1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/i2c/busses/i2c-tegra.c
4 *
5 * Copyright (C) 2010 Google, Inc.
6 * Author: Colin Cross <ccross@android.com>
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/i2c.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/iopoll.h>
21 #include <linux/irq.h>
22 #include <linux/kernel.h>
23 #include <linux/ktime.h>
24 #include <linux/module.h>
25 #include <linux/of_device.h>
26 #include <linux/pinctrl/consumer.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/reset.h>
30
31 #define BYTES_PER_FIFO_WORD 4
32
33 #define I2C_CNFG 0x000
34 #define I2C_CNFG_DEBOUNCE_CNT GENMASK(14, 12)
35 #define I2C_CNFG_PACKET_MODE_EN BIT(10)
36 #define I2C_CNFG_NEW_MASTER_FSM BIT(11)
37 #define I2C_CNFG_MULTI_MASTER_MODE BIT(17)
38 #define I2C_STATUS 0x01c
39 #define I2C_SL_CNFG 0x020
40 #define I2C_SL_CNFG_NACK BIT(1)
41 #define I2C_SL_CNFG_NEWSL BIT(2)
42 #define I2C_SL_ADDR1 0x02c
43 #define I2C_SL_ADDR2 0x030
44 #define I2C_TLOW_SEXT 0x034
45 #define I2C_TX_FIFO 0x050
46 #define I2C_RX_FIFO 0x054
47 #define I2C_PACKET_TRANSFER_STATUS 0x058
48 #define I2C_FIFO_CONTROL 0x05c
49 #define I2C_FIFO_CONTROL_TX_FLUSH BIT(1)
50 #define I2C_FIFO_CONTROL_RX_FLUSH BIT(0)
51 #define I2C_FIFO_CONTROL_TX_TRIG(x) (((x) - 1) << 5)
52 #define I2C_FIFO_CONTROL_RX_TRIG(x) (((x) - 1) << 2)
53 #define I2C_FIFO_STATUS 0x060
54 #define I2C_FIFO_STATUS_TX GENMASK(7, 4)
55 #define I2C_FIFO_STATUS_RX GENMASK(3, 0)
56 #define I2C_INT_MASK 0x064
57 #define I2C_INT_STATUS 0x068
58 #define I2C_INT_BUS_CLR_DONE BIT(11)
59 #define I2C_INT_PACKET_XFER_COMPLETE BIT(7)
60 #define I2C_INT_NO_ACK BIT(3)
61 #define I2C_INT_ARBITRATION_LOST BIT(2)
62 #define I2C_INT_TX_FIFO_DATA_REQ BIT(1)
63 #define I2C_INT_RX_FIFO_DATA_REQ BIT(0)
64 #define I2C_CLK_DIVISOR 0x06c
65 #define I2C_CLK_DIVISOR_STD_FAST_MODE GENMASK(31, 16)
66 #define I2C_CLK_DIVISOR_HSMODE GENMASK(15, 0)
67
68 #define DVC_CTRL_REG1 0x000
69 #define DVC_CTRL_REG1_INTR_EN BIT(10)
70 #define DVC_CTRL_REG3 0x008
71 #define DVC_CTRL_REG3_SW_PROG BIT(26)
72 #define DVC_CTRL_REG3_I2C_DONE_INTR_EN BIT(30)
73 #define DVC_STATUS 0x00c
74 #define DVC_STATUS_I2C_DONE_INTR BIT(30)
75
76 #define I2C_ERR_NONE 0x00
77 #define I2C_ERR_NO_ACK BIT(0)
78 #define I2C_ERR_ARBITRATION_LOST BIT(1)
79 #define I2C_ERR_UNKNOWN_INTERRUPT BIT(2)
80 #define I2C_ERR_RX_BUFFER_OVERFLOW BIT(3)
81
82 #define PACKET_HEADER0_HEADER_SIZE GENMASK(29, 28)
83 #define PACKET_HEADER0_PACKET_ID GENMASK(23, 16)
84 #define PACKET_HEADER0_CONT_ID GENMASK(15, 12)
85 #define PACKET_HEADER0_PROTOCOL GENMASK(7, 4)
86 #define PACKET_HEADER0_PROTOCOL_I2C 1
87
88 #define I2C_HEADER_CONT_ON_NAK BIT(21)
89 #define I2C_HEADER_READ BIT(19)
90 #define I2C_HEADER_10BIT_ADDR BIT(18)
91 #define I2C_HEADER_IE_ENABLE BIT(17)
92 #define I2C_HEADER_REPEAT_START BIT(16)
93 #define I2C_HEADER_CONTINUE_XFER BIT(15)
94 #define I2C_HEADER_SLAVE_ADDR_SHIFT 1
95
96 #define I2C_BUS_CLEAR_CNFG 0x084
97 #define I2C_BC_SCLK_THRESHOLD GENMASK(23, 16)
98 #define I2C_BC_STOP_COND BIT(2)
99 #define I2C_BC_TERMINATE BIT(1)
100 #define I2C_BC_ENABLE BIT(0)
101 #define I2C_BUS_CLEAR_STATUS 0x088
102 #define I2C_BC_STATUS BIT(0)
103
104 #define I2C_CONFIG_LOAD 0x08c
105 #define I2C_MSTR_CONFIG_LOAD BIT(0)
106
107 #define I2C_CLKEN_OVERRIDE 0x090
108 #define I2C_MST_CORE_CLKEN_OVR BIT(0)
109
110 #define I2C_INTERFACE_TIMING_0 0x094
111 #define I2C_INTERFACE_TIMING_THIGH GENMASK(13, 8)
112 #define I2C_INTERFACE_TIMING_TLOW GENMASK(5, 0)
113 #define I2C_INTERFACE_TIMING_1 0x098
114 #define I2C_INTERFACE_TIMING_TBUF GENMASK(29, 24)
115 #define I2C_INTERFACE_TIMING_TSU_STO GENMASK(21, 16)
116 #define I2C_INTERFACE_TIMING_THD_STA GENMASK(13, 8)
117 #define I2C_INTERFACE_TIMING_TSU_STA GENMASK(5, 0)
118
119 #define I2C_HS_INTERFACE_TIMING_0 0x09c
120 #define I2C_HS_INTERFACE_TIMING_THIGH GENMASK(13, 8)
121 #define I2C_HS_INTERFACE_TIMING_TLOW GENMASK(5, 0)
122 #define I2C_HS_INTERFACE_TIMING_1 0x0a0
123 #define I2C_HS_INTERFACE_TIMING_TSU_STO GENMASK(21, 16)
124 #define I2C_HS_INTERFACE_TIMING_THD_STA GENMASK(13, 8)
125 #define I2C_HS_INTERFACE_TIMING_TSU_STA GENMASK(5, 0)
126
127 #define I2C_MST_FIFO_CONTROL 0x0b4
128 #define I2C_MST_FIFO_CONTROL_RX_FLUSH BIT(0)
129 #define I2C_MST_FIFO_CONTROL_TX_FLUSH BIT(1)
130 #define I2C_MST_FIFO_CONTROL_RX_TRIG(x) (((x) - 1) << 4)
131 #define I2C_MST_FIFO_CONTROL_TX_TRIG(x) (((x) - 1) << 16)
132
133 #define I2C_MST_FIFO_STATUS 0x0b8
134 #define I2C_MST_FIFO_STATUS_TX GENMASK(23, 16)
135 #define I2C_MST_FIFO_STATUS_RX GENMASK(7, 0)
136
137 /* configuration load timeout in microseconds */
138 #define I2C_CONFIG_LOAD_TIMEOUT 1000000
139
140 /* packet header size in bytes */
141 #define I2C_PACKET_HEADER_SIZE 12
142
143 /*
144 * I2C Controller will use PIO mode for transfers up to 32 bytes in order to
145 * avoid DMA overhead, otherwise external APB DMA controller will be used.
146 * Note that the actual MAX PIO length is 20 bytes because 32 bytes include
147 * I2C_PACKET_HEADER_SIZE.
148 */
149 #define I2C_PIO_MODE_PREFERRED_LEN 32
150
151 /*
152 * msg_end_type: The bus control which needs to be sent at end of transfer.
153 * @MSG_END_STOP: Send stop pulse.
154 * @MSG_END_REPEAT_START: Send repeat-start.
155 * @MSG_END_CONTINUE: Don't send stop or repeat-start.
156 */
157 enum msg_end_type {
158 MSG_END_STOP,
159 MSG_END_REPEAT_START,
160 MSG_END_CONTINUE,
161 };
162
163 /**
164 * struct tegra_i2c_hw_feature : per hardware generation features
165 * @has_continue_xfer_support: continue-transfer supported
166 * @has_per_pkt_xfer_complete_irq: Has enable/disable capability for transfer
167 * completion interrupt on per packet basis.
168 * @has_config_load_reg: Has the config load register to load the new
169 * configuration.
170 * @clk_divisor_hs_mode: Clock divisor in HS mode.
171 * @clk_divisor_std_mode: Clock divisor in standard mode. It is
172 * applicable if there is no fast clock source i.e. single clock
173 * source.
174 * @clk_divisor_fast_mode: Clock divisor in fast mode. It is
175 * applicable if there is no fast clock source i.e. single clock
176 * source.
177 * @clk_divisor_fast_plus_mode: Clock divisor in fast mode plus. It is
178 * applicable if there is no fast clock source (i.e. single
179 * clock source).
180 * @has_multi_master_mode: The I2C controller supports running in single-master
181 * or multi-master mode.
182 * @has_slcg_override_reg: The I2C controller supports a register that
183 * overrides the second level clock gating.
184 * @has_mst_fifo: The I2C controller contains the new MST FIFO interface that
185 * provides additional features and allows for longer messages to
186 * be transferred in one go.
187 * @quirks: I2C adapter quirks for limiting write/read transfer size and not
188 * allowing 0 length transfers.
189 * @supports_bus_clear: Bus Clear support to recover from bus hang during
190 * SDA stuck low from device for some unknown reasons.
191 * @has_apb_dma: Support of APBDMA on corresponding Tegra chip.
192 * @tlow_std_mode: Low period of the clock in standard mode.
193 * @thigh_std_mode: High period of the clock in standard mode.
194 * @tlow_fast_fastplus_mode: Low period of the clock in fast/fast-plus modes.
195 * @thigh_fast_fastplus_mode: High period of the clock in fast/fast-plus modes.
196 * @setup_hold_time_std_mode: Setup and hold time for start and stop conditions
197 * in standard mode.
198 * @setup_hold_time_fast_fast_plus_mode: Setup and hold time for start and stop
199 * conditions in fast/fast-plus modes.
