1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * mlx90632.c - Melexis MLX90632 contactless IR temperature sensor
4 *
5 * Copyright (c) 2017 Melexis <cmo@melexis.com>
6 *
7 * Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor
8 */
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/i2c.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/math64.h>
16 #include <linux/of.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/regmap.h>
19
20 #include <linux/iio/iio.h>
21 #include <linux/iio/sysfs.h>
22
23 /* Memory sections addresses */
24 #define MLX90632_ADDR_RAM 0x4000 /* Start address of ram */
25 #define MLX90632_ADDR_EEPROM 0x2480 /* Start address of user eeprom */
26
27 /* EEPROM addresses - used at startup */
28 #define MLX90632_EE_CTRL 0x24d4 /* Control register initial value */
29 #define MLX90632_EE_I2C_ADDR 0x24d5 /* I2C address register initial value */
30 #define MLX90632_EE_VERSION 0x240b /* EEPROM version reg address */
31 #define MLX90632_EE_P_R 0x240c /* P_R calibration register 32bit */
32 #define MLX90632_EE_P_G 0x240e /* P_G calibration register 32bit */
33 #define MLX90632_EE_P_T 0x2410 /* P_T calibration register 32bit */
34 #define MLX90632_EE_P_O 0x2412 /* P_O calibration register 32bit */
35 #define MLX90632_EE_Aa 0x2414 /* Aa calibration register 32bit */
36 #define MLX90632_EE_Ab 0x2416 /* Ab calibration register 32bit */
37 #define MLX90632_EE_Ba 0x2418 /* Ba calibration register 32bit */
38 #define MLX90632_EE_Bb 0x241a /* Bb calibration register 32bit */
39 #define MLX90632_EE_Ca 0x241c /* Ca calibration register 32bit */
40 #define MLX90632_EE_Cb 0x241e /* Cb calibration register 32bit */
41 #define MLX90632_EE_Da 0x2420 /* Da calibration register 32bit */
42 #define MLX90632_EE_Db 0x2422 /* Db calibration register 32bit */
43 #define MLX90632_EE_Ea 0x2424 /* Ea calibration register 32bit */
44 #define MLX90632_EE_Eb 0x2426 /* Eb calibration register 32bit */
45 #define MLX90632_EE_Fa 0x2428 /* Fa calibration register 32bit */
46 #define MLX90632_EE_Fb 0x242a /* Fb calibration register 32bit */
47 #define MLX90632_EE_Ga 0x242c /* Ga calibration register 32bit */
48
49 #define MLX90632_EE_Gb 0x242e /* Gb calibration register 16bit */
50 #define MLX90632_EE_Ka 0x242f /* Ka calibration register 16bit */
51
52 #define MLX90632_EE_Ha 0x2481 /* Ha customer calib value reg 16bit */
53 #define MLX90632_EE_Hb 0x2482 /* Hb customer calib value reg 16bit */
54
55 /* Register addresses - volatile */
56 #define MLX90632_REG_I2C_ADDR 0x3000 /* Chip I2C address register */
57
58 /* Control register address - volatile */
59 #define MLX90632_REG_CONTROL 0x3001 /* Control Register address */
60 #define MLX90632_CFG_PWR_MASK GENMASK(2, 1) /* PowerMode Mask */
61 /* PowerModes statuses */
62 #define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1)
63 #define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */
64 #define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step*/
65 #define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */
66 #define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous*/
67
68 /* Device status register - volatile */
69 #define MLX90632_REG_STATUS 0x3fff /* Device status register */
70 #define MLX90632_STAT_BUSY BIT(10) /* Device busy indicator */
71 #define MLX90632_STAT_EE_BUSY BIT(9) /* EEPROM busy indicator */
72 #define MLX90632_STAT_BRST BIT(8) /* Brown out reset indicator */
73 #define MLX90632_STAT_CYCLE_POS GENMASK(6, 2) /* Data position */
74 #define MLX90632_STAT_DATA_RDY BIT(0) /* Data ready indicator */
75
76 /* RAM_MEAS address-es for each channel */
77 #define MLX90632_RAM_1(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num)
78 #define MLX90632_RAM_2(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 1)
