1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * mlx90632.c - Melexis MLX90632 contactless IR temperature sensor
4 *
5 * Copyright (c) 2017 Melexis <cmo@melexis.com>
6 *
7 * Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor
8 */
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/i2c.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/math64.h>
16 #include <linux/of.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/regmap.h>
19
20 #include <linux/iio/iio.h>
21 #include <linux/iio/sysfs.h>
22
23 /* Memory sections addresses */
24 #define MLX90632_ADDR_RAM 0x4000 /* Start address of ram */
25 #define MLX90632_ADDR_EEPROM 0x2480 /* Start address of user eeprom */
26
27 /* EEPROM addresses - used at startup */
28 #define MLX90632_EE_CTRL 0x24d4 /* Control register initial value */
29 #define MLX90632_EE_I2C_ADDR 0x24d5 /* I2C address register initial value */
30 #define MLX90632_EE_VERSION 0x240b /* EEPROM version reg address */
31 #define MLX90632_EE_P_R 0x240c /* P_R calibration register 32bit */
32 #define MLX90632_EE_P_G 0x240e /* P_G calibration register 32bit */
33 #define MLX90632_EE_P_T 0x2410 /* P_T calibration register 32bit */
34 #define MLX90632_EE_P_O 0x2412 /* P_O calibration register 32bit */
35 #define MLX90632_EE_Aa 0x2414 /* Aa calibration register 32bit */
36 #define MLX90632_EE_Ab 0x2416 /* Ab calibration register 32bit */
37 #define MLX90632_EE_Ba 0x2418 /* Ba calibration register 32bit */
38 #define MLX90632_EE_Bb 0x241a /* Bb calibration register 32bit */
39 #define MLX90632_EE_Ca 0x241c /* Ca calibration register 32bit */
40 #define MLX90632_EE_Cb 0x241e /* Cb calibration register 32bit */
41 #define MLX90632_EE_Da 0x2420 /* Da calibration register 32bit */
42 #define MLX90632_EE_Db 0x2422 /* Db calibration register 32bit */
43 #define MLX90632_EE_Ea 0x2424 /* Ea calibration register 32bit */
44 #define MLX90632_EE_Eb 0x2426 /* Eb calibration register 32bit */
45 #define MLX90632_EE_Fa 0x2428 /* Fa calibration register 32bit */
46 #define MLX90632_EE_Fb 0x242a /* Fb calibration register 32bit */
47 #define MLX90632_EE_Ga 0x242c /* Ga calibration register 32bit */
48
49 #define MLX90632_EE_Gb 0x242e /* Gb calibration register 16bit */
50 #define MLX90632_EE_Ka 0x242f /* Ka calibration register 16bit */
51
52 #define MLX90632_EE_Ha 0x2481 /* Ha customer calib value reg 16bit */
53 #define MLX90632_EE_Hb 0x2482 /* Hb customer calib value reg 16bit */
54
55 /* Register addresses - volatile */
56 #define MLX90632_REG_I2C_ADDR 0x3000 /* Chip I2C address register */
57
58 /* Control register address - volatile */
59 #define MLX90632_REG_CONTROL 0x3001 /* Control Register address */
60 #define MLX90632_CFG_PWR_MASK GENMASK(2, 1) /* PowerMode Mask */
61 /* PowerModes statuses */
62 #define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1)
63 #define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */
64 #define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step*/
65 #define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */
66 #define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous*/
67
68 /* Device status register - volatile */
69 #define MLX90632_REG_STATUS 0x3fff /* Device status register */
70 #define MLX90632_STAT_BUSY BIT(10) /* Device busy indicator */
71 #define MLX90632_STAT_EE_BUSY BIT(9) /* EEPROM busy indicator */
72 #define MLX90632_STAT_BRST BIT(8) /* Brown out reset indicator */
73 #define MLX90632_STAT_CYCLE_POS GENMASK(6, 2) /* Data position */
74 #define MLX90632_STAT_DATA_RDY BIT(0) /* Data ready indicator */
75
76 /* RAM_MEAS address-es for each channel */
77 #define MLX90632_RAM_1(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num)