200 * @setup_hold_time_hs_mode: Setup and hold time for start and stop conditions
201 * in HS mode.
202 * @has_interface_timing_reg: Has interface timing register to program the tuned
203 * timing settings.
204 */
205 struct tegra_i2c_hw_feature {
206 bool has_continue_xfer_support;
207 bool has_per_pkt_xfer_complete_irq;
208 bool has_config_load_reg;
209 u32 clk_divisor_hs_mode;
210 u32 clk_divisor_std_mode;
211 u32 clk_divisor_fast_mode;
212 u32 clk_divisor_fast_plus_mode;
213 bool has_multi_master_mode;
214 bool has_slcg_override_reg;
215 bool has_mst_fifo;
216 const struct i2c_adapter_quirks *quirks;
217 bool supports_bus_clear;
218 bool has_apb_dma;
219 u32 tlow_std_mode;
220 u32 thigh_std_mode;
221 u32 tlow_fast_fastplus_mode;
222 u32 thigh_fast_fastplus_mode;
223 u32 setup_hold_time_std_mode;
224 u32 setup_hold_time_fast_fast_plus_mode;
225 u32 setup_hold_time_hs_mode;
226 bool has_interface_timing_reg;
227 };
228
229 /**
230 * struct tegra_i2c_dev - per device I2C context
231 * @dev: device reference for power management
232 * @hw: Tegra I2C HW feature
233 * @adapter: core I2C layer adapter information
234 * @div_clk: clock reference for div clock of I2C controller
235 * @clocks: array of I2C controller clocks
236 * @nclocks: number of clocks in the array
237 * @rst: reset control for the I2C controller
238 * @base: ioremapped registers cookie
239 * @base_phys: physical base address of the I2C controller
240 * @cont_id: I2C controller ID, used for packet header
241 * @irq: IRQ number of transfer complete interrupt
242 * @is_dvc: identifies the DVC I2C controller, has a different register layout
243 * @is_vi: identifies the VI I2C controller, has a different register layout
244 * @msg_complete: transfer completion notifier
245 * @msg_err: error code for completed message
246 * @msg_buf: pointer to current message data
247 * @msg_buf_remaining: size of unsent data in the message buffer
248 * @msg_read: indicates that the transfer is a read access
249 * @timings: i2c timings information like bus frequency
250 * @multimaster_mode: indicates that I2C controller is in multi-master mode
251 * @tx_dma_chan: DMA transmit channel
252 * @rx_dma_chan: DMA receive channel
253 * @dma_phys: handle to DMA resources
254 * @dma_buf: pointer to allocated DMA buffer
255 * @dma_buf_size: DMA buffer size
256 * @dma_mode: indicates active DMA transfer
257 * @dma_complete: DMA completion notifier
258 * @atomic_mode: indicates active atomic transfer
259 */
260 struct tegra_i2c_dev {
261 struct device *dev;
262 struct i2c_adapter adapter;
263
264 const struct tegra_i2c_hw_feature *hw;
265 struct reset_control *rst;
266 unsigned int cont_id;
267 unsigned int irq;
268
269 phys_addr_t base_phys;
270 void __iomem *base;
271
272 struct clk_bulk_data clocks[2];
273 unsigned int nclocks;
274
275 struct clk *div_clk;
276 struct i2c_timings timings;
277
278 struct completion msg_complete;
279 size_t msg_buf_remaining;
280 int msg_err;
281 u8 *msg_buf;
282
283 struct completion dma_complete;
284 struct dma_chan *tx_dma_chan;
285 struct dma_chan *rx_dma_chan;
286 unsigned int dma_buf_size;
287 struct device *dma_dev;
288 dma_addr_t dma_phys;
289 void *dma_buf;
290
291 bool multimaster_mode;
292 bool atomic_mode;
293 bool dma_mode;
294 bool msg_read;
295 bool is_dvc;
296 bool is_vi;
297 };
298
dvc_writel(struct tegra_i2c_dev * i2c_dev,u32 val,unsigned int reg)299 static void dvc_writel(struct tegra_i2c_dev *i2c_dev, u32 val,
300 unsigned int reg)
301 {
302 writel_relaxed(val, i2c_dev->base + reg);
303 }
304
dvc_readl(struct tegra_i2c_dev * i2c_dev,unsigned int reg)305 static u32 dvc_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
306 {
307 return readl_relaxed(i2c_dev->base + reg);
308 }
309
310 /*
311 * If necessary, i2c_writel() and i2c_readl() will offset the register
312 * in order to talk to the I2C block inside the DVC block.
313 */
tegra_i2c_reg_addr(struct tegra_i2c_dev * i2c_dev,unsigned int reg)314 static u32 tegra_i2c_reg_addr(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
315 {
316 if (i2c_dev->is_dvc)
317 reg += (reg >= I2C_TX_FIFO) ? 0x10 : 0x40;
318 else if (i2c_dev->is_vi)
319 reg = 0xc00 + (reg << 2);
320
321 return reg;
322 }
323
i2c_writel(struct tegra_i2c_dev * i2c_dev,u32 val,unsigned int reg)324 static void i2c_writel(struct tegra_i2c_dev *i2c_dev, u32 val, unsigned int reg)
325 {
326 writel_relaxed(val, i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
327
328 /* read back register to make sure that register writes completed */
329 if (reg != I2C_TX_FIFO)
330 readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
331 else if (i2c_dev->is_vi)
332 readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, I2C_INT_STATUS));
333 }
334
i2c_readl(struct tegra_i2c_dev * i2c_dev,unsigned int reg)335 static u32 i2c_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
336 {
337 return readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
338 }
339
i2c_writesl(struct tegra_i2c_dev * i2c_dev,void * data,unsigned int reg,unsigned int len)340 static void i2c_writesl(struct tegra_i2c_dev *i2c_dev, void *data,
341 unsigned int reg, unsigned int len)
342 {
343 writesl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
344 }
345
i2c_writesl_vi(struct tegra_i2c_dev * i2c_dev,void * data,unsigned int reg,unsigned int len)346 static void i2c_writesl_vi(struct tegra_i2c_dev *i2c_dev, void *data,
347 unsigned int reg, unsigned int len)
348 {
349 u32 *data32 = data;
350
351 /*
352 * VI I2C controller has known hardware bug where writes get stuck
353 * when immediate multiple writes happen to TX_FIFO register.
354 * Recommended software work around is to read I2C register after
355 * each write to TX_FIFO register to flush out the data.
356 */
357 while (len--)
358 i2c_writel(i2c_dev, *data32++, reg);
359 }
360
i2c_readsl(struct tegra_i2c_dev * i2c_dev,void * data,unsigned int reg,unsigned int len)361 static void i2c_readsl(struct tegra_i2c_dev *i2c_dev, void *data,
362 unsigned int reg, unsigned int len)
363 {
364 readsl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
365 }
366
tegra_i2c_mask_irq(struct tegra_i2c_dev * i2c_dev,u32 mask)367 static void tegra_i2c_mask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
368 {
369 u32 int_mask;
370
371 int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) & ~mask;
372 i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
373 }
374
tegra_i2c_unmask_irq(struct tegra_i2c_dev * i2c_dev,u32 mask)375 static void tegra_i2c_unmask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
376 {
377 u32 int_mask;
378
379 int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) | mask;
380 i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
381 }
382
tegra_i2c_dma_complete(void * args)383 static void tegra_i2c_dma_complete(void *args)
384 {
385 struct tegra_i2c_dev *i2c_dev = args;
386
387 complete(&i2c_dev->dma_complete);
388 }
389
tegra_i2c_dma_submit(struct tegra_i2c_dev * i2c_dev,size_t len)390 static int tegra_i2c_dma_submit(struct tegra_i2c_dev *i2c_dev, size_t len)
391 {
392 struct dma_async_tx_descriptor *dma_desc;
393 enum dma_transfer_direction dir;
394 struct dma_chan *chan;
395
396 dev_dbg(i2c_dev->dev, "starting DMA for length: %zu\n", len);
397
398 reinit_completion(&i2c_dev->dma_complete);
399
400 dir = i2c_dev->msg_read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
401 chan = i2c_dev->msg_read ? i2c_dev->rx_dma_chan : i2c_dev->tx_dma_chan;
402
403 dma_desc = dmaengine_prep_slave_single(chan, i2c_dev->dma_phys,
404 len, dir, DMA_PREP_INTERRUPT |
405 DMA_CTRL_ACK);
406 if (!dma_desc) {
407 dev_err(i2c_dev->dev, "failed to get %s DMA descriptor\n",
408 i2c_dev->msg_read ? "RX" : "TX");
409 return -EINVAL;
410 }
411
412 dma_desc->callback = tegra_i2c_dma_complete;
413 dma_desc->callback_param = i2c_dev;
414
415 dmaengine_submit(dma_desc);
416 dma_async_issue_pending(chan);
417
418 return 0;
419 }
420
tegra_i2c_release_dma(struct tegra_i2c_dev * i2c_dev)421 static void tegra_i2c_release_dma(struct tegra_i2c_dev *i2c_dev)
422 {
423 if (i2c_dev->dma_buf) {
424 dma_free_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
425 i2c_dev->dma_buf, i2c_dev->dma_phys);
426 i2c_dev->dma_buf = NULL;
427 }
428
429 if (i2c_dev->tx_dma_chan) {
430 dma_release_channel(i2c_dev->tx_dma_chan);
431 i2c_dev->tx_dma_chan = NULL;
432 }
433
434 if (i2c_dev->rx_dma_chan) {
435 dma_release_channel(i2c_dev->rx_dma_chan);
436 i2c_dev->rx_dma_chan = NULL;
437 }
438 }
439
tegra_i2c_init_dma(struct tegra_i2c_dev * i2c_dev)440 static int tegra_i2c_init_dma(struct tegra_i2c_dev *i2c_dev)
441 {
442 struct dma_chan *chan;
443 dma_addr_t dma_phys;
444 u32 *dma_buf;
445 int err;
446
447 if (i2c_dev->is_vi)
448 return 0;
449
450 if (!i2c_dev->hw->has_apb_dma) {
451 if (!IS_ENABLED(CONFIG_TEGRA20_APB_DMA)) {
452 dev_dbg(i2c_dev->dev, "APB DMA support not enabled\n");
453 return 0;
454 }
455 } else if (!IS_ENABLED(CONFIG_TEGRA186_GPC_DMA)) {
456 dev_dbg(i2c_dev->dev, "GPC DMA support not enabled\n");
457 return 0;
458 }
459
460 chan = dma_request_chan(i2c_dev->dev, "rx");
461 if (IS_ERR(chan)) {
462 err = PTR_ERR(chan);
463 goto err_out;
464 }
465
466 i2c_dev->rx_dma_chan = chan;
467
468 chan = dma_request_chan(i2c_dev->dev, "tx");
469 if (IS_ERR(chan)) {
470 err = PTR_ERR(chan);
471 goto err_out;
472 }
473
474 i2c_dev->tx_dma_chan = chan;
475
476 WARN_ON(i2c_dev->tx_dma_chan->device != i2c_dev->rx_dma_chan->device);
477 i2c_dev->dma_dev = chan->device->dev;
478
479 i2c_dev->dma_buf_size = i2c_dev->hw->quirks->max_write_len +
480 I2C_PACKET_HEADER_SIZE;
481
482 dma_buf = dma_alloc_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
483 &dma_phys, GFP_KERNEL | __GFP_NOWARN);
484 if (!dma_buf) {
485 dev_err(i2c_dev->dev, "failed to allocate DMA buffer\n");
486 err = -ENOMEM;
487 goto err_out;
488 }
489
490 i2c_dev->dma_buf = dma_buf;
491 i2c_dev->dma_phys = dma_phys;
492
493 return 0;
494
495 err_out:
496 tegra_i2c_release_dma(i2c_dev);
497 if (err != -EPROBE_DEFER) {
498 dev_err(i2c_dev->dev, "cannot use DMA: %d\n", err);
499 dev_err(i2c_dev->dev, "falling back to PIO\n");
500 return 0;
501 }
502
503 return err;
504 }
505
506 /*
507 * One of the Tegra I2C blocks is inside the DVC (Digital Voltage Controller)
508 * block. This block is identical to the rest of the I2C blocks, except that
509 * it only supports master mode, it has registers moved around, and it needs
510 * some extra init to get it into I2C mode. The register moves are handled
511 * by i2c_readl() and i2c_writel().