79 #define MLX90632_RAM_3(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 2)
80
81 /* Magic constants */
82 #define MLX90632_ID_MEDICAL 0x0105 /* EEPROM DSPv5 Medical device id */
83 #define MLX90632_ID_CONSUMER 0x0205 /* EEPROM DSPv5 Consumer device id */
84 #define MLX90632_DSP_VERSION 5 /* DSP version */
85 #define MLX90632_DSP_MASK GENMASK(7, 0) /* DSP version in EE_VERSION */
86 #define MLX90632_RESET_CMD 0x0006 /* Reset sensor (address or global) */
87 #define MLX90632_REF_12 12LL /**< ResCtrlRef value of Ch 1 or Ch 2 */
88 #define MLX90632_REF_3 12LL /**< ResCtrlRef value of Channel 3 */
89 #define MLX90632_MAX_MEAS_NUM 31 /**< Maximum measurements in list */
90 #define MLX90632_SLEEP_DELAY_MS 3000 /**< Autosleep delay */
91
92 struct mlx90632_data {
93 struct i2c_client *client;
94 struct mutex lock; /* Multiple reads for single measurement */
95 struct regmap *regmap;
96 u16 emissivity;
97 };
98
99 static const struct regmap_range mlx90632_volatile_reg_range[] = {
100 regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
101 regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
102 regmap_reg_range(MLX90632_RAM_1(0),
103 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
104 };
105
106 static const struct regmap_access_table mlx90632_volatile_regs_tbl = {
107 .yes_ranges = mlx90632_volatile_reg_range,
108 .n_yes_ranges = ARRAY_SIZE(mlx90632_volatile_reg_range),
109 };
110
111 static const struct regmap_range mlx90632_read_reg_range[] = {
112 regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
113 regmap_reg_range(MLX90632_EE_CTRL, MLX90632_EE_I2C_ADDR),
114 regmap_reg_range(MLX90632_EE_Ha, MLX90632_EE_Hb),
115 regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
116 regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
117 regmap_reg_range(MLX90632_RAM_1(0),
118 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
119 };
120
121 static const struct regmap_access_table mlx90632_readable_regs_tbl = {
122 .yes_ranges = mlx90632_read_reg_range,
123 .n_yes_ranges = ARRAY_SIZE(mlx90632_read_reg_range),
124 };
125
126 static const struct regmap_range mlx90632_no_write_reg_range[] = {
127 regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
128 regmap_reg_range(MLX90632_RAM_1(0),
129 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
130 };
131
132 static const struct regmap_access_table mlx90632_writeable_regs_tbl = {
133 .no_ranges = mlx90632_no_write_reg_range,
134 .n_no_ranges = ARRAY_SIZE(mlx90632_no_write_reg_range),
135 };
136
137 static const struct regmap_config mlx90632_regmap = {
138 .reg_bits = 16,
139 .val_bits = 16,
140
141 .volatile_table = &mlx90632_volatile_regs_tbl,
142 .rd_table = &mlx90632_readable_regs_tbl,
143 .wr_table = &mlx90632_writeable_regs_tbl,
144
145 .use_single_read = true,
146 .use_single_write = true,
147 .reg_format_endian = REGMAP_ENDIAN_BIG,
148 .val_format_endian = REGMAP_ENDIAN_BIG,
149 .cache_type = REGCACHE_RBTREE,
150 };
151
mlx90632_pwr_set_sleep_step(struct regmap * regmap)152 static s32 mlx90632_pwr_set_sleep_step(struct regmap *regmap)
153 {
154 return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
155 MLX90632_CFG_PWR_MASK,
156 MLX90632_PWR_STATUS_SLEEP_STEP);
157 }
158
mlx90632_pwr_continuous(struct regmap * regmap)159 static s32 mlx90632_pwr_continuous(struct regmap *regmap)
160 {
161 return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
162 MLX90632_CFG_PWR_MASK,
163 MLX90632_PWR_STATUS_CONTINUOUS);
164 }
165
166 /**
167 * mlx90632_perform_measurement - Trigger and retrieve current measurement cycle
168 * @*data: pointer to mlx90632_data object containing regmap information
169 *
170 * Perform a measurement and return latest measurement cycle position reported
171 * by sensor. This is a blocking function for 500ms, as that is default sensor
172 * refresh rate.
