1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * AD5758 Digital to analog converters driver
4 *
5 * Copyright 2018 Analog Devices Inc.
6 *
7 * TODO: Currently CRC is not supported in this driver
8 */
9 #include <linux/bsearch.h>
10 #include <linux/delay.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/property.h>
14 #include <linux/of.h>
15 #include <linux/of_device.h>
16 #include <linux/spi/spi.h>
17 #include <linux/gpio/consumer.h>
18
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21
22 /* AD5758 registers definition */
23 #define AD5758_NOP 0x00
24 #define AD5758_DAC_INPUT 0x01
25 #define AD5758_DAC_OUTPUT 0x02
26 #define AD5758_CLEAR_CODE 0x03
27 #define AD5758_USER_GAIN 0x04
28 #define AD5758_USER_OFFSET 0x05
29 #define AD5758_DAC_CONFIG 0x06
30 #define AD5758_SW_LDAC 0x07
31 #define AD5758_KEY 0x08
32 #define AD5758_GP_CONFIG1 0x09
33 #define AD5758_GP_CONFIG2 0x0A
34 #define AD5758_DCDC_CONFIG1 0x0B
35 #define AD5758_DCDC_CONFIG2 0x0C
36 #define AD5758_WDT_CONFIG 0x0F
37 #define AD5758_DIGITAL_DIAG_CONFIG 0x10
38 #define AD5758_ADC_CONFIG 0x11
39 #define AD5758_FAULT_PIN_CONFIG 0x12
40 #define AD5758_TWO_STAGE_READBACK_SELECT 0x13
41 #define AD5758_DIGITAL_DIAG_RESULTS 0x14
42 #define AD5758_ANALOG_DIAG_RESULTS 0x15
43 #define AD5758_STATUS 0x16
44 #define AD5758_CHIP_ID 0x17
45 #define AD5758_FREQ_MONITOR 0x18
46 #define AD5758_DEVICE_ID_0 0x19
47 #define AD5758_DEVICE_ID_1 0x1A
48 #define AD5758_DEVICE_ID_2 0x1B
49 #define AD5758_DEVICE_ID_3 0x1C
50
51 /* AD5758_DAC_CONFIG */
52 #define AD5758_DAC_CONFIG_RANGE_MSK GENMASK(3, 0)
53 #define AD5758_DAC_CONFIG_RANGE_MODE(x) (((x) & 0xF) << 0)
54 #define AD5758_DAC_CONFIG_INT_EN_MSK BIT(5)
55 #define AD5758_DAC_CONFIG_INT_EN_MODE(x) (((x) & 0x1) << 5)
56 #define AD5758_DAC_CONFIG_OUT_EN_MSK BIT(6)
57 #define AD5758_DAC_CONFIG_OUT_EN_MODE(x) (((x) & 0x1) << 6)
58 #define AD5758_DAC_CONFIG_SR_EN_MSK BIT(8)
59 #define AD5758_DAC_CONFIG_SR_EN_MODE(x) (((x) & 0x1) << 8)
60 #define AD5758_DAC_CONFIG_SR_CLOCK_MSK GENMASK(12, 9)
61 #define AD5758_DAC_CONFIG_SR_CLOCK_MODE(x) (((x) & 0xF) << 9)
62 #define AD5758_DAC_CONFIG_SR_STEP_MSK GENMASK(15, 13)
63 #define AD5758_DAC_CONFIG_SR_STEP_MODE(x) (((x) & 0x7) << 13)
64
65 /* AD5758_KEY */
66 #define AD5758_KEY_CODE_RESET_1 0x15FA
67 #define AD5758_KEY_CODE_RESET_2 0xAF51
68 #define AD5758_KEY_CODE_SINGLE_ADC_CONV 0x1ADC
69 #define AD5758_KEY_CODE_RESET_WDT 0x0D06
70 #define AD5758_KEY_CODE_CALIB_MEM_REFRESH 0xFCBA
71
72 /* AD5758_DCDC_CONFIG1 */
73 #define AD5758_DCDC_CONFIG1_DCDC_VPROG_MSK GENMASK(4, 0)
74 #define AD5758_DCDC_CONFIG1_DCDC_VPROG_MODE(x) (((x) & 0x1F) << 0)
75 #define AD5758_DCDC_CONFIG1_DCDC_MODE_MSK GENMASK(6, 5)
76 #define AD5758_DCDC_CONFIG1_DCDC_MODE_MODE(x) (((x) & 0x3) << 5)
77
78 /* AD5758_DCDC_CONFIG2 */
79 #define AD5758_DCDC_CONFIG2_ILIMIT_MSK GENMASK(3, 1)
80 #define AD5758_DCDC_CONFIG2_ILIMIT_MODE(x) (((x) & 0x7) << 1)
81 #define AD5758_DCDC_CONFIG2_INTR_SAT_3WI_MSK BIT(11)
82 #define AD5758_DCDC_CONFIG2_BUSY_3WI_MSK BIT(12)
83
84 /* AD5758_DIGITAL_DIAG_RESULTS */
85 #define AD5758_CAL_MEM_UNREFRESHED_MSK BIT(15)
86
87 /* AD5758_ADC_CONFIG */
88 #define AD5758_ADC_CONFIG_PPC_BUF_EN(x) (((x) & 0x1) << 11)
89 #define AD5758_ADC_CONFIG_PPC_BUF_MSK BIT(11)
90
91 #define AD5758_WR_FLAG_MSK(x) (0x80 | ((x) & 0x1F))
92