512 */
tegra_dvc_init(struct tegra_i2c_dev * i2c_dev)513 static void tegra_dvc_init(struct tegra_i2c_dev *i2c_dev)
514 {
515 u32 val;
516
517 val = dvc_readl(i2c_dev, DVC_CTRL_REG3);
518 val |= DVC_CTRL_REG3_SW_PROG;
519 val |= DVC_CTRL_REG3_I2C_DONE_INTR_EN;
520 dvc_writel(i2c_dev, val, DVC_CTRL_REG3);
521
522 val = dvc_readl(i2c_dev, DVC_CTRL_REG1);
523 val |= DVC_CTRL_REG1_INTR_EN;
524 dvc_writel(i2c_dev, val, DVC_CTRL_REG1);
525 }
526
tegra_i2c_vi_init(struct tegra_i2c_dev * i2c_dev)527 static void tegra_i2c_vi_init(struct tegra_i2c_dev *i2c_dev)
528 {
529 u32 value;
530
531 value = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, 2) |
532 FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, 4);
533 i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_0);
534
535 value = FIELD_PREP(I2C_INTERFACE_TIMING_TBUF, 4) |
536 FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STO, 7) |
537 FIELD_PREP(I2C_INTERFACE_TIMING_THD_STA, 4) |
538 FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STA, 4);
539 i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_1);
540
541 value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_THIGH, 3) |
542 FIELD_PREP(I2C_HS_INTERFACE_TIMING_TLOW, 8);
543 i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_0);
544
545 value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STO, 11) |
546 FIELD_PREP(I2C_HS_INTERFACE_TIMING_THD_STA, 11) |
547 FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STA, 11);
548 i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_1);
549
550 value = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND;
551 i2c_writel(i2c_dev, value, I2C_BUS_CLEAR_CNFG);
552
553 i2c_writel(i2c_dev, 0x0, I2C_TLOW_SEXT);
554 }
555
tegra_i2c_poll_register(struct tegra_i2c_dev * i2c_dev,u32 reg,u32 mask,u32 delay_us,u32 timeout_us)556 static int tegra_i2c_poll_register(struct tegra_i2c_dev *i2c_dev,
557 u32 reg, u32 mask, u32 delay_us,
558 u32 timeout_us)
559 {
560 void __iomem *addr = i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg);
561 u32 val;
562
563 if (!i2c_dev->atomic_mode)
564 return readl_relaxed_poll_timeout(addr, val, !(val & mask),
565 delay_us, timeout_us);
566
567 return readl_relaxed_poll_timeout_atomic(addr, val, !(val & mask),
568 delay_us, timeout_us);
569 }
570
tegra_i2c_flush_fifos(struct tegra_i2c_dev * i2c_dev)571 static int tegra_i2c_flush_fifos(struct tegra_i2c_dev *i2c_dev)
572 {
573 u32 mask, val, offset;
574 int err;
575
576 if (i2c_dev->hw->has_mst_fifo) {
577 mask = I2C_MST_FIFO_CONTROL_TX_FLUSH |
578 I2C_MST_FIFO_CONTROL_RX_FLUSH;
579 offset = I2C_MST_FIFO_CONTROL;
580 } else {
581 mask = I2C_FIFO_CONTROL_TX_FLUSH |
582 I2C_FIFO_CONTROL_RX_FLUSH;
583 offset = I2C_FIFO_CONTROL;
584 }
585
586 val = i2c_readl(i2c_dev, offset);
587 val |= mask;
588 i2c_writel(i2c_dev, val, offset);
589
590 err = tegra_i2c_poll_register(i2c_dev, offset, mask, 1000, 1000000);
591 if (err) {
592 dev_err(i2c_dev->dev, "failed to flush FIFO\n");
593 return err;
594 }
595
596 return 0;
597 }
598
tegra_i2c_wait_for_config_load(struct tegra_i2c_dev * i2c_dev)599 static int tegra_i2c_wait_for_config_load(struct tegra_i2c_dev *i2c_dev)
600 {
601 int err;
602
603 if (!i2c_dev->hw->has_config_load_reg)
604 return 0;
605
606 i2c_writel(i2c_dev, I2C_MSTR_CONFIG_LOAD, I2C_CONFIG_LOAD);
607
608 err = tegra_i2c_poll_register(i2c_dev, I2C_CONFIG_LOAD, 0xffffffff,
609 1000, I2C_CONFIG_LOAD_TIMEOUT);
610 if (err) {
611 dev_err(i2c_dev->dev, "failed to load config\n");
612 return err;
613 }
614
615 return 0;
616 }
617
tegra_i2c_init(struct tegra_i2c_dev * i2c_dev)618 static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev)
619 {
620 u32 val, clk_divisor, clk_multiplier, tsu_thd, tlow, thigh, non_hs_mode;
621 acpi_handle handle = ACPI_HANDLE(i2c_dev->dev);
622 struct i2c_timings *t = &i2c_dev->timings;
623 int err;
624
625 /*
626 * The reset shouldn't ever fail in practice. The failure will be a
627 * sign of a severe problem that needs to be resolved. Still we don't
628 * want to fail the initialization completely because this may break
629 * kernel boot up since voltage regulators use I2C. Hence, we will
630 * emit a noisy warning on error, which won't stay unnoticed and
631 * won't hose machine entirely.
632 */
633 if (handle)
634 err = acpi_evaluate_object(handle, "_RST", NULL, NULL);
635 else
636 err = reset_control_reset(i2c_dev->rst);
637
638 WARN_ON_ONCE(err);
639
640 if (i2c_dev->is_dvc)
641 tegra_dvc_init(i2c_dev);
642
643 val = I2C_CNFG_NEW_MASTER_FSM | I2C_CNFG_PACKET_MODE_EN |
644 FIELD_PREP(I2C_CNFG_DEBOUNCE_CNT, 2);
645
646 if (i2c_dev->hw->has_multi_master_mode)
647 val |= I2C_CNFG_MULTI_MASTER_MODE;
648
649 i2c_writel(i2c_dev, val, I2C_CNFG);
650 i2c_writel(i2c_dev, 0, I2C_INT_MASK);
651
652 if (i2c_dev->is_vi)
653 tegra_i2c_vi_init(i2c_dev);
654
655 switch (t->bus_freq_hz) {
656 case I2C_MAX_STANDARD_MODE_FREQ + 1 ... I2C_MAX_FAST_MODE_PLUS_FREQ:
657 default:
658 tlow = i2c_dev->hw->tlow_fast_fastplus_mode;
659 thigh = i2c_dev->hw->thigh_fast_fastplus_mode;
660 tsu_thd = i2c_dev->hw->setup_hold_time_fast_fast_plus_mode;
661
662 if (t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ)
663 non_hs_mode = i2c_dev->hw->clk_divisor_fast_plus_mode;
664 else
665 non_hs_mode = i2c_dev->hw->clk_divisor_fast_mode;
666 break;
667
668 case 0 ... I2C_MAX_STANDARD_MODE_FREQ:
669 tlow = i2c_dev->hw->tlow_std_mode;
670 thigh = i2c_dev->hw->thigh_std_mode;
671 tsu_thd = i2c_dev->hw->setup_hold_time_std_mode;
672 non_hs_mode = i2c_dev->hw->clk_divisor_std_mode;
673 break;
674 }
675
676 /* make sure clock divisor programmed correctly */
677 clk_divisor = FIELD_PREP(I2C_CLK_DIVISOR_HSMODE,
678 i2c_dev->hw->clk_divisor_hs_mode) |
679 FIELD_PREP(I2C_CLK_DIVISOR_STD_FAST_MODE, non_hs_mode);
680 i2c_writel(i2c_dev, clk_divisor, I2C_CLK_DIVISOR);
681
682 if (i2c_dev->hw->has_interface_timing_reg) {
683 val = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, thigh) |
684 FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, tlow);
685 i2c_writel(i2c_dev, val, I2C_INTERFACE_TIMING_0);
686 }
687
688 /*
689 * Configure setup and hold times only when tsu_thd is non-zero.
690 * Otherwise, preserve the chip default values.
