1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for the Asahi Kasei EMD Corporation AK8974
4 * and Aichi Steel AMI305 magnetometer chips.
5 * Based on a patch from Samu Onkalo and the AK8975 IIO driver.
6 *
7 * Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
8 * Copyright (c) 2010 NVIDIA Corporation.
9 * Copyright (C) 2016 Linaro Ltd.
10 *
11 * Author: Samu Onkalo <samu.p.onkalo@nokia.com>
12 * Author: Linus Walleij <linus.walleij@linaro.org>
13 */
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/i2c.h>
17 #include <linux/interrupt.h>
18 #include <linux/irq.h> /* For irq_get_irq_data() */
19 #include <linux/completion.h>
20 #include <linux/err.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/bitops.h>
24 #include <linux/random.h>
25 #include <linux/regmap.h>
26 #include <linux/regulator/consumer.h>
27 #include <linux/pm_runtime.h>
28
29 #include <linux/iio/iio.h>
30 #include <linux/iio/sysfs.h>
31 #include <linux/iio/buffer.h>
32 #include <linux/iio/trigger.h>
33 #include <linux/iio/trigger_consumer.h>
34 #include <linux/iio/triggered_buffer.h>
35
36 /*
37 * 16-bit registers are little-endian. LSB is at the address defined below
38 * and MSB is at the next higher address.
39 */
40
41 /* These registers are common for AK8974 and AMI30x */
42 #define AK8974_SELFTEST 0x0C
43 #define AK8974_SELFTEST_IDLE 0x55
44 #define AK8974_SELFTEST_OK 0xAA
45
46 #define AK8974_INFO 0x0D
47
48 #define AK8974_WHOAMI 0x0F
49 #define AK8974_WHOAMI_VALUE_AMI306 0x46
50 #define AK8974_WHOAMI_VALUE_AMI305 0x47
51 #define AK8974_WHOAMI_VALUE_AK8974 0x48
52
53 #define AK8974_DATA_X 0x10
54 #define AK8974_DATA_Y 0x12
55 #define AK8974_DATA_Z 0x14
56 #define AK8974_INT_SRC 0x16
57 #define AK8974_STATUS 0x18
58 #define AK8974_INT_CLEAR 0x1A
59 #define AK8974_CTRL1 0x1B
60 #define AK8974_CTRL2 0x1C
61 #define AK8974_CTRL3 0x1D
62 #define AK8974_INT_CTRL 0x1E
63 #define AK8974_INT_THRES 0x26 /* Absolute any axis value threshold */
64 #define AK8974_PRESET 0x30
65
66 /* AK8974-specific offsets */
67 #define AK8974_OFFSET_X 0x20
68 #define AK8974_OFFSET_Y 0x22
69 #define AK8974_OFFSET_Z 0x24
70 /* AMI305-specific offsets */
71 #define AMI305_OFFSET_X 0x6C
72 #define AMI305_OFFSET_Y 0x72
73 #define AMI305_OFFSET_Z 0x78
74
75 /* Different temperature registers */
76 #define AK8974_TEMP 0x31
77 #define AMI305_TEMP 0x60
78
79 /* AMI306-specific control register */
80 #define AMI306_CTRL4 0x5C
81
82 /* AMI306 factory calibration data */
83
84 /* fine axis sensitivity */
85 #define AMI306_FINEOUTPUT_X 0x90
86 #define AMI306_FINEOUTPUT_Y 0x92
87 #define AMI306_FINEOUTPUT_Z 0x94
88
89 /* axis sensitivity */
90 #define AMI306_SENS_X 0x96
91 #define AMI306_SENS_Y 0x98
92 #define AMI306_SENS_Z 0x9A
93
94 /* axis cross-interference */
95 #define AMI306_GAIN_PARA_XZ 0x9C
96 #define AMI306_GAIN_PARA_XY 0x9D
97 #define AMI306_GAIN_PARA_YZ 0x9E
98 #define AMI306_GAIN_PARA_YX 0x9F
99 #define AMI306_GAIN_PARA_ZY 0xA0
100 #define AMI306_GAIN_PARA_ZX 0xA1
101
102 /* offset at ZERO magnetic field */
103 #define AMI306_OFFZERO_X 0xF8
104 #define AMI306_OFFZERO_Y 0xFA
105 #define AMI306_OFFZERO_Z 0xFC
106
107
108 #define AK8974_INT_X_HIGH BIT(7) /* Axis over +threshold */
109 #define AK8974_INT_Y_HIGH BIT(6)
110 #define AK8974_INT_Z_HIGH BIT(5)
111 #define AK8974_INT_X_LOW BIT(4) /* Axis below -threshold */
