_iommu * iommu,void * __evt)553 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
554 {
555 	struct device *dev = iommu->iommu.dev;
556 	int type, devid, pasid, flags, tag;
557 	volatile u32 *event = __evt;
558 	int count = 0;
559 	u64 address;
560 
561 retry:
562 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
563 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
564 	pasid   = PPR_PASID(*(u64 *)&event[0]);
565 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
566 	address = (u64)(((u64)event[3]) << 32) | event[2];
567 
568 	if (type == 0) {
569 		/* Did we hit the erratum? */
570 		if (++count == LOOP_TIMEOUT) {
571 			pr_err("AMD-Vi: No event written to event log\n");
572 			return;
573 		}
574 		udelay(1);
575 		goto retry;
576 	}
577 
578 	if (type == EVENT_TYPE_IO_FAULT) {
579 		amd_iommu_report_page_fault(devid, pasid, address, flags);
580 		return;
581 	} else {
582 		dev_err(dev, "AMD-Vi: Event logged [");
583 	}
584 
585 	switch (type) {
586 	case EVENT_TYPE_ILL_DEV:
587 		dev_err(dev, "ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
588 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
589 			pasid, address, flags);
590 		dump_dte_entry(devid);
591 		break;
592 	case EVENT_TYPE_DEV_TAB_ERR:
593 		dev_err(dev, "DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
594 			"address=0x%016llx flags=0x%04x]\n",
595 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
596 			address, flags);
597 		break;
598 	case EVENT_TYPE_PAGE_TAB_ERR:
599 		dev_err(dev, "PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
600 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
601 			pasid, address, flags);
602 		break;
603 	case EVENT_TYPE_ILL_CMD:
604 		dev_err(dev, "ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
605 		dump_command(address);
606 		break;
607 	case EVENT_TYPE_CMD_HARD_ERR:
608 		dev_err(dev, "COMMAND_HARDWARE_ERROR address=0x%016llx flags=0x%04x]\n",
609 			address, flags);
610 		break;
611 	case EVENT_TYPE_IOTLB_INV_TO:
612 		dev_err(dev, "IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%016llx]\n",
613 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
614 			address);
615 		break;
616 	case EVENT_TYPE_INV_DEV_REQ:
617 		dev_err(dev, "INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
618 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
619 			pasid, address, flags);
620 		break;
621 	case EVENT_TYPE_INV_PPR_REQ:
622 		pasid = ((event[0] >> 16) & 0xFFFF)
623 			| ((event[1] << 6) & 0xF0000);
624 		tag = event[1] & 0x03FF;
625 		dev_err(dev, "INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
626 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
627 			pasid, address, flags);
628 		break;
629 	default:
630 		dev_err(dev, "UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
631 			event[0], event[1], event[2], event[3]);
632 	}
633 
634 	memset(__evt, 0, 4 * sizeof(u32));
635 }
636 
iommu_poll_events(struct amd_iommu * iommu)637 static void iommu_poll_events(struct amd_iommu *iommu)
638 {
639 	u32 head, tail;
640 
641 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
642 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
643 
644 	while (head != tail) {
645 		iommu_print_event(iommu, iommu->evt_buf + head);
646 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
647 	}
648 
649 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
650 }
651 
iommu_handle_ppr_entry(struct amd_iommu * iommu,u64 * raw)652 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
653 {
654 	struct amd_iommu_fault fault;
655 
656 	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
657 		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
658 		return;
659 	}
660 
661 	fault.address   = raw[1];
662 	fault.pasid     = PPR_PASID(raw[0]);
663 	fault.device_id = PPR_DEVID(raw[0]);
664 	fault.tag       = PPR_TAG(raw[0]);
665 	fault.flags     = PPR_FLAGS(raw[0]);
666 
667 	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
668 }
669 
iommu_poll_ppr_log(struct amd_iommu * iommu)670 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
671 {
672 	u32 head, tail;
673 
674 	if (iommu->ppr_log == NULL)
675 		return;
676 
677 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
678 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
679 
680 	while (head != tail) {
681 		volatile u64 *raw;
682 		u64 entry[2];
683 		int i;
684 
685 		raw = (u64 *)(iommu->ppr_log + head);
686 
687 		/*
688 		 * Hardware bug: Interrupt may arrive before the entry is
689 		 * written to memory. If this happens we need to wait for the
690 		 * entry to arrive.
691 		 */
692 		for (i = 0; i < LOOP_TIMEOUT; ++i) {
693 			if (PPR_REQ_TYPE(raw[0]) != 0)
694 				break;
695 			udelay(1);
696 		}
697 
698 		/* Avoid memcpy function-call overhead */
699 		entry[0] = raw[0];
700 		entry[1] = raw[1];
701 
702 		/*
703 		 * To detect the hardware bug we need to clear the entry
704 		 * back to zero.
705 		 */
706 		raw[0] = raw[1] = 0UL;
707 
708 		/* Update head pointer of hardware ring-buffer */
709 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
710 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
711 
712 		/* Handle PPR entry */
713 		iommu_handle_ppr_entry(iommu, entry);
714 
715 		/* Refresh ring-buffer information */
716 		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
717 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
718 	}
719 }
720 
721 #ifdef CONFIG_IRQ_REMAP
722 static int (*iommu_ga_log_notifier)(u32);
723 
amd_iommu_register_ga_log_notifier(int (* notifier)(u32))724 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
725 {
726 	iommu_ga_log_notifier = notifier;
727 
728 	return 0;
729 }
730 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
731 
iommu_poll_ga_log(struct amd_iommu * iommu)732 static void iommu_poll_ga_log(struct amd_iommu *iommu)
733 {
734 	u32 head, tail, cnt = 0;
735 
736 	if (iommu->ga_log == NULL)
737 		return;
738 
739 	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
740 	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
741 
742 	while (head != tail) {
743 		volatile u64 *raw;
744 		u64 log_entry;
745 
746 		raw = (u64 *)(iommu->ga_log + head);
747 		cnt++;
748 
749 		/* Avoid memcpy function-call overhead */
750 		log_entry = *raw;
751 
752 		/* Update head pointer of hardware ring-buffer */
753 		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
754 		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
755 
756 		/* Handle GA entry */
757 		switch (GA_REQ_TYPE(log_entry)) {
758 		case GA_GUEST_NR:
759 			if (!iommu_ga_log_notifier)
760 				break;
761 
762 			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
763 				 __func__, GA_DEVID(log_entry),
764 				 GA_TAG(log_entry));
765 
766 			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
767 				pr_err("AMD-Vi: GA log notifier failed.\n");
768 			break;
769 		default:
770 			break;
771 		}
772 	}
773 }
774 #endif /* CONFIG_IRQ_REMAP */
775 
776 #define AMD_IOMMU_INT_MASK	\
777 	(MMIO_STATUS_EVT_INT_MASK | \
778 	 MMIO_STATUS_PPR_INT_MASK | \
779 	 MMIO_STATUS_GALOG_INT_MASK)
780 
amd_iommu_int_thread(int irq,void * data)781 irqreturn_t amd_iommu_int_thread(int irq, void *data)
782 {
783 	struct amd_iommu *iommu = (struct amd_iommu *) data;
784 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
785 
786 	while (status & AMD_IOMMU_INT_MASK) {
787 		/* Enable EVT and PPR and GA interrupts again */
788 		writel(AMD_IOMMU_INT_MASK,
789 			iommu->mmio_base + MMIO_STATUS_OFFSET);
790 
791 		if (status & MMIO_STATUS_EVT_INT_MASK) {
792 			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
793 			iommu_poll_events(iommu);
794 		}
795 
796 		if (status & MMIO_STATUS_PPR_INT_MASK) {
797 			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
798 			iommu_poll_ppr_log(iommu);
799 		}
800 
801 #ifdef CONFIG_IRQ_REMAP
802 		if (status & MMIO_STATUS_GALOG_INT_MASK) {
803 			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
804 			iommu_poll_ga_log(iommu);
805 		}
806 #endif
807 
808 		/*
809 		 * Hardware bug: ERBT1312
810 		 * When re-enabling interrupt (by writing 1
811 		 * to clear the bit), the hardware might also try to set
812 		 * the interrupt bit in the event status register.
813 		 * In this scenario, the bit will be set, and disable
814 		 * subsequent interrupts.
815 		 *
816 		 * Workaround: The IOMMU driver should read back the
817 		 * status register and check if the interrupt bits are cleared.
818 		 * If not, driver will need to go through the interrupt handler
819 		 * again and re-clear the bits
820 		 */
821 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
822 	}
823 	return IRQ_HANDLED;
824 }
825 
amd_iommu_int_handler(int irq,void * data)826 irqreturn_t amd_iommu_int_handler(int irq, void *data)
827 {
828 	return IRQ_WAKE_THREAD;
829 }
830 
831 /****************************************************************************
832  *
833  * IOMMU command queuing functions
834  *
835  ****************************************************************************/
836 
wait_on_sem(volatile u64 * sem)837 static int wait_on_sem(volatile u64 *sem)
838 {
839 	int i = 0;
840 
841 	while (*sem == 0 && i < LOOP_TIMEOUT) {
842 		udelay(1);
843 		i += 1;
844 	}
845 
846 	if (i == LOOP_TIMEOUT) {
847 		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
848 		return -EIO;
849 	}
850 
851 	return 0;
852 }
853 
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd)854 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
855 			       struct iommu_cmd *cmd)
856 {
857 	u8 *target;
858 
859 	target = iommu->cmd_buf + iommu->cmd_buf_tail;
860 
861 	iommu->cmd_buf_tail += sizeof(*cmd);
862 	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
863 
864 	/* Copy command to buffer */
865 	memcpy(target, cmd, sizeof(*cmd));
866 
867 	/* Tell the IOMMU about it */
868 	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
869 }
870 
build_completion_wait(struct iommu_cmd * cmd,u64 address)871 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
872 {
873 	u64 paddr = iommu_virt_to_phys((void *)address);
874 
875 	WARN_ON(address & 0x7ULL);
876 
877 	memset(cmd, 0, sizeof(*cmd));
878 	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
879 	cmd->data[1] = upper_32_bits(paddr);
880 	cmd->data[2] = 1;
881 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
882 }
883 
build_inv_dte(struct iommu_cmd * cmd,u16 devid)884 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
885 {
886 	memset(cmd, 0, sizeof(*cmd));
887 	cmd->data[0] = devid;
888 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
889 }
890 
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,int pde)891 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
892 				  size_t size, u16 domid, int pde)
893 {
894 	u64 pages;
895 	bool s;
896 
897 	pages = iommu_num_pages(address, size, PAGE_SIZE);
898 	s     = false;
899 
900 	if (pages > 1) {
901 		/*
902 		 * If we have to flush more than one page, flush all
903 		 * TLB entries for this domain
904 		 */
905 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
906 		s = true;
907 	}
908 
909 	address &= PAGE_MASK;
910 
911 	memset(cmd, 0, sizeof(*cmd));
912 	cmd->data[1] |= domid;
913 	cmd->data[2]  = lower_32_bits(address);
914 	cmd->data[3]  = upper_32_bits(address);
915 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
916 	if (s) /* size bit - we flush more than one 4kb page */
917 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
918 	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
919 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
920 }
921 
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size)922 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
923 				  u64 address, size_t size)
924 {
925 	u64 pages;
926 	bool s;
927 
928 	pages = iommu_num_pages(address, size, PAGE_SIZE);
929 	s     = false;
930 
931 	if (pages > 1) {
932 		/*
933 		 * If we have to flush more than one page, flush all
934 		 * TLB entries for this domain
935 		 */
936 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
937 		s = true;
938 	}
939 
940 	address &= PAGE_MASK;
941 
942 	memset(cmd, 0, sizeof(*cmd));
943 	cmd->data[0]  = devid;
944 	cmd->data[0] |= (qdep & 0xff) << 24;
945 	cmd->data[1]  = devid;
946 	cmd->data[2]  = lower_32_bits(address);
947 	cmd->data[3]  = upper_32_bits(address);
948 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
949 	if (s)
950 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
951 }
952 
build_inv_iommu_pasid(struct iommu_cmd * cmd,u16 domid,int pasid,u64 address,bool size)953 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
954 				  u64 address, bool size)
955 {
956 	memset(cmd, 0, sizeof(*cmd));
957 
958 	address &= ~(0xfffULL);
959 
960 	cmd->data[0]  = pasid;
961 	cmd->data[1]  = domid;
962 	cmd->data[2]  = lower_32_bits(address);
963 	cmd->data[3]  = upper_32_bits(address);
964 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
965 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
966 	if (size)
967 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
968 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
969 }
970 
build_inv_iotlb_pasid(struct iommu_cmd * cmd,u16 devid,int pasid,int qdep,u64 address,bool size)971 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
972 				  int qdep, u64 address, bool size)
973 {
974 	memset(cmd, 0, sizeof(*cmd));
975 
976 	address &= ~(0xfffULL);
977 
978 	cmd->data[0]  = devid;
979 	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
980 	cmd->data[0] |= (qdep  & 0xff) << 24;
981 	cmd->data[1]  = devid;
982 	cmd->data[1] |= (pasid & 0xff) << 16;
983 	cmd->data[2]  = lower_32_bits(address);
984 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
985 	cmd->data[3]  = upper_32_bits(address);
986 	if (size)
987 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
988 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
989 }
990 
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,int pasid,int status,int tag,bool gn)991 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
992 			       int status, int tag, bool gn)
993 {
994 	memset(cmd, 0, sizeof(*cmd));
995 
996 	cmd->data[0]  = devid;
997 	if (gn) {
998 		cmd->data[1]  = pasid;
999 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1000 	}
1001 	cmd->data[3]  = tag & 0x1ff;
1002 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1003 
1004 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1005 }
1006 
build_inv_all(struct iommu_cmd * cmd)1007 static void build_inv_all(struct iommu_cmd *cmd)
1008 {
1009 	memset(cmd, 0, sizeof(*cmd));
1010 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1011 }
1012 
build_inv_irt(struct iommu_cmd * cmd,u16 devid)1013 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1014 {
1015 	memset(cmd, 0, sizeof(*cmd));
1016 	cmd->data[0] = devid;
1017 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1018 }
1019 
1020 /*
1021  * Writes the command to the IOMMUs command buffer and informs the
1022  * hardware about the new command.
1023  */
__iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1024 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1025 				      struct iommu_cmd *cmd,
1026 				      bool sync)
1027 {
1028 	unsigned int count = 0;
1029 	u32 left, next_tail;
1030 
1031 	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1032 again:
1033 	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1034 
1035 	if (left <= 0x20) {
1036 		/* Skip udelay() the first time around */
1037 		if (count++) {
1038 			if (count == LOOP_TIMEOUT) {
1039 				pr_err("AMD-Vi: Command buffer timeout\n");
1040 				return -EIO;
1041 			}
1042 
1043 			udelay(1);
1044 		}
1045 
1046 		/* Update head and recheck remaining space */
1047 		iommu->cmd_buf_head = readl(iommu->mmio_base +
1048 					    MMIO_CMD_HEAD_OFFSET);
1049 
1050 		goto again;
1051 	}
1052 
1053 	copy_cmd_to_buffer(iommu, cmd);
1054 
1055 	/* Do we need to make sure all commands are processed? */
1056 	iommu->need_sync = sync;
1057 
1058 	return 0;
1059 }
1060 
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1061 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1062 				    struct iommu_cmd *cmd,
1063 				    bool sync)
1064 {
1065 	unsigned long flags;
1066 	int ret;
1067 
1068 	raw_spin_lock_irqsave(&iommu->lock, flags);
1069 	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1070 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1071 
1072 	return ret;
1073 }
1074 
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1075 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1076 {
1077 	return iommu_queue_command_sync(iommu, cmd, true);
1078 }
1079 
1080 /*
1081  * This function queues a completion wait command into the command
1082  * buffer of an IOMMU
1083  */
iommu_completion_wait(struct amd_iommu * iommu)1084 static int iommu_completion_wait(struct amd_iommu *iommu)
1085 {
1086 	struct iommu_cmd cmd;
1087 	unsigned long flags;
1088 	int ret;
1089 
1090 	if (!iommu->need_sync)
1091 		return 0;
1092 
1093 
1094 	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1095 
1096 	raw_spin_lock_irqsave(&iommu->lock, flags);
1097 
1098 	iommu->cmd_sem = 0;
1099 
1100 	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1101 	if (ret)
1102 		goto out_unlock;
1103 
1104 	ret = wait_on_sem(&iommu->cmd_sem);
1105 
1106 out_unlock:
1107 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1108 
1109 	return ret;
1110 }
1111 
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1112 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1113 {
1114 	struct iommu_cmd cmd;
1115 
1116 	build_inv_dte(&cmd, devid);
1117 
1118 	return iommu_queue_command(iommu, &cmd);
1119 }
1120 
amd_iommu_flush_dte_all(struct amd_iommu * iommu)1121 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1122 {
1123 	u32 devid;
1124 
1125 	for (devid = 0; devid <= 0xffff; ++devid)
1126 		iommu_flush_dte(iommu, devid);
1127 
1128 	iommu_completion_wait(iommu);
1129 }
1130 
1131 /*
1132  * This function uses heavy locking and may disable irqs for some time. But
1133  * this is no issue because it is only called during resume.