691 */
692 if (i2c_dev->hw->has_interface_timing_reg && tsu_thd)
693 i2c_writel(i2c_dev, tsu_thd, I2C_INTERFACE_TIMING_1);
694
695 clk_multiplier = (tlow + thigh + 2) * (non_hs_mode + 1);
696
697 err = clk_set_rate(i2c_dev->div_clk,
698 t->bus_freq_hz * clk_multiplier);
699 if (err) {
700 dev_err(i2c_dev->dev, "failed to set div-clk rate: %d\n", err);
701 return err;
702 }
703
704 if (!i2c_dev->is_dvc && !i2c_dev->is_vi) {
705 u32 sl_cfg = i2c_readl(i2c_dev, I2C_SL_CNFG);
706
707 sl_cfg |= I2C_SL_CNFG_NACK | I2C_SL_CNFG_NEWSL;
708 i2c_writel(i2c_dev, sl_cfg, I2C_SL_CNFG);
709 i2c_writel(i2c_dev, 0xfc, I2C_SL_ADDR1);
710 i2c_writel(i2c_dev, 0x00, I2C_SL_ADDR2);
711 }
712
713 err = tegra_i2c_flush_fifos(i2c_dev);
714 if (err)
715 return err;
716
717 if (i2c_dev->multimaster_mode && i2c_dev->hw->has_slcg_override_reg)
718 i2c_writel(i2c_dev, I2C_MST_CORE_CLKEN_OVR, I2C_CLKEN_OVERRIDE);
719
720 err = tegra_i2c_wait_for_config_load(i2c_dev);
721 if (err)
722 return err;
723
724 return 0;
725 }
726
tegra_i2c_disable_packet_mode(struct tegra_i2c_dev * i2c_dev)727 static int tegra_i2c_disable_packet_mode(struct tegra_i2c_dev *i2c_dev)
728 {
729 u32 cnfg;
730
731 /*
732 * NACK interrupt is generated before the I2C controller generates
733 * the STOP condition on the bus. So, wait for 2 clock periods
734 * before disabling the controller so that the STOP condition has
735 * been delivered properly.
736 */
737 udelay(DIV_ROUND_UP(2 * 1000000, i2c_dev->timings.bus_freq_hz));
738
739 cnfg = i2c_readl(i2c_dev, I2C_CNFG);
740 if (cnfg & I2C_CNFG_PACKET_MODE_EN)
741 i2c_writel(i2c_dev, cnfg & ~I2C_CNFG_PACKET_MODE_EN, I2C_CNFG);
742
743 return tegra_i2c_wait_for_config_load(i2c_dev);
744 }
745
tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev * i2c_dev)746 static int tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev *i2c_dev)
747 {
748 size_t buf_remaining = i2c_dev->msg_buf_remaining;
749 unsigned int words_to_transfer, rx_fifo_avail;
750 u8 *buf = i2c_dev->msg_buf;
751 u32 val;
752
753 /*
754 * Catch overflow due to message fully sent before the check for
755 * RX FIFO availability.
756 */
757 if (WARN_ON_ONCE(!(i2c_dev->msg_buf_remaining)))
758 return -EINVAL;
759
760 if (i2c_dev->hw->has_mst_fifo) {
761 val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
762 rx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_RX, val);
763 } else {
764 val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
765 rx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_RX, val);
766 }
767
768 /* round down to exclude partial word at the end of buffer */
769 words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
770 if (words_to_transfer > rx_fifo_avail)
771 words_to_transfer = rx_fifo_avail;
772
773 i2c_readsl(i2c_dev, buf, I2C_RX_FIFO, words_to_transfer);
774
775 buf += words_to_transfer * BYTES_PER_FIFO_WORD;
776 buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
777 rx_fifo_avail -= words_to_transfer;
778
779 /*
780 * If there is a partial word at the end of buffer, handle it
781 * manually to prevent overwriting past the end of buffer.
782 */
783 if (rx_fifo_avail > 0 && buf_remaining > 0) {
784 /*
785 * buf_remaining > 3 check not needed as rx_fifo_avail == 0
786 * when (words_to_transfer was > rx_fifo_avail) earlier
787 * in this function.
788 */
789 val = i2c_readl(i2c_dev, I2C_RX_FIFO);
790 val = cpu_to_le32(val);
791 memcpy(buf, &val, buf_remaining);
792 buf_remaining = 0;
793 rx_fifo_avail--;
794 }
795
796 /* RX FIFO must be drained, otherwise it's an Overflow case. */
797 if (WARN_ON_ONCE(rx_fifo_avail))
798 return -EINVAL;
799
800 i2c_dev->msg_buf_remaining = buf_remaining;
801 i2c_dev->msg_buf = buf;
802
803 return 0;
804 }
805
tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev * i2c_dev)806 static int tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev *i2c_dev)
807 {
808 size_t buf_remaining = i2c_dev->msg_buf_remaining;
809 unsigned int words_to_transfer, tx_fifo_avail;
810 u8 *buf = i2c_dev->msg_buf;
811 u32 val;
812
813 if (i2c_dev->hw->has_mst_fifo) {
814 val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
815 tx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_TX, val);
816 } else {
817 val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
818 tx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_TX, val);
819 }
820
821 /* round down to exclude partial word at the end of buffer */
822 words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
823
824 /*
825 * This hunk pushes 4 bytes at a time into the TX FIFO.
826 *
827 * It's very common to have < 4 bytes, hence there is no word
828 * to push if we have less than 4 bytes to transfer.
829 */
830 if (words_to_transfer) {
831 if (words_to_transfer > tx_fifo_avail)
832 words_to_transfer = tx_fifo_avail;
833
834 /*
835 * Update state before writing to FIFO. Note that this may
836 * cause us to finish writing all bytes (AKA buf_remaining
837 * goes to 0), hence we have a potential for an interrupt
838 * (PACKET_XFER_COMPLETE is not maskable), but GIC interrupt
839 * is disabled at this point.
840 */
841 buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
842 tx_fifo_avail -= words_to_transfer;
843
844 i2c_dev->msg_buf_remaining = buf_remaining;
845 i2c_dev->msg_buf = buf + words_to_transfer * BYTES_PER_FIFO_WORD;
846
847 if (i2c_dev->is_vi)
848 i2c_writesl_vi(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
849 else
850 i2c_writesl(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
851
852 buf += words_to_transfer * BYTES_PER_FIFO_WORD;
853 }
854
855 /*
856 * If there is a partial word at the end of buffer, handle it manually
857 * to prevent reading past the end of buffer, which could cross a page
858 * boundary and fault.
859 */
860 if (tx_fifo_avail > 0 && buf_remaining > 0) {
861 /*
862 * buf_remaining > 3 check not needed as tx_fifo_avail == 0
863 * when (words_to_transfer was > tx_fifo_avail) earlier
864 * in this function for non-zero words_to_transfer.
865 */
866 memcpy(&val, buf, buf_remaining);
867 val = le32_to_cpu(val);
868
869 i2c_dev->msg_buf_remaining = 0;
870 i2c_dev->msg_buf = NULL;
871
872 i2c_writel(i2c_dev, val, I2C_TX_FIFO);
873 }
874
875 return 0;
876 }
877
tegra_i2c_isr(int irq,void * dev_id)878 static irqreturn_t tegra_i2c_isr(int irq, void *dev_id)
879 {
880 const u32 status_err = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
881 struct tegra_i2c_dev *i2c_dev = dev_id;
882 u32 status;
883
884 status = i2c_readl(i2c_dev, I2C_INT_STATUS);
885
886 if (status == 0) {
887 dev_warn(i2c_dev->dev, "IRQ status 0 %08x %08x %08x\n",
888 i2c_readl(i2c_dev, I2C_PACKET_TRANSFER_STATUS),
889 i2c_readl(i2c_dev, I2C_STATUS),
890 i2c_readl(i2c_dev, I2C_CNFG));
891 i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
892 goto err;
893 }
894
895 if (status & status_err) {
896 tegra_i2c_disable_packet_mode(i2c_dev);
897 if (status & I2C_INT_NO_ACK)
898 i2c_dev->msg_err |= I2C_ERR_NO_ACK;
899 if (status & I2C_INT_ARBITRATION_LOST)
900 i2c_dev->msg_err |= I2C_ERR_ARBITRATION_LOST;
901 goto err;
902 }
903
904 /*
905 * I2C transfer is terminated during the bus clear, so skip
906 * processing the other interrupts.
907 */
908 if (i2c_dev->hw->supports_bus_clear && (status & I2C_INT_BUS_CLR_DONE))
909 goto err;
910
911 if (!i2c_dev->dma_mode) {
912 if (i2c_dev->msg_read && (status & I2C_INT_RX_FIFO_DATA_REQ)) {
913 if (tegra_i2c_empty_rx_fifo(i2c_dev)) {
914 /*
915 * Overflow error condition: message fully sent,
916 * with no XFER_COMPLETE interrupt but hardware
917 * asks to transfer more.
918 */
919 i2c_dev->msg_err |= I2C_ERR_RX_BUFFER_OVERFLOW;
920 goto err;
921 }
922 }
923
924 if (!i2c_dev->msg_read && (status & I2C_INT_TX_FIFO_DATA_REQ)) {
925 if (i2c_dev->msg_buf_remaining)
926 tegra_i2c_fill_tx_fifo(i2c_dev);
927 else
928 tegra_i2c_mask_irq(i2c_dev,
929 I2C_INT_TX_FIFO_DATA_REQ);
930 }
931 }
932
933 i2c_writel(i2c_dev, status, I2C_INT_STATUS);
934 if (i2c_dev->is_dvc)
935 dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
936
937 /*
938 * During message read XFER_COMPLETE interrupt is triggered prior to
939 * DMA completion and during message write XFER_COMPLETE interrupt is
940 * triggered after DMA completion.
941 *
942 * PACKETS_XFER_COMPLETE indicates completion of all bytes of transfer,
943 * so forcing msg_buf_remaining to 0 in DMA mode.
944 */
945 if (status & I2C_INT_PACKET_XFER_COMPLETE) {
946 if (i2c_dev->dma_mode)
947 i2c_dev->msg_buf_remaining = 0;
948 /*
949 * Underflow error condition: XFER_COMPLETE before message
950 * fully sent.
