1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Keyboard class input driver for the NVIDIA Tegra SoC internal matrix
4 * keyboard controller
5 *
6 * Copyright (c) 2009-2011, NVIDIA Corporation.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/input.h>
12 #include <linux/platform_device.h>
13 #include <linux/delay.h>
14 #include <linux/io.h>
15 #include <linux/interrupt.h>
16 #include <linux/of.h>
17 #include <linux/of_device.h>
18 #include <linux/clk.h>
19 #include <linux/slab.h>
20 #include <linux/input/matrix_keypad.h>
21 #include <linux/reset.h>
22 #include <linux/err.h>
23
24 #define KBC_MAX_KPENT 8
25
26 /* Maximum row/column supported by Tegra KBC yet is 16x8 */
27 #define KBC_MAX_GPIO 24
28 /* Maximum keys supported by Tegra KBC yet is 16 x 8*/
29 #define KBC_MAX_KEY (16 * 8)
30
31 #define KBC_MAX_DEBOUNCE_CNT 0x3ffu
32
33 /* KBC row scan time and delay for beginning the row scan. */
34 #define KBC_ROW_SCAN_TIME 16
35 #define KBC_ROW_SCAN_DLY 5
36
37 /* KBC uses a 32KHz clock so a cycle = 1/32Khz */
38 #define KBC_CYCLE_MS 32
39
40 /* KBC Registers */
41
42 /* KBC Control Register */
43 #define KBC_CONTROL_0 0x0
44 #define KBC_FIFO_TH_CNT_SHIFT(cnt) (cnt << 14)
45 #define KBC_DEBOUNCE_CNT_SHIFT(cnt) (cnt << 4)
46 #define KBC_CONTROL_FIFO_CNT_INT_EN (1 << 3)
47 #define KBC_CONTROL_KEYPRESS_INT_EN (1 << 1)
48 #define KBC_CONTROL_KBC_EN (1 << 0)
49
50 /* KBC Interrupt Register */
51 #define KBC_INT_0 0x4
52 #define KBC_INT_FIFO_CNT_INT_STATUS (1 << 2)
53 #define KBC_INT_KEYPRESS_INT_STATUS (1 << 0)
54
55 #define KBC_ROW_CFG0_0 0x8
56 #define KBC_COL_CFG0_0 0x18
57 #define KBC_TO_CNT_0 0x24
58 #define KBC_INIT_DLY_0 0x28
59 #define KBC_RPT_DLY_0 0x2c
60 #define KBC_KP_ENT0_0 0x30
61 #define KBC_KP_ENT1_0 0x34
62 #define KBC_ROW0_MASK_0 0x38
63
64 #define KBC_ROW_SHIFT 3
65
66 enum tegra_pin_type {
67 PIN_CFG_IGNORE,
68 PIN_CFG_COL,
69 PIN_CFG_ROW,
70 };
71
72 /* Tegra KBC hw support */
73 struct tegra_kbc_hw_support {
74 int max_rows;
75 int max_columns;
76 };
77
78 struct tegra_kbc_pin_cfg {
79 enum tegra_pin_type type;
80 unsigned char num;
81 };
82
83 struct tegra_kbc {
84 struct device *dev;
85 unsigned int debounce_cnt;
86 unsigned int repeat_cnt;
87 struct tegra_kbc_pin_cfg pin_cfg[KBC_MAX_GPIO];
88 const struct matrix_keymap_data *keymap_data;
89 bool wakeup;
90 void __iomem *mmio;
91 struct input_dev *idev;
92 int irq;
93 spinlock_t lock;
94 unsigned int repoll_dly;
95 unsigned long cp_dly_jiffies;
96 unsigned int cp_to_wkup_dly;
97 bool use_fn_map;
98 bool use_ghost_filter;
99 bool keypress_caused_wake;
100 unsigned short keycode[KBC_MAX_KEY * 2];
101 unsigned short current_keys[KBC_MAX_KPENT];
102 unsigned int num_pressed_keys;
103 u32 wakeup_key;
104 struct timer_list timer;
105 struct clk *clk;
106 struct reset_control *rst;
107 const struct tegra_kbc_hw_support *hw_support;
108 int max_keys;
109 int num_rows_and_columns;
110 };
111
