1 /*
2  * Driver for SMM665 Power Controller / Monitor
3  *
4  * Copyright (C) 2010 Ericsson AB.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * This driver should also work for SMM465, SMM764, and SMM766, but is untested
11  * for those chips. Only monitoring functionality is implemented.
12  *
13  * Datasheets:
14  * http://www.summitmicro.com/prod_select/summary/SMM665/SMM665B_2089_20.pdf
15  * http://www.summitmicro.com/prod_select/summary/SMM766B/SMM766B_2122.pdf
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/err.h>
22 #include <linux/slab.h>
23 #include <linux/i2c.h>
24 #include <linux/hwmon.h>
25 #include <linux/hwmon-sysfs.h>
26 #include <linux/delay.h>
27 #include <linux/jiffies.h>
28 
29 /* Internal reference voltage (VREF, x 1000 */
30 #define SMM665_VREF_ADC_X1000	1250
31 
32 /* module parameters */
33 static int vref = SMM665_VREF_ADC_X1000;
34 module_param(vref, int, 0);
35 MODULE_PARM_DESC(vref, "Reference voltage in mV");
36 
37 enum chips { smm465, smm665, smm665c, smm764, smm766 };
38 
39 /*
40  * ADC channel addresses
41  */
42 #define	SMM665_MISC16_ADC_DATA_A	0x00
43 #define	SMM665_MISC16_ADC_DATA_B	0x01
44 #define	SMM665_MISC16_ADC_DATA_C	0x02
45 #define	SMM665_MISC16_ADC_DATA_D	0x03
46 #define	SMM665_MISC16_ADC_DATA_E	0x04
47 #define	SMM665_MISC16_ADC_DATA_F	0x05
48 #define	SMM665_MISC16_ADC_DATA_VDD	0x06
49 #define	SMM665_MISC16_ADC_DATA_12V	0x07
50 #define	SMM665_MISC16_ADC_DATA_INT_TEMP	0x08
51 #define	SMM665_MISC16_ADC_DATA_AIN1	0x09
52 #define	SMM665_MISC16_ADC_DATA_AIN2	0x0a
53 
54 /*
55  * Command registers
56  */
57 #define	SMM665_MISC8_CMD_STS		0x80
58 #define	SMM665_MISC8_STATUS1		0x81
59 #define	SMM665_MISC8_STATUSS2		0x82
60 #define	SMM665_MISC8_IO_POLARITY	0x83
61 #define	SMM665_MISC8_PUP_POLARITY	0x84
62 #define	SMM665_MISC8_ADOC_STATUS1	0x85
63 #define	SMM665_MISC8_ADOC_STATUS2	0x86
64 #define	SMM665_MISC8_WRITE_PROT		0x87
65 #define	SMM665_MISC8_STS_TRACK		0x88
66 
67 /*
68  * Configuration registers and register groups
69  */
70 #define SMM665_ADOC_ENABLE		0x0d
71 #define SMM665_LIMIT_BASE		0x80	/* First limit register */
72 
73 /*
74  * Limit register bit masks
75  */
76 #define SMM665_TRIGGER_RST		0x8000
77 #define SMM665_TRIGGER_HEALTHY		0x4000
78 #define SMM665_TRIGGER_POWEROFF		0x2000
79 #define SMM665_TRIGGER_SHUTDOWN		0x1000
80 #define SMM665_ADC_MASK			0x03ff
81 
82 #define smm665_is_critical(lim)	((lim) & (SMM665_TRIGGER_RST \
83 					| SMM665_TRIGGER_POWEROFF \
84 					| SMM665_TRIGGER_SHUTDOWN))
85 /*
86  * Fault register bit definitions
87  * Values are merged from status registers 1/2,
88  * with status register 1 providing the upper 8 bits.