173 */
mlx90632_perform_measurement(struct mlx90632_data * data)174 static int mlx90632_perform_measurement(struct mlx90632_data *data)
175 {
176 int ret, tries = 100;
177 unsigned int reg_status;
178
179 ret = regmap_update_bits(data->regmap, MLX90632_REG_STATUS,
180 MLX90632_STAT_DATA_RDY, 0);
181 if (ret < 0)
182 return ret;
183
184 while (tries-- > 0) {
185 ret = regmap_read(data->regmap, MLX90632_REG_STATUS,
186 ®_status);
187 if (ret < 0)
188 return ret;
189 if (reg_status & MLX90632_STAT_DATA_RDY)
190 break;
191 usleep_range(10000, 11000);
192 }
193
194 if (tries < 0) {
195 dev_err(&data->client->dev, "data not ready");
196 return -ETIMEDOUT;
197 }
198
199 return (reg_status & MLX90632_STAT_CYCLE_POS) >> 2;
200 }
201
mlx90632_channel_new_select(int perform_ret,uint8_t * channel_new,uint8_t * channel_old)202 static int mlx90632_channel_new_select(int perform_ret, uint8_t *channel_new,
203 uint8_t *channel_old)
204 {
205 switch (perform_ret) {
206 case 1:
207 *channel_new = 1;
208 *channel_old = 2;
209 break;
210 case 2:
211 *channel_new = 2;
212 *channel_old = 1;
213 break;
214 default:
215 return -EINVAL;
216 }
217
218 return 0;
219 }
220
mlx90632_read_ambient_raw(struct regmap * regmap,s16 * ambient_new_raw,s16 * ambient_old_raw)221 static int mlx90632_read_ambient_raw(struct regmap *regmap,
222 s16 *ambient_new_raw, s16 *ambient_old_raw)
223 {
224 int ret;
225 unsigned int read_tmp;
226
227 ret = regmap_read(regmap, MLX90632_RAM_3(1), &read_tmp);
228 if (ret < 0)
229 return ret;
230 *ambient_new_raw = (s16)read_tmp;
231
232 ret = regmap_read(regmap, MLX90632_RAM_3(2), &read_tmp);
233 if (ret < 0)
234 return ret;
235 *ambient_old_raw = (s16)read_tmp;
236
237 return ret;
238 }
239
mlx90632_read_object_raw(struct regmap * regmap,int perform_measurement_ret,s16 * object_new_raw,s16 * object_old_raw)240 static int mlx90632_read_object_raw(struct regmap *regmap,
241 int perform_measurement_ret,
242 s16 *object_new_raw, s16 *object_old_raw)
243 {
244 int ret;
245 unsigned int read_tmp;
246 s16 read;
247 u8 channel = 0;
248 u8 channel_old = 0;
249
250 ret = mlx90632_channel_new_select(perform_measurement_ret, &channel,
251 &channel_old);
252 if (ret != 0)
253 return ret;
254
255 ret = regmap_read(regmap, MLX90632_RAM_2(channel), &read_tmp);
256 if (ret < 0)
257 return ret;
258
259 read = (s16)read_tmp;
260
261 ret = regmap_read(regmap, MLX90632_RAM_1(channel), &read_tmp);
262 if (ret < 0)
263 return ret;
264 *object_new_raw = (read + (s16)read_tmp) / 2;
265
266 ret = regmap_read(regmap, MLX90632_RAM_2(channel_old), &read_tmp);
267 if (ret < 0)
268 return ret;
269 read = (s16)read_tmp;
270
271 ret = regmap_read(regmap, MLX90632_RAM_1(channel_old), &read_tmp);
272 if (ret < 0)
273 return ret;
274 *object_old_raw = (read + (s16)read_tmp) / 2;
275
276 return ret;
277 }
278
mlx90632_read_all_channel(struct mlx90632_data * data,s16 * ambient_new_raw,s16 * ambient_old_raw,s16 * object_new_raw,s16 * object_old_raw)279 static int mlx90632_read_all_channel(struct mlx90632_data *data,