1134  */
amd_iommu_flush_tlb_all(struct amd_iommu * iommu)1135 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1136 {
1137 	u32 dom_id;
1138 
1139 	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1140 		struct iommu_cmd cmd;
1141 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1142 				      dom_id, 1);
1143 		iommu_queue_command(iommu, &cmd);
1144 	}
1145 
1146 	iommu_completion_wait(iommu);
1147 }
1148 
amd_iommu_flush_all(struct amd_iommu * iommu)1149 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1150 {
1151 	struct iommu_cmd cmd;
1152 
1153 	build_inv_all(&cmd);
1154 
1155 	iommu_queue_command(iommu, &cmd);
1156 	iommu_completion_wait(iommu);
1157 }
1158 
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1159 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1160 {
1161 	struct iommu_cmd cmd;
1162 
1163 	build_inv_irt(&cmd, devid);
1164 
1165 	iommu_queue_command(iommu, &cmd);
1166 }
1167 
amd_iommu_flush_irt_all(struct amd_iommu * iommu)1168 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1169 {
1170 	u32 devid;
1171 
1172 	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1173 		iommu_flush_irt(iommu, devid);
1174 
1175 	iommu_completion_wait(iommu);
1176 }
1177 
iommu_flush_all_caches(struct amd_iommu * iommu)1178 void iommu_flush_all_caches(struct amd_iommu *iommu)
1179 {
1180 	if (iommu_feature(iommu, FEATURE_IA)) {
1181 		amd_iommu_flush_all(iommu);
1182 	} else {
1183 		amd_iommu_flush_dte_all(iommu);
1184 		amd_iommu_flush_irt_all(iommu);
1185 		amd_iommu_flush_tlb_all(iommu);
1186 	}
1187 }
1188 
1189 /*
1190  * Command send function for flushing on-device TLB
1191  */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size)1192 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1193 			      u64 address, size_t size)
1194 {
1195 	struct amd_iommu *iommu;
1196 	struct iommu_cmd cmd;
1197 	int qdep;
1198 
1199 	qdep     = dev_data->ats.qdep;
1200 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1201 
1202 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1203 
1204 	return iommu_queue_command(iommu, &cmd);
1205 }
1206 
1207 /*
1208  * Command send function for invalidating a device table entry
1209  */
device_flush_dte(struct iommu_dev_data * dev_data)1210 static int device_flush_dte(struct iommu_dev_data *dev_data)
1211 {
1212 	struct amd_iommu *iommu;
1213 	u16 alias;
1214 	int ret;
1215 
1216 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1217 	alias = dev_data->alias;
1218 
1219 	ret = iommu_flush_dte(iommu, dev_data->devid);
1220 	if (!ret && alias != dev_data->devid)
1221 		ret = iommu_flush_dte(iommu, alias);
1222 	if (ret)
1223 		return ret;
1224 
1225 	if (dev_data->ats.enabled)
1226 		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1227 
1228 	return ret;
1229 }
1230 
1231 /*
1232  * TLB invalidation function which is called from the mapping functions.
1233  * It invalidates a single PTE if the range to flush is within a single
1234  * page. Otherwise it flushes the whole TLB of the IOMMU.
1235  */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)1236 static void __domain_flush_pages(struct protection_domain *domain,
1237 				 u64 address, size_t size, int pde)
1238 {
1239 	struct iommu_dev_data *dev_data;
1240 	struct iommu_cmd cmd;
1241 	int ret = 0, i;
1242 
1243 	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1244 
1245 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1246 		if (!domain->dev_iommu[i])
1247 			continue;
1248 
1249 		/*
1250 		 * Devices of this domain are behind this IOMMU
1251 		 * We need a TLB flush
1252 		 */
1253 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1254 	}
1255 
1256 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1257 
1258 		if (!dev_data->ats.enabled)
1259 			continue;
1260 
1261 		ret |= device_flush_iotlb(dev_data, address, size);
1262 	}
1263 
1264 	WARN_ON(ret);
1265 }
1266 
domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1267 static void domain_flush_pages(struct protection_domain *domain,
1268 			       u64 address, size_t size)
1269 {
1270 	__domain_flush_pages(domain, address, size, 0);
1271 }
1272 
1273 /* Flush the whole IO/TLB for a given protection domain */
domain_flush_tlb(struct protection_domain * domain)1274 static void domain_flush_tlb(struct protection_domain *domain)
1275 {
1276 	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1277 }
1278 
1279 /* Flush the whole IO/TLB for a given protection domain - including PDE */
domain_flush_tlb_pde(struct protection_domain * domain)1280 static void domain_flush_tlb_pde(struct protection_domain *domain)
1281 {
1282 	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1283 }
1284 
domain_flush_complete(struct protection_domain * domain)1285 static void domain_flush_complete(struct protection_domain *domain)
1286 {
1287 	int i;
1288 
1289 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1290 		if (domain && !domain->dev_iommu[i])
1291 			continue;
1292 
1293 		/*
1294 		 * Devices of this domain are behind this IOMMU
1295 		 * We need to wait for completion of all commands.
1296 		 */
1297 		iommu_completion_wait(amd_iommus[i]);
1298 	}
1299 }
1300 
1301 
1302 /*
1303  * This function flushes the DTEs for all devices in domain
1304  */
domain_flush_devices(struct protection_domain * domain)1305 static void domain_flush_devices(struct protection_domain *domain)
1306 {
1307 	struct iommu_dev_data *dev_data;
1308 
1309 	list_for_each_entry(dev_data, &domain->dev_list, list)
1310 		device_flush_dte(dev_data);
1311 }
1312 
1313 /****************************************************************************
1314  *
1315  * The functions below are used the create the page table mappings for
1316  * unity mapped regions.
1317  *
1318  ****************************************************************************/
1319 
1320 /*
1321  * This function is used to add another level to an IO page table. Adding
1322  * another level increases the size of the address space by 9 bits to a size up
1323  * to 64 bits.
1324  */
increase_address_space(struct protection_domain * domain,gfp_t gfp)1325 static bool increase_address_space(struct protection_domain *domain,
1326 				   gfp_t gfp)
1327 {
1328 	u64 *pte;
1329 
1330 	if (domain->mode == PAGE_MODE_6_LEVEL)
1331 		/* address space already 64 bit large */
1332 		return false;
1333 
1334 	pte = (void *)get_zeroed_page(gfp);
1335 	if (!pte)
1336 		return false;
1337 
1338 	*pte             = PM_LEVEL_PDE(domain->mode,
1339 					iommu_virt_to_phys(domain->pt_root));
1340 	domain->pt_root  = pte;
1341 	domain->mode    += 1;
1342 	domain->updated  = true;
1343 
1344 	return true;
1345 }
1346 
alloc_pte(struct protection_domain * domain,unsigned long address,unsigned long page_size,u64 ** pte_page,gfp_t gfp)1347 static u64 *alloc_pte(struct protection_domain *domain,
1348 		      unsigned long address,
1349 		      unsigned long page_size,
1350 		      u64 **pte_page,
1351 		      gfp_t gfp)
1352 {
1353 	int level, end_lvl;
1354 	u64 *pte, *page;
1355 
1356 	BUG_ON(!is_power_of_2(page_size));
1357 
1358 	while (address > PM_LEVEL_SIZE(domain->mode))
1359 		increase_address_space(domain, gfp);
1360 
1361 	level   = domain->mode - 1;
1362 	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1363 	address = PAGE_SIZE_ALIGN(address, page_size);
1364 	end_lvl = PAGE_SIZE_LEVEL(page_size);
1365 
1366 	while (level > end_lvl) {
1367 		u64 __pte, __npte;
1368 
1369 		__pte = *pte;
1370 
1371 		if (!IOMMU_PTE_PRESENT(__pte)) {
1372 			page = (u64 *)get_zeroed_page(gfp);
1373 			if (!page)
1374 				return NULL;
1375 
1376 			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1377 
1378 			/* pte could have been changed somewhere. */
1379 			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1380 				free_page((unsigned long)page);
1381 				continue;
1382 			}
1383 		}
1384 
1385 		/* No level skipping support yet */
1386 		if (PM_PTE_LEVEL(*pte) != level)
1387 			return NULL;
1388 
1389 		level -= 1;
1390 
1391 		pte = IOMMU_PTE_PAGE(*pte);
1392 
1393 		if (pte_page && level == end_lvl)
1394 			*pte_page = pte;
1395 
1396 		pte = &pte[PM_LEVEL_INDEX(level, address)];
1397 	}
1398 
1399 	return pte;
1400 }
1401 
1402 /*
1403  * This function checks if there is a PTE for a given dma address. If
1404  * there is one, it returns the pointer to it.
1405  */
fetch_pte(struct protection_domain * domain,unsigned long address,unsigned long * page_size)1406 static u64 *fetch_pte(struct protection_domain *domain,
1407 		      unsigned long address,
1408 		      unsigned long *page_size)
1409 {
1410 	int level;
1411 	u64 *pte;
1412 
1413 	*page_size = 0;
1414 
1415 	if (address > PM_LEVEL_SIZE(domain->mode))
1416 		return NULL;
1417 
1418 	level	   =  domain->mode - 1;
1419 	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1420 	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1421 
1422 	while (level > 0) {
1423 
1424 		/* Not Present */
1425 		if (!IOMMU_PTE_PRESENT(*pte))
1426 			return NULL;
1427 
1428 		/* Large PTE */
1429 		if (PM_PTE_LEVEL(*pte) == 7 ||
1430 		    PM_PTE_LEVEL(*pte) == 0)
1431 			break;
1432 
1433 		/* No level skipping support yet */
1434 		if (PM_PTE_LEVEL(*pte) != level)
1435 			return NULL;
1436 
1437 		level -= 1;
1438 
1439 		/* Walk to the next level */
1440 		pte	   = IOMMU_PTE_PAGE(*pte);
1441 		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
1442 		*page_size = PTE_LEVEL_PAGE_SIZE(level);
1443 	}
1444 
1445 	if (PM_PTE_LEVEL(*pte) == 0x07) {
1446 		unsigned long pte_mask;
1447 
1448 		/*
1449 		 * If we have a series of large PTEs, make
1450 		 * sure to return a pointer to the first one.
1451 		 */
1452 		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1453 		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1454 		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1455 	}
1456 
1457 	return pte;
1458 }
1459 
1460 /*
1461  * Generic mapping functions. It maps a physical address into a DMA
1462  * address space. It allocates the page table pages if necessary.
1463  * In the future it can be extended to a generic mapping function
1464  * supporting all features of AMD IOMMU page tables like level skipping
1465  * and full 64 bit address spaces.
1466  */
iommu_map_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long phys_addr,unsigned long page_size,int prot,gfp_t gfp)1467 static int iommu_map_page(struct protection_domain *dom,
1468 			  unsigned long bus_addr,
1469 			  unsigned long phys_addr,
1470 			  unsigned long page_size,
1471 			  int prot,
1472 			  gfp_t gfp)
1473 {
1474 	u64 __pte, *pte;
1475 	int i, count;
1476 
1477 	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1478 	BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1479 
1480 	if (!(prot & IOMMU_PROT_MASK))
1481 		return -EINVAL;
1482 
1483 	count = PAGE_SIZE_PTE_COUNT(page_size);
1484 	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1485 
1486 	if (!pte)
1487 		return -ENOMEM;
1488 
1489 	for (i = 0; i < count; ++i)
1490 		if (IOMMU_PTE_PRESENT(pte[i]))
1491 			return -EBUSY;
1492 
1493 	if (count > 1) {
1494 		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1495 		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1496 	} else
1497 		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1498 
1499 	if (prot & IOMMU_PROT_IR)
1500 		__pte |= IOMMU_PTE_IR;
1501 	if (prot & IOMMU_PROT_IW)
1502 		__pte |= IOMMU_PTE_IW;
1503 
1504 	for (i = 0; i < count; ++i)
1505 		pte[i] = __pte;
1506 
1507 	update_domain(dom);
1508 
1509 	return 0;
1510 }
1511 
iommu_unmap_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long page_size)1512 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1513 				      unsigned long bus_addr,
1514 				      unsigned long page_size)
1515 {
1516 	unsigned long long unmapped;
1517 	unsigned long unmap_size;
1518 	u64 *pte;
1519 
1520 	BUG_ON(!is_power_of_2(page_size));
1521 
1522 	unmapped = 0;
1523 
1524 	while (unmapped < page_size) {
1525 
1526 		pte = fetch_pte(dom, bus_addr, &unmap_size);
1527 
1528 		if (pte) {
1529 			int i, count;
1530 
1531 			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1532 			for (i = 0; i < count; i++)
1533 				pte[i] = 0ULL;
1534 		}
1535 
1536 		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1537 		unmapped += unmap_size;
1538 	}
1539 
1540 	BUG_ON(unmapped && !is_power_of_2(unmapped));
1541 
1542 	return unmapped;
1543 }
1544 
1545 /****************************************************************************
1546  *
1547  * The next functions belong to the address allocator for the dma_ops
1548  * interface functions.
1549  *
1550  ****************************************************************************/
1551 
1552 
dma_ops_alloc_iova(struct device * dev,struct dma_ops_domain * dma_dom,unsigned int pages,u64 dma_mask)1553 static unsigned long dma_ops_alloc_iova(struct device *dev,
1554 					struct dma_ops_domain *dma_dom,
1555 					unsigned int pages, u64 dma_mask)
1556 {
1557 	unsigned long pfn = 0;
1558 
1559 	pages = __roundup_pow_of_two(pages);
1560 
1561 	if (dma_mask > DMA_BIT_MASK(32))
1562 		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1563 				      IOVA_PFN(DMA_BIT_MASK(32)), false);
1564 
1565 	if (!pfn)
1566 		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1567 				      IOVA_PFN(dma_mask), true);
1568 
1569 	return (pfn << PAGE_SHIFT);
1570 }
1571 
dma_ops_free_iova(struct dma_ops_domain * dma_dom,unsigned long address,unsigned int pages)1572 static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
1573 			      unsigned long address,
1574 			      unsigned int pages)
1575 {
1576 	pages = __roundup_pow_of_two(pages);
1577 	address >>= PAGE_SHIFT;
1578 
1579 	free_iova_fast(&dma_dom->iovad, address, pages);
1580 }
1581 
1582 /****************************************************************************
1583  *
1584  * The next functions belong to the domain allocation. A domain is
1585  * allocated for every IOMMU as the default domain. If device isolation
1586  * is enabled, every device get its own domain. The most important thing
1587  * about domains is the page table mapping the DMA address space they
1588  * contain.