89  */
90 #define SMM665_FAULT_A		0x0001
91 #define SMM665_FAULT_B		0x0002
92 #define SMM665_FAULT_C		0x0004
93 #define SMM665_FAULT_D		0x0008
94 #define SMM665_FAULT_E		0x0010
95 #define SMM665_FAULT_F		0x0020
96 #define SMM665_FAULT_VDD	0x0040
97 #define SMM665_FAULT_12V	0x0080
98 #define SMM665_FAULT_TEMP	0x0100
99 #define SMM665_FAULT_AIN1	0x0200
100 #define SMM665_FAULT_AIN2	0x0400
101 
102 /*
103  * I2C Register addresses
104  *
105  * The configuration register needs to be the configured base register.
106  * The command/status register address is derived from it.
107  */
108 #define SMM665_REGMASK		0x78
109 #define SMM665_CMDREG_BASE	0x48
110 #define SMM665_CONFREG_BASE	0x50
111 
112 /*
113  *  Equations given by chip manufacturer to calculate voltage/temperature values
114  *  vref = Reference voltage on VREF_ADC pin (module parameter)
115  *  adc  = 10bit ADC value read back from registers
116  */
117 
118 /* Voltage A-F and VDD */
119 #define SMM665_VMON_ADC_TO_VOLTS(adc)  ((adc) * vref / 256)
120 
121 /* Voltage 12VIN */
122 #define SMM665_12VIN_ADC_TO_VOLTS(adc) ((adc) * vref * 3 / 256)
123 
124 /* Voltage AIN1, AIN2 */
125 #define SMM665_AIN_ADC_TO_VOLTS(adc)   ((adc) * vref / 512)
126 
127 /* Temp Sensor */
128 #define SMM665_TEMP_ADC_TO_CELSIUS(adc) (((adc) <= 511) ?		   \
129 					 ((int)(adc) * 1000 / 4) :	   \
130 					 (((int)(adc) - 0x400) * 1000 / 4))
131 
132 #define SMM665_NUM_ADC		11
133 
134 /*
135  * Chip dependent ADC conversion time, in uS
136  */
137 #define SMM665_ADC_WAIT_SMM665	70
138 #define SMM665_ADC_WAIT_SMM766	185
139 
140 struct smm665_data {
141 	enum chips type;
142 	int conversion_time;		/* ADC conversion time */
143 	struct i2c_client *client;
144 	struct mutex update_lock;
145 	bool valid;
146 	unsigned long last_updated;	/* in jiffies */
147 	u16 adc[SMM665_NUM_ADC];	/* adc values (raw) */
148 	u16 faults;			/* fault status */
149 	/* The following values are in mV */
150 	int critical_min_limit[SMM665_NUM_ADC];
151 	int alarm_min_limit[SMM665_NUM_ADC];
152 	int critical_max_limit[SMM665_NUM_ADC];
153 	int alarm_max_limit[SMM665_NUM_ADC];
154 	struct i2c_client *cmdreg;
155 };
156 
157 /*
158  * smm665_read16()
159  *
160  * Read 16 bit value from <reg>, <reg+1>. Upper 8 bits are in <reg>.
161  */
smm665_read16(struct i2c_client * client,int reg)162 static int smm665_read16(struct i2c_client *client, int reg)
163 {
164 	int rv, val;
165 
166 	rv = i2c_smbus_read_byte_data(client, reg);
167 	if (rv < 0)
168 		return rv;
169 	val = rv << 8;
170 	rv = i2c_smbus_read_byte_data(client, reg + 1);
171 	if (rv < 0)
172 		return rv;
173 	val |= rv;
174 	return val;
175 }
176 
177 /*
178  * Read adc value.
179  */
smm665_read_adc(struct smm665_data * data,int adc)180 static int smm665_read_adc(struct smm665_data *data, int adc)
181 {
182 	struct i2c_client *client = data->cmdreg;
183 	int rv;
184 	int radc;
185 
186 	/*
187 	 * Algorithm for reading ADC, per SMM665 datasheet
188 	 *
189 	 *  {[S][addr][W][Ack]} {[offset][Ack]} {[S][addr][R][Nack]}
190 	 * [wait conversion time]
191 	 *  {[S][addr][R][Ack]} {[datahi][Ack]} {[datalo][Ack][P]}
192 	 *
193 	 * To implement the first part of this exchange,
194 	 * do a full read transaction and expect a failure/Nack.