951 */
952 if (WARN_ON_ONCE(i2c_dev->msg_buf_remaining)) {
953 i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
954 goto err;
955 }
956 complete(&i2c_dev->msg_complete);
957 }
958 goto done;
959 err:
960 /* mask all interrupts on error */
961 tegra_i2c_mask_irq(i2c_dev,
962 I2C_INT_NO_ACK |
963 I2C_INT_ARBITRATION_LOST |
964 I2C_INT_PACKET_XFER_COMPLETE |
965 I2C_INT_TX_FIFO_DATA_REQ |
966 I2C_INT_RX_FIFO_DATA_REQ);
967
968 if (i2c_dev->hw->supports_bus_clear)
969 tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
970
971 i2c_writel(i2c_dev, status, I2C_INT_STATUS);
972
973 if (i2c_dev->is_dvc)
974 dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
975
976 if (i2c_dev->dma_mode) {
977 if (i2c_dev->msg_read)
978 dmaengine_terminate_async(i2c_dev->rx_dma_chan);
979 else
980 dmaengine_terminate_async(i2c_dev->tx_dma_chan);
981
982 complete(&i2c_dev->dma_complete);
983 }
984
985 complete(&i2c_dev->msg_complete);
986 done:
987 return IRQ_HANDLED;
988 }
989
tegra_i2c_config_fifo_trig(struct tegra_i2c_dev * i2c_dev,size_t len)990 static void tegra_i2c_config_fifo_trig(struct tegra_i2c_dev *i2c_dev,
991 size_t len)
992 {
993 struct dma_slave_config slv_config = {0};
994 u32 val, reg, dma_burst, reg_offset;
995 struct dma_chan *chan;
996 int err;
997
998 if (i2c_dev->hw->has_mst_fifo)
999 reg = I2C_MST_FIFO_CONTROL;
1000 else
1001 reg = I2C_FIFO_CONTROL;
1002
1003 if (i2c_dev->dma_mode) {
1004 if (len & 0xF)
1005 dma_burst = 1;
1006 else if (len & 0x10)
1007 dma_burst = 4;
1008 else
1009 dma_burst = 8;
1010
1011 if (i2c_dev->msg_read) {
1012 chan = i2c_dev->rx_dma_chan;
1013 reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_RX_FIFO);
1014
1015 slv_config.src_addr = i2c_dev->base_phys + reg_offset;
1016 slv_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1017 slv_config.src_maxburst = dma_burst;
1018
1019 if (i2c_dev->hw->has_mst_fifo)
1020 val = I2C_MST_FIFO_CONTROL_RX_TRIG(dma_burst);
1021 else
1022 val = I2C_FIFO_CONTROL_RX_TRIG(dma_burst);
1023 } else {
1024 chan = i2c_dev->tx_dma_chan;
1025 reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_TX_FIFO);
1026
1027 slv_config.dst_addr = i2c_dev->base_phys + reg_offset;
1028 slv_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1029 slv_config.dst_maxburst = dma_burst;
1030
1031 if (i2c_dev->hw->has_mst_fifo)
1032 val = I2C_MST_FIFO_CONTROL_TX_TRIG(dma_burst);
1033 else
1034 val = I2C_FIFO_CONTROL_TX_TRIG(dma_burst);
1035 }
1036
1037 slv_config.device_fc = true;
1038 err = dmaengine_slave_config(chan, &slv_config);
1039 if (err) {
1040 dev_err(i2c_dev->dev, "DMA config failed: %d\n", err);
1041 dev_err(i2c_dev->dev, "falling back to PIO\n");
1042
1043 tegra_i2c_release_dma(i2c_dev);
1044 i2c_dev->dma_mode = false;
1045 } else {
1046 goto out;
1047 }
1048 }
1049
1050 if (i2c_dev->hw->has_mst_fifo)
1051 val = I2C_MST_FIFO_CONTROL_TX_TRIG(8) |
1052 I2C_MST_FIFO_CONTROL_RX_TRIG(1);
1053 else
1054 val = I2C_FIFO_CONTROL_TX_TRIG(8) |
1055 I2C_FIFO_CONTROL_RX_TRIG(1);
1056 out:
1057 i2c_writel(i2c_dev, val, reg);
1058 }
1059
tegra_i2c_poll_completion(struct tegra_i2c_dev * i2c_dev,struct completion * complete,unsigned int timeout_ms)1060 static unsigned long tegra_i2c_poll_completion(struct tegra_i2c_dev *i2c_dev,
1061 struct completion *complete,
1062 unsigned int timeout_ms)
1063 {
1064 ktime_t ktime = ktime_get();
1065 ktime_t ktimeout = ktime_add_ms(ktime, timeout_ms);
1066
1067 do {
1068 u32 status = i2c_readl(i2c_dev, I2C_INT_STATUS);
1069
1070 if (status)
1071 tegra_i2c_isr(i2c_dev->irq, i2c_dev);
1072
1073 if (completion_done(complete)) {
1074 s64 delta = ktime_ms_delta(ktimeout, ktime);
1075
1076 return msecs_to_jiffies(delta) ?: 1;
1077 }
1078
1079 ktime = ktime_get();
1080
1081 } while (ktime_before(ktime, ktimeout));
1082
1083 return 0;
1084 }
1085
tegra_i2c_wait_completion(struct tegra_i2c_dev * i2c_dev,struct completion * complete,unsigned int timeout_ms)1086 static unsigned long tegra_i2c_wait_completion(struct tegra_i2c_dev *i2c_dev,
1087 struct completion *complete,
1088 unsigned int timeout_ms)
1089 {
1090 unsigned long ret;
1091
1092 if (i2c_dev->atomic_mode) {
1093 ret = tegra_i2c_poll_completion(i2c_dev, complete, timeout_ms);
1094 } else {
1095 enable_irq(i2c_dev->irq);
1096 ret = wait_for_completion_timeout(complete,
1097 msecs_to_jiffies(timeout_ms));
1098 disable_irq(i2c_dev->irq);
1099
1100 /*
1101 * Under some rare circumstances (like running KASAN +
1102 * NFS root) CPU, which handles interrupt, may stuck in
1103 * uninterruptible state for a significant time. In this
1104 * case we will get timeout if I2C transfer is running on
1105 * a sibling CPU, despite of IRQ being raised.
1106 *
1107 * In order to handle this rare condition, the IRQ status
1108 * needs to be checked after timeout.
1109 */
1110 if (ret == 0)
1111 ret = tegra_i2c_poll_completion(i2c_dev, complete, 0);
1112 }
1113
1114 return ret;
1115 }
1116
tegra_i2c_issue_bus_clear(struct i2c_adapter * adap)1117 static int tegra_i2c_issue_bus_clear(struct i2c_adapter *adap)
1118 {
1119 struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1120 u32 val, time_left;
1121 int err;
1122
1123 reinit_completion(&i2c_dev->msg_complete);
1124
1125 val = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND |
1126 I2C_BC_TERMINATE;
1127 i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1128
1129 err = tegra_i2c_wait_for_config_load(i2c_dev);
1130 if (err)
1131 return err;
1132
1133 val |= I2C_BC_ENABLE;
1134 i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1135 tegra_i2c_unmask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1136
1137 time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete, 50);
1138 tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1139
1140 if (time_left == 0) {
1141 dev_err(i2c_dev->dev, "failed to clear bus\n");
1142 return -ETIMEDOUT;
1143 }
1144
1145 val = i2c_readl(i2c_dev, I2C_BUS_CLEAR_STATUS);
1146 if (!(val & I2C_BC_STATUS)) {
1147 dev_err(i2c_dev->dev, "un-recovered arbitration lost\n");
1148 return -EIO;
1149 }
1150
1151 return -EAGAIN;
1152 }
1153
tegra_i2c_push_packet_header(struct tegra_i2c_dev * i2c_dev,struct i2c_msg * msg,enum msg_end_type end_state)1154 static void tegra_i2c_push_packet_header(struct tegra_i2c_dev *i2c_dev,
1155 struct i2c_msg *msg,
1156 enum msg_end_type end_state)
1157 {
1158 u32 *dma_buf = i2c_dev->dma_buf;
1159 u32 packet_header;
1160
1161 packet_header = FIELD_PREP(PACKET_HEADER0_HEADER_SIZE, 0) |
1162 FIELD_PREP(PACKET_HEADER0_PROTOCOL,
1163 PACKET_HEADER0_PROTOCOL_I2C) |
1164 FIELD_PREP(PACKET_HEADER0_CONT_ID, i2c_dev->cont_id) |
1165 FIELD_PREP(PACKET_HEADER0_PACKET_ID, 1);
1166
1167 if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1168 *dma_buf++ = packet_header;
1169 else
1170 i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1171
1172 packet_header = msg->len - 1;
1173
1174 if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1175 *dma_buf++ = packet_header;
1176 else
1177 i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1178
1179 packet_header = I2C_HEADER_IE_ENABLE;
1180
1181 if (end_state == MSG_END_CONTINUE)
1182 packet_header |= I2C_HEADER_CONTINUE_XFER;
1183 else if (end_state == MSG_END_REPEAT_START)
1184 packet_header |= I2C_HEADER_REPEAT_START;
1185
1186 if (msg->flags & I2C_M_TEN) {
1187 packet_header |= msg->addr;
1188 packet_header |= I2C_HEADER_10BIT_ADDR;
1189 } else {
1190 packet_header |= msg->addr << I2C_HEADER_SLAVE_ADDR_SHIFT;
1191 }
1192
1193 if (msg->flags & I2C_M_IGNORE_NAK)
1194 packet_header |= I2C_HEADER_CONT_ON_NAK;
1195
1196 if (msg->flags & I2C_M_RD)
1197 packet_header |= I2C_HEADER_READ;
1198
1199 if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1200 *dma_buf++ = packet_header;
1201 else
1202 i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1203 }
1204
tegra_i2c_error_recover(struct tegra_i2c_dev * i2c_dev,struct i2c_msg * msg)1205 static int tegra_i2c_error_recover(struct tegra_i2c_dev *i2c_dev,
1206 struct i2c_msg *msg)
1207 {
1208 if (i2c_dev->msg_err == I2C_ERR_NONE)
1209 return 0;
1210
1211 tegra_i2c_init(i2c_dev);
1212