93 #define AD5758_FULL_SCALE_MICRO 65535000000ULL
94
95 /**
96 * struct ad5758_state - driver instance specific data
97 * @spi: spi_device
98 * @lock: mutex lock
99 * @out_range: struct which stores the output range
100 * @dc_dc_mode: variable which stores the mode of operation
101 * @dc_dc_ilim: variable which stores the dc-to-dc converter current limit
102 * @slew_time: variable which stores the target slew time
103 * @pwr_down: variable which contains whether a channel is powered down or not
104 * @data: spi transfer buffers
105 */
106
107 struct ad5758_range {
108 int reg;
109 int min;
110 int max;
111 };
112
113 struct ad5758_state {
114 struct spi_device *spi;
115 struct mutex lock;
116 struct gpio_desc *gpio_reset;
117 struct ad5758_range out_range;
118 unsigned int dc_dc_mode;
119 unsigned int dc_dc_ilim;
120 unsigned int slew_time;
121 bool pwr_down;
122 __be32 d32[3];
123 };
124
125 /**
126 * Output ranges corresponding to bits [3:0] from DAC_CONFIG register
127 * 0000: 0 V to 5 V voltage range
128 * 0001: 0 V to 10 V voltage range
129 * 0010: ±5 V voltage range
130 * 0011: ±10 V voltage range
131 * 1000: 0 mA to 20 mA current range
132 * 1001: 0 mA to 24 mA current range
133 * 1010: 4 mA to 20 mA current range
134 * 1011: ±20 mA current range
135 * 1100: ±24 mA current range
136 * 1101: -1 mA to +22 mA current range
137 */
138 enum ad5758_output_range {
139 AD5758_RANGE_0V_5V,
140 AD5758_RANGE_0V_10V,
141 AD5758_RANGE_PLUSMINUS_5V,
142 AD5758_RANGE_PLUSMINUS_10V,
143 AD5758_RANGE_0mA_20mA = 8,
144 AD5758_RANGE_0mA_24mA,
145 AD5758_RANGE_4mA_24mA,
146 AD5758_RANGE_PLUSMINUS_20mA,
147 AD5758_RANGE_PLUSMINUS_24mA,
148 AD5758_RANGE_MINUS_1mA_PLUS_22mA,
149 };
150
151 enum ad5758_dc_dc_mode {
152 AD5758_DCDC_MODE_POWER_OFF,
153 AD5758_DCDC_MODE_DPC_CURRENT,
154 AD5758_DCDC_MODE_DPC_VOLTAGE,
155 AD5758_DCDC_MODE_PPC_CURRENT,
156 };
157
158 static const struct ad5758_range ad5758_voltage_range[] = {
159 { AD5758_RANGE_0V_5V, 0, 5000000 },
160 { AD5758_RANGE_0V_10V, 0, 10000000 },
161 { AD5758_RANGE_PLUSMINUS_5V, -5000000, 5000000 },
162 { AD5758_RANGE_PLUSMINUS_10V, -10000000, 10000000 }
163 };
164
165 static const struct ad5758_range ad5758_current_range[] = {
166 { AD5758_RANGE_0mA_20mA, 0, 20000},
167 { AD5758_RANGE_0mA_24mA, 0, 24000 },
168 { AD5758_RANGE_4mA_24mA, 4, 24000 },
169 { AD5758_RANGE_PLUSMINUS_20mA, -20000, 20000 },
170 { AD5758_RANGE_PLUSMINUS_24mA, -24000, 24000 },
171 { AD5758_RANGE_MINUS_1mA_PLUS_22mA, -1000, 22000 },
172 };
173
174 static const int ad5758_sr_clk[16] = {
175 240000, 200000, 150000, 128000, 64000, 32000, 16000, 8000, 4000, 2000,
176 1000, 512, 256, 128, 64, 16
177 };
178
179 static const int ad5758_sr_step[8] = {
180 4, 12, 64, 120, 256, 500, 1820, 2048
181 };
182
183 static const int ad5758_dc_dc_ilim[6] = {
184 150000, 200000, 250000, 300000, 350000, 400000
185 };
186
ad5758_spi_reg_read(struct ad5758_state * st,unsigned int addr)187 static int ad5758_spi_reg_read(struct ad5758_state *st, unsigned int addr)
188 {
189 struct spi_transfer t[] = {
190 {
191 .tx_buf = &st->d32[0],
192 .len = 4,
193 .cs_change = 1,
194 }, {
195 .tx_buf = &st->d32[1],
196 .rx_buf = &st->d32[2],
197 .len = 4,
198 },
199 };
200 int ret;
201
202 st->d32[0] = cpu_to_be32(
203 (AD5758_WR_FLAG_MSK(AD5758_TWO_STAGE_READBACK_SELECT) << 24) |
204 (addr << 8));