195 	 * This sets up the address pointer on the SMM665
196 	 * and starts the ADC conversion.
197 	 * Then do a two-byte read transaction.
198 	 */
199 	rv = i2c_smbus_read_byte_data(client, adc << 3);
200 	if (rv != -ENXIO) {
201 		/*
202 		 * We expect ENXIO to reflect NACK
203 		 * (per Documentation/i2c/fault-codes).
204 		 * Everything else is an error.
205 		 */
206 		dev_dbg(&client->dev,
207 			"Unexpected return code %d when setting ADC index", rv);
208 		return (rv < 0) ? rv : -EIO;
209 	}
210 
211 	udelay(data->conversion_time);
212 
213 	/*
214 	 * Now read two bytes.
215 	 *
216 	 * Neither i2c_smbus_read_byte() nor
217 	 * i2c_smbus_read_block_data() worked here,
218 	 * so use i2c_smbus_read_word_swapped() instead.
219 	 * We could also try to use i2c_master_recv(),
220 	 * but that is not always supported.
221 	 */
222 	rv = i2c_smbus_read_word_swapped(client, 0);
223 	if (rv < 0) {
224 		dev_dbg(&client->dev, "Failed to read ADC value: error %d", rv);
225 		return rv;
226 	}
227 	/*
228 	 * Validate/verify readback adc channel (in bit 11..14).
229 	 */
230 	radc = (rv >> 11) & 0x0f;
231 	if (radc != adc) {
232 		dev_dbg(&client->dev, "Unexpected RADC: Expected %d got %d",
233 			adc, radc);
234 		return -EIO;
235 	}
236 
237 	return rv & SMM665_ADC_MASK;
238 }
239 
smm665_update_device(struct device * dev)240 static struct smm665_data *smm665_update_device(struct device *dev)
241 {
242 	struct smm665_data *data = dev_get_drvdata(dev);
243 	struct i2c_client *client = data->client;
244 	struct smm665_data *ret = data;
245 
246 	mutex_lock(&data->update_lock);
247 
248 	if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
249 		int i, val;
250 
251 		/*
252 		 * read status registers
253 		 */
254 		val = smm665_read16(client, SMM665_MISC8_STATUS1);
255 		if (unlikely(val < 0)) {
256 			ret = ERR_PTR(val);
257 			goto abort;
258 		}
259 		data->faults = val;
260 
261 		/* Read adc registers */
262 		for (i = 0; i < SMM665_NUM_ADC; i++) {
263 			val = smm665_read_adc(data, i);
264 			if (unlikely(val < 0)) {
265 				ret = ERR_PTR(val);
266 				goto abort;
267 			}
268 			data->adc[i] = val;
269 		}
270 		data->last_updated = jiffies;
271 		data->valid = 1;
272 	}
273 abort:
274 	mutex_unlock(&data->update_lock);
275 	return ret;
276 }
277 
278 /* Return converted value from given adc */
smm665_convert(u16 adcval,int index)279 static int smm665_convert(u16 adcval, int index)
280 {
281 	int val = 0;
282 
283 	switch (index) {
284 	case SMM665_MISC16_ADC_DATA_12V:
285 		val = SMM665_12VIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
286 		break;
287 
288 	case SMM665_MISC16_ADC_DATA_VDD:
289 	case SMM665_MISC16_ADC_DATA_A:
290 	case SMM665_MISC16_ADC_DATA_B:
291 	case SMM665_MISC16_ADC_DATA_C:
292 	case SMM665_MISC16_ADC_DATA_D:
293 	case SMM665_MISC16_ADC_DATA_E:
294 	case SMM665_MISC16_ADC_DATA_F:
295 		val = SMM665_VMON_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
296 		break;
297 
298 	case SMM665_MISC16_ADC_DATA_AIN1:
299 	case SMM665_MISC16_ADC_DATA_AIN2:
300 		val = SMM665_AIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
301 		break;
302 
303 	case SMM665_MISC16_ADC_DATA_INT_TEMP:
304 		val = SMM665_TEMP_ADC_TO_CELSIUS(adcval & SMM665_ADC_MASK);
305 		break;
306 
307 	default:
308 		/* If we get here, the developer messed up */
309 		WARN_ON_ONCE(1);
310 		break;
311 	}
312 
313 	return val;
314 }
315 
smm665_get_min(struct device * dev,int index)316 static int smm665_get_min(struct device *dev, int index)
317 {
318 	struct smm665_data *data = dev_get_drvdata(dev);
319 
320 	return data->alarm_min_limit[index];
321 }
322 
smm665_get_max(struct device * dev,int index)323 static int smm665_get_max(struct device *dev, int index)
324 {
325 	struct smm665_data *data = dev_get_drvdata(dev);
326 
327 	return data->alarm_max_limit[index];
328 }
329 
smm665_get_lcrit(struct device * dev,int index)330 static int smm665_get_lcrit(struct device *dev, int index)
331 {
332 	struct smm665_data *data = dev_get_drvdata(dev);
333 
334 	return data->critical_min_limit[index];
335 }
336 
smm665_get_crit(struct device * dev,int index)337 static int smm665_get_crit(struct device *dev, int index)
338 {
339 	struct smm665_data *data = dev_get_drvdata(dev);
340 
341 	return data->critical_max_limit[index];
342 }
343 
smm665_show_crit_alarm(struct device * dev,struct device_attribute * da,char * buf)344 static ssize_t smm665_show_crit_alarm(struct device *dev,
345 				      struct device_attribute *da, char *buf)
346 {
347 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
348 	struct smm665_data *data = smm665_update_device(dev);
349 	int val = 0;
350 
351 	if (IS_ERR(data))
352 		return PTR_ERR(data);
353 
354 	if (data->faults & (1 << attr->index))
355 		val = 1;
356 
357 	return snprintf(buf, PAGE_SIZE, "%d\n", val);
358 }
359 
smm665_show_input(struct device * dev,struct device_attribute * da,char * buf)360 static ssize_t smm665_show_input(struct device *dev,
361 				 struct device_attribute *da, char *buf)
362 {
363 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
364 	struct smm665_data *data = smm665_update_device(dev);
365 	int adc = attr->index;
366 	int val;
367 
368 	if (IS_ERR(data))
369 		return PTR_ERR(data);
370 
371 	val = smm665_convert(data->adc[adc], adc);
372 	return snprintf(buf, PAGE_SIZE, "%d\n", val);
373 }
374 
375 #define SMM665_SHOW(what) \
376 static ssize_t smm665_show_##what(struct device *dev, \
377 				    struct device_attribute *da, char *buf) \
378 { \
379 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da); \
380 	const int val = smm665_get_##what(dev, attr->index); \
381 	return snprintf(buf, PAGE_SIZE, "%d\n", val); \
382 }
383 
384 SMM665_SHOW(min);
385 SMM665_SHOW(max);
386 SMM665_SHOW(lcrit);
387 SMM665_SHOW(crit);
388 
389 /*
390  * These macros are used below in constructing device attribute objects
391  * for use with sysfs_create_group() to make a sysfs device file
392  * for each register.