1213 /* start recovery upon arbitration loss in single master mode */
1214 if (i2c_dev->msg_err == I2C_ERR_ARBITRATION_LOST) {
1215 if (!i2c_dev->multimaster_mode)
1216 return i2c_recover_bus(&i2c_dev->adapter);
1217
1218 return -EAGAIN;
1219 }
1220
1221 if (i2c_dev->msg_err == I2C_ERR_NO_ACK) {
1222 if (msg->flags & I2C_M_IGNORE_NAK)
1223 return 0;
1224
1225 return -EREMOTEIO;
1226 }
1227
1228 return -EIO;
1229 }
1230
tegra_i2c_xfer_msg(struct tegra_i2c_dev * i2c_dev,struct i2c_msg * msg,enum msg_end_type end_state)1231 static int tegra_i2c_xfer_msg(struct tegra_i2c_dev *i2c_dev,
1232 struct i2c_msg *msg,
1233 enum msg_end_type end_state)
1234 {
1235 unsigned long time_left, xfer_time = 100;
1236 size_t xfer_size;
1237 u32 int_mask;
1238 int err;
1239
1240 err = tegra_i2c_flush_fifos(i2c_dev);
1241 if (err)
1242 return err;
1243
1244 i2c_dev->msg_buf = msg->buf;
1245
1246 /* The condition true implies smbus block read and len is already read */
1247 if (msg->flags & I2C_M_RECV_LEN && end_state != MSG_END_CONTINUE)
1248 i2c_dev->msg_buf = msg->buf + 1;
1249
1250 i2c_dev->msg_buf_remaining = msg->len;
1251 i2c_dev->msg_err = I2C_ERR_NONE;
1252 i2c_dev->msg_read = !!(msg->flags & I2C_M_RD);
1253 reinit_completion(&i2c_dev->msg_complete);
1254
1255 if (i2c_dev->msg_read)
1256 xfer_size = msg->len;
1257 else
1258 xfer_size = msg->len + I2C_PACKET_HEADER_SIZE;
1259
1260 xfer_size = ALIGN(xfer_size, BYTES_PER_FIFO_WORD);
1261
1262 i2c_dev->dma_mode = xfer_size > I2C_PIO_MODE_PREFERRED_LEN &&
1263 i2c_dev->dma_buf && !i2c_dev->atomic_mode;
1264
1265 tegra_i2c_config_fifo_trig(i2c_dev, xfer_size);
1266
1267 /*
1268 * Transfer time in mSec = Total bits / transfer rate
1269 * Total bits = 9 bits per byte (including ACK bit) + Start & stop bits
1270 */
1271 xfer_time += DIV_ROUND_CLOSEST(((xfer_size * 9) + 2) * MSEC_PER_SEC,
1272 i2c_dev->timings.bus_freq_hz);
1273
1274 int_mask = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
1275 tegra_i2c_unmask_irq(i2c_dev, int_mask);
1276
1277 if (i2c_dev->dma_mode) {
1278 if (i2c_dev->msg_read) {
1279 dma_sync_single_for_device(i2c_dev->dma_dev,
1280 i2c_dev->dma_phys,
1281 xfer_size, DMA_FROM_DEVICE);
1282
1283 err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1284 if (err)
1285 return err;
1286 } else {
1287 dma_sync_single_for_cpu(i2c_dev->dma_dev,
1288 i2c_dev->dma_phys,
1289 xfer_size, DMA_TO_DEVICE);
1290 }
1291 }
1292
1293 tegra_i2c_push_packet_header(i2c_dev, msg, end_state);
1294
1295 if (!i2c_dev->msg_read) {
1296 if (i2c_dev->dma_mode) {
1297 memcpy(i2c_dev->dma_buf + I2C_PACKET_HEADER_SIZE,
1298 msg->buf, msg->len);
1299
1300 dma_sync_single_for_device(i2c_dev->dma_dev,
1301 i2c_dev->dma_phys,
1302 xfer_size, DMA_TO_DEVICE);
1303
1304 err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1305 if (err)
1306 return err;
1307 } else {
1308 tegra_i2c_fill_tx_fifo(i2c_dev);
1309 }
1310 }
1311
1312 if (i2c_dev->hw->has_per_pkt_xfer_complete_irq)
1313 int_mask |= I2C_INT_PACKET_XFER_COMPLETE;
1314
1315 if (!i2c_dev->dma_mode) {
1316 if (msg->flags & I2C_M_RD)
1317 int_mask |= I2C_INT_RX_FIFO_DATA_REQ;
1318 else if (i2c_dev->msg_buf_remaining)
1319 int_mask |= I2C_INT_TX_FIFO_DATA_REQ;
1320 }
1321
1322 tegra_i2c_unmask_irq(i2c_dev, int_mask);
1323 dev_dbg(i2c_dev->dev, "unmasked IRQ: %02x\n",
1324 i2c_readl(i2c_dev, I2C_INT_MASK));
1325
1326 if (i2c_dev->dma_mode) {
1327 time_left = tegra_i2c_wait_completion(i2c_dev,
1328 &i2c_dev->dma_complete,
1329 xfer_time);
1330
1331 /*
1332 * Synchronize DMA first, since dmaengine_terminate_sync()
1333 * performs synchronization after the transfer's termination
1334 * and we want to get a completion if transfer succeeded.
1335 */
1336 dmaengine_synchronize(i2c_dev->msg_read ?
1337 i2c_dev->rx_dma_chan :
1338 i2c_dev->tx_dma_chan);
1339
1340 dmaengine_terminate_sync(i2c_dev->msg_read ?
1341 i2c_dev->rx_dma_chan :
1342 i2c_dev->tx_dma_chan);
1343
1344 if (!time_left && !completion_done(&i2c_dev->dma_complete)) {
1345 dev_err(i2c_dev->dev, "DMA transfer timed out\n");
1346 tegra_i2c_init(i2c_dev);
1347 return -ETIMEDOUT;
1348 }
1349
1350 if (i2c_dev->msg_read && i2c_dev->msg_err == I2C_ERR_NONE) {
1351 dma_sync_single_for_cpu(i2c_dev->dma_dev,
1352 i2c_dev->dma_phys,
1353 xfer_size, DMA_FROM_DEVICE);
1354
1355 memcpy(i2c_dev->msg_buf, i2c_dev->dma_buf, msg->len);
1356 }
1357 }
1358
1359 time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete,
1360 xfer_time);
1361
1362 tegra_i2c_mask_irq(i2c_dev, int_mask);
1363
1364 if (time_left == 0) {
1365 dev_err(i2c_dev->dev, "I2C transfer timed out\n");
1366 tegra_i2c_init(i2c_dev);
1367 return -ETIMEDOUT;
1368 }
1369
1370 dev_dbg(i2c_dev->dev, "transfer complete: %lu %d %d\n",
1371 time_left, completion_done(&i2c_dev->msg_complete),
1372 i2c_dev->msg_err);
1373
1374 i2c_dev->dma_mode = false;
1375
1376 err = tegra_i2c_error_recover(i2c_dev, msg);
1377 if (err)
1378 return err;
1379
1380 return 0;
1381 }
1382
tegra_i2c_xfer(struct i2c_adapter * adap,struct i2c_msg msgs[],int num)1383 static int tegra_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
1384 int num)
1385 {
1386 struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1387 int i, ret;
1388
1389 ret = pm_runtime_get_sync(i2c_dev->dev);
1390 if (ret < 0) {
1391 dev_err(i2c_dev->dev, "runtime resume failed %d\n", ret);
1392 pm_runtime_put_noidle(i2c_dev->dev);
1393 return ret;
1394 }
1395
1396 for (i = 0; i < num; i++) {
1397 enum msg_end_type end_type = MSG_END_STOP;
1398
1399 if (i < (num - 1)) {
1400 /* check whether follow up message is coming */
1401 if (msgs[i + 1].flags & I2C_M_NOSTART)
1402 end_type = MSG_END_CONTINUE;
1403 else
1404 end_type = MSG_END_REPEAT_START;
1405 }
1406 /* If M_RECV_LEN use ContinueXfer to read the first byte */
1407 if (msgs[i].flags & I2C_M_RECV_LEN) {
1408 ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], MSG_END_CONTINUE);
1409 if (ret)
1410 break;
1411 /* Set the read byte as msg len */
1412 msgs[i].len = msgs[i].buf[0];
1413 dev_dbg(i2c_dev->dev, "reading %d bytes\n", msgs[i].len);
1414 }
1415 ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], end_type);
1416 if (ret)
1417 break;
1418 }
1419
1420 pm_runtime_put(i2c_dev->dev);
1421
1422 return ret ?: i;
1423 }
1424
tegra_i2c_xfer_atomic(struct i2c_adapter * adap,struct i2c_msg msgs[],int num)1425 static int tegra_i2c_xfer_atomic(struct i2c_adapter *adap,
1426 struct i2c_msg msgs[], int num)
1427 {
1428 struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1429 int ret;
1430
1431 i2c_dev->atomic_mode = true;
1432 ret = tegra_i2c_xfer(adap, msgs, num);
1433 i2c_dev->atomic_mode = false;
1434
1435 return ret;
1436 }
1437
tegra_i2c_func(struct i2c_adapter * adap)1438 static u32 tegra_i2c_func(struct i2c_adapter *adap)
1439 {
1440 struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1441 u32 ret = I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK) |
1442 I2C_FUNC_10BIT_ADDR | I2C_FUNC_PROTOCOL_MANGLING;
1443
1444 if (i2c_dev->hw->has_continue_xfer_support)
1445 ret |= I2C_FUNC_NOSTART | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
1446
1447 return ret;
1448 }
1449
1450 static const struct i2c_algorithm tegra_i2c_algo = {
1451 .master_xfer = tegra_i2c_xfer,
1452 .master_xfer_atomic = tegra_i2c_xfer_atomic,
1453 .functionality = tegra_i2c_func,
1454 };
1455
1456 /* payload size is only 12 bit */
1457 static const struct i2c_adapter_quirks tegra_i2c_quirks = {
1458 .flags = I2C_AQ_NO_ZERO_LEN,
1459 .max_read_len = SZ_4K,
1460 .max_write_len = SZ_4K - I2C_PACKET_HEADER_SIZE,
1461 };
1462
1463 static const struct i2c_adapter_quirks tegra194_i2c_quirks = {
1464 .flags = I2C_AQ_NO_ZERO_LEN,
1465 .max_write_len = SZ_64K - I2C_PACKET_HEADER_SIZE,
1466 };
1467
1468 static struct i2c_bus_recovery_info tegra_i2c_recovery_info = {
1469 .recover_bus = tegra_i2c_issue_bus_clear,
1470 };
1471
1472 static const struct tegra_i2c_hw_feature tegra20_i2c_hw = {
1473 .has_continue_xfer_support = false,
1474 .has_per_pkt_xfer_complete_irq = false,
1475 .clk_divisor_hs_mode = 3,
1476 .clk_divisor_std_mode = 0,
1477 .clk_divisor_fast_mode = 0,