280 s16 *ambient_new_raw, s16 *ambient_old_raw,
281 s16 *object_new_raw, s16 *object_old_raw)
282 {
283 s32 ret, measurement;
284
285 mutex_lock(&data->lock);
286 measurement = mlx90632_perform_measurement(data);
287 if (measurement < 0) {
288 ret = measurement;
289 goto read_unlock;
290 }
291 ret = mlx90632_read_ambient_raw(data->regmap, ambient_new_raw,
292 ambient_old_raw);
293 if (ret < 0)
294 goto read_unlock;
295
296 ret = mlx90632_read_object_raw(data->regmap, measurement,
297 object_new_raw, object_old_raw);
298 read_unlock:
299 mutex_unlock(&data->lock);
300 return ret;
301 }
302
mlx90632_read_ee_register(struct regmap * regmap,u16 reg_lsb,s32 * reg_value)303 static int mlx90632_read_ee_register(struct regmap *regmap, u16 reg_lsb,
304 s32 *reg_value)
305 {
306 s32 ret;
307 unsigned int read;
308 u32 value;
309
310 ret = regmap_read(regmap, reg_lsb, &read);
311 if (ret < 0)
312 return ret;
313
314 value = read;
315
316 ret = regmap_read(regmap, reg_lsb + 1, &read);
317 if (ret < 0)
318 return ret;
319
320 *reg_value = (read << 16) | (value & 0xffff);
321
322 return 0;
323 }
324
mlx90632_preprocess_temp_amb(s16 ambient_new_raw,s16 ambient_old_raw,s16 Gb)325 static s64 mlx90632_preprocess_temp_amb(s16 ambient_new_raw,
326 s16 ambient_old_raw, s16 Gb)
327 {
328 s64 VR_Ta, kGb, tmp;
329
330 kGb = ((s64)Gb * 1000LL) >> 10ULL;
331 VR_Ta = (s64)ambient_old_raw * 1000000LL +
332 kGb * div64_s64(((s64)ambient_new_raw * 1000LL),
333 (MLX90632_REF_3));
334 tmp = div64_s64(
335 div64_s64(((s64)ambient_new_raw * 1000000000000LL),
336 (MLX90632_REF_3)), VR_Ta);
337 return div64_s64(tmp << 19ULL, 1000LL);
338 }
339
mlx90632_preprocess_temp_obj(s16 object_new_raw,s16 object_old_raw,s16 ambient_new_raw,s16 ambient_old_raw,s16 Ka)340 static s64 mlx90632_preprocess_temp_obj(s16 object_new_raw, s16 object_old_raw,
341 s16 ambient_new_raw,
342 s16 ambient_old_raw, s16 Ka)
343 {
344 s64 VR_IR, kKa, tmp;
345
346 kKa = ((s64)Ka * 1000LL) >> 10ULL;
347 VR_IR = (s64)ambient_old_raw * 1000000LL +
348 kKa * div64_s64(((s64)ambient_new_raw * 1000LL),
349 (MLX90632_REF_3));
350 tmp = div64_s64(
351 div64_s64(((s64)((object_new_raw + object_old_raw) / 2)
352 * 1000000000000LL), (MLX90632_REF_12)),
353 VR_IR);
354 return div64_s64((tmp << 19ULL), 1000LL);
355 }
356
mlx90632_calc_temp_ambient(s16 ambient_new_raw,s16 ambient_old_raw,s32 P_T,s32 P_R,s32 P_G,s32 P_O,s16 Gb)357 static s32 mlx90632_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw,
358 s32 P_T, s32 P_R, s32 P_G, s32 P_O,
359 s16 Gb)
360 {
361 s64 Asub, Bsub, Ablock, Bblock, Cblock, AMB, sum;
362
363 AMB = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw,
364 Gb);
365 Asub = ((s64)P_T * 10000000000LL) >> 44ULL;
366 Bsub = AMB - (((s64)P_R * 1000LL) >> 8ULL);
367 Ablock = Asub * (Bsub * Bsub);
368 Bblock = (div64_s64(Bsub * 10000000LL, P_G)) << 20ULL;
369 Cblock = ((s64)P_O * 10000000000LL) >> 8ULL;
370
371 sum = div64_s64(Ablock, 1000000LL) + Bblock + Cblock;
372