1589  *
1590  ****************************************************************************/
1591 
1592 /*
1593  * This function adds a protection domain to the global protection domain list
1594  */
add_domain_to_list(struct protection_domain * domain)1595 static void add_domain_to_list(struct protection_domain *domain)
1596 {
1597 	unsigned long flags;
1598 
1599 	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1600 	list_add(&domain->list, &amd_iommu_pd_list);
1601 	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1602 }
1603 
1604 /*
1605  * This function removes a protection domain to the global
1606  * protection domain list
1607  */
del_domain_from_list(struct protection_domain * domain)1608 static void del_domain_from_list(struct protection_domain *domain)
1609 {
1610 	unsigned long flags;
1611 
1612 	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1613 	list_del(&domain->list);
1614 	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1615 }
1616 
domain_id_alloc(void)1617 static u16 domain_id_alloc(void)
1618 {
1619 	int id;
1620 
1621 	spin_lock(&pd_bitmap_lock);
1622 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1623 	BUG_ON(id == 0);
1624 	if (id > 0 && id < MAX_DOMAIN_ID)
1625 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1626 	else
1627 		id = 0;
1628 	spin_unlock(&pd_bitmap_lock);
1629 
1630 	return id;
1631 }
1632 
domain_id_free(int id)1633 static void domain_id_free(int id)
1634 {
1635 	spin_lock(&pd_bitmap_lock);
1636 	if (id > 0 && id < MAX_DOMAIN_ID)
1637 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1638 	spin_unlock(&pd_bitmap_lock);
1639 }
1640 
1641 #define DEFINE_FREE_PT_FN(LVL, FN)				\
1642 static void free_pt_##LVL (unsigned long __pt)			\
1643 {								\
1644 	unsigned long p;					\
1645 	u64 *pt;						\
1646 	int i;							\
1647 								\
1648 	pt = (u64 *)__pt;					\
1649 								\
1650 	for (i = 0; i < 512; ++i) {				\
1651 		/* PTE present? */				\
1652 		if (!IOMMU_PTE_PRESENT(pt[i]))			\
1653 			continue;				\
1654 								\
1655 		/* Large PTE? */				\
1656 		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
1657 		    PM_PTE_LEVEL(pt[i]) == 7)			\
1658 			continue;				\
1659 								\
1660 		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
1661 		FN(p);						\
1662 	}							\
1663 	free_page((unsigned long)pt);				\
1664 }
1665 
DEFINE_FREE_PT_FN(l2,free_page)1666 DEFINE_FREE_PT_FN(l2, free_page)
1667 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1668 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1669 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1670 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1671 
1672 static void free_pagetable(struct protection_domain *domain)
1673 {
1674 	unsigned long root = (unsigned long)domain->pt_root;
1675 
1676 	switch (domain->mode) {
1677 	case PAGE_MODE_NONE:
1678 		break;
1679 	case PAGE_MODE_1_LEVEL:
1680 		free_page(root);
1681 		break;
1682 	case PAGE_MODE_2_LEVEL:
1683 		free_pt_l2(root);
1684 		break;
1685 	case PAGE_MODE_3_LEVEL:
1686 		free_pt_l3(root);
1687 		break;
1688 	case PAGE_MODE_4_LEVEL:
1689 		free_pt_l4(root);
1690 		break;
1691 	case PAGE_MODE_5_LEVEL:
1692 		free_pt_l5(root);
1693 		break;
1694 	case PAGE_MODE_6_LEVEL:
1695 		free_pt_l6(root);
1696 		break;
1697 	default:
1698 		BUG();
1699 	}
1700 }
1701 
free_gcr3_tbl_level1(u64 * tbl)1702 static void free_gcr3_tbl_level1(u64 *tbl)
1703 {
1704 	u64 *ptr;
1705 	int i;
1706 
1707 	for (i = 0; i < 512; ++i) {
1708 		if (!(tbl[i] & GCR3_VALID))
1709 			continue;
1710 
1711 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1712 
1713 		free_page((unsigned long)ptr);
1714 	}
1715 }
1716 
free_gcr3_tbl_level2(u64 * tbl)1717 static void free_gcr3_tbl_level2(u64 *tbl)
1718 {
1719 	u64 *ptr;
1720 	int i;
1721 
1722 	for (i = 0; i < 512; ++i) {
1723 		if (!(tbl[i] & GCR3_VALID))
1724 			continue;
1725 
1726 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1727 
1728 		free_gcr3_tbl_level1(ptr);
1729 	}
1730 }
1731 
free_gcr3_table(struct protection_domain * domain)1732 static void free_gcr3_table(struct protection_domain *domain)
1733 {
1734 	if (domain->glx == 2)
1735 		free_gcr3_tbl_level2(domain->gcr3_tbl);
1736 	else if (domain->glx == 1)
1737 		free_gcr3_tbl_level1(domain->gcr3_tbl);
1738 	else
1739 		BUG_ON(domain->glx != 0);
1740 
1741 	free_page((unsigned long)domain->gcr3_tbl);
1742 }
1743 
dma_ops_domain_flush_tlb(struct dma_ops_domain * dom)1744 static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
1745 {
1746 	domain_flush_tlb(&dom->domain);
1747 	domain_flush_complete(&dom->domain);
1748 }
1749 
iova_domain_flush_tlb(struct iova_domain * iovad)1750 static void iova_domain_flush_tlb(struct iova_domain *iovad)
1751 {
1752 	struct dma_ops_domain *dom;
1753 
1754 	dom = container_of(iovad, struct dma_ops_domain, iovad);
1755 
1756 	dma_ops_domain_flush_tlb(dom);
1757 }
1758 
1759 /*
1760  * Free a domain, only used if something went wrong in the
1761  * allocation path and we need to free an already allocated page table
1762  */
dma_ops_domain_free(struct dma_ops_domain * dom)1763 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1764 {
1765 	if (!dom)
1766 		return;
1767 
1768 	del_domain_from_list(&dom->domain);
1769 
1770 	put_iova_domain(&dom->iovad);
1771 
1772 	free_pagetable(&dom->domain);
1773 
1774 	if (dom->domain.id)
1775 		domain_id_free(dom->domain.id);
1776 
1777 	kfree(dom);
1778 }
1779 
1780 /*
1781  * Allocates a new protection domain usable for the dma_ops functions.
1782  * It also initializes the page table and the address allocator data
1783  * structures required for the dma_ops interface
1784  */
dma_ops_domain_alloc(void)1785 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1786 {
1787 	struct dma_ops_domain *dma_dom;
1788 
1789 	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1790 	if (!dma_dom)
1791 		return NULL;
1792 
1793 	if (protection_domain_init(&dma_dom->domain))
1794 		goto free_dma_dom;
1795 
1796 	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1797 	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1798 	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1799 	if (!dma_dom->domain.pt_root)
1800 		goto free_dma_dom;
1801 
1802 	init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1803 
1804 	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1805 		goto free_dma_dom;
1806 
1807 	/* Initialize reserved ranges */
1808 	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1809 
1810 	add_domain_to_list(&dma_dom->domain);
1811 
1812 	return dma_dom;
1813 
1814 free_dma_dom:
1815 	dma_ops_domain_free(dma_dom);
1816 
1817 	return NULL;
1818 }
1819 
1820 /*
1821  * little helper function to check whether a given protection domain is a
1822  * dma_ops domain
1823  */
dma_ops_domain(struct protection_domain * domain)1824 static bool dma_ops_domain(struct protection_domain *domain)
1825 {
1826 	return domain->flags & PD_DMA_OPS_MASK;
1827 }
1828 
set_dte_entry(u16 devid,struct protection_domain * domain,bool ats,bool ppr)1829 static void set_dte_entry(u16 devid, struct protection_domain *domain,
1830 			  bool ats, bool ppr)
1831 {
1832 	u64 pte_root = 0;
1833 	u64 flags = 0;
1834 
1835 	if (domain->mode != PAGE_MODE_NONE)
1836 		pte_root = iommu_virt_to_phys(domain->pt_root);
1837 
1838 	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1839 		    << DEV_ENTRY_MODE_SHIFT;
1840 	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1841 
1842 	flags = amd_iommu_dev_table[devid].data[1];
1843 
1844 	if (ats)
1845 		flags |= DTE_FLAG_IOTLB;
1846 
1847 	if (ppr) {
1848 		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1849 
1850 		if (iommu_feature(iommu, FEATURE_EPHSUP))
1851 			pte_root |= 1ULL << DEV_ENTRY_PPR;
1852 	}
1853 
1854 	if (domain->flags & PD_IOMMUV2_MASK) {
1855 		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1856 		u64 glx  = domain->glx;
1857 		u64 tmp;
1858 
1859 		pte_root |= DTE_FLAG_GV;
1860 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1861 
1862 		/* First mask out possible old values for GCR3 table */
1863 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1864 		flags    &= ~tmp;
1865 
1866 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1867 		flags    &= ~tmp;
1868 
1869 		/* Encode GCR3 table into DTE */
1870 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1871 		pte_root |= tmp;
1872 
1873 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1874 		flags    |= tmp;
1875 
1876 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1877 		flags    |= tmp;
1878 	}
1879 
1880 	flags &= ~DEV_DOMID_MASK;
1881 	flags |= domain->id;
1882 
1883 	amd_iommu_dev_table[devid].data[1]  = flags;
1884 	amd_iommu_dev_table[devid].data[0]  = pte_root;
1885 }
1886 
clear_dte_entry(u16 devid)1887 static void clear_dte_entry(u16 devid)
1888 {
1889 	/* remove entry from the device table seen by the hardware */
1890 	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1891 	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1892 
1893 	amd_iommu_apply_erratum_63(devid);
1894 }
1895 
do_attach(struct iommu_dev_data * dev_data,struct protection_domain * domain)1896 static void do_attach(struct iommu_dev_data *dev_data,
1897 		      struct protection_domain *domain)
1898 {
1899 	struct amd_iommu *iommu;
1900 	u16 alias;
1901 	bool ats;
1902 
1903 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1904 	alias = dev_data->alias;
1905 	ats   = dev_data->ats.enabled;
1906 
1907 	/* Update data structures */
1908 	dev_data->domain = domain;
1909 	list_add(&dev_data->list, &domain->dev_list);
1910 
1911 	/* Do reference counting */
1912 	domain->dev_iommu[iommu->index] += 1;
1913 	domain->dev_cnt                 += 1;
1914 
1915 	/* Update device table */
1916 	set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1917 	if (alias != dev_data->devid)
1918 		set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1919 
1920 	device_flush_dte(dev_data);
1921 }
1922 
do_detach(struct iommu_dev_data * dev_data)1923 static void do_detach(struct iommu_dev_data *dev_data)
1924 {
1925 	struct amd_iommu *iommu;
1926 	u16 alias;
1927 
1928 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1929 	alias = dev_data->alias;
1930 
1931 	/* decrease reference counters */
1932 	dev_data->domain->dev_iommu[iommu->index] -= 1;
1933 	dev_data->domain->dev_cnt                 -= 1;
1934 
1935 	/* Update data structures */
1936 	dev_data->domain = NULL;
1937 	list_del(&dev_data->list);
1938 	clear_dte_entry(dev_data->devid);
1939 	if (alias != dev_data->devid)
1940 		clear_dte_entry(alias);
1941 
1942 	/* Flush the DTE entry */
1943 	device_flush_dte(dev_data);
1944 }
1945 
1946 /*
1947  * If a device is not yet associated with a domain, this function makes the
1948  * device visible in the domain
1949  */
__attach_device(struct iommu_dev_data * dev_data,struct protection_domain * domain)1950 static int __attach_device(struct iommu_dev_data *dev_data,
1951 			   struct protection_domain *domain)
1952 {
1953 	int ret;
1954 
1955 	/* lock domain */
1956 	spin_lock(&domain->lock);
1957 
1958 	ret = -EBUSY;
1959 	if (dev_data->domain != NULL)
1960 		goto out_unlock;
1961 
1962 	/* Attach alias group root */
1963 	do_attach(dev_data, domain);
1964 
1965 	ret = 0;
1966 
1967 out_unlock:
1968 
1969 	/* ready */
1970 	spin_unlock(&domain->lock);
1971 
1972 	return ret;
1973 }
1974 
1975 
pdev_iommuv2_disable(struct pci_dev * pdev)1976 static void pdev_iommuv2_disable(struct pci_dev *pdev)
1977 {
1978 	pci_disable_ats(pdev);
1979 	pci_disable_pri(pdev);
1980 	pci_disable_pasid(pdev);
1981 }
1982 
1983 /* FIXME: Change generic reset-function to do the same */
pri_reset_while_enabled(struct pci_dev * pdev)1984 static int pri_reset_while_enabled(struct pci_dev *pdev)
1985 {
1986 	u16 control;
1987 	int pos;
1988 
1989 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1990 	if (!pos)
1991 		return -EINVAL;
1992 
1993 	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
1994 	control |= PCI_PRI_CTRL_RESET;
1995 	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1996 
1997 	return 0;
1998 }
1999 
pdev_iommuv2_enable(struct pci_dev * pdev)2000 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2001 {
2002 	bool reset_enable;
2003 	int reqs, ret;
2004 
2005 	/* FIXME: Hardcode number of outstanding requests for now */
2006 	reqs = 32;
2007 	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2008 		reqs = 1;
2009 	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2010 
2011 	/* Only allow access to user-accessible pages */
2012 	ret = pci_enable_pasid(pdev, 0);
2013 	if (ret)
2014 		goto out_err;
2015 
2016 	/* First reset the PRI state of the device */
2017 	ret = pci_reset_pri(pdev);
2018 	if (ret)
2019 		goto out_err;
2020 
2021 	/* Enable PRI */
2022 	ret = pci_enable_pri(pdev, reqs);
2023 	if (ret)
2024 		goto out_err;
2025 
2026 	if (reset_enable) {
2027 		ret = pri_reset_while_enabled(pdev);
2028 		if (ret)
2029 			goto out_err;
2030 	}
2031 
2032 	ret = pci_enable_ats(pdev, PAGE_SHIFT);
2033 	if (ret)
2034 		goto out_err;
2035 
2036 	return 0;
2037 
2038 out_err:
2039 	pci_disable_pri(pdev);
2040 	pci_disable_pasid(pdev);
2041 
2042 	return ret;
2043 }
2044 
2045 /* FIXME: Move this to PCI code */
2046 #define PCI_PRI_TLP_OFF		(1 << 15)
2047 
pci_pri_tlp_required(struct pci_dev * pdev)2048 static bool pci_pri_tlp_required(struct pci_dev *pdev)
2049 {
2050 	u16 status;
2051 	int pos;
2052 
2053 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2054 	if (!pos)
2055 		return false;
2056 
2057 	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2058 
2059 	return (status & PCI_PRI_TLP_OFF) ? true : false;
2060 }
2061 
2062 /*
2063  * If a device is not yet associated with a domain, this function makes the
2064  * device visible in the domain
2065  */
attach_device(struct device * dev,struct protection_domain * domain)2066 static int attach_device(struct device *dev,
2067 			 struct protection_domain *domain)
2068 {
2069 	struct pci_dev *pdev;
2070 	struct iommu_dev_data *dev_data;
2071 	unsigned long flags;
2072 	int ret;
2073 
2074 	dev_data = get_dev_data(dev);
2075 
2076 	if (!dev_is_pci(dev))
2077 		goto skip_ats_check;
2078 
2079 	pdev = to_pci_dev(dev);
2080 	if (domain->flags & PD_IOMMUV2_MASK) {
2081 		if (!dev_data->passthrough)
2082 			return -EINVAL;
2083 
2084 		if (dev_data->iommu_v2) {
2085 			if (pdev_iommuv2_enable(pdev) != 0)
2086 				return -EINVAL;
2087 
2088 			dev_data->ats.enabled = true;
2089 			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2090 			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2091 		}
2092 	} else if (amd_iommu_iotlb_sup &&
2093 		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2094 		dev_data->ats.enabled = true;
2095 		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2096 	}
2097 
2098 skip_ats_check:
2099 	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2100 	ret = __attach_device(dev_data, domain);
2101 	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2102 
2103 	/*
2104 	 * We might boot into a crash-kernel here. The crashed kernel
2105 	 * left the caches in the IOMMU dirty. So we have to flush
2106 	 * here to evict all dirty stuff.