205 st->d32[1] = cpu_to_be32(AD5758_WR_FLAG_MSK(AD5758_NOP) << 24);
206
207 ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
208 if (ret < 0)
209 return ret;
210
211 return (be32_to_cpu(st->d32[2]) >> 8) & 0xFFFF;
212 }
213
ad5758_spi_reg_write(struct ad5758_state * st,unsigned int addr,unsigned int val)214 static int ad5758_spi_reg_write(struct ad5758_state *st,
215 unsigned int addr,
216 unsigned int val)
217 {
218 st->d32[0] = cpu_to_be32((AD5758_WR_FLAG_MSK(addr) << 24) |
219 ((val & 0xFFFF) << 8));
220
221 return spi_write(st->spi, &st->d32[0], sizeof(st->d32[0]));
222 }
223
ad5758_spi_write_mask(struct ad5758_state * st,unsigned int addr,unsigned long int mask,unsigned int val)224 static int ad5758_spi_write_mask(struct ad5758_state *st,
225 unsigned int addr,
226 unsigned long int mask,
227 unsigned int val)
228 {
229 int regval;
230
231 regval = ad5758_spi_reg_read(st, addr);
232 if (regval < 0)
233 return regval;
234
235 regval &= ~mask;
236 regval |= val;
237
238 return ad5758_spi_reg_write(st, addr, regval);
239 }
240
cmpfunc(const void * a,const void * b)241 static int cmpfunc(const void *a, const void *b)
242 {
243 return *(int *)a - *(int *)b;
244 }
245
ad5758_find_closest_match(const int * array,unsigned int size,int val)246 static int ad5758_find_closest_match(const int *array,
247 unsigned int size, int val)
248 {
249 int i;
250
251 for (i = 0; i < size; i++) {
252 if (val <= array[i])
253 return i;
254 }
255
256 return size - 1;
257 }
258
ad5758_wait_for_task_complete(struct ad5758_state * st,unsigned int reg,unsigned int mask)259 static int ad5758_wait_for_task_complete(struct ad5758_state *st,
260 unsigned int reg,
261 unsigned int mask)
262 {
263 unsigned int timeout;
264 int ret;
265
266 timeout = 10;
267 do {
268 ret = ad5758_spi_reg_read(st, reg);
269 if (ret < 0)
270 return ret;
271
272 if (!(ret & mask))
273 return 0;
274
275 usleep_range(100, 1000);
276 } while (--timeout);
277
278 dev_err(&st->spi->dev,
279 "Error reading bit 0x%x in 0x%x register\n", mask, reg);
280
281 return -EIO;
282 }
283
ad5758_calib_mem_refresh(struct ad5758_state * st)284 static int ad5758_calib_mem_refresh(struct ad5758_state *st)
285 {
286 int ret;
287
288 ret = ad5758_spi_reg_write(st, AD5758_KEY,
289 AD5758_KEY_CODE_CALIB_MEM_REFRESH);
290 if (ret < 0) {
291 dev_err(&st->spi->dev,
292 "Failed to initiate a calibration memory refresh\n");
293 return ret;
294 }
295
296 /* Wait to allow time for the internal calibrations to complete */
297 return ad5758_wait_for_task_complete(st, AD5758_DIGITAL_DIAG_RESULTS,
298 AD5758_CAL_MEM_UNREFRESHED_MSK);
299 }
300
ad5758_soft_reset(struct ad5758_state * st)301 static int ad5758_soft_reset(struct ad5758_state *st)
302 {
303 int ret;
304
305 ret = ad5758_spi_reg_write(st, AD5758_KEY, AD5758_KEY_CODE_RESET_1);
306 if (ret < 0)
307 return ret;
308
309 ret = ad5758_spi_reg_write(st, AD5758_KEY, AD5758_KEY_CODE_RESET_2);
310
311 /* Perform a software reset and wait at least 100us */
312 usleep_range(100, 1000);
313
314 return ret;
315 }
316
ad5758_set_dc_dc_conv_mode(struct ad5758_state * st,enum ad5758_dc_dc_mode mode)317 static int ad5758_set_dc_dc_conv_mode(struct ad5758_state *st,
318 enum ad5758_dc_dc_mode mode)
319 {
320 int ret;
321
322 /*
323 * The ENABLE_PPC_BUFFERS bit must be set prior to enabling PPC current
324 * mode.