373 return div64_s64(sum, 10000000LL);
374 }
375
mlx90632_calc_temp_object_iteration(s32 prev_object_temp,s64 object,s64 TAdut,s32 Fa,s32 Fb,s32 Ga,s16 Ha,s16 Hb,u16 emissivity)376 static s32 mlx90632_calc_temp_object_iteration(s32 prev_object_temp, s64 object,
377 s64 TAdut, s32 Fa, s32 Fb,
378 s32 Ga, s16 Ha, s16 Hb,
379 u16 emissivity)
380 {
381 s64 calcedKsTO, calcedKsTA, ir_Alpha, TAdut4, Alpha_corr;
382 s64 Ha_customer, Hb_customer;
383
384 Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL;
385 Hb_customer = ((s64)Hb * 100) >> 10ULL;
386
387 calcedKsTO = ((s64)((s64)Ga * (prev_object_temp - 25 * 1000LL)
388 * 1000LL)) >> 36LL;
389 calcedKsTA = ((s64)(Fb * (TAdut - 25 * 1000000LL))) >> 36LL;
390 Alpha_corr = div64_s64((((s64)(Fa * 10000000000LL) >> 46LL)
391 * Ha_customer), 1000LL);
392 Alpha_corr *= ((s64)(1 * 1000000LL + calcedKsTO + calcedKsTA));
393 Alpha_corr = emissivity * div64_s64(Alpha_corr, 100000LL);
394 Alpha_corr = div64_s64(Alpha_corr, 1000LL);
395 ir_Alpha = div64_s64((s64)object * 10000000LL, Alpha_corr);
396 TAdut4 = (div64_s64(TAdut, 10000LL) + 27315) *
397 (div64_s64(TAdut, 10000LL) + 27315) *
398 (div64_s64(TAdut, 10000LL) + 27315) *
399 (div64_s64(TAdut, 10000LL) + 27315);
400
401 return (int_sqrt64(int_sqrt64(ir_Alpha * 1000000000000LL + TAdut4))
402 - 27315 - Hb_customer) * 10;
403 }
404
mlx90632_calc_temp_object(s64 object,s64 ambient,s32 Ea,s32 Eb,s32 Fa,s32 Fb,s32 Ga,s16 Ha,s16 Hb,u16 tmp_emi)405 static s32 mlx90632_calc_temp_object(s64 object, s64 ambient, s32 Ea, s32 Eb,
406 s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb,
407 u16 tmp_emi)
408 {
409 s64 kTA, kTA0, TAdut;
410 s64 temp = 25000;
411 s8 i;
412
413 kTA = (Ea * 1000LL) >> 16LL;
414 kTA0 = (Eb * 1000LL) >> 8LL;
415 TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 25 * 1000000LL;
416
417 /* Iterations of calculation as described in datasheet */
418 for (i = 0; i < 5; ++i) {
419 temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut,
420 Fa, Fb, Ga, Ha, Hb,
421 tmp_emi);
422 }
423 return temp;
424 }
425
mlx90632_calc_object_dsp105(struct mlx90632_data * data,int * val)426 static int mlx90632_calc_object_dsp105(struct mlx90632_data *data, int *val)
427 {
428 s32 ret;
429 s32 Ea, Eb, Fa, Fb, Ga;
430 unsigned int read_tmp;
431 s16 Ha, Hb, Gb, Ka;
432 s16 ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw;
433 s64 object, ambient;
434
435 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ea, &Ea);
436 if (ret < 0)
437 return ret;
438 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Eb, &Eb);
439 if (ret < 0)
440 return ret;
441 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fa, &Fa);
442 if (ret < 0)
443 return ret;
444 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fb, &Fb);
445 if (ret < 0)
446 return ret;
447 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ga, &Ga);
448 if (ret < 0)
449 return ret;
450 ret = regmap_read(data->regmap, MLX90632_EE_Ha, &read_tmp);
451 if (ret < 0)
452 return ret;
453 Ha = (s16)read_tmp;
