1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for I2C adapter in Rockchip RK3xxx SoC
4 *
5 * Max Schwarz <max.schwarz@online.de>
6 * based on the patches by Rockchip Inc.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/platform_device.h>
16 #include <linux/io.h>
17 #include <linux/of_address.h>
18 #include <linux/of_irq.h>
19 #include <linux/spinlock.h>
20 #include <linux/clk.h>
21 #include <linux/wait.h>
22 #include <linux/mfd/syscon.h>
23 #include <linux/regmap.h>
24 #include <linux/math64.h>
25
26
27 /* Register Map */
28 #define REG_CON 0x00 /* control register */
29 #define REG_CLKDIV 0x04 /* clock divisor register */
30 #define REG_MRXADDR 0x08 /* slave address for REGISTER_TX */
31 #define REG_MRXRADDR 0x0c /* slave register address for REGISTER_TX */
32 #define REG_MTXCNT 0x10 /* number of bytes to be transmitted */
33 #define REG_MRXCNT 0x14 /* number of bytes to be received */
34 #define REG_IEN 0x18 /* interrupt enable */
35 #define REG_IPD 0x1c /* interrupt pending */
36 #define REG_FCNT 0x20 /* finished count */
37
38 /* Data buffer offsets */
39 #define TXBUFFER_BASE 0x100
40 #define RXBUFFER_BASE 0x200
41
42 /* REG_CON bits */
43 #define REG_CON_EN BIT(0)
44 enum {
45 REG_CON_MOD_TX = 0, /* transmit data */
46 REG_CON_MOD_REGISTER_TX, /* select register and restart */
47 REG_CON_MOD_RX, /* receive data */
48 REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
49 * register addr */
50 };
51 #define REG_CON_MOD(mod) ((mod) << 1)
52 #define REG_CON_MOD_MASK (BIT(1) | BIT(2))
53 #define REG_CON_START BIT(3)
54 #define REG_CON_STOP BIT(4)
55 #define REG_CON_LASTACK BIT(5) /* 1: send NACK after last received byte */
56 #define REG_CON_ACTACK BIT(6) /* 1: stop if NACK is received */
57
58 #define REG_CON_TUNING_MASK GENMASK_ULL(15, 8)
59
60 #define REG_CON_SDA_CFG(cfg) ((cfg) << 8)
61 #define REG_CON_STA_CFG(cfg) ((cfg) << 12)
62 #define REG_CON_STO_CFG(cfg) ((cfg) << 14)
63
64 /* REG_MRXADDR bits */
65 #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
66
67 /* REG_IEN/REG_IPD bits */
68 #define REG_INT_BTF BIT(0) /* a byte was transmitted */
69 #define REG_INT_BRF BIT(1) /* a byte was received */
70 #define REG_INT_MBTF BIT(2) /* master data transmit finished */
71 #define REG_INT_MBRF BIT(3) /* master data receive finished */
72 #define REG_INT_START BIT(4) /* START condition generated */
73 #define REG_INT_STOP BIT(5) /* STOP condition generated */
74 #define REG_INT_NAKRCV BIT(6) /* NACK received */
75 #define REG_INT_ALL 0x7f
76
77 /* Constants */
78 #define WAIT_TIMEOUT 1000 /* ms */
79 #define DEFAULT_SCL_RATE (100 * 1000) /* Hz */
80
81 /**
82 * struct i2c_spec_values:
83 * @min_hold_start_ns: min hold time (repeated) START condition
84 * @min_low_ns: min LOW period of the SCL clock
85 * @min_high_ns: min HIGH period of the SCL cloc
86 * @min_setup_start_ns: min set-up time for a repeated START conditio
87 * @max_data_hold_ns: max data hold time
88 * @min_data_setup_ns: min data set-up time
89 * @min_setup_stop_ns: min set-up time for STOP condition
90 * @min_hold_buffer_ns: min bus free time between a STOP and
91 * START condition
92 */
93 struct i2c_spec_values {
94 unsigned long min_hold_start_ns;
95 unsigned long min_low_ns;
96 unsigned long min_high_ns;
97 unsigned long min_setup_start_ns;
98 unsigned long max_data_hold_ns;
99 unsigned long min_data_setup_ns;
100 unsigned long min_setup_stop_ns;
101 unsigned long min_hold_buffer_ns;
102 };
103
104 static const struct i2c_spec_values standard_mode_spec = {
105 .min_hold_start_ns = 4000,
106 .min_low_ns = 4700,
107 .min_high_ns = 4000,
108 .min_setup_start_ns = 4700,
109 .max_data_hold_ns = 3450,
110 .min_data_setup_ns = 250,
111 .min_setup_stop_ns = 4000,
112 .min_hold_buffer_ns = 4700,
113 };
114
115 static const struct i2c_spec_values fast_mode_spec = {
116 .min_hold_start_ns = 600,
117 .min_low_ns = 1300,
118 .min_high_ns = 600,
119 .min_setup_start_ns = 600,
120 .max_data_hold_ns = 900,
121 .min_data_setup_ns = 100,
122 .min_setup_stop_ns = 600,
123 .min_hold_buffer_ns = 1300,
124 };
125
126 static const struct i2c_spec_values fast_mode_plus_spec = {
127 .min_hold_start_ns = 260,
128 .min_low_ns = 500,
129 .min_high_ns = 260,
130 .min_setup_start_ns = 260,
131 .max_data_hold_ns = 400,
132 .min_data_setup_ns = 50,
133 .min_setup_stop_ns = 260,
134 .min_hold_buffer_ns = 500,
135 };
136
137 /**
138 * struct rk3x_i2c_calced_timings:
139 * @div_low: Divider output for low
140 * @div_high: Divider output for high
141 * @tuning: Used to adjust setup/hold data time,
142 * setup/hold start time and setup stop time for
143 * v1's calc_timings, the tuning should all be 0
144 * for old hardware anyone using v0's calc_timings.