78 #define MLX90632_RAM_2(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 1)
79 #define MLX90632_RAM_3(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 2)
80
81 /* Magic constants */
82 #define MLX90632_ID_MEDICAL 0x0105 /* EEPROM DSPv5 Medical device id */
83 #define MLX90632_ID_CONSUMER 0x0205 /* EEPROM DSPv5 Consumer device id */
84 #define MLX90632_RESET_CMD 0x0006 /* Reset sensor (address or global) */
85 #define MLX90632_REF_12 12LL /**< ResCtrlRef value of Ch 1 or Ch 2 */
86 #define MLX90632_REF_3 12LL /**< ResCtrlRef value of Channel 3 */
87 #define MLX90632_MAX_MEAS_NUM 31 /**< Maximum measurements in list */
88 #define MLX90632_SLEEP_DELAY_MS 3000 /**< Autosleep delay */
89
90 struct mlx90632_data {
91 struct i2c_client *client;
92 struct mutex lock; /* Multiple reads for single measurement */
93 struct regmap *regmap;
94 u16 emissivity;
95 };
96
97 static const struct regmap_range mlx90632_volatile_reg_range[] = {
98 regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
99 regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
100 regmap_reg_range(MLX90632_RAM_1(0),
101 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
102 };
103
104 static const struct regmap_access_table mlx90632_volatile_regs_tbl = {
105 .yes_ranges = mlx90632_volatile_reg_range,
106 .n_yes_ranges = ARRAY_SIZE(mlx90632_volatile_reg_range),
107 };
108
109 static const struct regmap_range mlx90632_read_reg_range[] = {
110 regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
111 regmap_reg_range(MLX90632_EE_CTRL, MLX90632_EE_I2C_ADDR),
112 regmap_reg_range(MLX90632_EE_Ha, MLX90632_EE_Hb),
113 regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
114 regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
115 regmap_reg_range(MLX90632_RAM_1(0),
116 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
117 };
118
119 static const struct regmap_access_table mlx90632_readable_regs_tbl = {
120 .yes_ranges = mlx90632_read_reg_range,
121 .n_yes_ranges = ARRAY_SIZE(mlx90632_read_reg_range),
122 };
123
124 static const struct regmap_range mlx90632_no_write_reg_range[] = {
125 regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
126 regmap_reg_range(MLX90632_RAM_1(0),
127 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
128 };
129
130 static const struct regmap_access_table mlx90632_writeable_regs_tbl = {
131 .no_ranges = mlx90632_no_write_reg_range,
132 .n_no_ranges = ARRAY_SIZE(mlx90632_no_write_reg_range),
133 };
134
135 static const struct regmap_config mlx90632_regmap = {
136 .reg_bits = 16,
137 .val_bits = 16,
138
139 .volatile_table = &mlx90632_volatile_regs_tbl,
140 .rd_table = &mlx90632_readable_regs_tbl,
141 .wr_table = &mlx90632_writeable_regs_tbl,
142
143 .use_single_rw = true,
144 .reg_format_endian = REGMAP_ENDIAN_BIG,
145 .val_format_endian = REGMAP_ENDIAN_BIG,
146 .cache_type = REGCACHE_RBTREE,
147 };
148
mlx90632_pwr_set_sleep_step(struct regmap * regmap)149 static s32 mlx90632_pwr_set_sleep_step(struct regmap *regmap)
150 {
151 return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
152 MLX90632_CFG_PWR_MASK,
153 MLX90632_PWR_STATUS_SLEEP_STEP);
154 }
155
mlx90632_pwr_continuous(struct regmap * regmap)156 static s32 mlx90632_pwr_continuous(struct regmap *regmap)
157 {
158 return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
159 MLX90632_CFG_PWR_MASK,
160 MLX90632_PWR_STATUS_CONTINUOUS);
161 }
162
163 /**
164 * mlx90632_perform_measurement - Trigger and retrieve current measurement cycle
165 * @*data: pointer to mlx90632_data object containing regmap information
166 *
167 * Perform a measurement and return latest measurement cycle position reported
168 * by sensor. This is a blocking function for 500ms, as that is default sensor
169 * refresh rate.