454 ret = regmap_read(data->regmap, MLX90632_EE_Hb, &read_tmp);
455 if (ret < 0)
456 return ret;
457 Hb = (s16)read_tmp;
458 ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
459 if (ret < 0)
460 return ret;
461 Gb = (s16)read_tmp;
462 ret = regmap_read(data->regmap, MLX90632_EE_Ka, &read_tmp);
463 if (ret < 0)
464 return ret;
465 Ka = (s16)read_tmp;
466
467 ret = mlx90632_read_all_channel(data,
468 &ambient_new_raw, &ambient_old_raw,
469 &object_new_raw, &object_old_raw);
470 if (ret < 0)
471 return ret;
472
473 ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
474 ambient_old_raw, Gb);
475 object = mlx90632_preprocess_temp_obj(object_new_raw,
476 object_old_raw,
477 ambient_new_raw,
478 ambient_old_raw, Ka);
479
480 *val = mlx90632_calc_temp_object(object, ambient, Ea, Eb, Fa, Fb, Ga,
481 Ha, Hb, data->emissivity);
482 return 0;
483 }
484
mlx90632_calc_ambient_dsp105(struct mlx90632_data * data,int * val)485 static int mlx90632_calc_ambient_dsp105(struct mlx90632_data *data, int *val)
486 {
487 s32 ret;
488 unsigned int read_tmp;
489 s32 PT, PR, PG, PO;
490 s16 Gb;
491 s16 ambient_new_raw, ambient_old_raw;
492
493 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_R, &PR);
494 if (ret < 0)
495 return ret;
496 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_G, &PG);
497 if (ret < 0)
498 return ret;
499 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_T, &PT);
500 if (ret < 0)
501 return ret;
502 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_O, &PO);
503 if (ret < 0)
504 return ret;
505 ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
506 if (ret < 0)
507 return ret;
508 Gb = (s16)read_tmp;
509
510 ret = mlx90632_read_ambient_raw(data->regmap, &ambient_new_raw,
511 &ambient_old_raw);
512 if (ret < 0)
513 return ret;
514 *val = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw,
515 PT, PR, PG, PO, Gb);
516 return ret;
517 }
518
mlx90632_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * channel,int * val,int * val2,long mask)519 static int mlx90632_read_raw(struct iio_dev *indio_dev,
520 struct iio_chan_spec const *channel, int *val,
521 int *val2, long mask)
522 {
523 struct mlx90632_data *data = iio_priv(indio_dev);
524 int ret;
525
526 switch (mask) {
527 case IIO_CHAN_INFO_PROCESSED:
528 switch (channel->channel2) {
529 case IIO_MOD_TEMP_AMBIENT:
530 ret = mlx90632_calc_ambient_dsp105(data, val);
531 if (ret < 0)
532 return ret;
533 return IIO_VAL_INT;
534 case IIO_MOD_TEMP_OBJECT:
535 ret = mlx90632_calc_object_dsp105(data, val);
536 if (ret < 0)
537 return ret;
538 return IIO_VAL_INT;
539 default:
540 return -EINVAL;
541 }
542 case IIO_CHAN_INFO_CALIBEMISSIVITY:
543 if (data->emissivity == 1000) {
544 *val = 1;
545 *val2 = 0;
546 } else {
547 *val = 0;
548 *val2 = data->emissivity * 1000;
549 }
550 return IIO_VAL_INT_PLUS_MICRO;
551
552 default:
553 return -EINVAL;
554 }
555 }
556
mlx90632_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * channel,int val,int val2,long mask)557 static int mlx90632_write_raw(struct iio_dev *indio_dev,