tegra_kbc_report_released_keys(struct input_dev * input,unsigned short old_keycodes[],unsigned int old_num_keys,unsigned short new_keycodes[],unsigned int new_num_keys)112 static void tegra_kbc_report_released_keys(struct input_dev *input,
113 unsigned short old_keycodes[],
114 unsigned int old_num_keys,
115 unsigned short new_keycodes[],
116 unsigned int new_num_keys)
117 {
118 unsigned int i, j;
119
120 for (i = 0; i < old_num_keys; i++) {
121 for (j = 0; j < new_num_keys; j++)
122 if (old_keycodes[i] == new_keycodes[j])
123 break;
124
125 if (j == new_num_keys)
126 input_report_key(input, old_keycodes[i], 0);
127 }
128 }
129
tegra_kbc_report_pressed_keys(struct input_dev * input,unsigned char scancodes[],unsigned short keycodes[],unsigned int num_pressed_keys)130 static void tegra_kbc_report_pressed_keys(struct input_dev *input,
131 unsigned char scancodes[],
132 unsigned short keycodes[],
133 unsigned int num_pressed_keys)
134 {
135 unsigned int i;
136
137 for (i = 0; i < num_pressed_keys; i++) {
138 input_event(input, EV_MSC, MSC_SCAN, scancodes[i]);
139 input_report_key(input, keycodes[i], 1);
140 }
141 }
142
tegra_kbc_report_keys(struct tegra_kbc * kbc)143 static void tegra_kbc_report_keys(struct tegra_kbc *kbc)
144 {
145 unsigned char scancodes[KBC_MAX_KPENT];
146 unsigned short keycodes[KBC_MAX_KPENT];
147 u32 val = 0;
148 unsigned int i;
149 unsigned int num_down = 0;
150 bool fn_keypress = false;
151 bool key_in_same_row = false;
152 bool key_in_same_col = false;
153
154 for (i = 0; i < KBC_MAX_KPENT; i++) {
155 if ((i % 4) == 0)
156 val = readl(kbc->mmio + KBC_KP_ENT0_0 + i);
157
158 if (val & 0x80) {
159 unsigned int col = val & 0x07;
160 unsigned int row = (val >> 3) & 0x0f;
161 unsigned char scancode =
162 MATRIX_SCAN_CODE(row, col, KBC_ROW_SHIFT);
163
164 scancodes[num_down] = scancode;
165 keycodes[num_down] = kbc->keycode[scancode];
166 /* If driver uses Fn map, do not report the Fn key. */
167 if ((keycodes[num_down] == KEY_FN) && kbc->use_fn_map)
168 fn_keypress = true;
169 else
170 num_down++;
171 }
172
173 val >>= 8;
174 }
175
176 /*
177 * Matrix keyboard designs are prone to keyboard ghosting.
178 * Ghosting occurs if there are 3 keys such that -
179 * any 2 of the 3 keys share a row, and any 2 of them share a column.
180 * If so ignore the key presses for this iteration.
181 */
182 if (kbc->use_ghost_filter && num_down >= 3) {
183 for (i = 0; i < num_down; i++) {
184 unsigned int j;
185 u8 curr_col = scancodes[i] & 0x07;
186 u8 curr_row = scancodes[i] >> KBC_ROW_SHIFT;
187
188 /*
189 * Find 2 keys such that one key is in the same row
190 * and the other is in the same column as the i-th key.
191 */
192 for (j = i + 1; j < num_down; j++) {
193 u8 col = scancodes[j] & 0x07;
194 u8 row = scancodes[j] >> KBC_ROW_SHIFT;
195
196 if (col == curr_col)
197 key_in_same_col = true;
198 if (row == curr_row)
199 key_in_same_row = true;
200 }
201 }
202 }
203
204 /*
205 * If the platform uses Fn keymaps, translate keys on a Fn keypress.
206 * Function keycodes are max_keys apart from the plain keycodes.