1478 .clk_divisor_fast_plus_mode = 0,
1479 .has_config_load_reg = false,
1480 .has_multi_master_mode = false,
1481 .has_slcg_override_reg = false,
1482 .has_mst_fifo = false,
1483 .quirks = &tegra_i2c_quirks,
1484 .supports_bus_clear = false,
1485 .has_apb_dma = true,
1486 .tlow_std_mode = 0x4,
1487 .thigh_std_mode = 0x2,
1488 .tlow_fast_fastplus_mode = 0x4,
1489 .thigh_fast_fastplus_mode = 0x2,
1490 .setup_hold_time_std_mode = 0x0,
1491 .setup_hold_time_fast_fast_plus_mode = 0x0,
1492 .setup_hold_time_hs_mode = 0x0,
1493 .has_interface_timing_reg = false,
1494 };
1495
1496 static const struct tegra_i2c_hw_feature tegra30_i2c_hw = {
1497 .has_continue_xfer_support = true,
1498 .has_per_pkt_xfer_complete_irq = false,
1499 .clk_divisor_hs_mode = 3,
1500 .clk_divisor_std_mode = 0,
1501 .clk_divisor_fast_mode = 0,
1502 .clk_divisor_fast_plus_mode = 0,
1503 .has_config_load_reg = false,
1504 .has_multi_master_mode = false,
1505 .has_slcg_override_reg = false,
1506 .has_mst_fifo = false,
1507 .quirks = &tegra_i2c_quirks,
1508 .supports_bus_clear = false,
1509 .has_apb_dma = true,
1510 .tlow_std_mode = 0x4,
1511 .thigh_std_mode = 0x2,
1512 .tlow_fast_fastplus_mode = 0x4,
1513 .thigh_fast_fastplus_mode = 0x2,
1514 .setup_hold_time_std_mode = 0x0,
1515 .setup_hold_time_fast_fast_plus_mode = 0x0,
1516 .setup_hold_time_hs_mode = 0x0,
1517 .has_interface_timing_reg = false,
1518 };
1519
1520 static const struct tegra_i2c_hw_feature tegra114_i2c_hw = {
1521 .has_continue_xfer_support = true,
1522 .has_per_pkt_xfer_complete_irq = true,
1523 .clk_divisor_hs_mode = 1,
1524 .clk_divisor_std_mode = 0x19,
1525 .clk_divisor_fast_mode = 0x19,
1526 .clk_divisor_fast_plus_mode = 0x10,
1527 .has_config_load_reg = false,
1528 .has_multi_master_mode = false,
1529 .has_slcg_override_reg = false,
1530 .has_mst_fifo = false,
1531 .quirks = &tegra_i2c_quirks,
1532 .supports_bus_clear = true,
1533 .has_apb_dma = true,
1534 .tlow_std_mode = 0x4,
1535 .thigh_std_mode = 0x2,
1536 .tlow_fast_fastplus_mode = 0x4,
1537 .thigh_fast_fastplus_mode = 0x2,
1538 .setup_hold_time_std_mode = 0x0,
1539 .setup_hold_time_fast_fast_plus_mode = 0x0,
1540 .setup_hold_time_hs_mode = 0x0,
1541 .has_interface_timing_reg = false,
1542 };
1543
1544 static const struct tegra_i2c_hw_feature tegra124_i2c_hw = {
1545 .has_continue_xfer_support = true,
1546 .has_per_pkt_xfer_complete_irq = true,
1547 .clk_divisor_hs_mode = 1,
1548 .clk_divisor_std_mode = 0x19,
1549 .clk_divisor_fast_mode = 0x19,
1550 .clk_divisor_fast_plus_mode = 0x10,
1551 .has_config_load_reg = true,
1552 .has_multi_master_mode = false,
1553 .has_slcg_override_reg = true,
1554 .has_mst_fifo = false,
1555 .quirks = &tegra_i2c_quirks,
1556 .supports_bus_clear = true,
1557 .has_apb_dma = true,
1558 .tlow_std_mode = 0x4,
1559 .thigh_std_mode = 0x2,
1560 .tlow_fast_fastplus_mode = 0x4,
1561 .thigh_fast_fastplus_mode = 0x2,
1562 .setup_hold_time_std_mode = 0x0,
1563 .setup_hold_time_fast_fast_plus_mode = 0x0,
1564 .setup_hold_time_hs_mode = 0x0,
1565 .has_interface_timing_reg = true,
1566 };
1567
1568 static const struct tegra_i2c_hw_feature tegra210_i2c_hw = {
1569 .has_continue_xfer_support = true,
1570 .has_per_pkt_xfer_complete_irq = true,
1571 .clk_divisor_hs_mode = 1,
1572 .clk_divisor_std_mode = 0x19,
1573 .clk_divisor_fast_mode = 0x19,
1574 .clk_divisor_fast_plus_mode = 0x10,
1575 .has_config_load_reg = true,
1576 .has_multi_master_mode = false,
1577 .has_slcg_override_reg = true,
1578 .has_mst_fifo = false,
1579 .quirks = &tegra_i2c_quirks,
1580 .supports_bus_clear = true,
1581 .has_apb_dma = true,
1582 .tlow_std_mode = 0x4,
1583 .thigh_std_mode = 0x2,
1584 .tlow_fast_fastplus_mode = 0x4,
1585 .thigh_fast_fastplus_mode = 0x2,
1586 .setup_hold_time_std_mode = 0,
1587 .setup_hold_time_fast_fast_plus_mode = 0,
1588 .setup_hold_time_hs_mode = 0,
1589 .has_interface_timing_reg = true,
1590 };
1591
1592 static const struct tegra_i2c_hw_feature tegra186_i2c_hw = {
1593 .has_continue_xfer_support = true,
1594 .has_per_pkt_xfer_complete_irq = true,
1595 .clk_divisor_hs_mode = 1,
1596 .clk_divisor_std_mode = 0x16,
1597 .clk_divisor_fast_mode = 0x19,
1598 .clk_divisor_fast_plus_mode = 0x10,
1599 .has_config_load_reg = true,
1600 .has_multi_master_mode = false,
1601 .has_slcg_override_reg = true,
1602 .has_mst_fifo = false,
1603 .quirks = &tegra_i2c_quirks,
1604 .supports_bus_clear = true,
1605 .has_apb_dma = false,
1606 .tlow_std_mode = 0x4,
1607 .thigh_std_mode = 0x3,
1608 .tlow_fast_fastplus_mode = 0x4,
1609 .thigh_fast_fastplus_mode = 0x2,
1610 .setup_hold_time_std_mode = 0,
1611 .setup_hold_time_fast_fast_plus_mode = 0,
1612 .setup_hold_time_hs_mode = 0,
1613 .has_interface_timing_reg = true,
1614 };
1615
1616 static const struct tegra_i2c_hw_feature tegra194_i2c_hw = {
1617 .has_continue_xfer_support = true,
1618 .has_per_pkt_xfer_complete_irq = true,
1619 .clk_divisor_hs_mode = 1,
1620 .clk_divisor_std_mode = 0x4f,
1621 .clk_divisor_fast_mode = 0x3c,
1622 .clk_divisor_fast_plus_mode = 0x16,
1623 .has_config_load_reg = true,
1624 .has_multi_master_mode = true,
1625 .has_slcg_override_reg = true,
1626 .has_mst_fifo = true,
1627 .quirks = &tegra194_i2c_quirks,
1628 .supports_bus_clear = true,
1629 .has_apb_dma = false,
1630 .tlow_std_mode = 0x8,
1631 .thigh_std_mode = 0x7,
1632 .tlow_fast_fastplus_mode = 0x2,
1633 .thigh_fast_fastplus_mode = 0x2,
1634 .setup_hold_time_std_mode = 0x08080808,
1635 .setup_hold_time_fast_fast_plus_mode = 0x02020202,
1636 .setup_hold_time_hs_mode = 0x090909,
1637 .has_interface_timing_reg = true,
1638 };
1639
1640 static const struct of_device_id tegra_i2c_of_match[] = {
1641 { .compatible = "nvidia,tegra194-i2c", .data = &tegra194_i2c_hw, },
1642 { .compatible = "nvidia,tegra186-i2c", .data = &tegra186_i2c_hw, },
1643 { .compatible = "nvidia,tegra210-i2c-vi", .data = &tegra210_i2c_hw, },
1644 { .compatible = "nvidia,tegra210-i2c", .data = &tegra210_i2c_hw, },
1645 { .compatible = "nvidia,tegra124-i2c", .data = &tegra124_i2c_hw, },
1646 { .compatible = "nvidia,tegra114-i2c", .data = &tegra114_i2c_hw, },
1647 { .compatible = "nvidia,tegra30-i2c", .data = &tegra30_i2c_hw, },
1648 { .compatible = "nvidia,tegra20-i2c", .data = &tegra20_i2c_hw, },
1649 { .compatible = "nvidia,tegra20-i2c-dvc", .data = &tegra20_i2c_hw, },
1650 {},
1651 };
1652 MODULE_DEVICE_TABLE(of, tegra_i2c_of_match);
1653
tegra_i2c_parse_dt(struct tegra_i2c_dev * i2c_dev)1654 static void tegra_i2c_parse_dt(struct tegra_i2c_dev *i2c_dev)
1655 {
1656 struct device_node *np = i2c_dev->dev->of_node;
1657 bool multi_mode;
1658
1659 i2c_parse_fw_timings(i2c_dev->dev, &i2c_dev->timings, true);
1660
1661 multi_mode = device_property_read_bool(i2c_dev->dev, "multi-master");
1662 i2c_dev->multimaster_mode = multi_mode;
1663
1664 if (of_device_is_compatible(np, "nvidia,tegra20-i2c-dvc"))
1665 i2c_dev->is_dvc = true;
1666
1667 if (of_device_is_compatible(np, "nvidia,tegra210-i2c-vi"))
1668 i2c_dev->is_vi = true;
1669 }
1670
tegra_i2c_init_reset(struct tegra_i2c_dev * i2c_dev)1671 static int tegra_i2c_init_reset(struct tegra_i2c_dev *i2c_dev)
1672 {
1673 if (ACPI_HANDLE(i2c_dev->dev))
1674 return 0;
1675
1676 i2c_dev->rst = devm_reset_control_get_exclusive(i2c_dev->dev, "i2c");
1677 if (IS_ERR(i2c_dev->rst))
1678 return dev_err_probe(i2c_dev->dev, PTR_ERR(i2c_dev->rst),
1679 "failed to get reset control\n");
1680
1681 return 0;
1682 }
1683
tegra_i2c_init_clocks(struct tegra_i2c_dev * i2c_dev)1684 static int tegra_i2c_init_clocks(struct tegra_i2c_dev *i2c_dev)
1685 {
1686 int err;
1687
1688 if (ACPI_HANDLE(i2c_dev->dev))
1689 return 0;
1690
1691 i2c_dev->clocks[i2c_dev->nclocks++].id = "div-clk";
1692
1693 if (i2c_dev->hw == &tegra20_i2c_hw || i2c_dev->hw == &tegra30_i2c_hw)
1694 i2c_dev->clocks[i2c_dev->nclocks++].id = "fast-clk";
1695
1696 if (i2c_dev->is_vi)
1697 i2c_dev->clocks[i2c_dev->nclocks++].id = "slow";
1698
1699 err = devm_clk_bulk_get(i2c_dev->dev, i2c_dev->nclocks,
1700 i2c_dev->clocks);
1701 if (err)
1702 return err;
1703
1704 err = clk_bulk_prepare(i2c_dev->nclocks, i2c_dev->clocks);
1705 if (err)
1706 return err;
1707