112 #define AK8974_INT_Y_LOW BIT(3)
113 #define AK8974_INT_Z_LOW BIT(2)
114 #define AK8974_INT_RANGE BIT(1) /* Range overflow (any axis) */
115
116 #define AK8974_STATUS_DRDY BIT(6) /* Data ready */
117 #define AK8974_STATUS_OVERRUN BIT(5) /* Data overrun */
118 #define AK8974_STATUS_INT BIT(4) /* Interrupt occurred */
119
120 #define AK8974_CTRL1_POWER BIT(7) /* 0 = standby; 1 = active */
121 #define AK8974_CTRL1_RATE BIT(4) /* 0 = 10 Hz; 1 = 20 Hz */
122 #define AK8974_CTRL1_FORCE_EN BIT(1) /* 0 = normal; 1 = force */
123 #define AK8974_CTRL1_MODE2 BIT(0) /* 0 */
124
125 #define AK8974_CTRL2_INT_EN BIT(4) /* 1 = enable interrupts */
126 #define AK8974_CTRL2_DRDY_EN BIT(3) /* 1 = enable data ready signal */
127 #define AK8974_CTRL2_DRDY_POL BIT(2) /* 1 = data ready active high */
128 #define AK8974_CTRL2_RESDEF (AK8974_CTRL2_DRDY_POL)
129
130 #define AK8974_CTRL3_RESET BIT(7) /* Software reset */
131 #define AK8974_CTRL3_FORCE BIT(6) /* Start forced measurement */
132 #define AK8974_CTRL3_SELFTEST BIT(4) /* Set selftest register */
133 #define AK8974_CTRL3_RESDEF 0x00
134
135 #define AK8974_INT_CTRL_XEN BIT(7) /* Enable interrupt for this axis */
136 #define AK8974_INT_CTRL_YEN BIT(6)
137 #define AK8974_INT_CTRL_ZEN BIT(5)
138 #define AK8974_INT_CTRL_XYZEN (BIT(7)|BIT(6)|BIT(5))
139 #define AK8974_INT_CTRL_POL BIT(3) /* 0 = active low; 1 = active high */
140 #define AK8974_INT_CTRL_PULSE BIT(1) /* 0 = latched; 1 = pulse (50 usec) */
141 #define AK8974_INT_CTRL_RESDEF (AK8974_INT_CTRL_XYZEN | AK8974_INT_CTRL_POL)
142
143 /* The AMI305 has elaborate FW version and serial number registers */
144 #define AMI305_VER 0xE8
145 #define AMI305_SN 0xEA
146
147 #define AK8974_MAX_RANGE 2048
148
149 #define AK8974_POWERON_DELAY 50
150 #define AK8974_ACTIVATE_DELAY 1
151 #define AK8974_SELFTEST_DELAY 1
152 /*
153 * Set the autosuspend to two orders of magnitude larger than the poweron
154 * delay to make sane reasonable power tradeoff savings (5 seconds in
155 * this case).
156 */
157 #define AK8974_AUTOSUSPEND_DELAY 5000
158
159 #define AK8974_MEASTIME 3
160
161 #define AK8974_PWR_ON 1
162 #define AK8974_PWR_OFF 0
163
164 /**
165 * struct ak8974 - state container for the AK8974 driver
166 * @i2c: parent I2C client
167 * @orientation: mounting matrix, flipped axis etc
168 * @map: regmap to access the AK8974 registers over I2C
169 * @regs: the avdd and dvdd power regulators
170 * @name: the name of the part
171 * @variant: the whoami ID value (for selecting code paths)
172 * @lock: locks the magnetometer for exclusive use during a measurement
173 * @drdy_irq: uses the DRDY IRQ line
174 * @drdy_complete: completion for DRDY
175 * @drdy_active_low: the DRDY IRQ is active low
176 */
177 struct ak8974 {
178 struct i2c_client *i2c;
179 struct iio_mount_matrix orientation;
180 struct regmap *map;
181 struct regulator_bulk_data regs[2];
182 const char *name;
183 u8 variant;
184 struct mutex lock;
185 bool drdy_irq;
186 struct completion drdy_complete;
187 bool drdy_active_low;
188 };
189
190 static const char ak8974_reg_avdd[] = "avdd";
191 static const char ak8974_reg_dvdd[] = "dvdd";
192
ak8974_get_u16_val(struct ak8974 * ak8974,u8 reg,u16 * val)193 static int ak8974_get_u16_val(struct ak8974 *ak8974, u8 reg, u16 *val)
194 {
195 int ret;
196 __le16 bulk;