558 struct iio_chan_spec const *channel, int val,
559 int val2, long mask)
560 {
561 struct mlx90632_data *data = iio_priv(indio_dev);
562
563 switch (mask) {
564 case IIO_CHAN_INFO_CALIBEMISSIVITY:
565 /* Confirm we are within 0 and 1.0 */
566 if (val < 0 || val2 < 0 || val > 1 ||
567 (val == 1 && val2 != 0))
568 return -EINVAL;
569 data->emissivity = val * 1000 + val2 / 1000;
570 return 0;
571 default:
572 return -EINVAL;
573 }
574 }
575
576 static const struct iio_chan_spec mlx90632_channels[] = {
577 {
578 .type = IIO_TEMP,
579 .modified = 1,
580 .channel2 = IIO_MOD_TEMP_AMBIENT,
581 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
582 },
583 {
584 .type = IIO_TEMP,
585 .modified = 1,
586 .channel2 = IIO_MOD_TEMP_OBJECT,
587 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
588 BIT(IIO_CHAN_INFO_CALIBEMISSIVITY),
589 },
590 };
591
592 static const struct iio_info mlx90632_info = {
593 .read_raw = mlx90632_read_raw,
594 .write_raw = mlx90632_write_raw,
595 };
596
mlx90632_sleep(struct mlx90632_data * data)597 static int mlx90632_sleep(struct mlx90632_data *data)
598 {
599 regcache_mark_dirty(data->regmap);
600
601 dev_dbg(&data->client->dev, "Requesting sleep");
602 return mlx90632_pwr_set_sleep_step(data->regmap);
603 }
604
mlx90632_wakeup(struct mlx90632_data * data)605 static int mlx90632_wakeup(struct mlx90632_data *data)
606 {
607 int ret;
608
609 ret = regcache_sync(data->regmap);
610 if (ret < 0) {
611 dev_err(&data->client->dev,
612 "Failed to sync regmap registers: %d\n", ret);
613 return ret;
614 }
615
616 dev_dbg(&data->client->dev, "Requesting wake-up\n");
617 return mlx90632_pwr_continuous(data->regmap);
618 }
619
mlx90632_probe(struct i2c_client * client,const struct i2c_device_id * id)620 static int mlx90632_probe(struct i2c_client *client,
621 const struct i2c_device_id *id)
622 {
623 struct iio_dev *indio_dev;
624 struct mlx90632_data *mlx90632;
625 struct regmap *regmap;
626 int ret;
627 unsigned int read;
628
629 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90632));
630 if (!indio_dev) {
631 dev_err(&client->dev, "Failed to allocate device\n");
632 return -ENOMEM;
633 }
634
635 regmap = devm_regmap_init_i2c(client, &mlx90632_regmap);
636 if (IS_ERR(regmap)) {
637 ret = PTR_ERR(regmap);
638 dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
639 return ret;
640 }
641
642 mlx90632 = iio_priv(indio_dev);
643 i2c_set_clientdata(client, indio_dev);
644 mlx90632->client = client;
645 mlx90632->regmap = regmap;
646
647 mutex_init(&mlx90632->lock);
648 indio_dev->dev.parent = &client->dev;
649 indio_dev->name = id->name;
650 indio_dev->modes = INDIO_DIRECT_MODE;
651 indio_dev->info = &mlx90632_info;
652 indio_dev->channels = mlx90632_channels;
653 indio_dev->num_channels = ARRAY_SIZE(mlx90632_channels);
654
655 ret = mlx90632_wakeup(mlx90632);
656 if (ret < 0) {
657 dev_err(&client->dev, "Wakeup failed: %d\n", ret);
658 return ret;
659 }
660