170 */
mlx90632_perform_measurement(struct mlx90632_data * data)171 static int mlx90632_perform_measurement(struct mlx90632_data *data)
172 {
173 int ret, tries = 100;
174 unsigned int reg_status;
175
176 ret = regmap_update_bits(data->regmap, MLX90632_REG_STATUS,
177 MLX90632_STAT_DATA_RDY, 0);
178 if (ret < 0)
179 return ret;
180
181 while (tries-- > 0) {
182 ret = regmap_read(data->regmap, MLX90632_REG_STATUS,
183 ®_status);
184 if (ret < 0)
185 return ret;
186 if (reg_status & MLX90632_STAT_DATA_RDY)
187 break;
188 usleep_range(10000, 11000);
189 }
190
191 if (tries < 0) {
192 dev_err(&data->client->dev, "data not ready");
193 return -ETIMEDOUT;
194 }
195
196 return (reg_status & MLX90632_STAT_CYCLE_POS) >> 2;
197 }
198
mlx90632_channel_new_select(int perform_ret,uint8_t * channel_new,uint8_t * channel_old)199 static int mlx90632_channel_new_select(int perform_ret, uint8_t *channel_new,
200 uint8_t *channel_old)
201 {
202 switch (perform_ret) {
203 case 1:
204 *channel_new = 1;
205 *channel_old = 2;
206 break;
207 case 2:
208 *channel_new = 2;
209 *channel_old = 1;
210 break;
211 default:
212 return -EINVAL;
213 }
214
215 return 0;
216 }
217
mlx90632_read_ambient_raw(struct regmap * regmap,s16 * ambient_new_raw,s16 * ambient_old_raw)218 static int mlx90632_read_ambient_raw(struct regmap *regmap,
219 s16 *ambient_new_raw, s16 *ambient_old_raw)
220 {
221 int ret;
222 unsigned int read_tmp;
223
224 ret = regmap_read(regmap, MLX90632_RAM_3(1), &read_tmp);
225 if (ret < 0)
226 return ret;
227 *ambient_new_raw = (s16)read_tmp;
228
229 ret = regmap_read(regmap, MLX90632_RAM_3(2), &read_tmp);
230 if (ret < 0)
231 return ret;
232 *ambient_old_raw = (s16)read_tmp;
233
234 return ret;
235 }
236
mlx90632_read_object_raw(struct regmap * regmap,int perform_measurement_ret,s16 * object_new_raw,s16 * object_old_raw)237 static int mlx90632_read_object_raw(struct regmap *regmap,
238 int perform_measurement_ret,
239 s16 *object_new_raw, s16 *object_old_raw)
240 {
241 int ret;
242 unsigned int read_tmp;
243 s16 read;
244 u8 channel = 0;
245 u8 channel_old = 0;
246
247 ret = mlx90632_channel_new_select(perform_measurement_ret, &channel,
248 &channel_old);
249 if (ret != 0)
250 return ret;
251
252 ret = regmap_read(regmap, MLX90632_RAM_2(channel), &read_tmp);
253 if (ret < 0)
254 return ret;
255
256 read = (s16)read_tmp;
257
258 ret = regmap_read(regmap, MLX90632_RAM_1(channel), &read_tmp);
259 if (ret < 0)
260 return ret;
261 *object_new_raw = (read + (s16)read_tmp) / 2;
262
263 ret = regmap_read(regmap, MLX90632_RAM_2(channel_old), &read_tmp);
264 if (ret < 0)
265 return ret;
266 read = (s16)read_tmp;
267
268 ret = regmap_read(regmap, MLX90632_RAM_1(channel_old), &read_tmp);
269 if (ret < 0)
270 return ret;
271 *object_old_raw = (read + (s16)read_tmp) / 2;
272
273 return ret;
274 }
275
mlx90632_read_all_channel(struct mlx90632_data * data,s16 * ambient_new_raw,s16 * ambient_old_raw,s16 * object_new_raw,s16 * object_old_raw)276 static int mlx90632_read_all_channel(struct mlx90632_data *data,