207 */
208 if (fn_keypress) {
209 for (i = 0; i < num_down; i++) {
210 scancodes[i] += kbc->max_keys;
211 keycodes[i] = kbc->keycode[scancodes[i]];
212 }
213 }
214
215 /* Ignore the key presses for this iteration? */
216 if (key_in_same_col && key_in_same_row)
217 return;
218
219 tegra_kbc_report_released_keys(kbc->idev,
220 kbc->current_keys, kbc->num_pressed_keys,
221 keycodes, num_down);
222 tegra_kbc_report_pressed_keys(kbc->idev, scancodes, keycodes, num_down);
223 input_sync(kbc->idev);
224
225 memcpy(kbc->current_keys, keycodes, sizeof(kbc->current_keys));
226 kbc->num_pressed_keys = num_down;
227 }
228
tegra_kbc_set_fifo_interrupt(struct tegra_kbc * kbc,bool enable)229 static void tegra_kbc_set_fifo_interrupt(struct tegra_kbc *kbc, bool enable)
230 {
231 u32 val;
232
233 val = readl(kbc->mmio + KBC_CONTROL_0);
234 if (enable)
235 val |= KBC_CONTROL_FIFO_CNT_INT_EN;
236 else
237 val &= ~KBC_CONTROL_FIFO_CNT_INT_EN;
238 writel(val, kbc->mmio + KBC_CONTROL_0);
239 }
240
tegra_kbc_keypress_timer(struct timer_list * t)241 static void tegra_kbc_keypress_timer(struct timer_list *t)
242 {
243 struct tegra_kbc *kbc = from_timer(kbc, t, timer);
244 unsigned long flags;
245 u32 val;
246 unsigned int i;
247
248 spin_lock_irqsave(&kbc->lock, flags);
249
250 val = (readl(kbc->mmio + KBC_INT_0) >> 4) & 0xf;
251 if (val) {
252 unsigned long dly;
253
254 tegra_kbc_report_keys(kbc);
255
256 /*
257 * If more than one keys are pressed we need not wait
258 * for the repoll delay.
259 */
260 dly = (val == 1) ? kbc->repoll_dly : 1;
261 mod_timer(&kbc->timer, jiffies + msecs_to_jiffies(dly));
262 } else {
263 /* Release any pressed keys and exit the polling loop */
264 for (i = 0; i < kbc->num_pressed_keys; i++)
265 input_report_key(kbc->idev, kbc->current_keys[i], 0);
266 input_sync(kbc->idev);
267
268 kbc->num_pressed_keys = 0;
269
270 /* All keys are released so enable the keypress interrupt */
271 tegra_kbc_set_fifo_interrupt(kbc, true);
272 }
273
274 spin_unlock_irqrestore(&kbc->lock, flags);
275 }
276
tegra_kbc_isr(int irq,void * args)277 static irqreturn_t tegra_kbc_isr(int irq, void *args)
278 {
279 struct tegra_kbc *kbc = args;
280 unsigned long flags;
281 u32 val;
282
283 spin_lock_irqsave(&kbc->lock, flags);
284
285 /*
286 * Quickly bail out & reenable interrupts if the fifo threshold
287 * count interrupt wasn't the interrupt source
288 */
289 val = readl(kbc->mmio + KBC_INT_0);
290 writel(val, kbc->mmio + KBC_INT_0);
291
292 if (val & KBC_INT_FIFO_CNT_INT_STATUS) {
293 /*
294 * Until all keys are released, defer further processing to
295 * the polling loop in tegra_kbc_keypress_timer.