661 ret = regmap_read(mlx90632->regmap, MLX90632_EE_VERSION, &read);
662 if (ret < 0) {
663 dev_err(&client->dev, "read of version failed: %d\n", ret);
664 return ret;
665 }
666 if (read == MLX90632_ID_MEDICAL) {
667 dev_dbg(&client->dev,
668 "Detected Medical EEPROM calibration %x\n", read);
669 } else if (read == MLX90632_ID_CONSUMER) {
670 dev_dbg(&client->dev,
671 "Detected Consumer EEPROM calibration %x\n", read);
672 } else if ((read & MLX90632_DSP_MASK) == MLX90632_DSP_VERSION) {
673 dev_dbg(&client->dev,
674 "Detected Unknown EEPROM calibration %x\n", read);
675 } else {
676 dev_err(&client->dev,
677 "Wrong DSP version %x (expected %x)\n",
678 read, MLX90632_DSP_VERSION);
679 return -EPROTONOSUPPORT;
680 }
681
682 mlx90632->emissivity = 1000;
683
684 pm_runtime_disable(&client->dev);
685 ret = pm_runtime_set_active(&client->dev);
686 if (ret < 0) {
687 mlx90632_sleep(mlx90632);
688 return ret;
689 }
690 pm_runtime_enable(&client->dev);
691 pm_runtime_set_autosuspend_delay(&client->dev, MLX90632_SLEEP_DELAY_MS);
692 pm_runtime_use_autosuspend(&client->dev);
693
694 return iio_device_register(indio_dev);
695 }
696
mlx90632_remove(struct i2c_client * client)697 static int mlx90632_remove(struct i2c_client *client)
698 {
699 struct iio_dev *indio_dev = i2c_get_clientdata(client);
700 struct mlx90632_data *data = iio_priv(indio_dev);
701
702 iio_device_unregister(indio_dev);
703
704 pm_runtime_disable(&client->dev);
705 pm_runtime_set_suspended(&client->dev);
706 pm_runtime_put_noidle(&client->dev);
707
708 mlx90632_sleep(data);
709
710 return 0;
711 }
712
713 static const struct i2c_device_id mlx90632_id[] = {
714 { "mlx90632", 0 },
715 { }
716 };
717 MODULE_DEVICE_TABLE(i2c, mlx90632_id);
718
719 static const struct of_device_id mlx90632_of_match[] = {
720 { .compatible = "melexis,mlx90632" },
721 { }
722 };
723 MODULE_DEVICE_TABLE(of, mlx90632_of_match);
724
mlx90632_pm_suspend(struct device * dev)725 static int __maybe_unused mlx90632_pm_suspend(struct device *dev)
726 {
727 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
728 struct mlx90632_data *data = iio_priv(indio_dev);
729
730 return mlx90632_sleep(data);
731 }
732
mlx90632_pm_resume(struct device * dev)733 static int __maybe_unused mlx90632_pm_resume(struct device *dev)
734 {
735 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
736 struct mlx90632_data *data = iio_priv(indio_dev);
737
738 return mlx90632_wakeup(data);
739 }
740
741 static UNIVERSAL_DEV_PM_OPS(mlx90632_pm_ops, mlx90632_pm_suspend,
742 mlx90632_pm_resume, NULL);
743
744 static struct i2c_driver mlx90632_driver = {
745 .driver = {
746 .name = "mlx90632",
747 .of_match_table = mlx90632_of_match,
748 .pm = &mlx90632_pm_ops,
749 },
750 .probe = mlx90632_probe,
751 .remove = mlx90632_remove,
752 .id_table = mlx90632_id,
753 };
754 module_i2c_driver(mlx90632_driver);
755
756 MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
757 MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver");
758 MODULE_LICENSE("GPL v2");
759