277 s16 *ambient_new_raw, s16 *ambient_old_raw,
278 s16 *object_new_raw, s16 *object_old_raw)
279 {
280 s32 ret, measurement;
281
282 mutex_lock(&data->lock);
283 measurement = mlx90632_perform_measurement(data);
284 if (measurement < 0) {
285 ret = measurement;
286 goto read_unlock;
287 }
288 ret = mlx90632_read_ambient_raw(data->regmap, ambient_new_raw,
289 ambient_old_raw);
290 if (ret < 0)
291 goto read_unlock;
292
293 ret = mlx90632_read_object_raw(data->regmap, measurement,
294 object_new_raw, object_old_raw);
295 read_unlock:
296 mutex_unlock(&data->lock);
297 return ret;
298 }
299
mlx90632_read_ee_register(struct regmap * regmap,u16 reg_lsb,s32 * reg_value)300 static int mlx90632_read_ee_register(struct regmap *regmap, u16 reg_lsb,
301 s32 *reg_value)
302 {
303 s32 ret;
304 unsigned int read;
305 u32 value;
306
307 ret = regmap_read(regmap, reg_lsb, &read);
308 if (ret < 0)
309 return ret;
310
311 value = read;
312
313 ret = regmap_read(regmap, reg_lsb + 1, &read);
314 if (ret < 0)
315 return ret;
316
317 *reg_value = (read << 16) | (value & 0xffff);
318
319 return 0;
320 }
321
mlx90632_preprocess_temp_amb(s16 ambient_new_raw,s16 ambient_old_raw,s16 Gb)322 static s64 mlx90632_preprocess_temp_amb(s16 ambient_new_raw,
323 s16 ambient_old_raw, s16 Gb)
324 {
325 s64 VR_Ta, kGb, tmp;
326
327 kGb = ((s64)Gb * 1000LL) >> 10ULL;
328 VR_Ta = (s64)ambient_old_raw * 1000000LL +
329 kGb * div64_s64(((s64)ambient_new_raw * 1000LL),
330 (MLX90632_REF_3));
331 tmp = div64_s64(
332 div64_s64(((s64)ambient_new_raw * 1000000000000LL),
333 (MLX90632_REF_3)), VR_Ta);
334 return div64_s64(tmp << 19ULL, 1000LL);
335 }
336
mlx90632_preprocess_temp_obj(s16 object_new_raw,s16 object_old_raw,s16 ambient_new_raw,s16 ambient_old_raw,s16 Ka)337 static s64 mlx90632_preprocess_temp_obj(s16 object_new_raw, s16 object_old_raw,
338 s16 ambient_new_raw,
339 s16 ambient_old_raw, s16 Ka)
340 {
341 s64 VR_IR, kKa, tmp;
342
343 kKa = ((s64)Ka * 1000LL) >> 10ULL;
344 VR_IR = (s64)ambient_old_raw * 1000000LL +
345 kKa * div64_s64(((s64)ambient_new_raw * 1000LL),
346 (MLX90632_REF_3));
347 tmp = div64_s64(
348 div64_s64(((s64)((object_new_raw + object_old_raw) / 2)
349 * 1000000000000LL), (MLX90632_REF_12)),
350 VR_IR);
351 return div64_s64((tmp << 19ULL), 1000LL);
352 }
353
mlx90632_calc_temp_ambient(s16 ambient_new_raw,s16 ambient_old_raw,s32 P_T,s32 P_R,s32 P_G,s32 P_O,s16 Gb)354 static s32 mlx90632_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw,
355 s32 P_T, s32 P_R, s32 P_G, s32 P_O,
356 s16 Gb)
357 {
358 s64 Asub, Bsub, Ablock, Bblock, Cblock, AMB, sum;
359
360 AMB = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw,
361 Gb);
362 Asub = ((s64)P_T * 10000000000LL) >> 44ULL;
363 Bsub = AMB - (((s64)P_R * 1000LL) >> 8ULL);
364 Ablock = Asub * (Bsub * Bsub);
365 Bblock = (div64_s64(Bsub * 10000000LL, P_G)) << 20ULL;
366 Cblock = ((s64)P_O * 10000000000LL) >> 8ULL;
367