393  */
394 
395 #define SMM665_ATTR(name, type, cmd_idx) \
396 	static SENSOR_DEVICE_ATTR(name##_##type, S_IRUGO, \
397 				  smm665_show_##type, NULL, cmd_idx)
398 
399 /* Construct a sensor_device_attribute structure for each register */
400 
401 /* Input voltages */
402 SMM665_ATTR(in1, input, SMM665_MISC16_ADC_DATA_12V);
403 SMM665_ATTR(in2, input, SMM665_MISC16_ADC_DATA_VDD);
404 SMM665_ATTR(in3, input, SMM665_MISC16_ADC_DATA_A);
405 SMM665_ATTR(in4, input, SMM665_MISC16_ADC_DATA_B);
406 SMM665_ATTR(in5, input, SMM665_MISC16_ADC_DATA_C);
407 SMM665_ATTR(in6, input, SMM665_MISC16_ADC_DATA_D);
408 SMM665_ATTR(in7, input, SMM665_MISC16_ADC_DATA_E);
409 SMM665_ATTR(in8, input, SMM665_MISC16_ADC_DATA_F);
410 SMM665_ATTR(in9, input, SMM665_MISC16_ADC_DATA_AIN1);
411 SMM665_ATTR(in10, input, SMM665_MISC16_ADC_DATA_AIN2);
412 
413 /* Input voltages min */
414 SMM665_ATTR(in1, min, SMM665_MISC16_ADC_DATA_12V);
415 SMM665_ATTR(in2, min, SMM665_MISC16_ADC_DATA_VDD);
416 SMM665_ATTR(in3, min, SMM665_MISC16_ADC_DATA_A);
417 SMM665_ATTR(in4, min, SMM665_MISC16_ADC_DATA_B);
418 SMM665_ATTR(in5, min, SMM665_MISC16_ADC_DATA_C);
419 SMM665_ATTR(in6, min, SMM665_MISC16_ADC_DATA_D);
420 SMM665_ATTR(in7, min, SMM665_MISC16_ADC_DATA_E);
421 SMM665_ATTR(in8, min, SMM665_MISC16_ADC_DATA_F);
422 SMM665_ATTR(in9, min, SMM665_MISC16_ADC_DATA_AIN1);
423 SMM665_ATTR(in10, min, SMM665_MISC16_ADC_DATA_AIN2);
424 
425 /* Input voltages max */
426 SMM665_ATTR(in1, max, SMM665_MISC16_ADC_DATA_12V);
427 SMM665_ATTR(in2, max, SMM665_MISC16_ADC_DATA_VDD);
428 SMM665_ATTR(in3, max, SMM665_MISC16_ADC_DATA_A);
429 SMM665_ATTR(in4, max, SMM665_MISC16_ADC_DATA_B);
430 SMM665_ATTR(in5, max, SMM665_MISC16_ADC_DATA_C);
431 SMM665_ATTR(in6, max, SMM665_MISC16_ADC_DATA_D);
432 SMM665_ATTR(in7, max, SMM665_MISC16_ADC_DATA_E);
433 SMM665_ATTR(in8, max, SMM665_MISC16_ADC_DATA_F);
434 SMM665_ATTR(in9, max, SMM665_MISC16_ADC_DATA_AIN1);
435 SMM665_ATTR(in10, max, SMM665_MISC16_ADC_DATA_AIN2);
436 
437 /* Input voltages lcrit */
438 SMM665_ATTR(in1, lcrit, SMM665_MISC16_ADC_DATA_12V);
439 SMM665_ATTR(in2, lcrit, SMM665_MISC16_ADC_DATA_VDD);
440 SMM665_ATTR(in3, lcrit, SMM665_MISC16_ADC_DATA_A);
441 SMM665_ATTR(in4, lcrit, SMM665_MISC16_ADC_DATA_B);
442 SMM665_ATTR(in5, lcrit, SMM665_MISC16_ADC_DATA_C);
443 SMM665_ATTR(in6, lcrit, SMM665_MISC16_ADC_DATA_D);
444 SMM665_ATTR(in7, lcrit, SMM665_MISC16_ADC_DATA_E);
445 SMM665_ATTR(in8, lcrit, SMM665_MISC16_ADC_DATA_F);
446 SMM665_ATTR(in9, lcrit, SMM665_MISC16_ADC_DATA_AIN1);
447 SMM665_ATTR(in10, lcrit, SMM665_MISC16_ADC_DATA_AIN2);
448 
449 /* Input voltages crit */
450 SMM665_ATTR(in1, crit, SMM665_MISC16_ADC_DATA_12V);
451 SMM665_ATTR(in2, crit, SMM665_MISC16_ADC_DATA_VDD);
452 SMM665_ATTR(in3, crit, SMM665_MISC16_ADC_DATA_A);
453 SMM665_ATTR(in4, crit, SMM665_MISC16_ADC_DATA_B);
454 SMM665_ATTR(in5, crit, SMM665_MISC16_ADC_DATA_C);
455 SMM665_ATTR(in6, crit, SMM665_MISC16_ADC_DATA_D);
456 SMM665_ATTR(in7, crit, SMM665_MISC16_ADC_DATA_E);