197
198 ret = regmap_bulk_read(ak8974->map, reg, &bulk, 2);
199 if (ret)
200 return ret;
201 *val = le16_to_cpu(bulk);
202
203 return 0;
204 }
205
ak8974_set_u16_val(struct ak8974 * ak8974,u8 reg,u16 val)206 static int ak8974_set_u16_val(struct ak8974 *ak8974, u8 reg, u16 val)
207 {
208 __le16 bulk = cpu_to_le16(val);
209
210 return regmap_bulk_write(ak8974->map, reg, &bulk, 2);
211 }
212
ak8974_set_power(struct ak8974 * ak8974,bool mode)213 static int ak8974_set_power(struct ak8974 *ak8974, bool mode)
214 {
215 int ret;
216 u8 val;
217
218 val = mode ? AK8974_CTRL1_POWER : 0;
219 val |= AK8974_CTRL1_FORCE_EN;
220 ret = regmap_write(ak8974->map, AK8974_CTRL1, val);
221 if (ret < 0)
222 return ret;
223
224 if (mode)
225 msleep(AK8974_ACTIVATE_DELAY);
226
227 return 0;
228 }
229
ak8974_reset(struct ak8974 * ak8974)230 static int ak8974_reset(struct ak8974 *ak8974)
231 {
232 int ret;
233
234 /* Power on to get register access. Sets CTRL1 reg to reset state */
235 ret = ak8974_set_power(ak8974, AK8974_PWR_ON);
236 if (ret)
237 return ret;
238 ret = regmap_write(ak8974->map, AK8974_CTRL2, AK8974_CTRL2_RESDEF);
239 if (ret)
240 return ret;
241 ret = regmap_write(ak8974->map, AK8974_CTRL3, AK8974_CTRL3_RESDEF);
242 if (ret)
243 return ret;
244 ret = regmap_write(ak8974->map, AK8974_INT_CTRL,
245 AK8974_INT_CTRL_RESDEF);
246 if (ret)
247 return ret;
248
249 /* After reset, power off is default state */
250 return ak8974_set_power(ak8974, AK8974_PWR_OFF);
251 }
252
ak8974_configure(struct ak8974 * ak8974)253 static int ak8974_configure(struct ak8974 *ak8974)
254 {
255 int ret;
256
257 ret = regmap_write(ak8974->map, AK8974_CTRL2, AK8974_CTRL2_DRDY_EN |
258 AK8974_CTRL2_INT_EN);
259 if (ret)
260 return ret;
261 ret = regmap_write(ak8974->map, AK8974_CTRL3, 0);
262 if (ret)
263 return ret;
264 if (ak8974->variant == AK8974_WHOAMI_VALUE_AMI306) {
265 /* magic from datasheet: set high-speed measurement mode */
266 ret = ak8974_set_u16_val(ak8974, AMI306_CTRL4, 0xA07E);
267 if (ret)
268 return ret;
269 }
270 ret = regmap_write(ak8974->map, AK8974_INT_CTRL, AK8974_INT_CTRL_POL);
271 if (ret)
272 return ret;
273
274 return regmap_write(ak8974->map, AK8974_PRESET, 0);
275 }
276
ak8974_trigmeas(struct ak8974 * ak8974)277 static int ak8974_trigmeas(struct ak8974 *ak8974)
278 {
279 unsigned int clear;
280 u8 mask;
281 u8 val;
282 int ret;
283
284 /* Clear any previous measurement overflow status */
285 ret = regmap_read(ak8974->map, AK8974_INT_CLEAR, &clear);
286 if (ret)
287 return ret;
288
289 /* If we have a DRDY IRQ line, use it */
290 if (ak8974->drdy_irq) {
291 mask = AK8974_CTRL2_INT_EN |
292 AK8974_CTRL2_DRDY_EN |
293 AK8974_CTRL2_DRDY_POL;
294 val = AK8974_CTRL2_DRDY_EN;
295
296 if (!ak8974->drdy_active_low)
297 val |= AK8974_CTRL2_DRDY_POL;
298
299 init_completion(&ak8974->drdy_complete);
300 ret = regmap_update_bits(ak8974->map, AK8974_CTRL2,
301 mask, val);
302 if (ret)
303 return ret;
304 }
305
306 /* Force a measurement */
307 return regmap_update_bits(ak8974->map,
308 AK8974_CTRL3,
309 AK8974_CTRL3_FORCE,
310 AK8974_CTRL3_FORCE);
311 }
312
ak8974_await_drdy(struct ak8974 * ak8974)313 static int ak8974_await_drdy(struct ak8974 *ak8974)
314 {
315 int timeout = 2;
316 unsigned int val;
317 int ret;
318
319 if (ak8974->drdy_irq) {