145 */
146 struct rk3x_i2c_calced_timings {
147 unsigned long div_low;
148 unsigned long div_high;
149 unsigned int tuning;
150 };
151
152 enum rk3x_i2c_state {
153 STATE_IDLE,
154 STATE_START,
155 STATE_READ,
156 STATE_WRITE,
157 STATE_STOP
158 };
159
160 /**
161 * struct rk3x_i2c_soc_data:
162 * @grf_offset: offset inside the grf regmap for setting the i2c type
163 * @calc_timings: Callback function for i2c timing information calculated
164 */
165 struct rk3x_i2c_soc_data {
166 int grf_offset;
167 int (*calc_timings)(unsigned long, struct i2c_timings *,
168 struct rk3x_i2c_calced_timings *);
169 };
170
171 /**
172 * struct rk3x_i2c - private data of the controller
173 * @adap: corresponding I2C adapter
174 * @dev: device for this controller
175 * @soc_data: related soc data struct
176 * @regs: virtual memory area
177 * @clk: function clk for rk3399 or function & Bus clks for others
178 * @pclk: Bus clk for rk3399
179 * @clk_rate_nb: i2c clk rate change notify
180 * @t: I2C known timing information
181 * @lock: spinlock for the i2c bus
182 * @wait: the waitqueue to wait for i2c transfer
183 * @busy: the condition for the event to wait for
184 * @msg: current i2c message
185 * @addr: addr of i2c slave device
186 * @mode: mode of i2c transfer
187 * @is_last_msg: flag determines whether it is the last msg in this transfer
188 * @state: state of i2c transfer
189 * @processed: byte length which has been send or received
190 * @error: error code for i2c transfer
191 */
192 struct rk3x_i2c {
193 struct i2c_adapter adap;
194 struct device *dev;
195 const struct rk3x_i2c_soc_data *soc_data;
196
197 /* Hardware resources */
198 void __iomem *regs;
199 struct clk *clk;
200 struct clk *pclk;
201 struct notifier_block clk_rate_nb;
202
203 /* Settings */
204 struct i2c_timings t;
205
206 /* Synchronization & notification */
207 spinlock_t lock;
208 wait_queue_head_t wait;
209 bool busy;
210
211 /* Current message */
212 struct i2c_msg *msg;
213 u8 addr;
214 unsigned int mode;
215 bool is_last_msg;
216
217 /* I2C state machine */
218 enum rk3x_i2c_state state;
219 unsigned int processed;
220 int error;
221 };
222
i2c_writel(struct rk3x_i2c * i2c,u32 value,unsigned int offset)223 static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
224 unsigned int offset)
225 {
226 writel(value, i2c->regs + offset);
227 }
228
i2c_readl(struct rk3x_i2c * i2c,unsigned int offset)229 static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
230 {
231 return readl(i2c->regs + offset);
232 }
233
234 /* Reset all interrupt pending bits */
rk3x_i2c_clean_ipd(struct rk3x_i2c * i2c)235 static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
236 {
237 i2c_writel(i2c, REG_INT_ALL, REG_IPD);
238 }
239
240 /**
241 * Generate a START condition, which triggers a REG_INT_START interrupt.
242 */
rk3x_i2c_start(struct rk3x_i2c * i2c)243 static void rk3x_i2c_start(struct rk3x_i2c *i2c)
244 {
245 u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
246
247 i2c_writel(i2c, REG_INT_START, REG_IEN);
248
249 /* enable adapter with correct mode, send START condition */
250 val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
251
252 /* if we want to react to NACK, set ACTACK bit */
253 if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
254 val |= REG_CON_ACTACK;
255
256 i2c_writel(i2c, val, REG_CON);
257 }
258
259 /**
260 * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
261 *
262 * @error: Error code to return in rk3x_i2c_xfer
263 */
rk3x_i2c_stop(struct rk3x_i2c * i2c,int error)264 static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
265 {
266 unsigned int ctrl;
267
268 i2c->processed = 0;
269 i2c->msg = NULL;
270 i2c->error = error;
271
272 if (i2c->is_last_msg) {
273 /* Enable stop interrupt */
274 i2c_writel(i2c, REG_INT_STOP, REG_IEN);
275
276 i2c->state = STATE_STOP;
277
278 ctrl = i2c_readl(i2c, REG_CON);
279 ctrl |= REG_CON_STOP;
280 i2c_writel(i2c, ctrl, REG_CON);
281 } else {
282 /* Signal rk3x_i2c_xfer to start the next message. */
283 i2c->busy = false;
284 i2c->state = STATE_IDLE;
285
286 /*
287 * The HW is actually not capable of REPEATED START. But we can
288 * get the intended effect by resetting its internal state
289 * and issuing an ordinary START.
290 */
291 ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
292 i2c_writel(i2c, ctrl, REG_CON);
293
294 /* signal that we are finished with the current msg */
295 wake_up(&i2c->wait);
296 }
297 }
298
299 /**
300 * Setup a read according to i2c->msg
301 */
rk3x_i2c_prepare_read(struct rk3x_i2c * i2c)302 static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
303 {
304 unsigned int len = i2c->msg->len - i2c->processed;
305 u32 con;
306
307 con = i2c_readl(i2c, REG_CON);
308
309 /*
310 * The hw can read up to 32 bytes at a time. If we need more than one
311 * chunk, send an ACK after the last byte of the current chunk.