368 sum = div64_s64(Ablock, 1000000LL) + Bblock + Cblock;
369
370 return div64_s64(sum, 10000000LL);
371 }
372
mlx90632_calc_temp_object_iteration(s32 prev_object_temp,s64 object,s64 TAdut,s32 Fa,s32 Fb,s32 Ga,s16 Ha,s16 Hb,u16 emissivity)373 static s32 mlx90632_calc_temp_object_iteration(s32 prev_object_temp, s64 object,
374 s64 TAdut, s32 Fa, s32 Fb,
375 s32 Ga, s16 Ha, s16 Hb,
376 u16 emissivity)
377 {
378 s64 calcedKsTO, calcedKsTA, ir_Alpha, TAdut4, Alpha_corr;
379 s64 Ha_customer, Hb_customer;
380
381 Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL;
382 Hb_customer = ((s64)Hb * 100) >> 10ULL;
383
384 calcedKsTO = ((s64)((s64)Ga * (prev_object_temp - 25 * 1000LL)
385 * 1000LL)) >> 36LL;
386 calcedKsTA = ((s64)(Fb * (TAdut - 25 * 1000000LL))) >> 36LL;
387 Alpha_corr = div64_s64((((s64)(Fa * 10000000000LL) >> 46LL)
388 * Ha_customer), 1000LL);
389 Alpha_corr *= ((s64)(1 * 1000000LL + calcedKsTO + calcedKsTA));
390 Alpha_corr = emissivity * div64_s64(Alpha_corr, 100000LL);
391 Alpha_corr = div64_s64(Alpha_corr, 1000LL);
392 ir_Alpha = div64_s64((s64)object * 10000000LL, Alpha_corr);
393 TAdut4 = (div64_s64(TAdut, 10000LL) + 27315) *
394 (div64_s64(TAdut, 10000LL) + 27315) *
395 (div64_s64(TAdut, 10000LL) + 27315) *
396 (div64_s64(TAdut, 10000LL) + 27315);
397
398 return (int_sqrt64(int_sqrt64(ir_Alpha * 1000000000000LL + TAdut4))
399 - 27315 - Hb_customer) * 10;
400 }
401
mlx90632_calc_temp_object(s64 object,s64 ambient,s32 Ea,s32 Eb,s32 Fa,s32 Fb,s32 Ga,s16 Ha,s16 Hb,u16 tmp_emi)402 static s32 mlx90632_calc_temp_object(s64 object, s64 ambient, s32 Ea, s32 Eb,
403 s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb,
404 u16 tmp_emi)
405 {
406 s64 kTA, kTA0, TAdut;
407 s64 temp = 25000;
408 s8 i;
409
410 kTA = (Ea * 1000LL) >> 16LL;
411 kTA0 = (Eb * 1000LL) >> 8LL;
412 TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 25 * 1000000LL;
413
414 /* Iterations of calculation as described in datasheet */
415 for (i = 0; i < 5; ++i) {
416 temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut,
417 Fa, Fb, Ga, Ha, Hb,
418 tmp_emi);
419 }
420 return temp;
421 }
422
mlx90632_calc_object_dsp105(struct mlx90632_data * data,int * val)423 static int mlx90632_calc_object_dsp105(struct mlx90632_data *data, int *val)
424 {
425 s32 ret;
426 s32 Ea, Eb, Fa, Fb, Ga;
427 unsigned int read_tmp;
428 s16 Ha, Hb, Gb, Ka;
429 s16 ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw;
430 s64 object, ambient;
431
432 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ea, &Ea);
433 if (ret < 0)
434 return ret;
435 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Eb, &Eb);
436 if (ret < 0)
437 return ret;
438 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fa, &Fa);
439 if (ret < 0)
440 return ret;
441 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fb, &Fb);
442 if (ret < 0)
443 return ret;
444 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ga, &Ga);
445 if (ret < 0)
446 return ret;
447 ret = regmap_read(data->regmap, MLX90632_EE_Ha, &read_tmp);