320 ret = wait_for_completion_timeout(&ak8974->drdy_complete,
321 1 + msecs_to_jiffies(1000));
322 if (!ret) {
323 dev_err(&ak8974->i2c->dev,
324 "timeout waiting for DRDY IRQ\n");
325 return -ETIMEDOUT;
326 }
327 return 0;
328 }
329
330 /* Default delay-based poll loop */
331 do {
332 msleep(AK8974_MEASTIME);
333 ret = regmap_read(ak8974->map, AK8974_STATUS, &val);
334 if (ret < 0)
335 return ret;
336 if (val & AK8974_STATUS_DRDY)
337 return 0;
338 } while (--timeout);
339
340 dev_err(&ak8974->i2c->dev, "timeout waiting for DRDY\n");
341 return -ETIMEDOUT;
342 }
343
ak8974_getresult(struct ak8974 * ak8974,__le16 * result)344 static int ak8974_getresult(struct ak8974 *ak8974, __le16 *result)
345 {
346 unsigned int src;
347 int ret;
348
349 ret = ak8974_await_drdy(ak8974);
350 if (ret)
351 return ret;
352 ret = regmap_read(ak8974->map, AK8974_INT_SRC, &src);
353 if (ret < 0)
354 return ret;
355
356 /* Out of range overflow! Strong magnet close? */
357 if (src & AK8974_INT_RANGE) {
358 dev_err(&ak8974->i2c->dev,
359 "range overflow in sensor\n");
360 return -ERANGE;
361 }
362
363 ret = regmap_bulk_read(ak8974->map, AK8974_DATA_X, result, 6);
364 if (ret)
365 return ret;
366
367 return ret;
368 }
369
ak8974_drdy_irq(int irq,void * d)370 static irqreturn_t ak8974_drdy_irq(int irq, void *d)
371 {
372 struct ak8974 *ak8974 = d;
373
374 if (!ak8974->drdy_irq)
375 return IRQ_NONE;
376
377 /* TODO: timestamp here to get good measurement stamps */
378 return IRQ_WAKE_THREAD;
379 }
380
ak8974_drdy_irq_thread(int irq,void * d)381 static irqreturn_t ak8974_drdy_irq_thread(int irq, void *d)
382 {
383 struct ak8974 *ak8974 = d;
384 unsigned int val;
385 int ret;
386
387 /* Check if this was a DRDY from us */
388 ret = regmap_read(ak8974->map, AK8974_STATUS, &val);
389 if (ret < 0) {
390 dev_err(&ak8974->i2c->dev, "error reading DRDY status\n");
391 return IRQ_HANDLED;
392 }
393 if (val & AK8974_STATUS_DRDY) {
394 /* Yes this was our IRQ */
395 complete(&ak8974->drdy_complete);
396 return IRQ_HANDLED;
397 }
398
399 /* We may be on a shared IRQ, let the next client check */
400 return IRQ_NONE;
401 }
402
ak8974_selftest(struct ak8974 * ak8974)403 static int ak8974_selftest(struct ak8974 *ak8974)
404 {
405 struct device *dev = &ak8974->i2c->dev;
406 unsigned int val;
407 int ret;
408
409 ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val);
410 if (ret)
411 return ret;
412 if (val != AK8974_SELFTEST_IDLE) {
413 dev_err(dev, "selftest not idle before test\n");
414 return -EIO;
415 }
416
417 /* Trigger self-test */
418 ret = regmap_update_bits(ak8974->map,
419 AK8974_CTRL3,
420 AK8974_CTRL3_SELFTEST,
421 AK8974_CTRL3_SELFTEST);
422 if (ret) {
423 dev_err(dev, "could not write CTRL3\n");
424 return ret;
425 }
426
427 msleep(AK8974_SELFTEST_DELAY);
428
429 ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val);
430 if (ret)
431 return ret;
432 if (val != AK8974_SELFTEST_OK) {
433 dev_err(dev, "selftest result NOT OK (%02x)\n", val);
434 return -EIO;
435 }
436
437 ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val);
438 if (ret)
439 return ret;
440 if (val != AK8974_SELFTEST_IDLE) {
441 dev_err(dev, "selftest not idle after test (%02x)\n", val);
442 return -EIO;
443 }
444 dev_dbg(dev, "passed self-test\n");
445
446 return 0;
447 }
448