457 SMM665_ATTR(in8, crit, SMM665_MISC16_ADC_DATA_F);
458 SMM665_ATTR(in9, crit, SMM665_MISC16_ADC_DATA_AIN1);
459 SMM665_ATTR(in10, crit, SMM665_MISC16_ADC_DATA_AIN2);
460 
461 /* critical alarms */
462 SMM665_ATTR(in1, crit_alarm, SMM665_FAULT_12V);
463 SMM665_ATTR(in2, crit_alarm, SMM665_FAULT_VDD);
464 SMM665_ATTR(in3, crit_alarm, SMM665_FAULT_A);
465 SMM665_ATTR(in4, crit_alarm, SMM665_FAULT_B);
466 SMM665_ATTR(in5, crit_alarm, SMM665_FAULT_C);
467 SMM665_ATTR(in6, crit_alarm, SMM665_FAULT_D);
468 SMM665_ATTR(in7, crit_alarm, SMM665_FAULT_E);
469 SMM665_ATTR(in8, crit_alarm, SMM665_FAULT_F);
470 SMM665_ATTR(in9, crit_alarm, SMM665_FAULT_AIN1);
471 SMM665_ATTR(in10, crit_alarm, SMM665_FAULT_AIN2);
472 
473 /* Temperature */
474 SMM665_ATTR(temp1, input, SMM665_MISC16_ADC_DATA_INT_TEMP);
475 SMM665_ATTR(temp1, min, SMM665_MISC16_ADC_DATA_INT_TEMP);
476 SMM665_ATTR(temp1, max, SMM665_MISC16_ADC_DATA_INT_TEMP);
477 SMM665_ATTR(temp1, lcrit, SMM665_MISC16_ADC_DATA_INT_TEMP);
478 SMM665_ATTR(temp1, crit, SMM665_MISC16_ADC_DATA_INT_TEMP);
479 SMM665_ATTR(temp1, crit_alarm, SMM665_FAULT_TEMP);
480 
481 /*
482  * Finally, construct an array of pointers to members of the above objects,
483  * as required for sysfs_create_group()
484  */
485 static struct attribute *smm665_attrs[] = {
486 	&sensor_dev_attr_in1_input.dev_attr.attr,
487 	&sensor_dev_attr_in1_min.dev_attr.attr,
488 	&sensor_dev_attr_in1_max.dev_attr.attr,
489 	&sensor_dev_attr_in1_lcrit.dev_attr.attr,
490 	&sensor_dev_attr_in1_crit.dev_attr.attr,
491 	&sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
492 
493 	&sensor_dev_attr_in2_input.dev_attr.attr,
494 	&sensor_dev_attr_in2_min.dev_attr.attr,
495 	&sensor_dev_attr_in2_max.dev_attr.attr,
496 	&sensor_dev_attr_in2_lcrit.dev_attr.attr,
497 	&sensor_dev_attr_in2_crit.dev_attr.attr,
498 	&sensor_dev_attr_in2_crit_alarm.dev_attr.attr,
499 
500 	&sensor_dev_attr_in3_input.dev_attr.attr,
501 	&sensor_dev_attr_in3_min.dev_attr.attr,
502 	&sensor_dev_attr_in3_max.dev_attr.attr,
503 	&sensor_dev_attr_in3_lcrit.dev_attr.attr,
504 	&sensor_dev_attr_in3_crit.dev_attr.attr,
505 	&sensor_dev_attr_in3_crit_alarm.dev_attr.attr,
506 
507 	&sensor_dev_attr_in4_input.dev_attr.attr,
508 	&sensor_dev_attr_in4_min.dev_attr.attr,
509 	&sensor_dev_attr_in4_max.dev_attr.attr,
510 	&sensor_dev_attr_in4_lcrit.dev_attr.attr,
511 	&sensor_dev_attr_in4_crit.dev_attr.attr,
512 	&sensor_dev_attr_in4_crit_alarm.dev_attr.attr,
513 
514 	&sensor_dev_attr_in5_input.dev_attr.attr,
515 	&sensor_dev_attr_in5_min.dev_attr.attr,
516 	&sensor_dev_attr_in5_max.dev_attr.attr,
517 	&sensor_dev_attr_in5_lcrit.dev_attr.attr,
518 	&sensor_dev_attr_in5_crit.dev_attr.attr,
519 	&sensor_dev_attr_in5_crit_alarm.dev_attr.attr,
520 
521 	&sensor_dev_attr_in6_input.dev_attr.attr,
522 	&sensor_dev_attr_in6_min.dev_attr.attr,
523 	&sensor_dev_attr_in6_max.dev_attr.attr,
524 	&sensor_dev_attr_in6_lcrit.dev_attr.attr,