312 */
313 if (len > 32) {
314 len = 32;
315 con &= ~REG_CON_LASTACK;
316 } else {
317 con |= REG_CON_LASTACK;
318 }
319
320 /* make sure we are in plain RX mode if we read a second chunk */
321 if (i2c->processed != 0) {
322 con &= ~REG_CON_MOD_MASK;
323 con |= REG_CON_MOD(REG_CON_MOD_RX);
324 }
325
326 i2c_writel(i2c, con, REG_CON);
327 i2c_writel(i2c, len, REG_MRXCNT);
328 }
329
330 /**
331 * Fill the transmit buffer with data from i2c->msg
332 */
rk3x_i2c_fill_transmit_buf(struct rk3x_i2c * i2c)333 static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
334 {
335 unsigned int i, j;
336 u32 cnt = 0;
337 u32 val;
338 u8 byte;
339
340 for (i = 0; i < 8; ++i) {
341 val = 0;
342 for (j = 0; j < 4; ++j) {
343 if ((i2c->processed == i2c->msg->len) && (cnt != 0))
344 break;
345
346 if (i2c->processed == 0 && cnt == 0)
347 byte = (i2c->addr & 0x7f) << 1;
348 else
349 byte = i2c->msg->buf[i2c->processed++];
350
351 val |= byte << (j * 8);
352 cnt++;
353 }
354
355 i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);
356
357 if (i2c->processed == i2c->msg->len)
358 break;
359 }
360
361 i2c_writel(i2c, cnt, REG_MTXCNT);
362 }
363
364
365 /* IRQ handlers for individual states */
366
rk3x_i2c_handle_start(struct rk3x_i2c * i2c,unsigned int ipd)367 static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
368 {
369 if (!(ipd & REG_INT_START)) {
370 rk3x_i2c_stop(i2c, -EIO);
371 dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
372 rk3x_i2c_clean_ipd(i2c);
373 return;
374 }
375
376 /* ack interrupt */
377 i2c_writel(i2c, REG_INT_START, REG_IPD);
378
379 /* disable start bit */
380 i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);
381
382 /* enable appropriate interrupts and transition */
383 if (i2c->mode == REG_CON_MOD_TX) {
384 i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
385 i2c->state = STATE_WRITE;
386 rk3x_i2c_fill_transmit_buf(i2c);
387 } else {
388 /* in any other case, we are going to be reading. */
389 i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
390 i2c->state = STATE_READ;
391 rk3x_i2c_prepare_read(i2c);
392 }
393 }
394
rk3x_i2c_handle_write(struct rk3x_i2c * i2c,unsigned int ipd)395 static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
396 {
397 if (!(ipd & REG_INT_MBTF)) {
398 rk3x_i2c_stop(i2c, -EIO);
399 dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
400 rk3x_i2c_clean_ipd(i2c);
401 return;
402 }
403
404 /* ack interrupt */
405 i2c_writel(i2c, REG_INT_MBTF, REG_IPD);
406
407 /* are we finished? */
408 if (i2c->processed == i2c->msg->len)
409 rk3x_i2c_stop(i2c, i2c->error);
410 else
411 rk3x_i2c_fill_transmit_buf(i2c);
412 }
413
rk3x_i2c_handle_read(struct rk3x_i2c * i2c,unsigned int ipd)414 static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
415 {
416 unsigned int i;
417 unsigned int len = i2c->msg->len - i2c->processed;
418 u32 uninitialized_var(val);
419 u8 byte;
420
421 /* we only care for MBRF here. */
422 if (!(ipd & REG_INT_MBRF))
423 return;
424
425 /* ack interrupt */
426 i2c_writel(i2c, REG_INT_MBRF, REG_IPD);
427
428 /* Can only handle a maximum of 32 bytes at a time */
429 if (len > 32)
430 len = 32;
431
432 /* read the data from receive buffer */
433 for (i = 0; i < len; ++i) {
434 if (i % 4 == 0)
435 val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);
436
437 byte = (val >> ((i % 4) * 8)) & 0xff;
438 i2c->msg->buf[i2c->processed++] = byte;
439 }
440
441 /* are we finished? */
442 if (i2c->processed == i2c->msg->len)
443 rk3x_i2c_stop(i2c, i2c->error);
444 else
445 rk3x_i2c_prepare_read(i2c);
446 }
447
rk3x_i2c_handle_stop(struct rk3x_i2c * i2c,unsigned int ipd)448 static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
449 {
450 unsigned int con;
451
452 if (!(ipd & REG_INT_STOP)) {
453 rk3x_i2c_stop(i2c, -EIO);
454 dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
455 rk3x_i2c_clean_ipd(i2c);
456 return;
457 }
458
459 /* ack interrupt */
460 i2c_writel(i2c, REG_INT_STOP, REG_IPD);
461
462 /* disable STOP bit */
463 con = i2c_readl(i2c, REG_CON);
464 con &= ~REG_CON_STOP;
465 i2c_writel(i2c, con, REG_CON);
466
467 i2c->busy = false;
468 i2c->state = STATE_IDLE;
469
470 /* signal rk3x_i2c_xfer that we are finished */
471 wake_up(&i2c->wait);
472 }
473
rk3x_i2c_irq(int irqno,void * dev_id)474 static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
475 {
476 struct rk3x_i2c *i2c = dev_id;
477 unsigned int ipd;
478
479 spin_lock(&i2c->lock);
480
481 ipd = i2c_readl(i2c, REG_IPD);
482 if (i2c->state == STATE_IDLE) {
483 dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
484 rk3x_i2c_clean_ipd(i2c);
485 goto out;
486 }
487
488 dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);
489
490 /* Clean interrupt bits we don't care about */
491 ipd &= ~(REG_INT_BRF | REG_INT_BTF);
492
493 if (ipd & REG_INT_NAKRCV) {
494 /*
495 * We got a NACK in the last operation. Depending on whether
496 * IGNORE_NAK is set, we have to stop the operation and report
497 * an error.