325 */
326 if (mode == AD5758_DCDC_MODE_PPC_CURRENT) {
327 ret = ad5758_spi_write_mask(st, AD5758_ADC_CONFIG,
328 AD5758_ADC_CONFIG_PPC_BUF_MSK,
329 AD5758_ADC_CONFIG_PPC_BUF_EN(1));
330 if (ret < 0)
331 return ret;
332 }
333
334 ret = ad5758_spi_write_mask(st, AD5758_DCDC_CONFIG1,
335 AD5758_DCDC_CONFIG1_DCDC_MODE_MSK,
336 AD5758_DCDC_CONFIG1_DCDC_MODE_MODE(mode));
337 if (ret < 0)
338 return ret;
339
340 /*
341 * Poll the BUSY_3WI bit in the DCDC_CONFIG2 register until it is 0.
342 * This allows the 3-wire interface communication to complete.
343 */
344 ret = ad5758_wait_for_task_complete(st, AD5758_DCDC_CONFIG2,
345 AD5758_DCDC_CONFIG2_BUSY_3WI_MSK);
346 if (ret < 0)
347 return ret;
348
349 st->dc_dc_mode = mode;
350
351 return ret;
352 }
353
ad5758_set_dc_dc_ilim(struct ad5758_state * st,unsigned int ilim)354 static int ad5758_set_dc_dc_ilim(struct ad5758_state *st, unsigned int ilim)
355 {
356 int ret;
357
358 ret = ad5758_spi_write_mask(st, AD5758_DCDC_CONFIG2,
359 AD5758_DCDC_CONFIG2_ILIMIT_MSK,
360 AD5758_DCDC_CONFIG2_ILIMIT_MODE(ilim));
361 if (ret < 0)
362 return ret;
363 /*
364 * Poll the BUSY_3WI bit in the DCDC_CONFIG2 register until it is 0.
365 * This allows the 3-wire interface communication to complete.
366 */
367 return ad5758_wait_for_task_complete(st, AD5758_DCDC_CONFIG2,
368 AD5758_DCDC_CONFIG2_BUSY_3WI_MSK);
369 }
370
ad5758_slew_rate_set(struct ad5758_state * st,unsigned int sr_clk_idx,unsigned int sr_step_idx)371 static int ad5758_slew_rate_set(struct ad5758_state *st,
372 unsigned int sr_clk_idx,
373 unsigned int sr_step_idx)
374 {
375 unsigned int mode;
376 unsigned long int mask;
377 int ret;
378
379 mask = AD5758_DAC_CONFIG_SR_EN_MSK |
380 AD5758_DAC_CONFIG_SR_CLOCK_MSK |
381 AD5758_DAC_CONFIG_SR_STEP_MSK;
382 mode = AD5758_DAC_CONFIG_SR_EN_MODE(1) |
383 AD5758_DAC_CONFIG_SR_STEP_MODE(sr_step_idx) |
384 AD5758_DAC_CONFIG_SR_CLOCK_MODE(sr_clk_idx);
385
386 ret = ad5758_spi_write_mask(st, AD5758_DAC_CONFIG, mask, mode);
387 if (ret < 0)
388 return ret;
389
390 /* Wait to allow time for the internal calibrations to complete */
391 return ad5758_wait_for_task_complete(st, AD5758_DIGITAL_DIAG_RESULTS,
392 AD5758_CAL_MEM_UNREFRESHED_MSK);
393 }
394
ad5758_slew_rate_config(struct ad5758_state * st)395 static int ad5758_slew_rate_config(struct ad5758_state *st)
396 {
397 unsigned int sr_clk_idx, sr_step_idx;
398 int i, res;
399 s64 diff_new, diff_old;
400 u64 sr_step, calc_slew_time;
401
402 sr_clk_idx = 0;
403 sr_step_idx = 0;
404 diff_old = S64_MAX;
405 /*
406 * The slew time can be determined by using the formula:
407 * Slew Time = (Full Scale Out / (Step Size x Update Clk Freq))
408 * where Slew time is expressed in microseconds
409 * Given the desired slew time, the following algorithm determines the
410 * best match for the step size and the update clock frequency.