448 if (ret < 0)
449 return ret;
450 Ha = (s16)read_tmp;
451 ret = regmap_read(data->regmap, MLX90632_EE_Hb, &read_tmp);
452 if (ret < 0)
453 return ret;
454 Hb = (s16)read_tmp;
455 ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
456 if (ret < 0)
457 return ret;
458 Gb = (s16)read_tmp;
459 ret = regmap_read(data->regmap, MLX90632_EE_Ka, &read_tmp);
460 if (ret < 0)
461 return ret;
462 Ka = (s16)read_tmp;
463
464 ret = mlx90632_read_all_channel(data,
465 &ambient_new_raw, &ambient_old_raw,
466 &object_new_raw, &object_old_raw);
467 if (ret < 0)
468 return ret;
469
470 ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
471 ambient_old_raw, Gb);
472 object = mlx90632_preprocess_temp_obj(object_new_raw,
473 object_old_raw,
474 ambient_new_raw,
475 ambient_old_raw, Ka);
476
477 *val = mlx90632_calc_temp_object(object, ambient, Ea, Eb, Fa, Fb, Ga,
478 Ha, Hb, data->emissivity);
479 return 0;
480 }
481
mlx90632_calc_ambient_dsp105(struct mlx90632_data * data,int * val)482 static int mlx90632_calc_ambient_dsp105(struct mlx90632_data *data, int *val)
483 {
484 s32 ret;
485 unsigned int read_tmp;
486 s32 PT, PR, PG, PO;
487 s16 Gb;
488 s16 ambient_new_raw, ambient_old_raw;
489
490 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_R, &PR);
491 if (ret < 0)
492 return ret;
493 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_G, &PG);
494 if (ret < 0)
495 return ret;
496 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_T, &PT);
497 if (ret < 0)
498 return ret;
499 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_O, &PO);
500 if (ret < 0)
501 return ret;
502 ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
503 if (ret < 0)
504 return ret;
505 Gb = (s16)read_tmp;
506
507 ret = mlx90632_read_ambient_raw(data->regmap, &ambient_new_raw,
508 &ambient_old_raw);
509 if (ret < 0)
510 return ret;
511 *val = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw,
512 PT, PR, PG, PO, Gb);
513 return ret;
514 }
515
mlx90632_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * channel,int * val,int * val2,long mask)516 static int mlx90632_read_raw(struct iio_dev *indio_dev,
517 struct iio_chan_spec const *channel, int *val,
518 int *val2, long mask)
519 {
520 struct mlx90632_data *data = iio_priv(indio_dev);
521 int ret;
522
523 switch (mask) {
524 case IIO_CHAN_INFO_PROCESSED:
525 switch (channel->channel2) {
526 case IIO_MOD_TEMP_AMBIENT:
527 ret = mlx90632_calc_ambient_dsp105(data, val);
528 if (ret < 0)
529 return ret;
530 return IIO_VAL_INT;
531 case IIO_MOD_TEMP_OBJECT:
532 ret = mlx90632_calc_object_dsp105(data, val);
533 if (ret < 0)
534 return ret;
535 return IIO_VAL_INT;
536 default:
537 return -EINVAL;
538 }
539 case IIO_CHAN_INFO_CALIBEMISSIVITY:
540 if (data->emissivity == 1000) {
541 *val = 1;
542 *val2 = 0;
543 } else {
544 *val = 0;
545 *val2 = data->emissivity * 1000;
546 }
547 return IIO_VAL_INT_PLUS_MICRO;
548
549 default:
550 return -EINVAL;
551 }
552 }
553