498 */
499 i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);
500
501 ipd &= ~REG_INT_NAKRCV;
502
503 if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
504 rk3x_i2c_stop(i2c, -ENXIO);
505 }
506
507 /* is there anything left to handle? */
508 if ((ipd & REG_INT_ALL) == 0)
509 goto out;
510
511 switch (i2c->state) {
512 case STATE_START:
513 rk3x_i2c_handle_start(i2c, ipd);
514 break;
515 case STATE_WRITE:
516 rk3x_i2c_handle_write(i2c, ipd);
517 break;
518 case STATE_READ:
519 rk3x_i2c_handle_read(i2c, ipd);
520 break;
521 case STATE_STOP:
522 rk3x_i2c_handle_stop(i2c, ipd);
523 break;
524 case STATE_IDLE:
525 break;
526 }
527
528 out:
529 spin_unlock(&i2c->lock);
530 return IRQ_HANDLED;
531 }
532
533 /**
534 * Get timing values of I2C specification
535 *
536 * @speed: Desired SCL frequency
537 *
538 * Returns: Matched i2c spec values.
539 */
rk3x_i2c_get_spec(unsigned int speed)540 static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed)
541 {
542 if (speed <= 100000)
543 return &standard_mode_spec;
544 else if (speed <= 400000)
545 return &fast_mode_spec;
546 else
547 return &fast_mode_plus_spec;
548 }
549
550 /**
551 * Calculate divider values for desired SCL frequency
552 *
553 * @clk_rate: I2C input clock rate
554 * @t: Known I2C timing information
555 * @t_calc: Caculated rk3x private timings that would be written into regs
556 *
557 * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
558 * a best-effort divider value is returned in divs. If the target rate is
559 * too high, we silently use the highest possible rate.
560 */
rk3x_i2c_v0_calc_timings(unsigned long clk_rate,struct i2c_timings * t,struct rk3x_i2c_calced_timings * t_calc)561 static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate,
562 struct i2c_timings *t,
563 struct rk3x_i2c_calced_timings *t_calc)
564 {
565 unsigned long min_low_ns, min_high_ns;
566 unsigned long max_low_ns, min_total_ns;
567
568 unsigned long clk_rate_khz, scl_rate_khz;
569
570 unsigned long min_low_div, min_high_div;
571 unsigned long max_low_div;
572
573 unsigned long min_div_for_hold, min_total_div;
574 unsigned long extra_div, extra_low_div, ideal_low_div;
575
576 unsigned long data_hold_buffer_ns = 50;
577 const struct i2c_spec_values *spec;
578 int ret = 0;
579
580 /* Only support standard-mode and fast-mode */
581 if (WARN_ON(t->bus_freq_hz > 400000))
582 t->bus_freq_hz = 400000;
583
584 /* prevent scl_rate_khz from becoming 0 */
585 if (WARN_ON(t->bus_freq_hz < 1000))
586 t->bus_freq_hz = 1000;
587
588 /*
589 * min_low_ns: The minimum number of ns we need to hold low to
590 * meet I2C specification, should include fall time.
591 * min_high_ns: The minimum number of ns we need to hold high to
592 * meet I2C specification, should include rise time.
593 * max_low_ns: The maximum number of ns we can hold low to meet
594 * I2C specification.
595 *
596 * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
597 * This is because the i2c host on Rockchip holds the data line
598 * for half the low time.
599 */
600 spec = rk3x_i2c_get_spec(t->bus_freq_hz);
601 min_high_ns = t->scl_rise_ns + spec->min_high_ns;
602
603 /*
604 * Timings for repeated start:
605 * - controller appears to drop SDA at .875x (7/8) programmed clk high.
606 * - controller appears to keep SCL high for 2x programmed clk high.
607 *
608 * We need to account for those rules in picking our "high" time so
609 * we meet tSU;STA and tHD;STA times.
610 */
611 min_high_ns = max(min_high_ns, DIV_ROUND_UP(
612 (t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875));
613 min_high_ns = max(min_high_ns, DIV_ROUND_UP(
614 (t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns +
615 spec->min_high_ns), 2));
616
617 min_low_ns = t->scl_fall_ns + spec->min_low_ns;
618 max_low_ns = spec->max_data_hold_ns * 2 - data_hold_buffer_ns;
619 min_total_ns = min_low_ns + min_high_ns;
620
621 /* Adjust to avoid overflow */
622 clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
623 scl_rate_khz = t->bus_freq_hz / 1000;
624
625 /*
626 * We need the total div to be >= this number
627 * so we don't clock too fast.
628 */
629 min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
630
631 /* These are the min dividers needed for min hold times. */
632 min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
633 min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
634 min_div_for_hold = (min_low_div + min_high_div);
635
636 /*
637 * This is the maximum divider so we don't go over the maximum.
638 * We don't round up here (we round down) since this is a maximum.
639 */
640 max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);
641
642 if (min_low_div > max_low_div) {
643 WARN_ONCE(true,
644 "Conflicting, min_low_div %lu, max_low_div %lu\n",
645 min_low_div, max_low_div);
646 max_low_div = min_low_div;
647 }
648
649 if (min_div_for_hold > min_total_div) {
650 /*
651 * Time needed to meet hold requirements is important.
652 * Just use that.
653 */
654 t_calc->div_low = min_low_div;
655 t_calc->div_high = min_high_div;
656 } else {
657 /*
658 * We've got to distribute some time among the low and high
659 * so we don't run too fast.
660 */
661 extra_div = min_total_div - min_div_for_hold;
662
663 /*
664 * We'll try to split things up perfectly evenly,
665 * biasing slightly towards having a higher div
666 * for low (spend more time low).
667 */
668 ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
669 scl_rate_khz * 8 * min_total_ns);
670
671 /* Don't allow it to go over the maximum */
672 if (ideal_low_div > max_low_div)
673 ideal_low_div = max_low_div;
674
675 /*
676 * Handle when the ideal low div is going to take up
677 * more than we have.
678 */
679 if (ideal_low_div > min_low_div + extra_div)
680 ideal_low_div = min_low_div + extra_div;
681
682 /* Give low the "ideal" and give high whatever extra is left */
683 extra_low_div = ideal_low_div - min_low_div;
684 t_calc->div_low = ideal_low_div;
685 t_calc->div_high = min_high_div + (extra_div - extra_low_div);
686 }
687
688 /*
689 * Adjust to the fact that the hardware has an implicit "+1".