2107 	 */
2108 	domain_flush_tlb_pde(domain);
2109 
2110 	return ret;
2111 }
2112 
2113 /*
2114  * Removes a device from a protection domain (unlocked)
2115  */
__detach_device(struct iommu_dev_data * dev_data)2116 static void __detach_device(struct iommu_dev_data *dev_data)
2117 {
2118 	struct protection_domain *domain;
2119 
2120 	domain = dev_data->domain;
2121 
2122 	spin_lock(&domain->lock);
2123 
2124 	do_detach(dev_data);
2125 
2126 	spin_unlock(&domain->lock);
2127 }
2128 
2129 /*
2130  * Removes a device from a protection domain (with devtable_lock held)
2131  */
detach_device(struct device * dev)2132 static void detach_device(struct device *dev)
2133 {
2134 	struct protection_domain *domain;
2135 	struct iommu_dev_data *dev_data;
2136 	unsigned long flags;
2137 
2138 	dev_data = get_dev_data(dev);
2139 	domain   = dev_data->domain;
2140 
2141 	/*
2142 	 * First check if the device is still attached. It might already
2143 	 * be detached from its domain because the generic
2144 	 * iommu_detach_group code detached it and we try again here in
2145 	 * our alias handling.
2146 	 */
2147 	if (WARN_ON(!dev_data->domain))
2148 		return;
2149 
2150 	/* lock device table */
2151 	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2152 	__detach_device(dev_data);
2153 	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2154 
2155 	if (!dev_is_pci(dev))
2156 		return;
2157 
2158 	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2159 		pdev_iommuv2_disable(to_pci_dev(dev));
2160 	else if (dev_data->ats.enabled)
2161 		pci_disable_ats(to_pci_dev(dev));
2162 
2163 	dev_data->ats.enabled = false;
2164 }
2165 
amd_iommu_add_device(struct device * dev)2166 static int amd_iommu_add_device(struct device *dev)
2167 {
2168 	struct iommu_dev_data *dev_data;
2169 	struct iommu_domain *domain;
2170 	struct amd_iommu *iommu;
2171 	int ret, devid;
2172 
2173 	if (!check_device(dev) || get_dev_data(dev))
2174 		return 0;
2175 
2176 	devid = get_device_id(dev);
2177 	if (devid < 0)
2178 		return devid;
2179 
2180 	iommu = amd_iommu_rlookup_table[devid];
2181 
2182 	ret = iommu_init_device(dev);
2183 	if (ret) {
2184 		if (ret != -ENOTSUPP)
2185 			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2186 				dev_name(dev));
2187 
2188 		iommu_ignore_device(dev);
2189 		dev->dma_ops = &dma_direct_ops;
2190 		goto out;
2191 	}
2192 	init_iommu_group(dev);
2193 
2194 	dev_data = get_dev_data(dev);
2195 
2196 	BUG_ON(!dev_data);
2197 
2198 	if (iommu_pass_through || dev_data->iommu_v2)
2199 		iommu_request_dm_for_dev(dev);
2200 
2201 	/* Domains are initialized for this device - have a look what we ended up with */
2202 	domain = iommu_get_domain_for_dev(dev);
2203 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2204 		dev_data->passthrough = true;
2205 	else
2206 		dev->dma_ops = &amd_iommu_dma_ops;
2207 
2208 out:
2209 	iommu_completion_wait(iommu);
2210 
2211 	return 0;
2212 }
2213 
amd_iommu_remove_device(struct device * dev)2214 static void amd_iommu_remove_device(struct device *dev)
2215 {
2216 	struct amd_iommu *iommu;
2217 	int devid;
2218 
2219 	if (!check_device(dev))
2220 		return;
2221 
2222 	devid = get_device_id(dev);
2223 	if (devid < 0)
2224 		return;
2225 
2226 	iommu = amd_iommu_rlookup_table[devid];
2227 
2228 	iommu_uninit_device(dev);
2229 	iommu_completion_wait(iommu);
2230 }
2231 
amd_iommu_device_group(struct device * dev)2232 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2233 {
2234 	if (dev_is_pci(dev))
2235 		return pci_device_group(dev);
2236 
2237 	return acpihid_device_group(dev);
2238 }
2239 
2240 /*****************************************************************************
2241  *
2242  * The next functions belong to the dma_ops mapping/unmapping code.
2243  *
2244  *****************************************************************************/
2245 
2246 /*
2247  * In the dma_ops path we only have the struct device. This function
2248  * finds the corresponding IOMMU, the protection domain and the
2249  * requestor id for a given device.
2250  * If the device is not yet associated with a domain this is also done
2251  * in this function.
2252  */
get_domain(struct device * dev)2253 static struct protection_domain *get_domain(struct device *dev)
2254 {
2255 	struct protection_domain *domain;
2256 	struct iommu_domain *io_domain;
2257 
2258 	if (!check_device(dev))
2259 		return ERR_PTR(-EINVAL);
2260 
2261 	domain = get_dev_data(dev)->domain;
2262 	if (domain == NULL && get_dev_data(dev)->defer_attach) {
2263 		get_dev_data(dev)->defer_attach = false;
2264 		io_domain = iommu_get_domain_for_dev(dev);
2265 		domain = to_pdomain(io_domain);
2266 		attach_device(dev, domain);
2267 	}
2268 	if (domain == NULL)
2269 		return ERR_PTR(-EBUSY);
2270 
2271 	if (!dma_ops_domain(domain))
2272 		return ERR_PTR(-EBUSY);
2273 
2274 	return domain;
2275 }
2276 
update_device_table(struct protection_domain * domain)2277 static void update_device_table(struct protection_domain *domain)
2278 {
2279 	struct iommu_dev_data *dev_data;
2280 
2281 	list_for_each_entry(dev_data, &domain->dev_list, list) {
2282 		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
2283 			      dev_data->iommu_v2);
2284 
2285 		if (dev_data->devid == dev_data->alias)
2286 			continue;
2287 
2288 		/* There is an alias, update device table entry for it */
2289 		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
2290 			      dev_data->iommu_v2);
2291 	}
2292 }
2293 
update_domain(struct protection_domain * domain)2294 static void update_domain(struct protection_domain *domain)
2295 {
2296 	if (!domain->updated)
2297 		return;
2298 
2299 	update_device_table(domain);
2300 
2301 	domain_flush_devices(domain);
2302 	domain_flush_tlb_pde(domain);
2303 
2304 	domain->updated = false;
2305 }
2306 
dir2prot(enum dma_data_direction direction)2307 static int dir2prot(enum dma_data_direction direction)
2308 {
2309 	if (direction == DMA_TO_DEVICE)
2310 		return IOMMU_PROT_IR;
2311 	else if (direction == DMA_FROM_DEVICE)
2312 		return IOMMU_PROT_IW;
2313 	else if (direction == DMA_BIDIRECTIONAL)
2314 		return IOMMU_PROT_IW | IOMMU_PROT_IR;
2315 	else
2316 		return 0;
2317 }
2318 
2319 /*
2320  * This function contains common code for mapping of a physically
2321  * contiguous memory region into DMA address space. It is used by all
2322  * mapping functions provided with this IOMMU driver.
2323  * Must be called with the domain lock held.
2324  */
__map_single(struct device * dev,struct dma_ops_domain * dma_dom,phys_addr_t paddr,size_t size,enum dma_data_direction direction,u64 dma_mask)2325 static dma_addr_t __map_single(struct device *dev,
2326 			       struct dma_ops_domain *dma_dom,
2327 			       phys_addr_t paddr,
2328 			       size_t size,
2329 			       enum dma_data_direction direction,
2330 			       u64 dma_mask)
2331 {
2332 	dma_addr_t offset = paddr & ~PAGE_MASK;
2333 	dma_addr_t address, start, ret;
2334 	unsigned int pages;
2335 	int prot = 0;
2336 	int i;
2337 
2338 	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2339 	paddr &= PAGE_MASK;
2340 
2341 	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2342 	if (address == AMD_IOMMU_MAPPING_ERROR)
2343 		goto out;
2344 
2345 	prot = dir2prot(direction);
2346 
2347 	start = address;
2348 	for (i = 0; i < pages; ++i) {
2349 		ret = iommu_map_page(&dma_dom->domain, start, paddr,
2350 				     PAGE_SIZE, prot, GFP_ATOMIC);
2351 		if (ret)
2352 			goto out_unmap;
2353 
2354 		paddr += PAGE_SIZE;
2355 		start += PAGE_SIZE;
2356 	}
2357 	address += offset;
2358 
2359 	if (unlikely(amd_iommu_np_cache)) {
2360 		domain_flush_pages(&dma_dom->domain, address, size);
2361 		domain_flush_complete(&dma_dom->domain);
2362 	}
2363 
2364 out:
2365 	return address;
2366 
2367 out_unmap:
2368 
2369 	for (--i; i >= 0; --i) {
2370 		start -= PAGE_SIZE;
2371 		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2372 	}
2373 
2374 	domain_flush_tlb(&dma_dom->domain);
2375 	domain_flush_complete(&dma_dom->domain);
2376 
2377 	dma_ops_free_iova(dma_dom, address, pages);
2378 
2379 	return AMD_IOMMU_MAPPING_ERROR;
2380 }
2381 
2382 /*
2383  * Does the reverse of the __map_single function. Must be called with
2384  * the domain lock held too
2385  */
__unmap_single(struct dma_ops_domain * dma_dom,dma_addr_t dma_addr,size_t size,int dir)2386 static void __unmap_single(struct dma_ops_domain *dma_dom,
2387 			   dma_addr_t dma_addr,
2388 			   size_t size,
2389 			   int dir)
2390 {
2391 	dma_addr_t i, start;
2392 	unsigned int pages;
2393 
2394 	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2395 	dma_addr &= PAGE_MASK;
2396 	start = dma_addr;
2397 
2398 	for (i = 0; i < pages; ++i) {
2399 		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2400 		start += PAGE_SIZE;
2401 	}
2402 
2403 	if (amd_iommu_unmap_flush) {
2404 		domain_flush_tlb(&dma_dom->domain);
2405 		domain_flush_complete(&dma_dom->domain);
2406 		dma_ops_free_iova(dma_dom, dma_addr, pages);
2407 	} else {
2408 		pages = __roundup_pow_of_two(pages);
2409 		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
2410 	}
2411 }
2412 
2413 /*
2414  * The exported map_single function for dma_ops.
2415  */
map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)2416 static dma_addr_t map_page(struct device *dev, struct page *page,
2417 			   unsigned long offset, size_t size,
2418 			   enum dma_data_direction dir,
2419 			   unsigned long attrs)
2420 {
2421 	phys_addr_t paddr = page_to_phys(page) + offset;
2422 	struct protection_domain *domain;
2423 	struct dma_ops_domain *dma_dom;
2424 	u64 dma_mask;
2425 
2426 	domain = get_domain(dev);
2427 	if (PTR_ERR(domain) == -EINVAL)
2428 		return (dma_addr_t)paddr;
2429 	else if (IS_ERR(domain))
2430 		return AMD_IOMMU_MAPPING_ERROR;
2431 
2432 	dma_mask = *dev->dma_mask;
2433 	dma_dom = to_dma_ops_domain(domain);
2434 
2435 	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2436 }
2437 
2438 /*
2439  * The exported unmap_single function for dma_ops.
2440  */
unmap_page(struct device * dev,dma_addr_t dma_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)2441 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2442 		       enum dma_data_direction dir, unsigned long attrs)
2443 {
2444 	struct protection_domain *domain;
2445 	struct dma_ops_domain *dma_dom;
2446 
2447 	domain = get_domain(dev);
2448 	if (IS_ERR(domain))
2449 		return;
2450 
2451 	dma_dom = to_dma_ops_domain(domain);
2452 
2453 	__unmap_single(dma_dom, dma_addr, size, dir);
2454 }
2455 
sg_num_pages(struct device * dev,struct scatterlist * sglist,int nelems)2456 static int sg_num_pages(struct device *dev,
2457 			struct scatterlist *sglist,
2458 			int nelems)
2459 {
2460 	unsigned long mask, boundary_size;
2461 	struct scatterlist *s;
2462 	int i, npages = 0;
2463 
2464 	mask          = dma_get_seg_boundary(dev);
2465 	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
2466 				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
2467 
2468 	for_each_sg(sglist, s, nelems, i) {
2469 		int p, n;
2470 
2471 		s->dma_address = npages << PAGE_SHIFT;
2472 		p = npages % boundary_size;
2473 		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2474 		if (p + n > boundary_size)
2475 			npages += boundary_size - p;
2476 		npages += n;
2477 	}
2478 
2479 	return npages;
2480 }
2481 
2482 /*
2483  * The exported map_sg function for dma_ops (handles scatter-gather
2484  * lists).
2485  */
map_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction direction,unsigned long attrs)2486 static int map_sg(struct device *dev, struct scatterlist *sglist,
2487 		  int nelems, enum dma_data_direction direction,
2488 		  unsigned long attrs)
2489 {
2490 	int mapped_pages = 0, npages = 0, prot = 0, i;
2491 	struct protection_domain *domain;
2492 	struct dma_ops_domain *dma_dom;
2493 	struct scatterlist *s;
2494 	unsigned long address;
2495 	u64 dma_mask;
2496 
2497 	domain = get_domain(dev);
2498 	if (IS_ERR(domain))
2499 		return 0;
2500 
2501 	dma_dom  = to_dma_ops_domain(domain);
2502 	dma_mask = *dev->dma_mask;
2503 
2504 	npages = sg_num_pages(dev, sglist, nelems);
2505 
2506 	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2507 	if (address == AMD_IOMMU_MAPPING_ERROR)
2508 		goto out_err;
2509 
2510 	prot = dir2prot(direction);
2511 
2512 	/* Map all sg entries */
2513 	for_each_sg(sglist, s, nelems, i) {
2514 		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2515 
2516 		for (j = 0; j < pages; ++j) {
2517 			unsigned long bus_addr, phys_addr;
2518 			int ret;
2519 
2520 			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2521 			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
2522 			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
2523 			if (ret)
2524 				goto out_unmap;
2525 
2526 			mapped_pages += 1;
2527 		}
2528 	}
2529 
2530 	/* Everything is mapped - write the right values into s->dma_address */
2531 	for_each_sg(sglist, s, nelems, i) {
2532 		s->dma_address += address + s->offset;
2533 		s->dma_length   = s->length;
2534 	}
2535 
2536 	return nelems;
2537 
2538 out_unmap:
2539 	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
2540 	       dev_name(dev), npages);
2541 
2542 	for_each_sg(sglist, s, nelems, i) {
2543 		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2544 
2545 		for (j = 0; j < pages; ++j) {
2546 			unsigned long bus_addr;
2547 
2548 			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2549 			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
2550 
2551 			if (--mapped_pages)
2552 				goto out_free_iova;
2553 		}
2554 	}
2555 
2556 out_free_iova:
2557 	free_iova_fast(&dma_dom->iovad, address, npages);
2558 
2559 out_err:
2560 	return 0;
2561 }
2562 
2563 /*
2564  * The exported map_sg function for dma_ops (handles scatter-gather
2565  * lists).
2566  */
unmap_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,unsigned long attrs)2567 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2568 		     int nelems, enum dma_data_direction dir,
2569 		     unsigned long attrs)
2570 {
2571 	struct protection_domain *domain;
2572 	struct dma_ops_domain *dma_dom;
2573 	unsigned long startaddr;
2574 	int npages = 2;
2575 
2576 	domain = get_domain(dev);
2577 	if (IS_ERR(domain))
2578 		return;
2579 
2580 	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2581 	dma_dom   = to_dma_ops_domain(domain);
2582 	npages    = sg_num_pages(dev, sglist, nelems);
2583 
2584 	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2585 }
2586 
2587 /*
2588  * The exported alloc_coherent function for dma_ops.