ak8974_read_calib_data(struct ak8974 * ak8974,unsigned int reg,__le16 * tab,size_t tab_size)449 static void ak8974_read_calib_data(struct ak8974 *ak8974, unsigned int reg,
450 __le16 *tab, size_t tab_size)
451 {
452 int ret = regmap_bulk_read(ak8974->map, reg, tab, tab_size);
453 if (ret) {
454 memset(tab, 0xFF, tab_size);
455 dev_warn(&ak8974->i2c->dev,
456 "can't read calibration data (regs %u..%zu): %d\n",
457 reg, reg + tab_size - 1, ret);
458 } else {
459 add_device_randomness(tab, tab_size);
460 }
461 }
462
ak8974_detect(struct ak8974 * ak8974)463 static int ak8974_detect(struct ak8974 *ak8974)
464 {
465 unsigned int whoami;
466 const char *name;
467 int ret;
468 unsigned int fw;
469 u16 sn;
470
471 ret = regmap_read(ak8974->map, AK8974_WHOAMI, &whoami);
472 if (ret)
473 return ret;
474
475 name = "ami305";
476
477 switch (whoami) {
478 case AK8974_WHOAMI_VALUE_AMI306:
479 name = "ami306";
480 /* fall-through */
481 case AK8974_WHOAMI_VALUE_AMI305:
482 ret = regmap_read(ak8974->map, AMI305_VER, &fw);
483 if (ret)
484 return ret;
485 fw &= 0x7f; /* only bits 0 thru 6 valid */
486 ret = ak8974_get_u16_val(ak8974, AMI305_SN, &sn);
487 if (ret)
488 return ret;
489 add_device_randomness(&sn, sizeof(sn));
490 dev_info(&ak8974->i2c->dev,
491 "detected %s, FW ver %02x, S/N: %04x\n",
492 name, fw, sn);
493 break;
494 case AK8974_WHOAMI_VALUE_AK8974:
495 name = "ak8974";
496 dev_info(&ak8974->i2c->dev, "detected AK8974\n");
497 break;
498 default:
499 dev_err(&ak8974->i2c->dev, "unsupported device (%02x) ",
500 whoami);
501 return -ENODEV;
502 }
503
504 ak8974->name = name;
505 ak8974->variant = whoami;
506
507 if (whoami == AK8974_WHOAMI_VALUE_AMI306) {
508 __le16 fab_data1[9], fab_data2[3];
509 int i;
510
511 ak8974_read_calib_data(ak8974, AMI306_FINEOUTPUT_X,
512 fab_data1, sizeof(fab_data1));
513 ak8974_read_calib_data(ak8974, AMI306_OFFZERO_X,
514 fab_data2, sizeof(fab_data2));
515
516 for (i = 0; i < 3; ++i) {
517 static const char axis[3] = "XYZ";
518 static const char pgaxis[6] = "ZYZXYX";
519 unsigned offz = le16_to_cpu(fab_data2[i]) & 0x7F;
520 unsigned fine = le16_to_cpu(fab_data1[i]);
521 unsigned sens = le16_to_cpu(fab_data1[i + 3]);
522 unsigned pgain1 = le16_to_cpu(fab_data1[i + 6]);
523 unsigned pgain2 = pgain1 >> 8;
524
525 pgain1 &= 0xFF;
526
527 dev_info(&ak8974->i2c->dev,
528 "factory calibration for axis %c: offz=%u sens=%u fine=%u pga%c=%u pga%c=%u\n",
529 axis[i], offz, sens, fine, pgaxis[i * 2],
530 pgain1, pgaxis[i * 2 + 1], pgain2);
531 }
532 }
533
534 return 0;
535 }
536
ak8974_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)537 static int ak8974_read_raw(struct iio_dev *indio_dev,
538 struct iio_chan_spec const *chan,
539 int *val, int *val2,
540 long mask)
541 {
542 struct ak8974 *ak8974 = iio_priv(indio_dev);
543 __le16 hw_values[3];
544 int ret = -EINVAL;
545
546 pm_runtime_get_sync(&ak8974->i2c->dev);
547 mutex_lock(&ak8974->lock);
548
549 switch (mask) {
550 case IIO_CHAN_INFO_RAW:
551 if (chan->address > 2) {
552 dev_err(&ak8974->i2c->dev, "faulty channel address\n");
553 ret = -EIO;
554 goto out_unlock;
555 }
556 ret = ak8974_trigmeas(ak8974);
557 if (ret)
558 goto out_unlock;
559 ret = ak8974_getresult(ak8974, hw_values);
560 if (ret)
561 goto out_unlock;
562
563 /*
564 * We read all axes and discard all but one, for optimized
565 * reading, use the triggered buffer.