mlx90632_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * channel,int val,int val2,long mask)554 static int mlx90632_write_raw(struct iio_dev *indio_dev,
555 struct iio_chan_spec const *channel, int val,
556 int val2, long mask)
557 {
558 struct mlx90632_data *data = iio_priv(indio_dev);
559
560 switch (mask) {
561 case IIO_CHAN_INFO_CALIBEMISSIVITY:
562 /* Confirm we are within 0 and 1.0 */
563 if (val < 0 || val2 < 0 || val > 1 ||
564 (val == 1 && val2 != 0))
565 return -EINVAL;
566 data->emissivity = val * 1000 + val2 / 1000;
567 return 0;
568 default:
569 return -EINVAL;
570 }
571 }
572
573 static const struct iio_chan_spec mlx90632_channels[] = {
574 {
575 .type = IIO_TEMP,
576 .modified = 1,
577 .channel2 = IIO_MOD_TEMP_AMBIENT,
578 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
579 },
580 {
581 .type = IIO_TEMP,
582 .modified = 1,
583 .channel2 = IIO_MOD_TEMP_OBJECT,
584 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
585 BIT(IIO_CHAN_INFO_CALIBEMISSIVITY),
586 },
587 };
588
589 static const struct iio_info mlx90632_info = {
590 .read_raw = mlx90632_read_raw,
591 .write_raw = mlx90632_write_raw,
592 };
593
mlx90632_sleep(struct mlx90632_data * data)594 static int mlx90632_sleep(struct mlx90632_data *data)
595 {
596 regcache_mark_dirty(data->regmap);
597
598 dev_dbg(&data->client->dev, "Requesting sleep");
599 return mlx90632_pwr_set_sleep_step(data->regmap);
600 }
601
mlx90632_wakeup(struct mlx90632_data * data)602 static int mlx90632_wakeup(struct mlx90632_data *data)
603 {
604 int ret;
605
606 ret = regcache_sync(data->regmap);
607 if (ret < 0) {
608 dev_err(&data->client->dev,
609 "Failed to sync regmap registers: %d\n", ret);
610 return ret;
611 }
612
613 dev_dbg(&data->client->dev, "Requesting wake-up\n");
614 return mlx90632_pwr_continuous(data->regmap);
615 }
616
mlx90632_probe(struct i2c_client * client,const struct i2c_device_id * id)617 static int mlx90632_probe(struct i2c_client *client,
618 const struct i2c_device_id *id)
619 {
620 struct iio_dev *indio_dev;
621 struct mlx90632_data *mlx90632;
622 struct regmap *regmap;
623 int ret;
624 unsigned int read;
625
626 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90632));
627 if (!indio_dev) {
628 dev_err(&client->dev, "Failed to allocate device\n");
629 return -ENOMEM;
630 }
631
632 regmap = devm_regmap_init_i2c(client, &mlx90632_regmap);
633 if (IS_ERR(regmap)) {
634 ret = PTR_ERR(regmap);
635 dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
636 return ret;
637 }
638
639 mlx90632 = iio_priv(indio_dev);
640 i2c_set_clientdata(client, indio_dev);
641 mlx90632->client = client;
642 mlx90632->regmap = regmap;
643
644 mutex_init(&mlx90632->lock);
645 indio_dev->dev.parent = &client->dev;
646 indio_dev->name = id->name;
647 indio_dev->modes = INDIO_DIRECT_MODE;
648 indio_dev->info = &mlx90632_info;
649 indio_dev->channels = mlx90632_channels;
650 indio_dev->num_channels = ARRAY_SIZE(mlx90632_channels);
651
652 ret = mlx90632_wakeup(mlx90632);
653 if (ret < 0) {