690 * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
691 */
692 t_calc->div_low--;
693 t_calc->div_high--;
694
695 /* Give the tuning value 0, that would not update con register */
696 t_calc->tuning = 0;
697 /* Maximum divider supported by hw is 0xffff */
698 if (t_calc->div_low > 0xffff) {
699 t_calc->div_low = 0xffff;
700 ret = -EINVAL;
701 }
702
703 if (t_calc->div_high > 0xffff) {
704 t_calc->div_high = 0xffff;
705 ret = -EINVAL;
706 }
707
708 return ret;
709 }
710
711 /**
712 * Calculate timing values for desired SCL frequency
713 *
714 * @clk_rate: I2C input clock rate
715 * @t: Known I2C timing information
716 * @t_calc: Caculated rk3x private timings that would be written into regs
717 *
718 * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
719 * a best-effort divider value is returned in divs. If the target rate is
720 * too high, we silently use the highest possible rate.
721 * The following formulas are v1's method to calculate timings.
722 *
723 * l = divl + 1;
724 * h = divh + 1;
725 * s = sda_update_config + 1;
726 * u = start_setup_config + 1;
727 * p = stop_setup_config + 1;
728 * T = Tclk_i2c;
729 *
730 * tHigh = 8 * h * T;
731 * tLow = 8 * l * T;
732 *
733 * tHD;sda = (l * s + 1) * T;
734 * tSU;sda = [(8 - s) * l + 1] * T;
735 * tI2C = 8 * (l + h) * T;
736 *
737 * tSU;sta = (8h * u + 1) * T;
738 * tHD;sta = [8h * (u + 1) - 1] * T;
739 * tSU;sto = (8h * p + 1) * T;
740 */
rk3x_i2c_v1_calc_timings(unsigned long clk_rate,struct i2c_timings * t,struct rk3x_i2c_calced_timings * t_calc)741 static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate,
742 struct i2c_timings *t,
743 struct rk3x_i2c_calced_timings *t_calc)
744 {
745 unsigned long min_low_ns, min_high_ns;
746 unsigned long min_setup_start_ns, min_setup_data_ns;
747 unsigned long min_setup_stop_ns, max_hold_data_ns;
748
749 unsigned long clk_rate_khz, scl_rate_khz;
750
751 unsigned long min_low_div, min_high_div;
752
753 unsigned long min_div_for_hold, min_total_div;
754 unsigned long extra_div, extra_low_div;
755 unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg;
756
757 const struct i2c_spec_values *spec;
758 int ret = 0;
759
760 /* Support standard-mode, fast-mode and fast-mode plus */
761 if (WARN_ON(t->bus_freq_hz > 1000000))
762 t->bus_freq_hz = 1000000;
763
764 /* prevent scl_rate_khz from becoming 0 */
765 if (WARN_ON(t->bus_freq_hz < 1000))
766 t->bus_freq_hz = 1000;
767
768 /*
769 * min_low_ns: The minimum number of ns we need to hold low to
770 * meet I2C specification, should include fall time.
771 * min_high_ns: The minimum number of ns we need to hold high to
772 * meet I2C specification, should include rise time.
773 */
774 spec = rk3x_i2c_get_spec(t->bus_freq_hz);
775
776 /* calculate min-divh and min-divl */
777 clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
778 scl_rate_khz = t->bus_freq_hz / 1000;
779 min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
780
781 min_high_ns = t->scl_rise_ns + spec->min_high_ns;
782 min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
783
784 min_low_ns = t->scl_fall_ns + spec->min_low_ns;
785 min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
786
787 /*
788 * Final divh and divl must be greater than 0, otherwise the
789 * hardware would not output the i2c clk.
790 */
791 min_high_div = (min_high_div < 1) ? 2 : min_high_div;
792 min_low_div = (min_low_div < 1) ? 2 : min_low_div;
793
794 /* These are the min dividers needed for min hold times. */
795 min_div_for_hold = (min_low_div + min_high_div);
796
797 /*
798 * This is the maximum divider so we don't go over the maximum.
799 * We don't round up here (we round down) since this is a maximum.
800 */
801 if (min_div_for_hold >= min_total_div) {
802 /*
803 * Time needed to meet hold requirements is important.
804 * Just use that.
805 */
806 t_calc->div_low = min_low_div;
807 t_calc->div_high = min_high_div;
808 } else {
809 /*
810 * We've got to distribute some time among the low and high
811 * so we don't run too fast.
812 * We'll try to split things up by the scale of min_low_div and
813 * min_high_div, biasing slightly towards having a higher div
814 * for low (spend more time low).
815 */
816 extra_div = min_total_div - min_div_for_hold;
817 extra_low_div = DIV_ROUND_UP(min_low_div * extra_div,
818 min_div_for_hold);
819
820 t_calc->div_low = min_low_div + extra_low_div;
821 t_calc->div_high = min_high_div + (extra_div - extra_low_div);
822 }
823
824 /*
825 * calculate sda data hold count by the rules, data_upd_st:3
826 * is a appropriate value to reduce calculated times.