296 */
297 tegra_kbc_set_fifo_interrupt(kbc, false);
298 mod_timer(&kbc->timer, jiffies + kbc->cp_dly_jiffies);
299 } else if (val & KBC_INT_KEYPRESS_INT_STATUS) {
300 /* We can be here only through system resume path */
301 kbc->keypress_caused_wake = true;
302 }
303
304 spin_unlock_irqrestore(&kbc->lock, flags);
305
306 return IRQ_HANDLED;
307 }
308
tegra_kbc_setup_wakekeys(struct tegra_kbc * kbc,bool filter)309 static void tegra_kbc_setup_wakekeys(struct tegra_kbc *kbc, bool filter)
310 {
311 int i;
312 unsigned int rst_val;
313
314 /* Either mask all keys or none. */
315 rst_val = (filter && !kbc->wakeup) ? ~0 : 0;
316
317 for (i = 0; i < kbc->hw_support->max_rows; i++)
318 writel(rst_val, kbc->mmio + KBC_ROW0_MASK_0 + i * 4);
319 }
320
tegra_kbc_config_pins(struct tegra_kbc * kbc)321 static void tegra_kbc_config_pins(struct tegra_kbc *kbc)
322 {
323 int i;
324
325 for (i = 0; i < KBC_MAX_GPIO; i++) {
326 u32 r_shft = 5 * (i % 6);
327 u32 c_shft = 4 * (i % 8);
328 u32 r_mask = 0x1f << r_shft;
329 u32 c_mask = 0x0f << c_shft;
330 u32 r_offs = (i / 6) * 4 + KBC_ROW_CFG0_0;
331 u32 c_offs = (i / 8) * 4 + KBC_COL_CFG0_0;
332 u32 row_cfg = readl(kbc->mmio + r_offs);
333 u32 col_cfg = readl(kbc->mmio + c_offs);
334
335 row_cfg &= ~r_mask;
336 col_cfg &= ~c_mask;
337
338 switch (kbc->pin_cfg[i].type) {
339 case PIN_CFG_ROW:
340 row_cfg |= ((kbc->pin_cfg[i].num << 1) | 1) << r_shft;
341 break;
342
343 case PIN_CFG_COL:
344 col_cfg |= ((kbc->pin_cfg[i].num << 1) | 1) << c_shft;
345 break;
346
347 case PIN_CFG_IGNORE:
348 break;
349 }
350
351 writel(row_cfg, kbc->mmio + r_offs);
352 writel(col_cfg, kbc->mmio + c_offs);
353 }
354 }
355
tegra_kbc_start(struct tegra_kbc * kbc)356 static int tegra_kbc_start(struct tegra_kbc *kbc)
357 {
358 unsigned int debounce_cnt;
359 u32 val = 0;
360 int ret;
361
362 ret = clk_prepare_enable(kbc->clk);
363 if (ret)
364 return ret;
365
366 /* Reset the KBC controller to clear all previous status.*/
367 reset_control_assert(kbc->rst);
368 udelay(100);
369 reset_control_deassert(kbc->rst);
370 udelay(100);
371
372 tegra_kbc_config_pins(kbc);
373 tegra_kbc_setup_wakekeys(kbc, false);
374
375 writel(kbc->repeat_cnt, kbc->mmio + KBC_RPT_DLY_0);
376
377 /* Keyboard debounce count is maximum of 12 bits. */
378 debounce_cnt = min(kbc->debounce_cnt, KBC_MAX_DEBOUNCE_CNT);
379 val = KBC_DEBOUNCE_CNT_SHIFT(debounce_cnt);
380 val |= KBC_FIFO_TH_CNT_SHIFT(1); /* set fifo interrupt threshold to 1 */
381 val |= KBC_CONTROL_FIFO_CNT_INT_EN; /* interrupt on FIFO threshold */
382 val |= KBC_CONTROL_KBC_EN; /* enable */
383 writel(val, kbc->mmio + KBC_CONTROL_0);
384
385 /*
386 * Compute the delay(ns) from interrupt mode to continuous polling
387 * mode so the timer routine is scheduled appropriately.
388 */
389 val = readl(kbc->mmio + KBC_INIT_DLY_0);
390 kbc->cp_dly_jiffies = usecs_to_jiffies((val & 0xfffff) * 32);
391
392 kbc->num_pressed_keys = 0;
393
394 /*
395 * Atomically clear out any remaining entries in the key FIFO
396 * and enable keyboard interrupts.