411 */
412 for (i = 0; i < ARRAY_SIZE(ad5758_sr_clk); i++) {
413 /*
414 * Go through each valid update clock freq and determine a raw
415 * value for the step size by using the formula:
416 * Step Size = Full Scale Out / (Update Clk Freq * Slew Time)
417 */
418 sr_step = AD5758_FULL_SCALE_MICRO;
419 do_div(sr_step, ad5758_sr_clk[i]);
420 do_div(sr_step, st->slew_time);
421 /*
422 * After a raw value for step size was determined, find the
423 * closest valid match
424 */
425 res = ad5758_find_closest_match(ad5758_sr_step,
426 ARRAY_SIZE(ad5758_sr_step),
427 sr_step);
428 /* Calculate the slew time */
429 calc_slew_time = AD5758_FULL_SCALE_MICRO;
430 do_div(calc_slew_time, ad5758_sr_step[res]);
431 do_div(calc_slew_time, ad5758_sr_clk[i]);
432 /*
433 * Determine with how many microseconds the calculated slew time
434 * is different from the desired slew time and store the diff
435 * for the next iteration
436 */
437 diff_new = abs(st->slew_time - calc_slew_time);
438 if (diff_new < diff_old) {
439 diff_old = diff_new;
440 sr_clk_idx = i;
441 sr_step_idx = res;
442 }
443 }
444
445 return ad5758_slew_rate_set(st, sr_clk_idx, sr_step_idx);
446 }
447
ad5758_set_out_range(struct ad5758_state * st,int range)448 static int ad5758_set_out_range(struct ad5758_state *st, int range)
449 {
450 int ret;
451
452 ret = ad5758_spi_write_mask(st, AD5758_DAC_CONFIG,
453 AD5758_DAC_CONFIG_RANGE_MSK,
454 AD5758_DAC_CONFIG_RANGE_MODE(range));
455 if (ret < 0)
456 return ret;
457
458 /* Wait to allow time for the internal calibrations to complete */
459 return ad5758_wait_for_task_complete(st, AD5758_DIGITAL_DIAG_RESULTS,
460 AD5758_CAL_MEM_UNREFRESHED_MSK);
461 }
462
ad5758_internal_buffers_en(struct ad5758_state * st,bool enable)463 static int ad5758_internal_buffers_en(struct ad5758_state *st, bool enable)
464 {
465 int ret;
466
467 ret = ad5758_spi_write_mask(st, AD5758_DAC_CONFIG,
468 AD5758_DAC_CONFIG_INT_EN_MSK,
469 AD5758_DAC_CONFIG_INT_EN_MODE(enable));
470 if (ret < 0)
471 return ret;
472
473 /* Wait to allow time for the internal calibrations to complete */
474 return ad5758_wait_for_task_complete(st, AD5758_DIGITAL_DIAG_RESULTS,
475 AD5758_CAL_MEM_UNREFRESHED_MSK);
476 }
477
ad5758_reset(struct ad5758_state * st)478 static int ad5758_reset(struct ad5758_state *st)
479 {
480 if (st->gpio_reset) {
481 gpiod_set_value(st->gpio_reset, 0);
482 usleep_range(100, 1000);
483 gpiod_set_value(st->gpio_reset, 1);
484 usleep_range(100, 1000);
485
486 return 0;
487 } else {
488 /* Perform a software reset */
489 return ad5758_soft_reset(st);
490 }
491 }
492
ad5758_reg_access(struct iio_dev * indio_dev,unsigned int reg,unsigned int writeval,unsigned int * readval)493 static int ad5758_reg_access(struct iio_dev *indio_dev,
494 unsigned int reg,
495 unsigned int writeval,
496 unsigned int *readval)
497 {
498 struct ad5758_state *st = iio_priv(indio_dev);
499 int ret;
500
501 mutex_lock(&st->lock);
502 if (readval) {
503 ret = ad5758_spi_reg_read(st, reg);
504 if (ret < 0) {
505 mutex_unlock(&st->lock);
506 return ret;
507 }
508
509 *readval = ret;
510 ret = 0;
511 } else {
512 ret = ad5758_spi_reg_write(st, reg, writeval);
513 }
514 mutex_unlock(&st->lock);
515
516 return ret;
517 }
518
ad5758_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long info)519 static int ad5758_read_raw(struct iio_dev *indio_dev,
520 struct iio_chan_spec const *chan,
521 int *val, int *val2, long info)