525 	&sensor_dev_attr_in6_crit.dev_attr.attr,
526 	&sensor_dev_attr_in6_crit_alarm.dev_attr.attr,
527 
528 	&sensor_dev_attr_in7_input.dev_attr.attr,
529 	&sensor_dev_attr_in7_min.dev_attr.attr,
530 	&sensor_dev_attr_in7_max.dev_attr.attr,
531 	&sensor_dev_attr_in7_lcrit.dev_attr.attr,
532 	&sensor_dev_attr_in7_crit.dev_attr.attr,
533 	&sensor_dev_attr_in7_crit_alarm.dev_attr.attr,
534 
535 	&sensor_dev_attr_in8_input.dev_attr.attr,
536 	&sensor_dev_attr_in8_min.dev_attr.attr,
537 	&sensor_dev_attr_in8_max.dev_attr.attr,
538 	&sensor_dev_attr_in8_lcrit.dev_attr.attr,
539 	&sensor_dev_attr_in8_crit.dev_attr.attr,
540 	&sensor_dev_attr_in8_crit_alarm.dev_attr.attr,
541 
542 	&sensor_dev_attr_in9_input.dev_attr.attr,
543 	&sensor_dev_attr_in9_min.dev_attr.attr,
544 	&sensor_dev_attr_in9_max.dev_attr.attr,
545 	&sensor_dev_attr_in9_lcrit.dev_attr.attr,
546 	&sensor_dev_attr_in9_crit.dev_attr.attr,
547 	&sensor_dev_attr_in9_crit_alarm.dev_attr.attr,
548 
549 	&sensor_dev_attr_in10_input.dev_attr.attr,
550 	&sensor_dev_attr_in10_min.dev_attr.attr,
551 	&sensor_dev_attr_in10_max.dev_attr.attr,
552 	&sensor_dev_attr_in10_lcrit.dev_attr.attr,
553 	&sensor_dev_attr_in10_crit.dev_attr.attr,
554 	&sensor_dev_attr_in10_crit_alarm.dev_attr.attr,
555 
556 	&sensor_dev_attr_temp1_input.dev_attr.attr,
557 	&sensor_dev_attr_temp1_min.dev_attr.attr,
558 	&sensor_dev_attr_temp1_max.dev_attr.attr,
559 	&sensor_dev_attr_temp1_lcrit.dev_attr.attr,
560 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
561 	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
562 
563 	NULL,
564 };
565 
566 ATTRIBUTE_GROUPS(smm665);
567 
smm665_probe(struct i2c_client * client,const struct i2c_device_id * id)568 static int smm665_probe(struct i2c_client *client,
569 			const struct i2c_device_id *id)
570 {
571 	struct i2c_adapter *adapter = client->adapter;
572 	struct smm665_data *data;
573 	struct device *hwmon_dev;
574 	int i, ret;
575 
576 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA
577 				     | I2C_FUNC_SMBUS_WORD_DATA))
578 		return -ENODEV;
579 
580 	if (i2c_smbus_read_byte_data(client, SMM665_ADOC_ENABLE) < 0)
581 		return -ENODEV;
582 
583 	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
584 	if (!data)
585 		return -ENOMEM;
586 
587 	i2c_set_clientdata(client, data);
588 	mutex_init(&data->update_lock);
589 
590 	data->client = client;
591 	data->type = id->driver_data;
592 	data->cmdreg = i2c_new_dummy(adapter, (client->addr & ~SMM665_REGMASK)
593 				     | SMM665_CMDREG_BASE);
594 	if (!data->cmdreg)
595 		return -ENOMEM;
596 
597 	switch (data->type) {
598 	case smm465:
599 	case smm665:
600 		data->conversion_time = SMM665_ADC_WAIT_SMM665;
601 		break;
602 	case smm665c:
603 	case smm764:
604 	case smm766:
605 		data->conversion_time = SMM665_ADC_WAIT_SMM766;
606 		break;
607 	}
608 
609 	ret = -ENODEV;
610 	if (i2c_smbus_read_byte_data(data->cmdreg, SMM665_MISC8_CMD_STS) < 0)
611 		goto out_unregister;
612 
613 	/*
614 	 * Read limits.