827 */
828 for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) {
829 max_hold_data_ns = DIV_ROUND_UP((sda_update_cfg
830 * (t_calc->div_low) + 1)
831 * 1000000, clk_rate_khz);
832 min_setup_data_ns = DIV_ROUND_UP(((8 - sda_update_cfg)
833 * (t_calc->div_low) + 1)
834 * 1000000, clk_rate_khz);
835 if ((max_hold_data_ns < spec->max_data_hold_ns) &&
836 (min_setup_data_ns > spec->min_data_setup_ns))
837 break;
838 }
839
840 /* calculate setup start config */
841 min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns;
842 stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns
843 - 1000000, 8 * 1000000 * (t_calc->div_high));
844
845 /* calculate setup stop config */
846 min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns;
847 stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns
848 - 1000000, 8 * 1000000 * (t_calc->div_high));
849
850 t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) |
851 REG_CON_STA_CFG(--stp_sta_cfg) |
852 REG_CON_STO_CFG(--stp_sto_cfg);
853
854 t_calc->div_low--;
855 t_calc->div_high--;
856
857 /* Maximum divider supported by hw is 0xffff */
858 if (t_calc->div_low > 0xffff) {
859 t_calc->div_low = 0xffff;
860 ret = -EINVAL;
861 }
862
863 if (t_calc->div_high > 0xffff) {
864 t_calc->div_high = 0xffff;
865 ret = -EINVAL;
866 }
867
868 return ret;
869 }
870
rk3x_i2c_adapt_div(struct rk3x_i2c * i2c,unsigned long clk_rate)871 static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
872 {
873 struct i2c_timings *t = &i2c->t;
874 struct rk3x_i2c_calced_timings calc;
875 u64 t_low_ns, t_high_ns;
876 unsigned long flags;
877 u32 val;
878 int ret;
879
880 ret = i2c->soc_data->calc_timings(clk_rate, t, &calc);
881 WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);
882
883 clk_enable(i2c->pclk);
884
885 spin_lock_irqsave(&i2c->lock, flags);
886 val = i2c_readl(i2c, REG_CON);
887 val &= ~REG_CON_TUNING_MASK;
888 val |= calc.tuning;
889 i2c_writel(i2c, val, REG_CON);
890 i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff),
891 REG_CLKDIV);
892 spin_unlock_irqrestore(&i2c->lock, flags);
893
894 clk_disable(i2c->pclk);
895
896 t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate);
897 t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000,
898 clk_rate);
899 dev_dbg(i2c->dev,
900 "CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
901 clk_rate / 1000,
902 1000000000 / t->bus_freq_hz,
903 t_low_ns, t_high_ns);
904 }
905
906 /**
907 * rk3x_i2c_clk_notifier_cb - Clock rate change callback
908 * @nb: Pointer to notifier block
909 * @event: Notification reason
910 * @data: Pointer to notification data object
911 *
912 * The callback checks whether a valid bus frequency can be generated after the
913 * change. If so, the change is acknowledged, otherwise the change is aborted.
914 * New dividers are written to the HW in the pre- or post change notification
915 * depending on the scaling direction.
916 *
917 * Code adapted from i2c-cadence.c.
918 *
919 * Return: NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
920 * to acknowledge the change, NOTIFY_DONE if the notification is
921 * considered irrelevant.
922 */
rk3x_i2c_clk_notifier_cb(struct notifier_block * nb,unsigned long event,void * data)923 static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
924 event, void *data)
925 {
926 struct clk_notifier_data *ndata = data;
927 struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
928 struct rk3x_i2c_calced_timings calc;
929
930 switch (event) {
931 case PRE_RATE_CHANGE:
932 /*
933 * Try the calculation (but don't store the result) ahead of
934 * time to see if we need to block the clock change. Timings
935 * shouldn't actually take effect until rk3x_i2c_adapt_div().
936 */
937 if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t,
938 &calc) != 0)
939 return NOTIFY_STOP;
940
941 /* scale up */
942 if (ndata->new_rate > ndata->old_rate)
943 rk3x_i2c_adapt_div(i2c, ndata->new_rate);
944
945 return NOTIFY_OK;
946 case POST_RATE_CHANGE:
947 /* scale down */
948 if (ndata->new_rate < ndata->old_rate)
949 rk3x_i2c_adapt_div(i2c, ndata->new_rate);
950 return NOTIFY_OK;
951 case ABORT_RATE_CHANGE:
952 /* scale up */
953 if (ndata->new_rate > ndata->old_rate)
954 rk3x_i2c_adapt_div(i2c, ndata->old_rate);
955 return NOTIFY_OK;
956 default:
957 return NOTIFY_DONE;
958 }
959 }
960
961 /**
962 * Setup I2C registers for an I2C operation specified by msgs, num.
963 *
964 * Must be called with i2c->lock held.
965 *
966 * @msgs: I2C msgs to process
967 * @num: Number of msgs
968 *
969 * returns: Number of I2C msgs processed or negative in case of error
970 */
rk3x_i2c_setup(struct rk3x_i2c * i2c,struct i2c_msg * msgs,int num)971 static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
972 {
973 u32 addr = (msgs[0].addr & 0x7f) << 1;
974 int ret = 0;
975
976 /*
977 * The I2C adapter can issue a small (len < 4) write packet before
978 * reading. This speeds up SMBus-style register reads.
979 * The MRXADDR/MRXRADDR hold the slave address and the slave register
980 * address in this case.
981 */
982
983 if (num >= 2 && msgs[0].len < 4 &&
984 !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
985 u32 reg_addr = 0;
986 int i;
987
988 dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
989 addr >> 1);
990
991 /* Fill MRXRADDR with the register address(es) */
992 for (i = 0; i < msgs[0].len; ++i) {
993 reg_addr |= msgs[0].buf[i] << (i * 8);
994 reg_addr |= REG_MRXADDR_VALID(i);
995 }
996
997 /* msgs[0] is handled by hw. */
998 i2c->msg = &msgs[1];
999
1000 i2c->mode = REG_CON_MOD_REGISTER_TX;
1001
1002 i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
1003 i2c_writel(i2c, reg_addr, REG_MRXRADDR);
1004
1005 ret = 2;
1006 } else {
1007 /*
1008 * We'll have to do it the boring way and process the msgs
1009 * one-by-one.
1010 */
1011
1012 if (msgs[0].flags & I2C_M_RD) {
1013 addr |= 1; /* set read bit */
1014
1015 /*
1016 * We have to transmit the slave addr first. Use
1017 * MOD_REGISTER_TX for that purpose.