522 {
523 struct ad5758_state *st = iio_priv(indio_dev);
524 int max, min, ret;
525
526 switch (info) {
527 case IIO_CHAN_INFO_RAW:
528 mutex_lock(&st->lock);
529 ret = ad5758_spi_reg_read(st, AD5758_DAC_INPUT);
530 mutex_unlock(&st->lock);
531 if (ret < 0)
532 return ret;
533
534 *val = ret;
535 return IIO_VAL_INT;
536 case IIO_CHAN_INFO_SCALE:
537 min = st->out_range.min;
538 max = st->out_range.max;
539 *val = (max - min) / 1000;
540 *val2 = 16;
541 return IIO_VAL_FRACTIONAL_LOG2;
542 case IIO_CHAN_INFO_OFFSET:
543 min = st->out_range.min;
544 max = st->out_range.max;
545 *val = ((min * (1 << 16)) / (max - min)) / 1000;
546 return IIO_VAL_INT;
547 default:
548 return -EINVAL;
549 }
550 }
551
ad5758_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long info)552 static int ad5758_write_raw(struct iio_dev *indio_dev,
553 struct iio_chan_spec const *chan,
554 int val, int val2, long info)
555 {
556 struct ad5758_state *st = iio_priv(indio_dev);
557 int ret;
558
559 switch (info) {
560 case IIO_CHAN_INFO_RAW:
561 mutex_lock(&st->lock);
562 ret = ad5758_spi_reg_write(st, AD5758_DAC_INPUT, val);
563 mutex_unlock(&st->lock);
564 return ret;
565 default:
566 return -EINVAL;
567 }
568 }
569
ad5758_read_powerdown(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)570 static ssize_t ad5758_read_powerdown(struct iio_dev *indio_dev,
571 uintptr_t priv,
572 const struct iio_chan_spec *chan,
573 char *buf)
574 {
575 struct ad5758_state *st = iio_priv(indio_dev);
576
577 return sprintf(buf, "%d\n", st->pwr_down);
578 }
579
ad5758_write_powerdown(struct iio_dev * indio_dev,uintptr_t priv,struct iio_chan_spec const * chan,const char * buf,size_t len)580 static ssize_t ad5758_write_powerdown(struct iio_dev *indio_dev,
581 uintptr_t priv,
582 struct iio_chan_spec const *chan,
583 const char *buf, size_t len)
584 {
585 struct ad5758_state *st = iio_priv(indio_dev);
586 bool pwr_down;
587 unsigned int dac_config_mode, val;
588 unsigned long int dac_config_msk;
589 int ret;
590
591 ret = kstrtobool(buf, &pwr_down);
592 if (ret)
593 return ret;
594
595 mutex_lock(&st->lock);
596 if (pwr_down)
597 val = 0;
598 else
599 val = 1;
600
601 dac_config_mode = AD5758_DAC_CONFIG_OUT_EN_MODE(val) |
602 AD5758_DAC_CONFIG_INT_EN_MODE(val);
603 dac_config_msk = AD5758_DAC_CONFIG_OUT_EN_MSK |
604 AD5758_DAC_CONFIG_INT_EN_MSK;
605
606 ret = ad5758_spi_write_mask(st, AD5758_DAC_CONFIG,
607 dac_config_msk,
608 dac_config_mode);
609 if (ret < 0)
610 goto err_unlock;
611
612 st->pwr_down = pwr_down;
613
614 err_unlock:
615 mutex_unlock(&st->lock);
616
617 return ret ? ret : len;
618 }
619
620 static const struct iio_info ad5758_info = {
621 .read_raw = ad5758_read_raw,
622 .write_raw = ad5758_write_raw,
623 .debugfs_reg_access = &ad5758_reg_access,
624 };
625
626 static const struct iio_chan_spec_ext_info ad5758_ext_info[] = {
627 {
628 .name = "powerdown",
629 .read = ad5758_read_powerdown,
630 .write = ad5758_write_powerdown,
631 .shared = IIO_SHARED_BY_TYPE,
632 },
633 { }
634 };
635
636 #define AD5758_DAC_CHAN(_chan_type) { \
637 .type = (_chan_type), \
638 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_RAW) | \
639 BIT(IIO_CHAN_INFO_SCALE) | \
640 BIT(IIO_CHAN_INFO_OFFSET), \
641 .indexed = 1, \
642 .output = 1, \
643 .ext_info = ad5758_ext_info, \
644 }
645
646 static const struct iio_chan_spec ad5758_voltage_ch[] = {
647 AD5758_DAC_CHAN(IIO_VOLTAGE)
648 };
649