1708 i2c_dev->div_clk = i2c_dev->clocks[0].clk;
1709
1710 if (!i2c_dev->multimaster_mode)
1711 return 0;
1712
1713 err = clk_enable(i2c_dev->div_clk);
1714 if (err) {
1715 dev_err(i2c_dev->dev, "failed to enable div-clk: %d\n", err);
1716 goto unprepare_clocks;
1717 }
1718
1719 return 0;
1720
1721 unprepare_clocks:
1722 clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1723
1724 return err;
1725 }
1726
tegra_i2c_release_clocks(struct tegra_i2c_dev * i2c_dev)1727 static void tegra_i2c_release_clocks(struct tegra_i2c_dev *i2c_dev)
1728 {
1729 if (i2c_dev->multimaster_mode)
1730 clk_disable(i2c_dev->div_clk);
1731
1732 clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1733 }
1734
tegra_i2c_init_hardware(struct tegra_i2c_dev * i2c_dev)1735 static int tegra_i2c_init_hardware(struct tegra_i2c_dev *i2c_dev)
1736 {
1737 int ret;
1738
1739 ret = pm_runtime_get_sync(i2c_dev->dev);
1740 if (ret < 0)
1741 dev_err(i2c_dev->dev, "runtime resume failed: %d\n", ret);
1742 else
1743 ret = tegra_i2c_init(i2c_dev);
1744
1745 pm_runtime_put_sync(i2c_dev->dev);
1746
1747 return ret;
1748 }
1749
tegra_i2c_probe(struct platform_device * pdev)1750 static int tegra_i2c_probe(struct platform_device *pdev)
1751 {
1752 struct tegra_i2c_dev *i2c_dev;
1753 struct resource *res;
1754 int err;
1755
1756 i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
1757 if (!i2c_dev)
1758 return -ENOMEM;
1759
1760 platform_set_drvdata(pdev, i2c_dev);
1761
1762 init_completion(&i2c_dev->msg_complete);
1763 init_completion(&i2c_dev->dma_complete);
1764
1765 i2c_dev->hw = device_get_match_data(&pdev->dev);
1766 i2c_dev->cont_id = pdev->id;
1767 i2c_dev->dev = &pdev->dev;
1768
1769 i2c_dev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1770 if (IS_ERR(i2c_dev->base))
1771 return PTR_ERR(i2c_dev->base);
1772
1773 i2c_dev->base_phys = res->start;
1774
1775 err = platform_get_irq(pdev, 0);
1776 if (err < 0)
1777 return err;
1778
1779 i2c_dev->irq = err;
1780
1781 /* interrupt will be enabled during of transfer time */
1782 irq_set_status_flags(i2c_dev->irq, IRQ_NOAUTOEN);
1783
1784 err = devm_request_threaded_irq(i2c_dev->dev, i2c_dev->irq,
1785 NULL, tegra_i2c_isr,
1786 IRQF_NO_SUSPEND | IRQF_ONESHOT,
1787 dev_name(i2c_dev->dev), i2c_dev);
1788 if (err)
1789 return err;
1790
1791 tegra_i2c_parse_dt(i2c_dev);
1792
1793 err = tegra_i2c_init_reset(i2c_dev);
1794 if (err)
1795 return err;
1796
1797 err = tegra_i2c_init_clocks(i2c_dev);
1798 if (err)
1799 return err;
1800
1801 err = tegra_i2c_init_dma(i2c_dev);
1802 if (err)
1803 goto release_clocks;
1804
1805 /*
1806 * VI I2C is in VE power domain which is not always ON and not
1807 * IRQ-safe. Thus, IRQ-safe device shouldn't be attached to a
1808 * non IRQ-safe domain because this prevents powering off the power
1809 * domain.
1810 *
1811 * VI I2C device shouldn't be marked as IRQ-safe because VI I2C won't
1812 * be used for atomic transfers.
1813 */
1814 if (!i2c_dev->is_vi)
1815 pm_runtime_irq_safe(i2c_dev->dev);
1816
1817 pm_runtime_enable(i2c_dev->dev);
1818
1819 err = tegra_i2c_init_hardware(i2c_dev);
1820 if (err)
1821 goto release_rpm;
1822
1823 i2c_set_adapdata(&i2c_dev->adapter, i2c_dev);
1824 i2c_dev->adapter.dev.of_node = i2c_dev->dev->of_node;
1825 i2c_dev->adapter.dev.parent = i2c_dev->dev;
1826 i2c_dev->adapter.retries = 1;
1827 i2c_dev->adapter.timeout = 6 * HZ;
1828 i2c_dev->adapter.quirks = i2c_dev->hw->quirks;
1829 i2c_dev->adapter.owner = THIS_MODULE;
1830 i2c_dev->adapter.class = I2C_CLASS_DEPRECATED;
1831 i2c_dev->adapter.algo = &tegra_i2c_algo;
1832 i2c_dev->adapter.nr = pdev->id;
1833
1834 if (i2c_dev->hw->supports_bus_clear)
1835 i2c_dev->adapter.bus_recovery_info = &tegra_i2c_recovery_info;
1836
1837 strscpy(i2c_dev->adapter.name, dev_name(i2c_dev->dev),
1838 sizeof(i2c_dev->adapter.name));
1839
1840 err = i2c_add_numbered_adapter(&i2c_dev->adapter);
1841 if (err)
1842 goto release_rpm;
1843
1844 return 0;
1845
1846 release_rpm:
1847 pm_runtime_disable(i2c_dev->dev);
1848
1849 tegra_i2c_release_dma(i2c_dev);
1850 release_clocks:
1851 tegra_i2c_release_clocks(i2c_dev);
1852
1853 return err;
1854 }
1855
tegra_i2c_remove(struct platform_device * pdev)1856 static int tegra_i2c_remove(struct platform_device *pdev)
1857 {
1858 struct tegra_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
1859
1860 i2c_del_adapter(&i2c_dev->adapter);
1861 pm_runtime_force_suspend(i2c_dev->dev);
1862
1863 tegra_i2c_release_dma(i2c_dev);
1864 tegra_i2c_release_clocks(i2c_dev);
1865
1866 return 0;
1867 }
1868
tegra_i2c_runtime_resume(struct device * dev)1869 static int __maybe_unused tegra_i2c_runtime_resume(struct device *dev)
1870 {
1871 struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1872 int err;
1873
1874 err = pinctrl_pm_select_default_state(dev);
1875 if (err)
1876 return err;
1877
1878 err = clk_bulk_enable(i2c_dev->nclocks, i2c_dev->clocks);
1879 if (err)
1880 return err;
1881
1882 /*
1883 * VI I2C device is attached to VE power domain which goes through
1884 * power ON/OFF during runtime PM resume/suspend, meaning that
1885 * controller needs to be re-initialized after power ON.
1886 */
1887 if (i2c_dev->is_vi) {
1888 err = tegra_i2c_init(i2c_dev);
1889 if (err)
1890 goto disable_clocks;
1891 }
1892
1893 return 0;
1894
1895 disable_clocks:
1896 clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1897
1898 return err;
1899 }
1900
tegra_i2c_runtime_suspend(struct device * dev)1901 static int __maybe_unused tegra_i2c_runtime_suspend(struct device *dev)
1902 {
1903 struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1904
1905 clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1906
1907 return pinctrl_pm_select_idle_state(dev);
1908 }
1909
tegra_i2c_suspend(struct device * dev)1910 static int __maybe_unused tegra_i2c_suspend(struct device *dev)
1911 {
1912 struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1913 int err;
1914
1915 i2c_mark_adapter_suspended(&i2c_dev->adapter);
1916
1917 if (!pm_runtime_status_suspended(dev)) {
1918 err = tegra_i2c_runtime_suspend(dev);
1919 if (err)
1920 return err;
1921 }
1922
1923 return 0;
1924 }
1925
tegra_i2c_resume(struct device * dev)1926 static int __maybe_unused tegra_i2c_resume(struct device *dev)
1927 {
1928 struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1929 int err;
1930
1931 /*
1932 * We need to ensure that clocks are enabled so that registers can be
1933 * restored in tegra_i2c_init().
1934 */
1935 err = tegra_i2c_runtime_resume(dev);
1936 if (err)
1937 return err;
1938
1939 err = tegra_i2c_init(i2c_dev);
1940 if (err)
1941 return err;
1942
1943 /*
1944 * In case we are runtime suspended, disable clocks again so that we
1945 * don't unbalance the clock reference counts during the next runtime
1946 * resume transition.
1947 */
1948 if (pm_runtime_status_suspended(dev)) {
1949 err = tegra_i2c_runtime_suspend(dev);
1950 if (err)
1951 return err;
1952 }
1953
1954 i2c_mark_adapter_resumed(&i2c_dev->adapter);
1955
1956 return 0;
1957 }
1958
1959 static const struct dev_pm_ops tegra_i2c_pm = {
1960 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_i2c_suspend, tegra_i2c_resume)
1961 SET_RUNTIME_PM_OPS(tegra_i2c_runtime_suspend, tegra_i2c_runtime_resume,
1962 NULL)
1963 };
1964
1965 static const struct acpi_device_id tegra_i2c_acpi_match[] = {
1966 {.id = "NVDA0101", .driver_data = (kernel_ulong_t)&tegra210_i2c_hw},
1967 {.id = "NVDA0201", .driver_data = (kernel_ulong_t)&tegra186_i2c_hw},
1968 {.id = "NVDA0301", .driver_data = (kernel_ulong_t)&tegra194_i2c_hw},
1969 { }
1970 };
1971 MODULE_DEVICE_TABLE(acpi, tegra_i2c_acpi_match);
1972
1973 static struct platform_driver tegra_i2c_driver = {
1974 .probe = tegra_i2c_probe,
1975 .remove = tegra_i2c_remove,
1976 .driver = {
1977 .name = "tegra-i2c",
1978 .of_match_table = tegra_i2c_of_match,
1979 .acpi_match_table = tegra_i2c_acpi_match,
1980 .pm = &tegra_i2c_pm,
1981 },
1982 };
1983 module_platform_driver(tegra_i2c_driver);
1984
1985 MODULE_DESCRIPTION("NVIDIA Tegra I2C Bus Controller driver");
1986 MODULE_AUTHOR("Colin Cross");
1987 MODULE_LICENSE("GPL v2");
1988