2589  */
alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_addr,gfp_t flag,unsigned long attrs)2590 static void *alloc_coherent(struct device *dev, size_t size,
2591 			    dma_addr_t *dma_addr, gfp_t flag,
2592 			    unsigned long attrs)
2593 {
2594 	u64 dma_mask = dev->coherent_dma_mask;
2595 	struct protection_domain *domain;
2596 	struct dma_ops_domain *dma_dom;
2597 	struct page *page;
2598 
2599 	domain = get_domain(dev);
2600 	if (PTR_ERR(domain) == -EINVAL) {
2601 		page = alloc_pages(flag, get_order(size));
2602 		*dma_addr = page_to_phys(page);
2603 		return page_address(page);
2604 	} else if (IS_ERR(domain))
2605 		return NULL;
2606 
2607 	dma_dom   = to_dma_ops_domain(domain);
2608 	size	  = PAGE_ALIGN(size);
2609 	dma_mask  = dev->coherent_dma_mask;
2610 	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2611 	flag     |= __GFP_ZERO;
2612 
2613 	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
2614 	if (!page) {
2615 		if (!gfpflags_allow_blocking(flag))
2616 			return NULL;
2617 
2618 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2619 					get_order(size), flag & __GFP_NOWARN);
2620 		if (!page)
2621 			return NULL;
2622 	}
2623 
2624 	if (!dma_mask)
2625 		dma_mask = *dev->dma_mask;
2626 
2627 	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2628 				 size, DMA_BIDIRECTIONAL, dma_mask);
2629 
2630 	if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2631 		goto out_free;
2632 
2633 	return page_address(page);
2634 
2635 out_free:
2636 
2637 	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2638 		__free_pages(page, get_order(size));
2639 
2640 	return NULL;
2641 }
2642 
2643 /*
2644  * The exported free_coherent function for dma_ops.
2645  */
free_coherent(struct device * dev,size_t size,void * virt_addr,dma_addr_t dma_addr,unsigned long attrs)2646 static void free_coherent(struct device *dev, size_t size,
2647 			  void *virt_addr, dma_addr_t dma_addr,
2648 			  unsigned long attrs)
2649 {
2650 	struct protection_domain *domain;
2651 	struct dma_ops_domain *dma_dom;
2652 	struct page *page;
2653 
2654 	page = virt_to_page(virt_addr);
2655 	size = PAGE_ALIGN(size);
2656 
2657 	domain = get_domain(dev);
2658 	if (IS_ERR(domain))
2659 		goto free_mem;
2660 
2661 	dma_dom = to_dma_ops_domain(domain);
2662 
2663 	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2664 
2665 free_mem:
2666 	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2667 		__free_pages(page, get_order(size));
2668 }
2669 
2670 /*
2671  * This function is called by the DMA layer to find out if we can handle a
2672  * particular device. It is part of the dma_ops.
2673  */
amd_iommu_dma_supported(struct device * dev,u64 mask)2674 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2675 {
2676 	if (!dma_direct_supported(dev, mask))
2677 		return 0;
2678 	return check_device(dev);
2679 }
2680 
amd_iommu_mapping_error(struct device * dev,dma_addr_t dma_addr)2681 static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
2682 {
2683 	return dma_addr == AMD_IOMMU_MAPPING_ERROR;
2684 }
2685 
2686 static const struct dma_map_ops amd_iommu_dma_ops = {
2687 	.alloc		= alloc_coherent,
2688 	.free		= free_coherent,
2689 	.map_page	= map_page,
2690 	.unmap_page	= unmap_page,
2691 	.map_sg		= map_sg,
2692 	.unmap_sg	= unmap_sg,
2693 	.dma_supported	= amd_iommu_dma_supported,
2694 	.mapping_error	= amd_iommu_mapping_error,
2695 };
2696 
init_reserved_iova_ranges(void)2697 static int init_reserved_iova_ranges(void)
2698 {
2699 	struct pci_dev *pdev = NULL;
2700 	struct iova *val;
2701 
2702 	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2703 
2704 	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
2705 			  &reserved_rbtree_key);
2706 
2707 	/* MSI memory range */
2708 	val = reserve_iova(&reserved_iova_ranges,
2709 			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
2710 	if (!val) {
2711 		pr_err("Reserving MSI range failed\n");
2712 		return -ENOMEM;
2713 	}
2714 
2715 	/* HT memory range */
2716 	val = reserve_iova(&reserved_iova_ranges,
2717 			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
2718 	if (!val) {
2719 		pr_err("Reserving HT range failed\n");
2720 		return -ENOMEM;
2721 	}
2722 
2723 	/*
2724 	 * Memory used for PCI resources
2725 	 * FIXME: Check whether we can reserve the PCI-hole completly
2726 	 */
2727 	for_each_pci_dev(pdev) {
2728 		int i;
2729 
2730 		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
2731 			struct resource *r = &pdev->resource[i];
2732 
2733 			if (!(r->flags & IORESOURCE_MEM))
2734 				continue;
2735 
2736 			val = reserve_iova(&reserved_iova_ranges,
2737 					   IOVA_PFN(r->start),
2738 					   IOVA_PFN(r->end));
2739 			if (!val) {
2740 				pr_err("Reserve pci-resource range failed\n");
2741 				return -ENOMEM;
2742 			}
2743 		}
2744 	}
2745 
2746 	return 0;
2747 }
2748 
amd_iommu_init_api(void)2749 int __init amd_iommu_init_api(void)
2750 {
2751 	int ret, err = 0;
2752 
2753 	ret = iova_cache_get();
2754 	if (ret)
2755 		return ret;
2756 
2757 	ret = init_reserved_iova_ranges();
2758 	if (ret)
2759 		return ret;
2760 
2761 	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2762 	if (err)
2763 		return err;
2764 #ifdef CONFIG_ARM_AMBA
2765 	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2766 	if (err)
2767 		return err;
2768 #endif
2769 	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2770 	if (err)
2771 		return err;
2772 
2773 	return 0;
2774 }
2775 
amd_iommu_init_dma_ops(void)2776 int __init amd_iommu_init_dma_ops(void)
2777 {
2778 	swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2779 	iommu_detected = 1;
2780 
2781 	/*
2782 	 * In case we don't initialize SWIOTLB (actually the common case
2783 	 * when AMD IOMMU is enabled and SME is not active), make sure there
2784 	 * are global dma_ops set as a fall-back for devices not handled by
2785 	 * this driver (for example non-PCI devices). When SME is active,
2786 	 * make sure that swiotlb variable remains set so the global dma_ops
2787 	 * continue to be SWIOTLB.
2788 	 */
2789 	if (!swiotlb)
2790 		dma_ops = &dma_direct_ops;
2791 
2792 	if (amd_iommu_unmap_flush)
2793 		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2794 	else
2795 		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2796 
2797 	return 0;
2798 
2799 }
2800 
2801 /*****************************************************************************
2802  *
2803  * The following functions belong to the exported interface of AMD IOMMU
2804  *
2805  * This interface allows access to lower level functions of the IOMMU
2806  * like protection domain handling and assignement of devices to domains
2807  * which is not possible with the dma_ops interface.
2808  *
2809  *****************************************************************************/
2810 
cleanup_domain(struct protection_domain * domain)2811 static void cleanup_domain(struct protection_domain *domain)
2812 {
2813 	struct iommu_dev_data *entry;
2814 	unsigned long flags;
2815 
2816 	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2817 
2818 	while (!list_empty(&domain->dev_list)) {
2819 		entry = list_first_entry(&domain->dev_list,
2820 					 struct iommu_dev_data, list);
2821 		BUG_ON(!entry->domain);
2822 		__detach_device(entry);
2823 	}
2824 
2825 	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2826 }
2827 
protection_domain_free(struct protection_domain * domain)2828 static void protection_domain_free(struct protection_domain *domain)
2829 {
2830 	if (!domain)
2831 		return;
2832 
2833 	del_domain_from_list(domain);
2834 
2835 	if (domain->id)
2836 		domain_id_free(domain->id);
2837 
2838 	kfree(domain);
2839 }
2840 
protection_domain_init(struct protection_domain * domain)2841 static int protection_domain_init(struct protection_domain *domain)
2842 {
2843 	spin_lock_init(&domain->lock);
2844 	mutex_init(&domain->api_lock);
2845 	domain->id = domain_id_alloc();
2846 	if (!domain->id)
2847 		return -ENOMEM;
2848 	INIT_LIST_HEAD(&domain->dev_list);
2849 
2850 	return 0;
2851 }
2852 
protection_domain_alloc(void)2853 static struct protection_domain *protection_domain_alloc(void)
2854 {
2855 	struct protection_domain *domain;
2856 
2857 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2858 	if (!domain)
2859 		return NULL;
2860 
2861 	if (protection_domain_init(domain))
2862 		goto out_err;
2863 
2864 	add_domain_to_list(domain);
2865 
2866 	return domain;
2867 
2868 out_err:
2869 	kfree(domain);
2870 
2871 	return NULL;
2872 }
2873 
amd_iommu_domain_alloc(unsigned type)2874 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2875 {
2876 	struct protection_domain *pdomain;
2877 	struct dma_ops_domain *dma_domain;
2878 
2879 	switch (type) {
2880 	case IOMMU_DOMAIN_UNMANAGED:
2881 		pdomain = protection_domain_alloc();
2882 		if (!pdomain)
2883 			return NULL;
2884 
2885 		pdomain->mode    = PAGE_MODE_3_LEVEL;
2886 		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2887 		if (!pdomain->pt_root) {
2888 			protection_domain_free(pdomain);
2889 			return NULL;
2890 		}
2891 
2892 		pdomain->domain.geometry.aperture_start = 0;
2893 		pdomain->domain.geometry.aperture_end   = ~0ULL;
2894 		pdomain->domain.geometry.force_aperture = true;
2895 
2896 		break;
2897 	case IOMMU_DOMAIN_DMA:
2898 		dma_domain = dma_ops_domain_alloc();
2899 		if (!dma_domain) {
2900 			pr_err("AMD-Vi: Failed to allocate\n");
2901 			return NULL;
2902 		}
2903 		pdomain = &dma_domain->domain;
2904 		break;
2905 	case IOMMU_DOMAIN_IDENTITY:
2906 		pdomain = protection_domain_alloc();
2907 		if (!pdomain)
2908 			return NULL;
2909 
2910 		pdomain->mode = PAGE_MODE_NONE;
2911 		break;
2912 	default:
2913 		return NULL;
2914 	}
2915 
2916 	return &pdomain->domain;
2917 }
2918 
amd_iommu_domain_free(struct iommu_domain * dom)2919 static void amd_iommu_domain_free(struct iommu_domain *dom)
2920 {
2921 	struct protection_domain *domain;
2922 	struct dma_ops_domain *dma_dom;
2923 
2924 	domain = to_pdomain(dom);
2925 
2926 	if (domain->dev_cnt > 0)
2927 		cleanup_domain(domain);
2928 
2929 	BUG_ON(domain->dev_cnt != 0);
2930 
2931 	if (!dom)
2932 		return;
2933 
2934 	switch (dom->type) {
2935 	case IOMMU_DOMAIN_DMA:
2936 		/* Now release the domain */
2937 		dma_dom = to_dma_ops_domain(domain);
2938 		dma_ops_domain_free(dma_dom);
2939 		break;
2940 	default:
2941 		if (domain->mode != PAGE_MODE_NONE)
2942 			free_pagetable(domain);
2943 
2944 		if (domain->flags & PD_IOMMUV2_MASK)
2945 			free_gcr3_table(domain);
2946 
2947 		protection_domain_free(domain);
2948 		break;
2949 	}
2950 }
2951 
amd_iommu_detach_device(struct iommu_domain * dom,struct device * dev)2952 static void amd_iommu_detach_device(struct iommu_domain *dom,
2953 				    struct device *dev)
2954 {
2955 	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2956 	struct amd_iommu *iommu;
2957 	int devid;
2958 
2959 	if (!check_device(dev))
2960 		return;
2961 
2962 	devid = get_device_id(dev);
2963 	if (devid < 0)
2964 		return;
2965 
2966 	if (dev_data->domain != NULL)
2967 		detach_device(dev);
2968 
2969 	iommu = amd_iommu_rlookup_table[devid];
2970 	if (!iommu)
2971 		return;
2972 
2973 #ifdef CONFIG_IRQ_REMAP
2974 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2975 	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
2976 		dev_data->use_vapic = 0;
2977 #endif
2978 
2979 	iommu_completion_wait(iommu);
2980 }
2981 
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)2982 static int amd_iommu_attach_device(struct iommu_domain *dom,
2983 				   struct device *dev)
2984 {
2985 	struct protection_domain *domain = to_pdomain(dom);
2986 	struct iommu_dev_data *dev_data;
2987 	struct amd_iommu *iommu;
2988 	int ret;
2989 
2990 	if (!check_device(dev))
2991 		return -EINVAL;
2992 
2993 	dev_data = dev->archdata.iommu;
2994 
2995 	iommu = amd_iommu_rlookup_table[dev_data->devid];
2996 	if (!iommu)
2997 		return -EINVAL;
2998 
2999 	if (dev_data->domain)
3000 		detach_device(dev);
3001 
3002 	ret = attach_device(dev, domain);
3003 
3004 #ifdef CONFIG_IRQ_REMAP
3005 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3006 		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
3007 			dev_data->use_vapic = 1;
3008 		else
3009 			dev_data->use_vapic = 0;
3010 	}
3011 #endif
3012 
3013 	iommu_completion_wait(iommu);
3014 
3015 	return ret;
3016 }
3017 
amd_iommu_map(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t page_size,int iommu_prot)3018 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3019 			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3020 {
3021 	struct protection_domain *domain = to_pdomain(dom);
3022 	int prot = 0;
3023 	int ret;
3024 
3025 	if (domain->mode == PAGE_MODE_NONE)
3026 		return -EINVAL;
3027 
3028 	if (iommu_prot & IOMMU_READ)
3029 		prot |= IOMMU_PROT_IR;
3030 	if (iommu_prot & IOMMU_WRITE)
3031 		prot |= IOMMU_PROT_IW;
3032 
3033 	mutex_lock(&domain->api_lock);
3034 	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3035 	mutex_unlock(&domain->api_lock);
3036 
3037 	return ret;
3038 }
3039 
amd_iommu_unmap(struct iommu_domain * dom,unsigned long iova,size_t page_size)3040 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3041 			   size_t page_size)
3042 {
3043 	struct protection_domain *domain = to_pdomain(dom);
3044 	size_t unmap_size;
3045 
3046 	if (domain->mode == PAGE_MODE_NONE)
3047 		return 0;
3048 
3049 	mutex_lock(&domain->api_lock);
3050 	unmap_size = iommu_unmap_page(domain, iova, page_size);
3051 	mutex_unlock(&domain->api_lock);
3052 
3053 	return unmap_size;
3054 }
3055 
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)3056 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3057 					  dma_addr_t iova)
3058 {
3059 	struct protection_domain *domain = to_pdomain(dom);
3060 	unsigned long offset_mask, pte_pgsize;
3061 	u64 *pte, __pte;
3062 
3063 	if (domain->mode == PAGE_MODE_NONE)
3064 		return iova;
3065 
3066 	pte = fetch_pte(domain, iova, &pte_pgsize);
3067 
3068 	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3069 		return 0;
3070 
3071 	offset_mask = pte_pgsize - 1;
3072 	__pte	    = __sme_clr(*pte & PM_ADDR_MASK);
3073 
3074 	return (__pte & ~offset_mask) | (iova & offset_mask);
3075 }
3076 
amd_iommu_capable(enum iommu_cap cap)3077 static bool amd_iommu_capable(enum iommu_cap cap)
3078 {
3079 	switch (cap) {
3080 	case IOMMU_CAP_CACHE_COHERENCY:
3081 		return true;
3082 	case IOMMU_CAP_INTR_REMAP:
3083 		return (irq_remapping_enabled == 1);
3084 	case IOMMU_CAP_NOEXEC:
3085 		return false;
3086 	}
3087 
3088 	return false;
3089 }
3090 
amd_iommu_get_resv_regions(struct device * dev,struct list_head * head)3091 static void amd_iommu_get_resv_regions(struct device *dev,
3092 				       struct list_head *head)
3093 {
3094 	struct iommu_resv_region *region;
3095 	struct unity_map_entry *entry;
3096 	int devid;
3097 
3098 	devid = get_device_id(dev);
3099 	if (devid < 0)
3100 		return;
3101 
3102 	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3103 		size_t length;
3104 		int prot = 0;
3105 
3106 		if (devid < entry->devid_start || devid > entry->devid_end)
3107 			continue;
3108 
3109 		length = entry->address_end - entry->address_start;
3110 		if (entry->prot & IOMMU_PROT_IR)
3111 			prot |= IOMMU_READ;
3112 		if (entry->prot & IOMMU_PROT_IW)
3113 			prot |= IOMMU_WRITE;
3114 
3115 		region = iommu_alloc_resv_region(entry->address_start,
3116 						 length, prot,
3117 						 IOMMU_RESV_DIRECT);
3118 		if (!region) {
3119 			pr_err("Out of memory allocating dm-regions for %s\n",
3120 				dev_name(dev));
3121 			return;
3122 		}
3123 		list_add_tail(&region->list, head);
3124 	}
3125 
3126 	region = iommu_alloc_resv_region(MSI_RANGE_START,
3127 					 MSI_RANGE_END - MSI_RANGE_START + 1,
3128 					 0, IOMMU_RESV_MSI);
3129 	if (!region)
3130 		return;
3131 	list_add_tail(&region->list, head);
3132 
3133 	region = iommu_alloc_resv_region(HT_RANGE_START,