650 static const struct iio_chan_spec ad5758_current_ch[] = {
651 AD5758_DAC_CHAN(IIO_CURRENT)
652 };
653
ad5758_is_valid_mode(enum ad5758_dc_dc_mode mode)654 static bool ad5758_is_valid_mode(enum ad5758_dc_dc_mode mode)
655 {
656 switch (mode) {
657 case AD5758_DCDC_MODE_DPC_CURRENT:
658 case AD5758_DCDC_MODE_DPC_VOLTAGE:
659 case AD5758_DCDC_MODE_PPC_CURRENT:
660 return true;
661 default:
662 return false;
663 }
664 }
665
ad5758_crc_disable(struct ad5758_state * st)666 static int ad5758_crc_disable(struct ad5758_state *st)
667 {
668 unsigned int mask;
669
670 mask = (AD5758_WR_FLAG_MSK(AD5758_DIGITAL_DIAG_CONFIG) << 24) | 0x5C3A;
671 st->d32[0] = cpu_to_be32(mask);
672
673 return spi_write(st->spi, &st->d32[0], 4);
674 }
675
ad5758_find_out_range(struct ad5758_state * st,const struct ad5758_range * range,unsigned int size,int min,int max)676 static int ad5758_find_out_range(struct ad5758_state *st,
677 const struct ad5758_range *range,
678 unsigned int size,
679 int min, int max)
680 {
681 int i;
682
683 for (i = 0; i < size; i++) {
684 if ((min == range[i].min) && (max == range[i].max)) {
685 st->out_range.reg = range[i].reg;
686 st->out_range.min = range[i].min;
687 st->out_range.max = range[i].max;
688
689 return 0;
690 }
691 }
692
693 return -EINVAL;
694 }
695
ad5758_parse_dt(struct ad5758_state * st)696 static int ad5758_parse_dt(struct ad5758_state *st)
697 {
698 unsigned int tmp, tmparray[2], size;
699 const struct ad5758_range *range;
700 int *index, ret;
701
702 st->dc_dc_ilim = 0;
703 ret = device_property_read_u32(&st->spi->dev,
704 "adi,dc-dc-ilim-microamp", &tmp);
705 if (ret) {
706 dev_dbg(&st->spi->dev,
707 "Missing \"dc-dc-ilim-microamp\" property\n");
708 } else {
709 index = bsearch(&tmp, ad5758_dc_dc_ilim,
710 ARRAY_SIZE(ad5758_dc_dc_ilim),
711 sizeof(int), cmpfunc);
712 if (!index)
713 dev_dbg(&st->spi->dev, "dc-dc-ilim out of range\n");
714 else
715 st->dc_dc_ilim = index - ad5758_dc_dc_ilim;
716 }
717
718 ret = device_property_read_u32(&st->spi->dev, "adi,dc-dc-mode",
719 &st->dc_dc_mode);
720 if (ret) {
721 dev_err(&st->spi->dev, "Missing \"dc-dc-mode\" property\n");
722 return ret;
723 }
724
725 if (!ad5758_is_valid_mode(st->dc_dc_mode))
726 return -EINVAL;
727
728 if (st->dc_dc_mode == AD5758_DCDC_MODE_DPC_VOLTAGE) {
729 ret = device_property_read_u32_array(&st->spi->dev,
730 "adi,range-microvolt",
731 tmparray, 2);
732 if (ret) {
733 dev_err(&st->spi->dev,
734 "Missing \"range-microvolt\" property\n");
735 return ret;
736 }
737 range = ad5758_voltage_range;
738 size = ARRAY_SIZE(ad5758_voltage_range);
739 } else {
740 ret = device_property_read_u32_array(&st->spi->dev,
741 "adi,range-microamp",
742 tmparray, 2);
743 if (ret) {
744 dev_err(&st->spi->dev,
745 "Missing \"range-microamp\" property\n");
746 return ret;
747 }
748 range = ad5758_current_range;
749 size = ARRAY_SIZE(ad5758_current_range);
750 }
751
752 ret = ad5758_find_out_range(st, range, size, tmparray[0], tmparray[1]);
753 if (ret) {
754 dev_err(&st->spi->dev, "range invalid\n");
755 return ret;
756 }
757
758 ret = device_property_read_u32(&st->spi->dev, "adi,slew-time-us", &tmp);
759 if (ret) {
760 dev_dbg(&st->spi->dev, "Missing \"slew-time-us\" property\n");
761 st->slew_time = 0;
762 } else {
763 st->slew_time = tmp;
764 }
765
766 return 0;
767 }
768
ad5758_init(struct ad5758_state * st)769 static int ad5758_init(struct ad5758_state *st)
770 {
771 int regval, ret;
772