1018 */
1019 i2c->mode = REG_CON_MOD_REGISTER_TX;
1020 i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
1021 REG_MRXADDR);
1022 i2c_writel(i2c, 0, REG_MRXRADDR);
1023 } else {
1024 i2c->mode = REG_CON_MOD_TX;
1025 }
1026
1027 i2c->msg = &msgs[0];
1028
1029 ret = 1;
1030 }
1031
1032 i2c->addr = msgs[0].addr;
1033 i2c->busy = true;
1034 i2c->state = STATE_START;
1035 i2c->processed = 0;
1036 i2c->error = 0;
1037
1038 rk3x_i2c_clean_ipd(i2c);
1039
1040 return ret;
1041 }
1042
rk3x_i2c_xfer(struct i2c_adapter * adap,struct i2c_msg * msgs,int num)1043 static int rk3x_i2c_xfer(struct i2c_adapter *adap,
1044 struct i2c_msg *msgs, int num)
1045 {
1046 struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
1047 unsigned long timeout, flags;
1048 u32 val;
1049 int ret = 0;
1050 int i;
1051
1052 spin_lock_irqsave(&i2c->lock, flags);
1053
1054 clk_enable(i2c->clk);
1055 clk_enable(i2c->pclk);
1056
1057 i2c->is_last_msg = false;
1058
1059 /*
1060 * Process msgs. We can handle more than one message at once (see
1061 * rk3x_i2c_setup()).
1062 */
1063 for (i = 0; i < num; i += ret) {
1064 ret = rk3x_i2c_setup(i2c, msgs + i, num - i);
1065
1066 if (ret < 0) {
1067 dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
1068 break;
1069 }
1070
1071 if (i + ret >= num)
1072 i2c->is_last_msg = true;
1073
1074 spin_unlock_irqrestore(&i2c->lock, flags);
1075
1076 rk3x_i2c_start(i2c);
1077
1078 timeout = wait_event_timeout(i2c->wait, !i2c->busy,
1079 msecs_to_jiffies(WAIT_TIMEOUT));
1080
1081 spin_lock_irqsave(&i2c->lock, flags);
1082
1083 if (timeout == 0) {
1084 dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
1085 i2c_readl(i2c, REG_IPD), i2c->state);
1086
1087 /* Force a STOP condition without interrupt */
1088 i2c_writel(i2c, 0, REG_IEN);
1089 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
1090 val |= REG_CON_EN | REG_CON_STOP;
1091 i2c_writel(i2c, val, REG_CON);
1092
1093 i2c->state = STATE_IDLE;
1094
1095 ret = -ETIMEDOUT;
1096 break;
1097 }
1098
1099 if (i2c->error) {
1100 ret = i2c->error;
1101 break;
1102 }
1103 }
1104
1105 clk_disable(i2c->pclk);
1106 clk_disable(i2c->clk);
1107
1108 spin_unlock_irqrestore(&i2c->lock, flags);
1109
1110 return ret < 0 ? ret : num;
1111 }
1112
rk3x_i2c_resume(struct device * dev)1113 static __maybe_unused int rk3x_i2c_resume(struct device *dev)
1114 {
1115 struct rk3x_i2c *i2c = dev_get_drvdata(dev);
1116
1117 rk3x_i2c_adapt_div(i2c, clk_get_rate(i2c->clk));
1118
1119 return 0;
1120 }
1121
rk3x_i2c_func(struct i2c_adapter * adap)1122 static u32 rk3x_i2c_func(struct i2c_adapter *adap)
1123 {
1124 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
1125 }
1126
1127 static const struct i2c_algorithm rk3x_i2c_algorithm = {
1128 .master_xfer = rk3x_i2c_xfer,
1129 .functionality = rk3x_i2c_func,
1130 };
1131
1132 static const struct rk3x_i2c_soc_data rv1108_soc_data = {
1133 .grf_offset = -1,
1134 .calc_timings = rk3x_i2c_v1_calc_timings,
1135 };
1136
1137 static const struct rk3x_i2c_soc_data rk3066_soc_data = {
1138 .grf_offset = 0x154,
1139 .calc_timings = rk3x_i2c_v0_calc_timings,
1140 };
1141
1142 static const struct rk3x_i2c_soc_data rk3188_soc_data = {
1143 .grf_offset = 0x0a4,
1144 .calc_timings = rk3x_i2c_v0_calc_timings,
1145 };
1146
1147 static const struct rk3x_i2c_soc_data rk3228_soc_data = {
1148 .grf_offset = -1,
1149 .calc_timings = rk3x_i2c_v0_calc_timings,
1150 };
1151
1152 static const struct rk3x_i2c_soc_data rk3288_soc_data = {
1153 .grf_offset = -1,
1154 .calc_timings = rk3x_i2c_v0_calc_timings,
1155 };
1156
1157 static const struct rk3x_i2c_soc_data rk3399_soc_data = {
1158 .grf_offset = -1,
1159 .calc_timings = rk3x_i2c_v1_calc_timings,
1160 };
1161
1162 static const struct of_device_id rk3x_i2c_match[] = {
1163 {
1164 .compatible = "rockchip,rv1108-i2c",
1165 .data = &rv1108_soc_data
1166 },
1167 {
1168 .compatible = "rockchip,rk3066-i2c",
1169 .data = &rk3066_soc_data
1170 },
1171 {
1172 .compatible = "rockchip,rk3188-i2c",
1173 .data = &rk3188_soc_data
1174 },
1175 {
1176 .compatible = "rockchip,rk3228-i2c",
1177 .data = &rk3228_soc_data
1178 },
1179 {
1180 .compatible = "rockchip,rk3288-i2c",
1181 .data = &rk3288_soc_data
1182 },
1183 {
1184 .compatible = "rockchip,rk3399-i2c",
1185 .data = &rk3399_soc_data
1186 },
1187 {},
1188 };
1189 MODULE_DEVICE_TABLE(of, rk3x_i2c_match);
1190
rk3x_i2c_probe(struct platform_device * pdev)1191 static int rk3x_i2c_probe(struct platform_device *pdev)
1192 {
1193 struct device_node *np = pdev->dev.of_node;
1194 const struct of_device_id *match;
1195 struct rk3x_i2c *i2c;
1196 struct resource *mem;
1197 int ret = 0;
1198 int bus_nr;
1199 u32 value;
1200 int irq;
1201 unsigned long clk_rate;
1202
1203 i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
1204 if (!i2c)
1205 return -ENOMEM;
1206
1207 match = of_match_node(rk3x_i2c_match, np);
1208 i2c->soc_data = match->data;
1209
1210 /* use common interface to get I2C timing properties */
1211 i2c_parse_fw_timings(&pdev->dev, &i2c->t, true);
1212
1213 strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
1214 i2c->adap.owner = THIS_MODULE;
1215 i2c->adap.algo = &rk3x_i2c_algorithm;
1216 i2c->adap.retries = 3;
1217 i2c->adap.dev.of_node = np;
1218 i2c->adap.algo_data = i2c;
1219 i2c->adap.dev.parent = &pdev->dev;
1220
1221 i2c->dev = &pdev->dev;
1222
1223 spin_lock_init(&i2c->lock);
1224 init_waitqueue_head(&i2c->wait);
1225
1226 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1227 i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
1228 if (IS_ERR(i2c->regs))
1229 return PTR_ERR(i2c->regs);
1230
1231 /* Try to set the I2C adapter number from dt */
1232 bus_nr = of_alias_get_id(np, "i2c");
1233
1234 /*
1235 * Switch to new interface if the SoC also offers the old one.