3134 					 HT_RANGE_END - HT_RANGE_START + 1,
3135 					 0, IOMMU_RESV_RESERVED);
3136 	if (!region)
3137 		return;
3138 	list_add_tail(&region->list, head);
3139 }
3140 
amd_iommu_put_resv_regions(struct device * dev,struct list_head * head)3141 static void amd_iommu_put_resv_regions(struct device *dev,
3142 				     struct list_head *head)
3143 {
3144 	struct iommu_resv_region *entry, *next;
3145 
3146 	list_for_each_entry_safe(entry, next, head, list)
3147 		kfree(entry);
3148 }
3149 
amd_iommu_apply_resv_region(struct device * dev,struct iommu_domain * domain,struct iommu_resv_region * region)3150 static void amd_iommu_apply_resv_region(struct device *dev,
3151 				      struct iommu_domain *domain,
3152 				      struct iommu_resv_region *region)
3153 {
3154 	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3155 	unsigned long start, end;
3156 
3157 	start = IOVA_PFN(region->start);
3158 	end   = IOVA_PFN(region->start + region->length - 1);
3159 
3160 	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
3161 }
3162 
amd_iommu_is_attach_deferred(struct iommu_domain * domain,struct device * dev)3163 static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
3164 					 struct device *dev)
3165 {
3166 	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3167 	return dev_data->defer_attach;
3168 }
3169 
amd_iommu_flush_iotlb_all(struct iommu_domain * domain)3170 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
3171 {
3172 	struct protection_domain *dom = to_pdomain(domain);
3173 
3174 	domain_flush_tlb_pde(dom);
3175 	domain_flush_complete(dom);
3176 }
3177 
amd_iommu_iotlb_range_add(struct iommu_domain * domain,unsigned long iova,size_t size)3178 static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
3179 				      unsigned long iova, size_t size)
3180 {
3181 }
3182 
3183 const struct iommu_ops amd_iommu_ops = {
3184 	.capable = amd_iommu_capable,
3185 	.domain_alloc = amd_iommu_domain_alloc,
3186 	.domain_free  = amd_iommu_domain_free,
3187 	.attach_dev = amd_iommu_attach_device,
3188 	.detach_dev = amd_iommu_detach_device,
3189 	.map = amd_iommu_map,
3190 	.unmap = amd_iommu_unmap,
3191 	.iova_to_phys = amd_iommu_iova_to_phys,
3192 	.add_device = amd_iommu_add_device,
3193 	.remove_device = amd_iommu_remove_device,
3194 	.device_group = amd_iommu_device_group,
3195 	.get_resv_regions = amd_iommu_get_resv_regions,
3196 	.put_resv_regions = amd_iommu_put_resv_regions,
3197 	.apply_resv_region = amd_iommu_apply_resv_region,
3198 	.is_attach_deferred = amd_iommu_is_attach_deferred,
3199 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3200 	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
3201 	.iotlb_range_add = amd_iommu_iotlb_range_add,
3202 	.iotlb_sync = amd_iommu_flush_iotlb_all,
3203 };
3204 
3205 /*****************************************************************************
3206  *
3207  * The next functions do a basic initialization of IOMMU for pass through
3208  * mode
3209  *
3210  * In passthrough mode the IOMMU is initialized and enabled but not used for
3211  * DMA-API translation.
3212  *
3213  *****************************************************************************/
3214 
3215 /* IOMMUv2 specific functions */
amd_iommu_register_ppr_notifier(struct notifier_block * nb)3216 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3217 {
3218 	return atomic_notifier_chain_register(&ppr_notifier, nb);
3219 }
3220 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3221 
amd_iommu_unregister_ppr_notifier(struct notifier_block * nb)3222 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3223 {
3224 	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3225 }
3226 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3227 
amd_iommu_domain_direct_map(struct iommu_domain * dom)3228 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3229 {
3230 	struct protection_domain *domain = to_pdomain(dom);
3231 	unsigned long flags;
3232 
3233 	spin_lock_irqsave(&domain->lock, flags);
3234 
3235 	/* Update data structure */
3236 	domain->mode    = PAGE_MODE_NONE;
3237 	domain->updated = true;
3238 
3239 	/* Make changes visible to IOMMUs */
3240 	update_domain(domain);
3241 
3242 	/* Page-table is not visible to IOMMU anymore, so free it */
3243 	free_pagetable(domain);
3244 
3245 	spin_unlock_irqrestore(&domain->lock, flags);
3246 }
3247 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3248 
amd_iommu_domain_enable_v2(struct iommu_domain * dom,int pasids)3249 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3250 {
3251 	struct protection_domain *domain = to_pdomain(dom);
3252 	unsigned long flags;
3253 	int levels, ret;
3254 
3255 	if (pasids <= 0 || pasids > (PASID_MASK + 1))
3256 		return -EINVAL;
3257 
3258 	/* Number of GCR3 table levels required */
3259 	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3260 		levels += 1;
3261 
3262 	if (levels > amd_iommu_max_glx_val)
3263 		return -EINVAL;
3264 
3265 	spin_lock_irqsave(&domain->lock, flags);
3266 
3267 	/*
3268 	 * Save us all sanity checks whether devices already in the
3269 	 * domain support IOMMUv2. Just force that the domain has no
3270 	 * devices attached when it is switched into IOMMUv2 mode.
3271 	 */
3272 	ret = -EBUSY;
3273 	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3274 		goto out;
3275 
3276 	ret = -ENOMEM;
3277 	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3278 	if (domain->gcr3_tbl == NULL)
3279 		goto out;
3280 
3281 	domain->glx      = levels;
3282 	domain->flags   |= PD_IOMMUV2_MASK;
3283 	domain->updated  = true;
3284 
3285 	update_domain(domain);
3286 
3287 	ret = 0;
3288 
3289 out:
3290 	spin_unlock_irqrestore(&domain->lock, flags);
3291 
3292 	return ret;
3293 }
3294 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3295 
__flush_pasid(struct protection_domain * domain,int pasid,u64 address,bool size)3296 static int __flush_pasid(struct protection_domain *domain, int pasid,
3297 			 u64 address, bool size)
3298 {
3299 	struct iommu_dev_data *dev_data;
3300 	struct iommu_cmd cmd;
3301 	int i, ret;
3302 
3303 	if (!(domain->flags & PD_IOMMUV2_MASK))
3304 		return -EINVAL;
3305 
3306 	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3307 
3308 	/*
3309 	 * IOMMU TLB needs to be flushed before Device TLB to
3310 	 * prevent device TLB refill from IOMMU TLB
3311 	 */
3312 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3313 		if (domain->dev_iommu[i] == 0)
3314 			continue;
3315 
3316 		ret = iommu_queue_command(amd_iommus[i], &cmd);
3317 		if (ret != 0)
3318 			goto out;
3319 	}
3320 
3321 	/* Wait until IOMMU TLB flushes are complete */
3322 	domain_flush_complete(domain);
3323 
3324 	/* Now flush device TLBs */
3325 	list_for_each_entry(dev_data, &domain->dev_list, list) {
3326 		struct amd_iommu *iommu;
3327 		int qdep;
3328 
3329 		/*
3330 		   There might be non-IOMMUv2 capable devices in an IOMMUv2
3331 		 * domain.
3332 		 */
3333 		if (!dev_data->ats.enabled)
3334 			continue;
3335 
3336 		qdep  = dev_data->ats.qdep;
3337 		iommu = amd_iommu_rlookup_table[dev_data->devid];
3338 
3339 		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3340 				      qdep, address, size);
3341 
3342 		ret = iommu_queue_command(iommu, &cmd);
3343 		if (ret != 0)
3344 			goto out;
3345 	}
3346 
3347 	/* Wait until all device TLBs are flushed */
3348 	domain_flush_complete(domain);
3349 
3350 	ret = 0;
3351 
3352 out:
3353 
3354 	return ret;
3355 }
3356 
__amd_iommu_flush_page(struct protection_domain * domain,int pasid,u64 address)3357 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3358 				  u64 address)
3359 {
3360 	return __flush_pasid(domain, pasid, address, false);
3361 }
3362 
amd_iommu_flush_page(struct iommu_domain * dom,int pasid,u64 address)3363 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3364 			 u64 address)
3365 {
3366 	struct protection_domain *domain = to_pdomain(dom);
3367 	unsigned long flags;
3368 	int ret;
3369 
3370 	spin_lock_irqsave(&domain->lock, flags);
3371 	ret = __amd_iommu_flush_page(domain, pasid, address);
3372 	spin_unlock_irqrestore(&domain->lock, flags);
3373 
3374 	return ret;
3375 }
3376 EXPORT_SYMBOL(amd_iommu_flush_page);
3377 
__amd_iommu_flush_tlb(struct protection_domain * domain,int pasid)3378 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3379 {
3380 	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3381 			     true);
3382 }
3383 
amd_iommu_flush_tlb(struct iommu_domain * dom,int pasid)3384 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3385 {
3386 	struct protection_domain *domain = to_pdomain(dom);
3387 	unsigned long flags;
3388 	int ret;
3389 
3390 	spin_lock_irqsave(&domain->lock, flags);
3391 	ret = __amd_iommu_flush_tlb(domain, pasid);
3392 	spin_unlock_irqrestore(&domain->lock, flags);
3393 
3394 	return ret;
3395 }
3396 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3397 
__get_gcr3_pte(u64 * root,int level,int pasid,bool alloc)3398 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3399 {
3400 	int index;
3401 	u64 *pte;
3402 
3403 	while (true) {
3404 
3405 		index = (pasid >> (9 * level)) & 0x1ff;
3406 		pte   = &root[index];
3407 
3408 		if (level == 0)
3409 			break;
3410 
3411 		if (!(*pte & GCR3_VALID)) {
3412 			if (!alloc)
3413 				return NULL;
3414 
3415 			root = (void *)get_zeroed_page(GFP_ATOMIC);
3416 			if (root == NULL)
3417 				return NULL;
3418 
3419 			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3420 		}
3421 
3422 		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3423 
3424 		level -= 1;
3425 	}
3426 
3427 	return pte;
3428 }
3429 
__set_gcr3(struct protection_domain * domain,int pasid,unsigned long cr3)3430 static int __set_gcr3(struct protection_domain *domain, int pasid,
3431 		      unsigned long cr3)
3432 {
3433 	u64 *pte;
3434 
3435 	if (domain->mode != PAGE_MODE_NONE)
3436 		return -EINVAL;
3437 
3438 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3439 	if (pte == NULL)
3440 		return -ENOMEM;
3441 
3442 	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3443 
3444 	return __amd_iommu_flush_tlb(domain, pasid);
3445 }
3446 
__clear_gcr3(struct protection_domain * domain,int pasid)3447 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3448 {
3449 	u64 *pte;
3450 
3451 	if (domain->mode != PAGE_MODE_NONE)
3452 		return -EINVAL;
3453 
3454 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3455 	if (pte == NULL)
3456 		return 0;
3457 
3458 	*pte = 0;
3459 
3460 	return __amd_iommu_flush_tlb(domain, pasid);
3461 }
3462 
amd_iommu_domain_set_gcr3(struct iommu_domain * dom,int pasid,unsigned long cr3)3463 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3464 			      unsigned long cr3)
3465 {
3466 	struct protection_domain *domain = to_pdomain(dom);
3467 	unsigned long flags;
3468 	int ret;
3469 
3470 	spin_lock_irqsave(&domain->lock, flags);
3471 	ret = __set_gcr3(domain, pasid, cr3);
3472 	spin_unlock_irqrestore(&domain->lock, flags);
3473 
3474 	return ret;
3475 }
3476 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3477 
amd_iommu_domain_clear_gcr3(struct iommu_domain * dom,int pasid)3478 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3479 {
3480 	struct protection_domain *domain = to_pdomain(dom);
3481 	unsigned long flags;
3482 	int ret;
3483 
3484 	spin_lock_irqsave(&domain->lock, flags);
3485 	ret = __clear_gcr3(domain, pasid);
3486 	spin_unlock_irqrestore(&domain->lock, flags);
3487 
3488 	return ret;
3489 }
3490 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3491 
amd_iommu_complete_ppr(struct pci_dev * pdev,int pasid,int status,int tag)3492 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3493 			   int status, int tag)
3494 {
3495 	struct iommu_dev_data *dev_data;
3496 	struct amd_iommu *iommu;
3497 	struct iommu_cmd cmd;
3498 
3499 	dev_data = get_dev_data(&pdev->dev);
3500 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
3501 
3502 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3503 			   tag, dev_data->pri_tlp);
3504 
3505 	return iommu_queue_command(iommu, &cmd);
3506 }
3507 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3508 
amd_iommu_get_v2_domain(struct pci_dev * pdev)3509 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3510 {
3511 	struct protection_domain *pdomain;
3512 
3513 	pdomain = get_domain(&pdev->dev);
3514 	if (IS_ERR(pdomain))
3515 		return NULL;
3516 
3517 	/* Only return IOMMUv2 domains */
3518 	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3519 		return NULL;
3520 
3521 	return &pdomain->domain;
3522 }
3523 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3524 
amd_iommu_enable_device_erratum(struct pci_dev * pdev,u32 erratum)3525 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3526 {
3527 	struct iommu_dev_data *dev_data;
3528 
3529 	if (!amd_iommu_v2_supported())
3530 		return;
3531 
3532 	dev_data = get_dev_data(&pdev->dev);
3533 	dev_data->errata |= (1 << erratum);
3534 }
3535 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3536 
amd_iommu_device_info(struct pci_dev * pdev,struct amd_iommu_device_info * info)3537 int amd_iommu_device_info(struct pci_dev *pdev,
3538                           struct amd_iommu_device_info *info)
3539 {
3540 	int max_pasids;
3541 	int pos;
3542 
3543 	if (pdev == NULL || info == NULL)
3544 		return -EINVAL;
3545 
3546 	if (!amd_iommu_v2_supported())
3547 		return -EINVAL;
3548 
3549 	memset(info, 0, sizeof(*info));
3550 
3551 	if (!pci_ats_disabled()) {
3552 		pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3553 		if (pos)
3554 			info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3555 	}
3556 
3557 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3558 	if (pos)
3559 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3560 
3561 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3562 	if (pos) {
3563 		int features;
3564 
3565 		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3566 		max_pasids = min(max_pasids, (1 << 20));
3567 
3568 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3569 		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3570 
3571 		features = pci_pasid_features(pdev);
3572 		if (features & PCI_PASID_CAP_EXEC)
3573 			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3574 		if (features & PCI_PASID_CAP_PRIV)
3575 			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3576 	}
3577 
3578 	return 0;
3579 }
3580 EXPORT_SYMBOL(amd_iommu_device_info);
3581 
3582 #ifdef CONFIG_IRQ_REMAP
3583 
3584 /*****************************************************************************
3585  *
3586  * Interrupt Remapping Implementation
3587  *
3588  *****************************************************************************/
3589 
3590 static struct irq_chip amd_ir_chip;
3591 static DEFINE_SPINLOCK(iommu_table_lock);
3592 
set_dte_irq_entry(u16 devid,struct irq_remap_table * table)3593 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3594 {
3595 	u64 dte;
3596 
3597 	dte	= amd_iommu_dev_table[devid].data[2];
3598 	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3599 	dte	|= iommu_virt_to_phys(table->table);
3600 	dte	|= DTE_IRQ_REMAP_INTCTL;
3601 	dte	|= DTE_IRQ_TABLE_LEN;
3602 	dte	|= DTE_IRQ_REMAP_ENABLE;
3603 
3604 	amd_iommu_dev_table[devid].data[2] = dte;
3605 }
3606 
get_irq_table(u16 devid)3607 static struct irq_remap_table *get_irq_table(u16 devid)
3608 {
3609 	struct irq_remap_table *table;
3610 
3611 	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3612 		      "%s: no iommu for devid %x\n", __func__, devid))
3613 		return NULL;
3614 
3615 	table = irq_lookup_table[devid];
3616 	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3617 		return NULL;
3618 
3619 	return table;
3620 }
3621 
__alloc_irq_table(void)3622 static struct irq_remap_table *__alloc_irq_table(void)
3623 {
3624 	struct irq_remap_table *table;
3625 
3626 	table = kzalloc(sizeof(*table), GFP_KERNEL);