654 dev_err(&client->dev, "Wakeup failed: %d\n", ret);
655 return ret;
656 }
657
658 ret = regmap_read(mlx90632->regmap, MLX90632_EE_VERSION, &read);
659 if (ret < 0) {
660 dev_err(&client->dev, "read of version failed: %d\n", ret);
661 return ret;
662 }
663 if (read == MLX90632_ID_MEDICAL) {
664 dev_dbg(&client->dev,
665 "Detected Medical EEPROM calibration %x\n", read);
666 } else if (read == MLX90632_ID_CONSUMER) {
667 dev_dbg(&client->dev,
668 "Detected Consumer EEPROM calibration %x\n", read);
669 } else {
670 dev_err(&client->dev,
671 "EEPROM version mismatch %x (expected %x or %x)\n",
672 read, MLX90632_ID_CONSUMER, MLX90632_ID_MEDICAL);
673 return -EPROTONOSUPPORT;
674 }
675
676 mlx90632->emissivity = 1000;
677
678 pm_runtime_disable(&client->dev);
679 ret = pm_runtime_set_active(&client->dev);
680 if (ret < 0) {
681 mlx90632_sleep(mlx90632);
682 return ret;
683 }
684 pm_runtime_enable(&client->dev);
685 pm_runtime_set_autosuspend_delay(&client->dev, MLX90632_SLEEP_DELAY_MS);
686 pm_runtime_use_autosuspend(&client->dev);
687
688 return iio_device_register(indio_dev);
689 }
690
mlx90632_remove(struct i2c_client * client)691 static int mlx90632_remove(struct i2c_client *client)
692 {
693 struct iio_dev *indio_dev = i2c_get_clientdata(client);
694 struct mlx90632_data *data = iio_priv(indio_dev);
695
696 iio_device_unregister(indio_dev);
697
698 pm_runtime_disable(&client->dev);
699 pm_runtime_set_suspended(&client->dev);
700 pm_runtime_put_noidle(&client->dev);
701
702 mlx90632_sleep(data);
703
704 return 0;
705 }
706
707 static const struct i2c_device_id mlx90632_id[] = {
708 { "mlx90632", 0 },
709 { }
710 };
711 MODULE_DEVICE_TABLE(i2c, mlx90632_id);
712
713 static const struct of_device_id mlx90632_of_match[] = {
714 { .compatible = "melexis,mlx90632" },
715 { }
716 };
717 MODULE_DEVICE_TABLE(of, mlx90632_of_match);
718
mlx90632_pm_suspend(struct device * dev)719 static int __maybe_unused mlx90632_pm_suspend(struct device *dev)
720 {
721 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
722 struct mlx90632_data *data = iio_priv(indio_dev);
723
724 return mlx90632_sleep(data);
725 }
726
mlx90632_pm_resume(struct device * dev)727 static int __maybe_unused mlx90632_pm_resume(struct device *dev)
728 {
729 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
730 struct mlx90632_data *data = iio_priv(indio_dev);
731
732 return mlx90632_wakeup(data);
733 }
734
735 static UNIVERSAL_DEV_PM_OPS(mlx90632_pm_ops, mlx90632_pm_suspend,
736 mlx90632_pm_resume, NULL);
737
738 static struct i2c_driver mlx90632_driver = {
739 .driver = {
740 .name = "mlx90632",
741 .of_match_table = mlx90632_of_match,
742 .pm = &mlx90632_pm_ops,
743 },
744 .probe = mlx90632_probe,
745 .remove = mlx90632_remove,
746 .id_table = mlx90632_id,
747 };
748 module_i2c_driver(mlx90632_driver);
749
750 MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
751 MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver");
752 MODULE_LICENSE("GPL v2");
753