615 	 *
616 	 * Limit registers start with register SMM665_LIMIT_BASE.
617 	 * Each channel uses 8 registers, providing four limit values
618 	 * per channel. Each limit value requires two registers, with the
619 	 * high byte in the first register and the low byte in the second
620 	 * register. The first two limits are under limit values, followed
621 	 * by two over limit values.
622 	 *
623 	 * Limit register order matches the ADC register order, so we use
624 	 * ADC register defines throughout the code to index limit registers.
625 	 *
626 	 * We save the first retrieved value both as "critical" and "alarm"
627 	 * value. The second value overwrites either the critical or the
628 	 * alarm value, depending on its configuration. This ensures that both
629 	 * critical and alarm values are initialized, even if both registers are
630 	 * configured as critical or non-critical.
631 	 */
632 	for (i = 0; i < SMM665_NUM_ADC; i++) {
633 		int val;
634 
635 		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8);
636 		if (unlikely(val < 0))
637 			goto out_unregister;
638 		data->critical_min_limit[i] = data->alarm_min_limit[i]
639 		  = smm665_convert(val, i);
640 		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 2);
641 		if (unlikely(val < 0))
642 			goto out_unregister;
643 		if (smm665_is_critical(val))
644 			data->critical_min_limit[i] = smm665_convert(val, i);
645 		else
646 			data->alarm_min_limit[i] = smm665_convert(val, i);
647 		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 4);
648 		if (unlikely(val < 0))
649 			goto out_unregister;
650 		data->critical_max_limit[i] = data->alarm_max_limit[i]
651 		  = smm665_convert(val, i);
652 		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 6);
653 		if (unlikely(val < 0))
654 			goto out_unregister;
655 		if (smm665_is_critical(val))
656 			data->critical_max_limit[i] = smm665_convert(val, i);
657 		else
658 			data->alarm_max_limit[i] = smm665_convert(val, i);
659 	}
660 
661 	hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
662 							   client->name, data,
663 							   smm665_groups);
664 	if (IS_ERR(hwmon_dev)) {
665 		ret = PTR_ERR(hwmon_dev);
666 		goto out_unregister;
667 	}
668 
669 	return 0;
670 
671 out_unregister:
672 	i2c_unregister_device(data->cmdreg);
673 	return ret;
674 }
675 
smm665_remove(struct i2c_client * client)676 static int smm665_remove(struct i2c_client *client)
677 {
678 	struct smm665_data *data = i2c_get_clientdata(client);
679 
680 	i2c_unregister_device(data->cmdreg);
681 	return 0;
682 }
683 
684 static const struct i2c_device_id smm665_id[] = {
685 	{"smm465", smm465},
686 	{"smm665", smm665},
687 	{"smm665c", smm665c},
688 	{"smm764", smm764},
689 	{"smm766", smm766},
690 	{}
691 };
692 
693 MODULE_DEVICE_TABLE(i2c, smm665_id);
694 
695 /* This is the driver that will be inserted */
696 static struct i2c_driver smm665_driver = {
697 	.driver = {
698 		   .name = "smm665",
699 		   },
700 	.probe = smm665_probe,
701 	.remove = smm665_remove,
702 	.id_table = smm665_id,
703 };
704 
705 module_i2c_driver(smm665_driver);
706 
707 MODULE_AUTHOR("Guenter Roeck");
708 MODULE_DESCRIPTION("SMM665 driver");
709 MODULE_LICENSE("GPL");
710