3627 	if (!table)
3628 		return NULL;
3629 
3630 	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3631 	if (!table->table) {
3632 		kfree(table);
3633 		return NULL;
3634 	}
3635 	raw_spin_lock_init(&table->lock);
3636 
3637 	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3638 		memset(table->table, 0,
3639 		       MAX_IRQS_PER_TABLE * sizeof(u32));
3640 	else
3641 		memset(table->table, 0,
3642 		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3643 	return table;
3644 }
3645 
set_remap_table_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)3646 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3647 				  struct irq_remap_table *table)
3648 {
3649 	irq_lookup_table[devid] = table;
3650 	set_dte_irq_entry(devid, table);
3651 	iommu_flush_dte(iommu, devid);
3652 }
3653 
alloc_irq_table(u16 devid)3654 static struct irq_remap_table *alloc_irq_table(u16 devid)
3655 {
3656 	struct irq_remap_table *table = NULL;
3657 	struct irq_remap_table *new_table = NULL;
3658 	struct amd_iommu *iommu;
3659 	unsigned long flags;
3660 	u16 alias;
3661 
3662 	spin_lock_irqsave(&iommu_table_lock, flags);
3663 
3664 	iommu = amd_iommu_rlookup_table[devid];
3665 	if (!iommu)
3666 		goto out_unlock;
3667 
3668 	table = irq_lookup_table[devid];
3669 	if (table)
3670 		goto out_unlock;
3671 
3672 	alias = amd_iommu_alias_table[devid];
3673 	table = irq_lookup_table[alias];
3674 	if (table) {
3675 		set_remap_table_entry(iommu, devid, table);
3676 		goto out_wait;
3677 	}
3678 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3679 
3680 	/* Nothing there yet, allocate new irq remapping table */
3681 	new_table = __alloc_irq_table();
3682 	if (!new_table)
3683 		return NULL;
3684 
3685 	spin_lock_irqsave(&iommu_table_lock, flags);
3686 
3687 	table = irq_lookup_table[devid];
3688 	if (table)
3689 		goto out_unlock;
3690 
3691 	table = irq_lookup_table[alias];
3692 	if (table) {
3693 		set_remap_table_entry(iommu, devid, table);
3694 		goto out_wait;
3695 	}
3696 
3697 	table = new_table;
3698 	new_table = NULL;
3699 
3700 	set_remap_table_entry(iommu, devid, table);
3701 	if (devid != alias)
3702 		set_remap_table_entry(iommu, alias, table);
3703 
3704 out_wait:
3705 	iommu_completion_wait(iommu);
3706 
3707 out_unlock:
3708 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3709 
3710 	if (new_table) {
3711 		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3712 		kfree(new_table);
3713 	}
3714 	return table;
3715 }
3716 
alloc_irq_index(u16 devid,int count,bool align)3717 static int alloc_irq_index(u16 devid, int count, bool align)
3718 {
3719 	struct irq_remap_table *table;
3720 	int index, c, alignment = 1;
3721 	unsigned long flags;
3722 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3723 
3724 	if (!iommu)
3725 		return -ENODEV;
3726 
3727 	table = alloc_irq_table(devid);
3728 	if (!table)
3729 		return -ENODEV;
3730 
3731 	if (align)
3732 		alignment = roundup_pow_of_two(count);
3733 
3734 	raw_spin_lock_irqsave(&table->lock, flags);
3735 
3736 	/* Scan table for free entries */
3737 	for (index = ALIGN(table->min_index, alignment), c = 0;
3738 	     index < MAX_IRQS_PER_TABLE;) {
3739 		if (!iommu->irte_ops->is_allocated(table, index)) {
3740 			c += 1;
3741 		} else {
3742 			c     = 0;
3743 			index = ALIGN(index + 1, alignment);
3744 			continue;
3745 		}
3746 
3747 		if (c == count)	{
3748 			for (; c != 0; --c)
3749 				iommu->irte_ops->set_allocated(table, index - c + 1);
3750 
3751 			index -= count - 1;
3752 			goto out;
3753 		}
3754 
3755 		index++;
3756 	}
3757 
3758 	index = -ENOSPC;
3759 
3760 out:
3761 	raw_spin_unlock_irqrestore(&table->lock, flags);
3762 
3763 	return index;
3764 }
3765 
modify_irte_ga(u16 devid,int index,struct irte_ga * irte,struct amd_ir_data * data)3766 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3767 			  struct amd_ir_data *data)
3768 {
3769 	struct irq_remap_table *table;
3770 	struct amd_iommu *iommu;
3771 	unsigned long flags;
3772 	struct irte_ga *entry;
3773 
3774 	iommu = amd_iommu_rlookup_table[devid];
3775 	if (iommu == NULL)
3776 		return -EINVAL;
3777 
3778 	table = get_irq_table(devid);
3779 	if (!table)
3780 		return -ENOMEM;
3781 
3782 	raw_spin_lock_irqsave(&table->lock, flags);
3783 
3784 	entry = (struct irte_ga *)table->table;
3785 	entry = &entry[index];
3786 	entry->lo.fields_remap.valid = 0;
3787 	entry->hi.val = irte->hi.val;
3788 	entry->lo.val = irte->lo.val;
3789 	entry->lo.fields_remap.valid = 1;
3790 	if (data)
3791 		data->ref = entry;
3792 
3793 	raw_spin_unlock_irqrestore(&table->lock, flags);
3794 
3795 	iommu_flush_irt(iommu, devid);
3796 	iommu_completion_wait(iommu);
3797 
3798 	return 0;
3799 }
3800 
modify_irte(u16 devid,int index,union irte * irte)3801 static int modify_irte(u16 devid, int index, union irte *irte)
3802 {
3803 	struct irq_remap_table *table;
3804 	struct amd_iommu *iommu;
3805 	unsigned long flags;
3806 
3807 	iommu = amd_iommu_rlookup_table[devid];
3808 	if (iommu == NULL)
3809 		return -EINVAL;
3810 
3811 	table = get_irq_table(devid);
3812 	if (!table)
3813 		return -ENOMEM;
3814 
3815 	raw_spin_lock_irqsave(&table->lock, flags);
3816 	table->table[index] = irte->val;
3817 	raw_spin_unlock_irqrestore(&table->lock, flags);
3818 
3819 	iommu_flush_irt(iommu, devid);
3820 	iommu_completion_wait(iommu);
3821 
3822 	return 0;
3823 }
3824 
free_irte(u16 devid,int index)3825 static void free_irte(u16 devid, int index)
3826 {
3827 	struct irq_remap_table *table;
3828 	struct amd_iommu *iommu;
3829 	unsigned long flags;
3830 
3831 	iommu = amd_iommu_rlookup_table[devid];
3832 	if (iommu == NULL)
3833 		return;
3834 
3835 	table = get_irq_table(devid);
3836 	if (!table)
3837 		return;
3838 
3839 	raw_spin_lock_irqsave(&table->lock, flags);
3840 	iommu->irte_ops->clear_allocated(table, index);
3841 	raw_spin_unlock_irqrestore(&table->lock, flags);
3842 
3843 	iommu_flush_irt(iommu, devid);
3844 	iommu_completion_wait(iommu);
3845 }
3846 
irte_prepare(void * entry,u32 delivery_mode,u32 dest_mode,u8 vector,u32 dest_apicid,int devid)3847 static void irte_prepare(void *entry,
3848 			 u32 delivery_mode, u32 dest_mode,
3849 			 u8 vector, u32 dest_apicid, int devid)
3850 {
3851 	union irte *irte = (union irte *) entry;
3852 
3853 	irte->val                = 0;
3854 	irte->fields.vector      = vector;
3855 	irte->fields.int_type    = delivery_mode;
3856 	irte->fields.destination = dest_apicid;
3857 	irte->fields.dm          = dest_mode;
3858 	irte->fields.valid       = 1;
3859 }
3860 
irte_ga_prepare(void * entry,u32 delivery_mode,u32 dest_mode,u8 vector,u32 dest_apicid,int devid)3861 static void irte_ga_prepare(void *entry,
3862 			    u32 delivery_mode, u32 dest_mode,
3863 			    u8 vector, u32 dest_apicid, int devid)
3864 {
3865 	struct irte_ga *irte = (struct irte_ga *) entry;
3866 
3867 	irte->lo.val                      = 0;
3868 	irte->hi.val                      = 0;
3869 	irte->lo.fields_remap.int_type    = delivery_mode;
3870 	irte->lo.fields_remap.dm          = dest_mode;
3871 	irte->hi.fields.vector            = vector;
3872 	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3873 	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3874 	irte->lo.fields_remap.valid       = 1;
3875 }
3876 
irte_activate(void * entry,u16 devid,u16 index)3877 static void irte_activate(void *entry, u16 devid, u16 index)
3878 {
3879 	union irte *irte = (union irte *) entry;
3880 
3881 	irte->fields.valid = 1;
3882 	modify_irte(devid, index, irte);
3883 }
3884 
irte_ga_activate(void * entry,u16 devid,u16 index)3885 static void irte_ga_activate(void *entry, u16 devid, u16 index)
3886 {
3887 	struct irte_ga *irte = (struct irte_ga *) entry;
3888 
3889 	irte->lo.fields_remap.valid = 1;
3890 	modify_irte_ga(devid, index, irte, NULL);
3891 }
3892 
irte_deactivate(void * entry,u16 devid,u16 index)3893 static void irte_deactivate(void *entry, u16 devid, u16 index)
3894 {
3895 	union irte *irte = (union irte *) entry;
3896 
3897 	irte->fields.valid = 0;
3898 	modify_irte(devid, index, irte);
3899 }
3900 
irte_ga_deactivate(void * entry,u16 devid,u16 index)3901 static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
3902 {
3903 	struct irte_ga *irte = (struct irte_ga *) entry;
3904 
3905 	irte->lo.fields_remap.valid = 0;
3906 	modify_irte_ga(devid, index, irte, NULL);
3907 }
3908 
irte_set_affinity(void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3909 static void irte_set_affinity(void *entry, u16 devid, u16 index,
3910 			      u8 vector, u32 dest_apicid)
3911 {
3912 	union irte *irte = (union irte *) entry;
3913 
3914 	irte->fields.vector = vector;
3915 	irte->fields.destination = dest_apicid;
3916 	modify_irte(devid, index, irte);
3917 }
3918 
irte_ga_set_affinity(void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3919 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
3920 				 u8 vector, u32 dest_apicid)
3921 {
3922 	struct irte_ga *irte = (struct irte_ga *) entry;
3923 
3924 	if (!irte->lo.fields_remap.guest_mode) {
3925 		irte->hi.fields.vector = vector;
3926 		irte->lo.fields_remap.destination =
3927 					APICID_TO_IRTE_DEST_LO(dest_apicid);
3928 		irte->hi.fields.destination =
3929 					APICID_TO_IRTE_DEST_HI(dest_apicid);
3930 		modify_irte_ga(devid, index, irte, NULL);
3931 	}
3932 }
3933 
3934 #define IRTE_ALLOCATED (~1U)
irte_set_allocated(struct irq_remap_table * table,int index)3935 static void irte_set_allocated(struct irq_remap_table *table, int index)
3936 {
3937 	table->table[index] = IRTE_ALLOCATED;
3938 }
3939 
irte_ga_set_allocated(struct irq_remap_table * table,int index)3940 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3941 {
3942 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3943 	struct irte_ga *irte = &ptr[index];
3944 
3945 	memset(&irte->lo.val, 0, sizeof(u64));
3946 	memset(&irte->hi.val, 0, sizeof(u64));
3947 	irte->hi.fields.vector = 0xff;
3948 }
3949 
irte_is_allocated(struct irq_remap_table * table,int index)3950 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3951 {
3952 	union irte *ptr = (union irte *)table->table;
3953 	union irte *irte = &ptr[index];
3954 
3955 	return irte->val != 0;
3956 }
3957 
irte_ga_is_allocated(struct irq_remap_table * table,int index)3958 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3959 {
3960 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3961 	struct irte_ga *irte = &ptr[index];
3962 
3963 	return irte->hi.fields.vector != 0;
3964 }
3965 
irte_clear_allocated(struct irq_remap_table * table,int index)3966 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3967 {
3968 	table->table[index] = 0;
3969 }
3970 
irte_ga_clear_allocated(struct irq_remap_table * table,int index)3971 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3972 {
3973 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3974 	struct irte_ga *irte = &ptr[index];
3975 
3976 	memset(&irte->lo.val, 0, sizeof(u64));
3977 	memset(&irte->hi.val, 0, sizeof(u64));
3978 }
3979 
get_devid(struct irq_alloc_info * info)3980 static int get_devid(struct irq_alloc_info *info)
3981 {
3982 	int devid = -1;
3983 
3984 	switch (info->type) {
3985 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3986 		devid     = get_ioapic_devid(info->ioapic_id);
3987 		break;
3988 	case X86_IRQ_ALLOC_TYPE_HPET:
3989 		devid     = get_hpet_devid(info->hpet_id);
3990 		break;
3991 	case X86_IRQ_ALLOC_TYPE_MSI:
3992 	case X86_IRQ_ALLOC_TYPE_MSIX:
3993 		devid = get_device_id(&info->msi_dev->dev);
3994 		break;
3995 	default:
3996 		BUG_ON(1);
3997 		break;
3998 	}
3999 
4000 	return devid;
4001 }
4002 
get_ir_irq_domain(struct irq_alloc_info * info)4003 static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
4004 {
4005 	struct amd_iommu *iommu;
4006 	int devid;
4007 
4008 	if (!info)
4009 		return NULL;
4010 
4011 	devid = get_devid(info);
4012 	if (devid >= 0) {
4013 		iommu = amd_iommu_rlookup_table[devid];
4014 		if (iommu)
4015 			return iommu->ir_domain;
4016 	}
4017 
4018 	return NULL;
4019 }
4020 
get_irq_domain(struct irq_alloc_info * info)4021 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4022 {
4023 	struct amd_iommu *iommu;
4024 	int devid;
4025 
4026 	if (!info)
4027 		return NULL;
4028 
4029 	switch (info->type) {
4030 	case X86_IRQ_ALLOC_TYPE_MSI:
4031 	case X86_IRQ_ALLOC_TYPE_MSIX:
4032 		devid = get_device_id(&info->msi_dev->dev);
4033 		if (devid < 0)
4034 			return NULL;
4035 
4036 		iommu = amd_iommu_rlookup_table[devid];
4037 		if (iommu)
4038 			return iommu->msi_domain;
4039 		break;
4040 	default:
4041 		break;
4042 	}
4043 
4044 	return NULL;
4045 }
4046 
4047 struct irq_remap_ops amd_iommu_irq_ops = {
4048 	.prepare		= amd_iommu_prepare,
4049 	.enable			= amd_iommu_enable,
4050 	.disable		= amd_iommu_disable,
4051 	.reenable		= amd_iommu_reenable,
4052 	.enable_faulting	= amd_iommu_enable_faulting,
4053 	.get_ir_irq_domain	= get_ir_irq_domain,
4054 	.get_irq_domain		= get_irq_domain,
4055 };
4056 
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)4057 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4058 				       struct irq_cfg *irq_cfg,
4059 				       struct irq_alloc_info *info,
4060 				       int devid, int index, int sub_handle)
4061 {
4062 	struct irq_2_irte *irte_info = &data->irq_2_irte;
4063 	struct msi_msg *msg = &data->msi_entry;
4064 	struct IO_APIC_route_entry *entry;
4065 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
4066 
4067 	if (!iommu)
4068 		return;
4069 
4070 	data->irq_2_irte.devid = devid;
4071 	data->irq_2_irte.index = index + sub_handle;
4072 	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
4073 				 apic->irq_dest_mode, irq_cfg->vector,
4074 				 irq_cfg->dest_apicid, devid);
4075 
4076 	switch (info->type) {
4077 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
4078 		/* Setup IOAPIC entry */
4079 		entry = info->ioapic_entry;
4080 		info->ioapic_entry = NULL;
4081 		memset(entry, 0, sizeof(*entry));
4082 		entry->vector        = index;
4083 		entry->mask          = 0;
4084 		entry->trigger       = info->ioapic_trigger;
4085 		entry->polarity      = info->ioapic_polarity;
4086 		/* Mask level triggered irqs. */
4087 		if (info->ioapic_trigger)
4088 			entry->mask = 1;
4089 		break;
4090 
4091 	case X86_IRQ_ALLOC_TYPE_HPET:
4092 	case X86_IRQ_ALLOC_TYPE_MSI:
4093 	case X86_IRQ_ALLOC_TYPE_MSIX:
4094 		msg->address_hi = MSI_ADDR_BASE_HI;
4095 		msg->address_lo = MSI_ADDR_BASE_LO;
4096 		msg->data = irte_info->index;
4097 		break;
4098 
4099 	default:
4100 		BUG_ON(1);
4101 		break;
4102 	}
4103 }
4104 
4105 struct amd_irte_ops irte_32_ops = {
4106 	.prepare = irte_prepare,
4107 	.activate = irte_activate,
4108 	.deactivate = irte_deactivate,
4109 	.set_affinity = irte_set_affinity,
4110 	.set_allocated = irte_set_allocated,
4111 	.is_allocated = irte_is_allocated,
4112 	.clear_allocated = irte_clear_allocated,
4113 };
4114 
4115 struct amd_irte_ops irte_128_ops = {
4116 	.prepare = irte_ga_prepare,
4117 	.activate = irte_ga_activate,
4118 	.deactivate = irte_ga_deactivate,
4119 	.set_affinity = irte_ga_set_affinity,
4120 	.set_allocated = irte_ga_set_allocated,
4121 	.is_allocated = irte_ga_is_allocated,
4122 	.clear_allocated = irte_ga_clear_allocated,
4123 };
4124 
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)4125 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4126 			       unsigned int nr_irqs, void *arg)
4127 {
4128 	struct irq_alloc_info *info = arg;
4129 	struct irq_data *irq_data;
4130 	struct amd_ir_data *data = NULL;
4131 	struct irq_cfg *cfg;
4132 	int i, ret, devid;
4133 	int index;
4134 
4135 	if (!info)
4136 		return -EINVAL;
4137 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4138 	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4139 		return -EINVAL;
4140 
4141 	/*
4142 	 * With IRQ remapping enabled, don't need contiguous CPU vectors
4143 	 * to support multiple MSI interrupts.