397 */
398 while (1) {
399 val = readl(kbc->mmio + KBC_INT_0);
400 val >>= 4;
401 if (!val)
402 break;
403
404 val = readl(kbc->mmio + KBC_KP_ENT0_0);
405 val = readl(kbc->mmio + KBC_KP_ENT1_0);
406 }
407 writel(0x7, kbc->mmio + KBC_INT_0);
408
409 enable_irq(kbc->irq);
410
411 return 0;
412 }
413
tegra_kbc_stop(struct tegra_kbc * kbc)414 static void tegra_kbc_stop(struct tegra_kbc *kbc)
415 {
416 unsigned long flags;
417 u32 val;
418
419 spin_lock_irqsave(&kbc->lock, flags);
420 val = readl(kbc->mmio + KBC_CONTROL_0);
421 val &= ~1;
422 writel(val, kbc->mmio + KBC_CONTROL_0);
423 spin_unlock_irqrestore(&kbc->lock, flags);
424
425 disable_irq(kbc->irq);
426 del_timer_sync(&kbc->timer);
427
428 clk_disable_unprepare(kbc->clk);
429 }
430
tegra_kbc_open(struct input_dev * dev)431 static int tegra_kbc_open(struct input_dev *dev)
432 {
433 struct tegra_kbc *kbc = input_get_drvdata(dev);
434
435 return tegra_kbc_start(kbc);
436 }
437
tegra_kbc_close(struct input_dev * dev)438 static void tegra_kbc_close(struct input_dev *dev)
439 {
440 struct tegra_kbc *kbc = input_get_drvdata(dev);
441
442 return tegra_kbc_stop(kbc);
443 }
444
tegra_kbc_check_pin_cfg(const struct tegra_kbc * kbc,unsigned int * num_rows)445 static bool tegra_kbc_check_pin_cfg(const struct tegra_kbc *kbc,
446 unsigned int *num_rows)
447 {
448 int i;
449
450 *num_rows = 0;
451
452 for (i = 0; i < KBC_MAX_GPIO; i++) {
453 const struct tegra_kbc_pin_cfg *pin_cfg = &kbc->pin_cfg[i];
454
455 switch (pin_cfg->type) {
456 case PIN_CFG_ROW:
457 if (pin_cfg->num >= kbc->hw_support->max_rows) {
458 dev_err(kbc->dev,
459 "pin_cfg[%d]: invalid row number %d\n",
460 i, pin_cfg->num);
461 return false;
462 }
463 (*num_rows)++;
464 break;
465
466 case PIN_CFG_COL:
467 if (pin_cfg->num >= kbc->hw_support->max_columns) {
468 dev_err(kbc->dev,
469 "pin_cfg[%d]: invalid column number %d\n",
470 i, pin_cfg->num);
471 return false;
472 }
473 break;
474
475 case PIN_CFG_IGNORE:
476 break;
477
478 default:
479 dev_err(kbc->dev,
480 "pin_cfg[%d]: invalid entry type %d\n",
481 pin_cfg->type, pin_cfg->num);
482 return false;
483 }
484 }
485
486 return true;
487 }
488
tegra_kbc_parse_dt(struct tegra_kbc * kbc)489 static int tegra_kbc_parse_dt(struct tegra_kbc *kbc)
490 {
491 struct device_node *np = kbc->dev->of_node;
492 u32 prop;
493 int i;
494 u32 num_rows = 0;
495 u32 num_cols = 0;
496 u32 cols_cfg[KBC_MAX_GPIO];
497 u32 rows_cfg[KBC_MAX_GPIO];
498 int proplen;
499 int ret;
500
501 if (!of_property_read_u32(np, "nvidia,debounce-delay-ms", &prop))
502 kbc->debounce_cnt = prop;
503
504 if (!of_property_read_u32(np, "nvidia,repeat-delay-ms", &prop))
505 kbc->repeat_cnt = prop;
506
507 if (of_find_property(np, "nvidia,needs-ghost-filter", NULL))
508 kbc->use_ghost_filter = true;
509
510 if (of_property_read_bool(np, "wakeup-source") ||
511 of_property_read_bool(np, "nvidia,wakeup-source")) /* legacy */
512 kbc->wakeup = true;
513
514 if (!of_get_property(np, "nvidia,kbc-row-pins", &proplen)) {
515 dev_err(kbc->dev, "property nvidia,kbc-row-pins not found\n");
516 return -ENOENT;
517 }
518 num_rows = proplen / sizeof(u32);
519
520 if (!of_get_property(np, "nvidia,kbc-col-pins", &proplen)) {
521 dev_err(kbc->dev, "property nvidia,kbc-col-pins not found\n");
522 return -ENOENT;
523 }
524 num_cols = proplen / sizeof(u32);
525