1236 * The control bit is located in the GRF register space.
1237 */
1238 if (i2c->soc_data->grf_offset >= 0) {
1239 struct regmap *grf;
1240
1241 grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
1242 if (IS_ERR(grf)) {
1243 dev_err(&pdev->dev,
1244 "rk3x-i2c needs 'rockchip,grf' property\n");
1245 return PTR_ERR(grf);
1246 }
1247
1248 if (bus_nr < 0) {
1249 dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
1250 return -EINVAL;
1251 }
1252
1253 /* 27+i: write mask, 11+i: value */
1254 value = BIT(27 + bus_nr) | BIT(11 + bus_nr);
1255
1256 ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
1257 if (ret != 0) {
1258 dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
1259 return ret;
1260 }
1261 }
1262
1263 /* IRQ setup */
1264 irq = platform_get_irq(pdev, 0);
1265 if (irq < 0) {
1266 dev_err(&pdev->dev, "cannot find rk3x IRQ\n");
1267 return irq;
1268 }
1269
1270 ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
1271 0, dev_name(&pdev->dev), i2c);
1272 if (ret < 0) {
1273 dev_err(&pdev->dev, "cannot request IRQ\n");
1274 return ret;
1275 }
1276
1277 platform_set_drvdata(pdev, i2c);
1278
1279 if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) {
1280 /* Only one clock to use for bus clock and peripheral clock */
1281 i2c->clk = devm_clk_get(&pdev->dev, NULL);
1282 i2c->pclk = i2c->clk;
1283 } else {
1284 i2c->clk = devm_clk_get(&pdev->dev, "i2c");
1285 i2c->pclk = devm_clk_get(&pdev->dev, "pclk");
1286 }
1287
1288 if (IS_ERR(i2c->clk)) {
1289 ret = PTR_ERR(i2c->clk);
1290 if (ret != -EPROBE_DEFER)
1291 dev_err(&pdev->dev, "Can't get bus clk: %d\n", ret);
1292 return ret;
1293 }
1294 if (IS_ERR(i2c->pclk)) {
1295 ret = PTR_ERR(i2c->pclk);
1296 if (ret != -EPROBE_DEFER)
1297 dev_err(&pdev->dev, "Can't get periph clk: %d\n", ret);
1298 return ret;
1299 }
1300
1301 ret = clk_prepare(i2c->clk);
1302 if (ret < 0) {
1303 dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret);
1304 return ret;
1305 }
1306 ret = clk_prepare(i2c->pclk);
1307 if (ret < 0) {
1308 dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret);
1309 goto err_clk;
1310 }
1311
1312 i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
1313 ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
1314 if (ret != 0) {
1315 dev_err(&pdev->dev, "Unable to register clock notifier\n");
1316 goto err_pclk;
1317 }
1318
1319 clk_rate = clk_get_rate(i2c->clk);
1320 rk3x_i2c_adapt_div(i2c, clk_rate);
1321
1322 ret = i2c_add_adapter(&i2c->adap);
1323 if (ret < 0)
1324 goto err_clk_notifier;
1325
1326 return 0;
1327
1328 err_clk_notifier:
1329 clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1330 err_pclk:
1331 clk_unprepare(i2c->pclk);
1332 err_clk:
1333 clk_unprepare(i2c->clk);
1334 return ret;
1335 }
1336
rk3x_i2c_remove(struct platform_device * pdev)1337 static int rk3x_i2c_remove(struct platform_device *pdev)
1338 {
1339 struct rk3x_i2c *i2c = platform_get_drvdata(pdev);
1340
1341 i2c_del_adapter(&i2c->adap);
1342
1343 clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1344 clk_unprepare(i2c->pclk);
1345 clk_unprepare(i2c->clk);
1346
1347 return 0;
1348 }
1349
1350 static SIMPLE_DEV_PM_OPS(rk3x_i2c_pm_ops, NULL, rk3x_i2c_resume);
1351
1352 static struct platform_driver rk3x_i2c_driver = {
1353 .probe = rk3x_i2c_probe,
1354 .remove = rk3x_i2c_remove,
1355 .driver = {
1356 .name = "rk3x-i2c",
1357 .of_match_table = rk3x_i2c_match,
1358 .pm = &rk3x_i2c_pm_ops,
1359 },
1360 };
1361
1362 module_platform_driver(rk3x_i2c_driver);
1363
1364 MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
1365 MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
1366 MODULE_LICENSE("GPL v2");
1367