4144 	 */
4145 	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4146 		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4147 
4148 	devid = get_devid(info);
4149 	if (devid < 0)
4150 		return -EINVAL;
4151 
4152 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4153 	if (ret < 0)
4154 		return ret;
4155 
4156 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4157 		struct irq_remap_table *table;
4158 		struct amd_iommu *iommu;
4159 
4160 		table = alloc_irq_table(devid);
4161 		if (table) {
4162 			if (!table->min_index) {
4163 				/*
4164 				 * Keep the first 32 indexes free for IOAPIC
4165 				 * interrupts.
4166 				 */
4167 				table->min_index = 32;
4168 				iommu = amd_iommu_rlookup_table[devid];
4169 				for (i = 0; i < 32; ++i)
4170 					iommu->irte_ops->set_allocated(table, i);
4171 			}
4172 			WARN_ON(table->min_index != 32);
4173 			index = info->ioapic_pin;
4174 		} else {
4175 			index = -ENOMEM;
4176 		}
4177 	} else {
4178 		bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
4179 
4180 		index = alloc_irq_index(devid, nr_irqs, align);
4181 	}
4182 	if (index < 0) {
4183 		pr_warn("Failed to allocate IRTE\n");
4184 		ret = index;
4185 		goto out_free_parent;
4186 	}
4187 
4188 	for (i = 0; i < nr_irqs; i++) {
4189 		irq_data = irq_domain_get_irq_data(domain, virq + i);
4190 		cfg = irqd_cfg(irq_data);
4191 		if (!irq_data || !cfg) {
4192 			ret = -EINVAL;
4193 			goto out_free_data;
4194 		}
4195 
4196 		ret = -ENOMEM;
4197 		data = kzalloc(sizeof(*data), GFP_KERNEL);
4198 		if (!data)
4199 			goto out_free_data;
4200 
4201 		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
4202 			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
4203 		else
4204 			data->entry = kzalloc(sizeof(struct irte_ga),
4205 						     GFP_KERNEL);
4206 		if (!data->entry) {
4207 			kfree(data);
4208 			goto out_free_data;
4209 		}
4210 
4211 		irq_data->hwirq = (devid << 16) + i;
4212 		irq_data->chip_data = data;
4213 		irq_data->chip = &amd_ir_chip;
4214 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4215 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4216 	}
4217 
4218 	return 0;
4219 
4220 out_free_data:
4221 	for (i--; i >= 0; i--) {
4222 		irq_data = irq_domain_get_irq_data(domain, virq + i);
4223 		if (irq_data)
4224 			kfree(irq_data->chip_data);
4225 	}
4226 	for (i = 0; i < nr_irqs; i++)
4227 		free_irte(devid, index + i);
4228 out_free_parent:
4229 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
4230 	return ret;
4231 }
4232 
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4233 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4234 			       unsigned int nr_irqs)
4235 {
4236 	struct irq_2_irte *irte_info;
4237 	struct irq_data *irq_data;
4238 	struct amd_ir_data *data;
4239 	int i;
4240 
4241 	for (i = 0; i < nr_irqs; i++) {
4242 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
4243 		if (irq_data && irq_data->chip_data) {
4244 			data = irq_data->chip_data;
4245 			irte_info = &data->irq_2_irte;
4246 			free_irte(irte_info->devid, irte_info->index);
4247 			kfree(data->entry);
4248 			kfree(data);
4249 		}
4250 	}
4251 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
4252 }
4253 
4254 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4255 			       struct amd_ir_data *ir_data,
4256 			       struct irq_2_irte *irte_info,
4257 			       struct irq_cfg *cfg);
4258 
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)4259 static int irq_remapping_activate(struct irq_domain *domain,
4260 				  struct irq_data *irq_data, bool reserve)
4261 {
4262 	struct amd_ir_data *data = irq_data->chip_data;
4263 	struct irq_2_irte *irte_info = &data->irq_2_irte;
4264 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4265 	struct irq_cfg *cfg = irqd_cfg(irq_data);
4266 
4267 	if (!iommu)
4268 		return 0;
4269 
4270 	iommu->irte_ops->activate(data->entry, irte_info->devid,
4271 				  irte_info->index);
4272 	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4273 	return 0;
4274 }
4275 
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)4276 static void irq_remapping_deactivate(struct irq_domain *domain,
4277 				     struct irq_data *irq_data)
4278 {
4279 	struct amd_ir_data *data = irq_data->chip_data;
4280 	struct irq_2_irte *irte_info = &data->irq_2_irte;
4281 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4282 
4283 	if (iommu)
4284 		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
4285 					    irte_info->index);
4286 }
4287 
4288 static const struct irq_domain_ops amd_ir_domain_ops = {
4289 	.alloc = irq_remapping_alloc,
4290 	.free = irq_remapping_free,
4291 	.activate = irq_remapping_activate,
4292 	.deactivate = irq_remapping_deactivate,
4293 };
4294 
amd_ir_set_vcpu_affinity(struct irq_data * data,void * vcpu_info)4295 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
4296 {
4297 	struct amd_iommu *iommu;
4298 	struct amd_iommu_pi_data *pi_data = vcpu_info;
4299 	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
4300 	struct amd_ir_data *ir_data = data->chip_data;
4301 	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
4302 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4303 	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
4304 
4305 	/* Note:
4306 	 * This device has never been set up for guest mode.
4307 	 * we should not modify the IRTE
4308 	 */
4309 	if (!dev_data || !dev_data->use_vapic)
4310 		return 0;
4311 
4312 	pi_data->ir_data = ir_data;
4313 
4314 	/* Note:
4315 	 * SVM tries to set up for VAPIC mode, but we are in
4316 	 * legacy mode. So, we force legacy mode instead.
4317 	 */
4318 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
4319 		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
4320 			 __func__);
4321 		pi_data->is_guest_mode = false;
4322 	}
4323 
4324 	iommu = amd_iommu_rlookup_table[irte_info->devid];
4325 	if (iommu == NULL)
4326 		return -EINVAL;
4327 
4328 	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
4329 	if (pi_data->is_guest_mode) {
4330 		/* Setting */
4331 		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
4332 		irte->hi.fields.vector = vcpu_pi_info->vector;
4333 		irte->lo.fields_vapic.ga_log_intr = 1;
4334 		irte->lo.fields_vapic.guest_mode = 1;
4335 		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;
4336 
4337 		ir_data->cached_ga_tag = pi_data->ga_tag;
4338 	} else {
4339 		/* Un-Setting */
4340 		struct irq_cfg *cfg = irqd_cfg(data);
4341 
4342 		irte->hi.val = 0;
4343 		irte->lo.val = 0;
4344 		irte->hi.fields.vector = cfg->vector;
4345 		irte->lo.fields_remap.guest_mode = 0;
4346 		irte->lo.fields_remap.destination =
4347 				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
4348 		irte->hi.fields.destination =
4349 				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
4350 		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
4351 		irte->lo.fields_remap.dm = apic->irq_dest_mode;
4352 
4353 		/*
4354 		 * This communicates the ga_tag back to the caller
4355 		 * so that it can do all the necessary clean up.
4356 		 */
4357 		ir_data->cached_ga_tag = 0;
4358 	}
4359 
4360 	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
4361 }
4362 
4363 
amd_ir_update_irte(struct irq_data * irqd,struct amd_iommu * iommu,struct amd_ir_data * ir_data,struct irq_2_irte * irte_info,struct irq_cfg * cfg)4364 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4365 			       struct amd_ir_data *ir_data,
4366 			       struct irq_2_irte *irte_info,
4367 			       struct irq_cfg *cfg)
4368 {
4369 
4370 	/*
4371 	 * Atomically updates the IRTE with the new destination, vector
4372 	 * and flushes the interrupt entry cache.
4373 	 */
4374 	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4375 				      irte_info->index, cfg->vector,
4376 				      cfg->dest_apicid);
4377 }
4378 
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)4379 static int amd_ir_set_affinity(struct irq_data *data,
4380 			       const struct cpumask *mask, bool force)
4381 {
4382 	struct amd_ir_data *ir_data = data->chip_data;
4383 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4384 	struct irq_cfg *cfg = irqd_cfg(data);
4385 	struct irq_data *parent = data->parent_data;
4386 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4387 	int ret;
4388 
4389 	if (!iommu)
4390 		return -ENODEV;
4391 
4392 	ret = parent->chip->irq_set_affinity(parent, mask, force);
4393 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4394 		return ret;
4395 
4396 	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4397 	/*
4398 	 * After this point, all the interrupts will start arriving
4399 	 * at the new destination. So, time to cleanup the previous
4400 	 * vector allocation.
4401 	 */
4402 	send_cleanup_vector(cfg);
4403 
4404 	return IRQ_SET_MASK_OK_DONE;
4405 }
4406 
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)4407 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4408 {
4409 	struct amd_ir_data *ir_data = irq_data->chip_data;
4410 
4411 	*msg = ir_data->msi_entry;
4412 }
4413 
4414 static struct irq_chip amd_ir_chip = {
4415 	.name			= "AMD-IR",
4416 	.irq_ack		= apic_ack_irq,
4417 	.irq_set_affinity	= amd_ir_set_affinity,
4418 	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
4419 	.irq_compose_msi_msg	= ir_compose_msi_msg,
4420 };
4421 
amd_iommu_create_irq_domain(struct amd_iommu * iommu)4422 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4423 {
4424 	struct fwnode_handle *fn;
4425 
4426 	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4427 	if (!fn)
4428 		return -ENOMEM;
4429 	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4430 	irq_domain_free_fwnode(fn);
4431 	if (!iommu->ir_domain)
4432 		return -ENOMEM;
4433 
4434 	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4435 	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4436 							     "AMD-IR-MSI",
4437 							     iommu->index);
4438 	return 0;
4439 }
4440 
amd_iommu_update_ga(int cpu,bool is_run,void * data)4441 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4442 {
4443 	unsigned long flags;
4444 	struct amd_iommu *iommu;
4445 	struct irq_remap_table *table;
4446 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4447 	int devid = ir_data->irq_2_irte.devid;
4448 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4449 	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4450 
4451 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4452 	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4453 		return 0;
4454 
4455 	iommu = amd_iommu_rlookup_table[devid];
4456 	if (!iommu)
4457 		return -ENODEV;
4458 
4459 	table = get_irq_table(devid);
4460 	if (!table)
4461 		return -ENODEV;
4462 
4463 	raw_spin_lock_irqsave(&table->lock, flags);
4464 
4465 	if (ref->lo.fields_vapic.guest_mode) {
4466 		if (cpu >= 0) {
4467 			ref->lo.fields_vapic.destination =
4468 						APICID_TO_IRTE_DEST_LO(cpu);
4469 			ref->hi.fields.destination =
4470 						APICID_TO_IRTE_DEST_HI(cpu);
4471 		}
4472 		ref->lo.fields_vapic.is_run = is_run;
4473 		barrier();
4474 	}
4475 
4476 	raw_spin_unlock_irqrestore(&table->lock, flags);
4477 
4478 	iommu_flush_irt(iommu, devid);
4479 	iommu_completion_wait(iommu);
4480 	return 0;
4481 }
4482 EXPORT_SYMBOL(amd_iommu_update_ga);
4483 #endif
4484