566 */
567 *val = le16_to_cpu(hw_values[chan->address]);
568
569 ret = IIO_VAL_INT;
570 }
571
572 out_unlock:
573 mutex_unlock(&ak8974->lock);
574 pm_runtime_mark_last_busy(&ak8974->i2c->dev);
575 pm_runtime_put_autosuspend(&ak8974->i2c->dev);
576
577 return ret;
578 }
579
ak8974_fill_buffer(struct iio_dev * indio_dev)580 static void ak8974_fill_buffer(struct iio_dev *indio_dev)
581 {
582 struct ak8974 *ak8974 = iio_priv(indio_dev);
583 int ret;
584 __le16 hw_values[8]; /* Three axes + 64bit padding */
585
586 pm_runtime_get_sync(&ak8974->i2c->dev);
587 mutex_lock(&ak8974->lock);
588
589 ret = ak8974_trigmeas(ak8974);
590 if (ret) {
591 dev_err(&ak8974->i2c->dev, "error triggering measure\n");
592 goto out_unlock;
593 }
594 ret = ak8974_getresult(ak8974, hw_values);
595 if (ret) {
596 dev_err(&ak8974->i2c->dev, "error getting measures\n");
597 goto out_unlock;
598 }
599
600 iio_push_to_buffers_with_timestamp(indio_dev, hw_values,
601 iio_get_time_ns(indio_dev));
602
603 out_unlock:
604 mutex_unlock(&ak8974->lock);
605 pm_runtime_mark_last_busy(&ak8974->i2c->dev);
606 pm_runtime_put_autosuspend(&ak8974->i2c->dev);
607 }
608
ak8974_handle_trigger(int irq,void * p)609 static irqreturn_t ak8974_handle_trigger(int irq, void *p)
610 {
611 const struct iio_poll_func *pf = p;
612 struct iio_dev *indio_dev = pf->indio_dev;
613
614 ak8974_fill_buffer(indio_dev);
615 iio_trigger_notify_done(indio_dev->trig);
616
617 return IRQ_HANDLED;
618 }
619
620 static const struct iio_mount_matrix *
ak8974_get_mount_matrix(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan)621 ak8974_get_mount_matrix(const struct iio_dev *indio_dev,
622 const struct iio_chan_spec *chan)
623 {
624 struct ak8974 *ak8974 = iio_priv(indio_dev);
625
626 return &ak8974->orientation;
627 }
628
629 static const struct iio_chan_spec_ext_info ak8974_ext_info[] = {
630 IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, ak8974_get_mount_matrix),
631 { },
632 };
633
634 #define AK8974_AXIS_CHANNEL(axis, index) \
635 { \
636 .type = IIO_MAGN, \
637 .modified = 1, \
638 .channel2 = IIO_MOD_##axis, \
639 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
640 .ext_info = ak8974_ext_info, \
641 .address = index, \
642 .scan_index = index, \
643 .scan_type = { \
644 .sign = 's', \
645 .realbits = 16, \
646 .storagebits = 16, \
647 .endianness = IIO_LE \
648 }, \
649 }
650
651 static const struct iio_chan_spec ak8974_channels[] = {
652 AK8974_AXIS_CHANNEL(X, 0),
653 AK8974_AXIS_CHANNEL(Y, 1),
654 AK8974_AXIS_CHANNEL(Z, 2),
655 IIO_CHAN_SOFT_TIMESTAMP(3),
656 };
657
658 static const unsigned long ak8974_scan_masks[] = { 0x7, 0 };
659
660 static const struct iio_info ak8974_info = {
661 .read_raw = &ak8974_read_raw,
662 };
663
ak8974_writeable_reg(struct device * dev,unsigned int reg)664 static bool ak8974_writeable_reg(struct device *dev, unsigned int reg)
665 {
666 struct i2c_client *i2c = to_i2c_client(dev);
667 struct iio_dev *indio_dev = i2c_get_clientdata(i2c);
668 struct ak8974 *ak8974 = iio_priv(indio_dev);
669
670 switch (reg) {
671 case AK8974_CTRL1:
672 case AK8974_CTRL2:
673 case AK8974_CTRL3:
674 case AK8974_INT_CTRL:
675 case AK8974_INT_THRES:
676 case AK8974_INT_THRES + 1:
677 case AK8974_PRESET:
678 case AK8974_PRESET + 1:
679 return true;
680 case AK8974_OFFSET_X:
681 case AK8974_OFFSET_X + 1:
682 case AK8974_OFFSET_Y:
683 case AK8974_OFFSET_Y + 1:
684 case AK8974_OFFSET_Z:
685 case AK8974_OFFSET_Z + 1:
686 if (ak8974->variant == AK8974_WHOAMI_VALUE_AK8974)
687 return true;
688 return false;
689 case AMI305_OFFSET_X:
690 case AMI305_OFFSET_X + 1:
691 case AMI305_OFFSET_Y:
692 case AMI305_OFFSET_Y + 1:
693 case AMI305_OFFSET_Z:
694 case AMI305_OFFSET_Z + 1:
695 return ak8974->variant == AK8974_WHOAMI_VALUE_AMI305 ||
696 ak8974->variant == AK8974_WHOAMI_VALUE_AMI306;
697 case AMI306_CTRL4:
698 case AMI306_CTRL4 + 1:
699 return ak8974->variant == AK8974_WHOAMI_VALUE_AMI306;
700 default:
701 return false;
702 }
703 }
704
ak8974_precious_reg(struct device * dev,unsigned int reg)705 static bool ak8974_precious_reg(struct device *dev, unsigned int reg)
706 {
707 return reg == AK8974_INT_CLEAR;
708 }
709
710 static const struct regmap_config ak8974_regmap_config = {
711 .reg_bits = 8,
712 .val_bits = 8,
713 .max_register = 0xff,
714 .writeable_reg = ak8974_writeable_reg,
715 .precious_reg = ak8974_precious_reg,
716 };
717
ak8974_probe(struct i2c_client * i2c,const struct i2c_device_id * id)718 static int ak8974_probe(struct i2c_client *i2c,
719 const struct i2c_device_id *id)
720 {
721 struct iio_dev *indio_dev;
722 struct ak8974 *ak8974;
723 unsigned long irq_trig;
724 int irq = i2c->irq;
725 int ret;
726
727 /* Register with IIO */
728 indio_dev = devm_iio_device_alloc(&i2c->dev, sizeof(*ak8974));
729 if (indio_dev == NULL)
730 return -ENOMEM;
731
732 ak8974 = iio_priv(indio_dev);
733 i2c_set_clientdata(i2c, indio_dev);
734 ak8974->i2c = i2c;
735 mutex_init(&ak8974->lock);
736
737 ret = iio_read_mount_matrix(&i2c->dev, "mount-matrix",
738 &ak8974->orientation);
739 if (ret)
740 return ret;
741
742 ak8974->regs[0].supply = ak8974_reg_avdd;
743 ak8974->regs[1].supply = ak8974_reg_dvdd;
744
745 ret = devm_regulator_bulk_get(&i2c->dev,
746 ARRAY_SIZE(ak8974->regs),
747 ak8974->regs);
748 if (ret < 0) {
749 dev_err(&i2c->dev, "cannot get regulators\n");
750 return ret;
751 }
752
753 ret = regulator_bulk_enable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
754 if (ret < 0) {
755 dev_err(&i2c->dev, "cannot enable regulators\n");
756 return ret;
757 }
758
759 /* Take runtime PM online */
760 pm_runtime_get_noresume(&i2c->dev);
761 pm_runtime_set_active(&i2c->dev);
762 pm_runtime_enable(&i2c->dev);
763
764 ak8974->map = devm_regmap_init_i2c(i2c, &ak8974_regmap_config);
765 if (IS_ERR(ak8974->map)) {
766 dev_err(&i2c->dev, "failed to allocate register map\n");
767 return PTR_ERR(ak8974->map);
768 }
769
770 ret = ak8974_set_power(ak8974, AK8974_PWR_ON);
771 if (ret) {
772 dev_err(&i2c->dev, "could not power on\n");
773 goto power_off;
774 }
775
776 ret = ak8974_detect(ak8974);
777 if (ret) {
778 dev_err(&i2c->dev, "neither AK8974 nor AMI30x found\n");
779 goto power_off;
780 }
781
782 ret = ak8974_selftest(ak8974);
783 if (ret)
784 dev_err(&i2c->dev, "selftest failed (continuing anyway)\n");
785
786 ret = ak8974_reset(ak8974);
787 if (ret) {
788 dev_err(&i2c->dev, "AK8974 reset failed\n");
789 goto power_off;
790 }
791
792 pm_runtime_set_autosuspend_delay(&i2c->dev,
793 AK8974_AUTOSUSPEND_DELAY);
794 pm_runtime_use_autosuspend(&i2c->dev);
795 pm_runtime_put(&i2c->dev);
796
797 indio_dev->dev.parent = &i2c->dev;
798 indio_dev->channels = ak8974_channels;
799 indio_dev->num_channels = ARRAY_SIZE(ak8974_channels);
800 indio_dev->info = &ak8974_info;
801 indio_dev->available_scan_masks = ak8974_scan_masks;
802 indio_dev->modes = INDIO_DIRECT_MODE;
803 indio_dev->name = ak8974->name;
804
805 ret = iio_triggered_buffer_setup(indio_dev, NULL,
806 ak8974_handle_trigger,
807 NULL);
808 if (ret) {
809 dev_err(&i2c->dev, "triggered buffer setup failed\n");
810 goto disable_pm;
811 }
812
813 /* If we have a valid DRDY IRQ, make use of it */
814 if (irq > 0) {
815 irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
816 if (irq_trig == IRQF_TRIGGER_RISING) {
817 dev_info(&i2c->dev, "enable rising edge DRDY IRQ\n");
818 } else if (irq_trig == IRQF_TRIGGER_FALLING) {