526 if (num_rows > kbc->hw_support->max_rows) {
527 dev_err(kbc->dev,
528 "Number of rows is more than supported by hardware\n");
529 return -EINVAL;
530 }
531
532 if (num_cols > kbc->hw_support->max_columns) {
533 dev_err(kbc->dev,
534 "Number of cols is more than supported by hardware\n");
535 return -EINVAL;
536 }
537
538 if (!of_get_property(np, "linux,keymap", &proplen)) {
539 dev_err(kbc->dev, "property linux,keymap not found\n");
540 return -ENOENT;
541 }
542
543 if (!num_rows || !num_cols || ((num_rows + num_cols) > KBC_MAX_GPIO)) {
544 dev_err(kbc->dev,
545 "keypad rows/columns not properly specified\n");
546 return -EINVAL;
547 }
548
549 /* Set all pins as non-configured */
550 for (i = 0; i < kbc->num_rows_and_columns; i++)
551 kbc->pin_cfg[i].type = PIN_CFG_IGNORE;
552
553 ret = of_property_read_u32_array(np, "nvidia,kbc-row-pins",
554 rows_cfg, num_rows);
555 if (ret < 0) {
556 dev_err(kbc->dev, "Rows configurations are not proper\n");
557 return -EINVAL;
558 }
559
560 ret = of_property_read_u32_array(np, "nvidia,kbc-col-pins",
561 cols_cfg, num_cols);
562 if (ret < 0) {
563 dev_err(kbc->dev, "Cols configurations are not proper\n");
564 return -EINVAL;
565 }
566
567 for (i = 0; i < num_rows; i++) {
568 kbc->pin_cfg[rows_cfg[i]].type = PIN_CFG_ROW;
569 kbc->pin_cfg[rows_cfg[i]].num = i;
570 }
571
572 for (i = 0; i < num_cols; i++) {
573 kbc->pin_cfg[cols_cfg[i]].type = PIN_CFG_COL;
574 kbc->pin_cfg[cols_cfg[i]].num = i;
575 }
576
577 return 0;
578 }
579
580 static const struct tegra_kbc_hw_support tegra20_kbc_hw_support = {
581 .max_rows = 16,
582 .max_columns = 8,
583 };
584
585 static const struct tegra_kbc_hw_support tegra11_kbc_hw_support = {
586 .max_rows = 11,
587 .max_columns = 8,
588 };
589
590 static const struct of_device_id tegra_kbc_of_match[] = {
591 { .compatible = "nvidia,tegra114-kbc", .data = &tegra11_kbc_hw_support},
592 { .compatible = "nvidia,tegra30-kbc", .data = &tegra20_kbc_hw_support},
593 { .compatible = "nvidia,tegra20-kbc", .data = &tegra20_kbc_hw_support},
594 { },
595 };
596 MODULE_DEVICE_TABLE(of, tegra_kbc_of_match);
597
tegra_kbc_probe(struct platform_device * pdev)598 static int tegra_kbc_probe(struct platform_device *pdev)
599 {
600 struct tegra_kbc *kbc;
601 struct resource *res;
602 int err;
603 int num_rows = 0;
604 unsigned int debounce_cnt;
605 unsigned int scan_time_rows;
606 unsigned int keymap_rows;
607 const struct of_device_id *match;
608
609 match = of_match_device(tegra_kbc_of_match, &pdev->dev);
610
611 kbc = devm_kzalloc(&pdev->dev, sizeof(*kbc), GFP_KERNEL);
612 if (!kbc) {
613 dev_err(&pdev->dev, "failed to alloc memory for kbc\n");
614 return -ENOMEM;
615 }
616
617 kbc->dev = &pdev->dev;
618 kbc->hw_support = match->data;
619 kbc->max_keys = kbc->hw_support->max_rows *
620 kbc->hw_support->max_columns;
621 kbc->num_rows_and_columns = kbc->hw_support->max_rows +
622 kbc->hw_support->max_columns;
623 keymap_rows = kbc->max_keys;
624 spin_lock_init(&kbc->lock);
625
626 err = tegra_kbc_parse_dt(kbc);
627 if (err)
628 return err;
629
630 if (!tegra_kbc_check_pin_cfg(kbc, &num_rows))
631 return -EINVAL;
632
633 kbc->irq = platform_get_irq(pdev, 0);
634 if (kbc->irq < 0)
635 return -ENXIO;
636
637 kbc->idev = devm_input_allocate_device(&pdev->dev);
638 if (!kbc->idev) {
639 dev_err(&pdev->dev, "failed to allocate input device\n");