773 st->gpio_reset = devm_gpiod_get_optional(&st->spi->dev, "reset",
774 GPIOD_OUT_HIGH);
775 if (IS_ERR(st->gpio_reset))
776 return PTR_ERR(st->gpio_reset);
777
778 /* Disable CRC checks */
779 ret = ad5758_crc_disable(st);
780 if (ret < 0)
781 return ret;
782
783 /* Perform a reset */
784 ret = ad5758_reset(st);
785 if (ret < 0)
786 return ret;
787
788 /* Disable CRC checks */
789 ret = ad5758_crc_disable(st);
790 if (ret < 0)
791 return ret;
792
793 /* Perform a calibration memory refresh */
794 ret = ad5758_calib_mem_refresh(st);
795 if (ret < 0)
796 return ret;
797
798 regval = ad5758_spi_reg_read(st, AD5758_DIGITAL_DIAG_RESULTS);
799 if (regval < 0)
800 return regval;
801
802 /* Clear all the error flags */
803 ret = ad5758_spi_reg_write(st, AD5758_DIGITAL_DIAG_RESULTS, regval);
804 if (ret < 0)
805 return ret;
806
807 /* Set the dc-to-dc current limit */
808 ret = ad5758_set_dc_dc_ilim(st, st->dc_dc_ilim);
809 if (ret < 0)
810 return ret;
811
812 /* Configure the dc-to-dc controller mode */
813 ret = ad5758_set_dc_dc_conv_mode(st, st->dc_dc_mode);
814 if (ret < 0)
815 return ret;
816
817 /* Configure the output range */
818 ret = ad5758_set_out_range(st, st->out_range.reg);
819 if (ret < 0)
820 return ret;
821
822 /* Enable Slew Rate Control, set the slew rate clock and step */
823 if (st->slew_time) {
824 ret = ad5758_slew_rate_config(st);
825 if (ret < 0)
826 return ret;
827 }
828
829 /* Power up the DAC and internal (INT) amplifiers */
830 ret = ad5758_internal_buffers_en(st, 1);
831 if (ret < 0)
832 return ret;
833
834 /* Enable VIOUT */
835 return ad5758_spi_write_mask(st, AD5758_DAC_CONFIG,
836 AD5758_DAC_CONFIG_OUT_EN_MSK,
837 AD5758_DAC_CONFIG_OUT_EN_MODE(1));
838 }
839
ad5758_probe(struct spi_device * spi)840 static int ad5758_probe(struct spi_device *spi)
841 {
842 struct ad5758_state *st;
843 struct iio_dev *indio_dev;
844 int ret;
845
846 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
847 if (!indio_dev)
848 return -ENOMEM;
849
850 st = iio_priv(indio_dev);
851 spi_set_drvdata(spi, indio_dev);
852
853 st->spi = spi;
854
855 mutex_init(&st->lock);
856
857 indio_dev->dev.parent = &spi->dev;
858 indio_dev->name = spi_get_device_id(spi)->name;
859 indio_dev->info = &ad5758_info;
860 indio_dev->modes = INDIO_DIRECT_MODE;
861 indio_dev->num_channels = 1;
862
863 ret = ad5758_parse_dt(st);
864 if (ret < 0)
865 return ret;
866
867 if (st->dc_dc_mode == AD5758_DCDC_MODE_DPC_VOLTAGE)
868 indio_dev->channels = ad5758_voltage_ch;
869 else
870 indio_dev->channels = ad5758_current_ch;
871
872 ret = ad5758_init(st);
873 if (ret < 0) {
874 dev_err(&spi->dev, "AD5758 init failed\n");
875 return ret;
876 }
877
878 return devm_iio_device_register(&st->spi->dev, indio_dev);
879 }
880
881 static const struct spi_device_id ad5758_id[] = {
882 { "ad5758", 0 },
883 {}
884 };
885 MODULE_DEVICE_TABLE(spi, ad5758_id);
886
887 static const struct of_device_id ad5758_of_match[] = {
888 { .compatible = "adi,ad5758" },
889 { },
890 };
891 MODULE_DEVICE_TABLE(of, ad5758_of_match);
892
893 static struct spi_driver ad5758_driver = {
894 .driver = {
895 .name = KBUILD_MODNAME,
896 .of_match_table = ad5758_of_match,
897 },
898 .probe = ad5758_probe,
899 .id_table = ad5758_id,
900 };
901
902 module_spi_driver(ad5758_driver);
903
904 MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>");
905 MODULE_DESCRIPTION("Analog Devices AD5758 DAC");
906 MODULE_LICENSE("GPL v2");
907