819 ak8974->drdy_active_low = true;
820 dev_info(&i2c->dev, "enable falling edge DRDY IRQ\n");
821 } else {
822 irq_trig = IRQF_TRIGGER_RISING;
823 }
824 irq_trig |= IRQF_ONESHOT;
825 irq_trig |= IRQF_SHARED;
826
827 ret = devm_request_threaded_irq(&i2c->dev,
828 irq,
829 ak8974_drdy_irq,
830 ak8974_drdy_irq_thread,
831 irq_trig,
832 ak8974->name,
833 ak8974);
834 if (ret) {
835 dev_err(&i2c->dev, "unable to request DRDY IRQ "
836 "- proceeding without IRQ\n");
837 goto no_irq;
838 }
839 ak8974->drdy_irq = true;
840 }
841
842 no_irq:
843 ret = iio_device_register(indio_dev);
844 if (ret) {
845 dev_err(&i2c->dev, "device register failed\n");
846 goto cleanup_buffer;
847 }
848
849 return 0;
850
851 cleanup_buffer:
852 iio_triggered_buffer_cleanup(indio_dev);
853 disable_pm:
854 pm_runtime_put_noidle(&i2c->dev);
855 pm_runtime_disable(&i2c->dev);
856 ak8974_set_power(ak8974, AK8974_PWR_OFF);
857 power_off:
858 regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
859
860 return ret;
861 }
862
ak8974_remove(struct i2c_client * i2c)863 static int ak8974_remove(struct i2c_client *i2c)
864 {
865 struct iio_dev *indio_dev = i2c_get_clientdata(i2c);
866 struct ak8974 *ak8974 = iio_priv(indio_dev);
867
868 iio_device_unregister(indio_dev);
869 iio_triggered_buffer_cleanup(indio_dev);
870 pm_runtime_get_sync(&i2c->dev);
871 pm_runtime_put_noidle(&i2c->dev);
872 pm_runtime_disable(&i2c->dev);
873 ak8974_set_power(ak8974, AK8974_PWR_OFF);
874 regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
875
876 return 0;
877 }
878
ak8974_runtime_suspend(struct device * dev)879 static int __maybe_unused ak8974_runtime_suspend(struct device *dev)
880 {
881 struct ak8974 *ak8974 =
882 iio_priv(i2c_get_clientdata(to_i2c_client(dev)));
883
884 ak8974_set_power(ak8974, AK8974_PWR_OFF);
885 regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
886
887 return 0;
888 }
889
ak8974_runtime_resume(struct device * dev)890 static int __maybe_unused ak8974_runtime_resume(struct device *dev)
891 {
892 struct ak8974 *ak8974 =
893 iio_priv(i2c_get_clientdata(to_i2c_client(dev)));
894 int ret;
895
896 ret = regulator_bulk_enable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
897 if (ret)
898 return ret;
899 msleep(AK8974_POWERON_DELAY);
900 ret = ak8974_set_power(ak8974, AK8974_PWR_ON);
901 if (ret)
902 goto out_regulator_disable;
903
904 ret = ak8974_configure(ak8974);
905 if (ret)
906 goto out_disable_power;
907
908 return 0;
909
910 out_disable_power:
911 ak8974_set_power(ak8974, AK8974_PWR_OFF);
912 out_regulator_disable:
913 regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
914
915 return ret;
916 }
917
918 static const struct dev_pm_ops ak8974_dev_pm_ops = {
919 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
920 pm_runtime_force_resume)
921 SET_RUNTIME_PM_OPS(ak8974_runtime_suspend,
922 ak8974_runtime_resume, NULL)
923 };
924
925 static const struct i2c_device_id ak8974_id[] = {
926 {"ami305", 0 },
927 {"ami306", 0 },
928 {"ak8974", 0 },
929 {}
930 };
931 MODULE_DEVICE_TABLE(i2c, ak8974_id);
932
933 static const struct of_device_id ak8974_of_match[] = {
934 { .compatible = "asahi-kasei,ak8974", },
935 {}
936 };
937 MODULE_DEVICE_TABLE(of, ak8974_of_match);
938
939 static struct i2c_driver ak8974_driver = {
940 .driver = {
941 .name = "ak8974",
942 .pm = &ak8974_dev_pm_ops,
943 .of_match_table = of_match_ptr(ak8974_of_match),
944 },
945 .probe = ak8974_probe,
946 .remove = ak8974_remove,
947 .id_table = ak8974_id,
948 };
949 module_i2c_driver(ak8974_driver);
950
951 MODULE_DESCRIPTION("AK8974 and AMI30x 3-axis magnetometer driver");
952 MODULE_AUTHOR("Samu Onkalo");
953 MODULE_AUTHOR("Linus Walleij");
954 MODULE_LICENSE("GPL v2");
955