640 return -ENOMEM;
641 }
642
643 timer_setup(&kbc->timer, tegra_kbc_keypress_timer, 0);
644
645 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
646 kbc->mmio = devm_ioremap_resource(&pdev->dev, res);
647 if (IS_ERR(kbc->mmio))
648 return PTR_ERR(kbc->mmio);
649
650 kbc->clk = devm_clk_get(&pdev->dev, NULL);
651 if (IS_ERR(kbc->clk)) {
652 dev_err(&pdev->dev, "failed to get keyboard clock\n");
653 return PTR_ERR(kbc->clk);
654 }
655
656 kbc->rst = devm_reset_control_get(&pdev->dev, "kbc");
657 if (IS_ERR(kbc->rst)) {
658 dev_err(&pdev->dev, "failed to get keyboard reset\n");
659 return PTR_ERR(kbc->rst);
660 }
661
662 /*
663 * The time delay between two consecutive reads of the FIFO is
664 * the sum of the repeat time and the time taken for scanning
665 * the rows. There is an additional delay before the row scanning
666 * starts. The repoll delay is computed in milliseconds.
667 */
668 debounce_cnt = min(kbc->debounce_cnt, KBC_MAX_DEBOUNCE_CNT);
669 scan_time_rows = (KBC_ROW_SCAN_TIME + debounce_cnt) * num_rows;
670 kbc->repoll_dly = KBC_ROW_SCAN_DLY + scan_time_rows + kbc->repeat_cnt;
671 kbc->repoll_dly = DIV_ROUND_UP(kbc->repoll_dly, KBC_CYCLE_MS);
672
673 kbc->idev->name = pdev->name;
674 kbc->idev->id.bustype = BUS_HOST;
675 kbc->idev->dev.parent = &pdev->dev;
676 kbc->idev->open = tegra_kbc_open;
677 kbc->idev->close = tegra_kbc_close;
678
679 if (kbc->keymap_data && kbc->use_fn_map)
680 keymap_rows *= 2;
681
682 err = matrix_keypad_build_keymap(kbc->keymap_data, NULL,
683 keymap_rows,
684 kbc->hw_support->max_columns,
685 kbc->keycode, kbc->idev);
686 if (err) {
687 dev_err(&pdev->dev, "failed to setup keymap\n");
688 return err;
689 }
690
691 __set_bit(EV_REP, kbc->idev->evbit);
692 input_set_capability(kbc->idev, EV_MSC, MSC_SCAN);
693
694 input_set_drvdata(kbc->idev, kbc);
695
696 err = devm_request_irq(&pdev->dev, kbc->irq, tegra_kbc_isr,
697 IRQF_TRIGGER_HIGH | IRQF_NO_AUTOEN,
698 pdev->name, kbc);
699 if (err) {
700 dev_err(&pdev->dev, "failed to request keyboard IRQ\n");
701 return err;
702 }
703
704 err = input_register_device(kbc->idev);
705 if (err) {
706 dev_err(&pdev->dev, "failed to register input device\n");
707 return err;
708 }
709
710 platform_set_drvdata(pdev, kbc);
711 device_init_wakeup(&pdev->dev, kbc->wakeup);
712
713 return 0;
714 }
715
716 #ifdef CONFIG_PM_SLEEP
tegra_kbc_set_keypress_interrupt(struct tegra_kbc * kbc,bool enable)717 static void tegra_kbc_set_keypress_interrupt(struct tegra_kbc *kbc, bool enable)
718 {
719 u32 val;
720
721 val = readl(kbc->mmio + KBC_CONTROL_0);
722 if (enable)
723 val |= KBC_CONTROL_KEYPRESS_INT_EN;
724 else
725 val &= ~KBC_CONTROL_KEYPRESS_INT_EN;
726 writel(val, kbc->mmio + KBC_CONTROL_0);
727 }
728
tegra_kbc_suspend(struct device * dev)729 static int tegra_kbc_suspend(struct device *dev)
730 {
731 struct platform_device *pdev = to_platform_device(dev);
732 struct tegra_kbc *kbc = platform_get_drvdata(pdev);
733
734 mutex_lock(&kbc->idev->mutex);
735 if (device_may_wakeup(&pdev->dev)) {
736 disable_irq(kbc->irq);
737 del_timer_sync(&kbc->timer);
738 tegra_kbc_set_fifo_interrupt(kbc, false);
739
740 /* Forcefully clear the interrupt status */
741 writel(0x7, kbc->mmio + KBC_INT_0);
742 /*
743 * Store the previous resident time of continuous polling mode.
744 * Force the keyboard into interrupt mode.
745 */
746 kbc->cp_to_wkup_dly = readl(kbc->mmio + KBC_TO_CNT_0);
747 writel(0, kbc->mmio + KBC_TO_CNT_0);
748
749 tegra_kbc_setup_wakekeys(kbc, true);
750 msleep(30);
751
752 kbc->keypress_caused_wake = false;
753 /* Enable keypress interrupt before going into suspend. */
754 tegra_kbc_set_keypress_interrupt(kbc, true);
755 enable_irq(kbc->irq);
756 enable_irq_wake(kbc->irq);
757 } else {
758 if (input_device_enabled(kbc->idev))
759 tegra_kbc_stop(kbc);
760 }
761 mutex_unlock(&kbc->idev->mutex);
762
763 return 0;
764 }
765
tegra_kbc_resume(struct device * dev)766 static int tegra_kbc_resume(struct device *dev)
767 {
768 struct platform_device *pdev = to_platform_device(dev);
769 struct tegra_kbc *kbc = platform_get_drvdata(pdev);
770 int err = 0;
771
772 mutex_lock(&kbc->idev->mutex);
773 if (device_may_wakeup(&pdev->dev)) {
774 disable_irq_wake(kbc->irq);
775 tegra_kbc_setup_wakekeys(kbc, false);
776 /* We will use fifo interrupts for key detection. */
777 tegra_kbc_set_keypress_interrupt(kbc, false);
778
779 /* Restore the resident time of continuous polling mode. */
780 writel(kbc->cp_to_wkup_dly, kbc->mmio + KBC_TO_CNT_0);
781
782 tegra_kbc_set_fifo_interrupt(kbc, true);
783
784 if (kbc->keypress_caused_wake && kbc->wakeup_key) {
785 /*
786 * We can't report events directly from the ISR
787 * because timekeeping is stopped when processing
788 * wakeup request and we get a nasty warning when
789 * we try to call do_gettimeofday() in evdev
790 * handler.
791 */
792 input_report_key(kbc->idev, kbc->wakeup_key, 1);
793 input_sync(kbc->idev);
794 input_report_key(kbc->idev, kbc->wakeup_key, 0);
795 input_sync(kbc->idev);
796 }
797 } else {
798 if (input_device_enabled(kbc->idev))
799 err = tegra_kbc_start(kbc);
800 }
801 mutex_unlock(&kbc->idev->mutex);
802
803 return err;
804 }
805 #endif
806
807 static SIMPLE_DEV_PM_OPS(tegra_kbc_pm_ops, tegra_kbc_suspend, tegra_kbc_resume);
808
809 static struct platform_driver tegra_kbc_driver = {
810 .probe = tegra_kbc_probe,
811 .driver = {
812 .name = "tegra-kbc",
813 .pm = &tegra_kbc_pm_ops,
814 .of_match_table = tegra_kbc_of_match,
815 },
816 };
817 module_platform_driver(tegra_kbc_driver);
818
819 MODULE_LICENSE("GPL");
820 MODULE_AUTHOR("Rakesh Iyer <riyer@nvidia.com>");
821 MODULE_DESCRIPTION("Tegra matrix keyboard controller driver");
822 MODULE_ALIAS("platform:tegra-kbc");
823