1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/circ_buf.h>
26 #include <trace/events/dma_fence.h>
27 
28 #include "intel_guc_submission.h"
29 #include "intel_lrc_reg.h"
30 #include "i915_drv.h"
31 
32 #define GUC_PREEMPT_FINISHED		0x1
33 #define GUC_PREEMPT_BREADCRUMB_DWORDS	0x8
34 #define GUC_PREEMPT_BREADCRUMB_BYTES	\
35 	(sizeof(u32) * GUC_PREEMPT_BREADCRUMB_DWORDS)
36 
37 /**
38  * DOC: GuC-based command submission
39  *
40  * GuC client:
41  * A intel_guc_client refers to a submission path through GuC. Currently, there
42  * are two clients. One of them (the execbuf_client) is charged with all
43  * submissions to the GuC, the other one (preempt_client) is responsible for
44  * preempting the execbuf_client. This struct is the owner of a doorbell, a
45  * process descriptor and a workqueue (all of them inside a single gem object
46  * that contains all required pages for these elements).
47  *
48  * GuC stage descriptor:
49  * During initialization, the driver allocates a static pool of 1024 such
50  * descriptors, and shares them with the GuC.
51  * Currently, there exists a 1:1 mapping between a intel_guc_client and a
52  * guc_stage_desc (via the client's stage_id), so effectively only one
53  * gets used. This stage descriptor lets the GuC know about the doorbell,
54  * workqueue and process descriptor. Theoretically, it also lets the GuC
55  * know about our HW contexts (context ID, etc...), but we actually
56  * employ a kind of submission where the GuC uses the LRCA sent via the work
57  * item instead (the single guc_stage_desc associated to execbuf client
58  * contains information about the default kernel context only, but this is
59  * essentially unused). This is called a "proxy" submission.
60  *
61  * The Scratch registers:
62  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
63  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
64  * triggers an interrupt on the GuC via another register write (0xC4C8).
65  * Firmware writes a success/fail code back to the action register after
66  * processes the request. The kernel driver polls waiting for this update and
67  * then proceeds.
68  * See intel_guc_send()
69  *
70  * Doorbells:
71  * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
72  * mapped into process space.
73  *
74  * Work Items:
75  * There are several types of work items that the host may place into a
76  * workqueue, each with its own requirements and limitations. Currently only
77  * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
78  * represents in-order queue. The kernel driver packs ring tail pointer and an
79  * ELSP context descriptor dword into Work Item.
80  * See guc_add_request()
81  *
82  */
83 
to_priolist(struct rb_node * rb)84 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
85 {
86 	return rb_entry(rb, struct i915_priolist, node);
87 }
88 
is_high_priority(struct intel_guc_client * client)89 static inline bool is_high_priority(struct intel_guc_client *client)
90 {
91 	return (client->priority == GUC_CLIENT_PRIORITY_KMD_HIGH ||
92 		client->priority == GUC_CLIENT_PRIORITY_HIGH);
93 }
94 
reserve_doorbell(struct intel_guc_client * client)95 static int reserve_doorbell(struct intel_guc_client *client)
96 {
97 	unsigned long offset;
98 	unsigned long end;
99 	u16 id;
100 
101 	GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);
102 
103 	/*
104 	 * The bitmap tracks which doorbell registers are currently in use.
105 	 * It is split into two halves; the first half is used for normal
106 	 * priority contexts, the second half for high-priority ones.
107 	 */
108 	offset = 0;
109 	end = GUC_NUM_DOORBELLS / 2;
110 	if (is_high_priority(client)) {
111 		offset = end;
112 		end += offset;
113 	}
114 
115 	id = find_next_zero_bit(client->guc->doorbell_bitmap, end, offset);
116 	if (id == end)
117 		return -ENOSPC;
118 
119 	__set_bit(id, client->guc->doorbell_bitmap);
120 	client->doorbell_id = id;
121 	DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
122 			 client->stage_id, yesno(is_high_priority(client)),
123 			 id);
124 	return 0;
125 }
126 
has_doorbell(struct intel_guc_client * client)127 static bool has_doorbell(struct intel_guc_client *client)
128 {
129 	if (client->doorbell_id == GUC_DOORBELL_INVALID)
130 		return false;
131 
132 	return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
133 }
134 
unreserve_doorbell(struct intel_guc_client * client)135 static void unreserve_doorbell(struct intel_guc_client *client)
136 {
137 	GEM_BUG_ON(!has_doorbell(client));
138 
139 	__clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
140 	client->doorbell_id = GUC_DOORBELL_INVALID;
141 }
142 
143 /*
144  * Tell the GuC to allocate or deallocate a specific doorbell
145  */
146 
__guc_allocate_doorbell(struct intel_guc * guc,u32 stage_id)147 static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
148 {
149 	u32 action[] = {
150 		INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
151 		stage_id
152 	};
153 
154 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
155 }
156 
__guc_deallocate_doorbell(struct intel_guc * guc,u32 stage_id)157 static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
158 {
159 	u32 action[] = {
160 		INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
161 		stage_id
162 	};
163 
164 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
165 }
166 
__get_stage_desc(struct intel_guc_client * client)167 static struct guc_stage_desc *__get_stage_desc(struct intel_guc_client *client)
168 {
169 	struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
170 
171 	return &base[client->stage_id];
172 }
173 
174 /*
175  * Initialise, update, or clear doorbell data shared with the GuC
176  *
177  * These functions modify shared data and so need access to the mapped
178  * client object which contains the page being used for the doorbell
179  */
180 
__update_doorbell_desc(struct intel_guc_client * client,u16 new_id)181 static void __update_doorbell_desc(struct intel_guc_client *client, u16 new_id)
182 {
183 	struct guc_stage_desc *desc;
184 
185 	/* Update the GuC's idea of the doorbell ID */
186 	desc = __get_stage_desc(client);
187 	desc->db_id = new_id;
188 }
189 
__get_doorbell(struct intel_guc_client * client)190 static struct guc_doorbell_info *__get_doorbell(struct intel_guc_client *client)
191 {
192 	return client->vaddr + client->doorbell_offset;
193 }
194 
__create_doorbell(struct intel_guc_client * client)195 static void __create_doorbell(struct intel_guc_client *client)
196 {
197 	struct guc_doorbell_info *doorbell;
198 
199 	doorbell = __get_doorbell(client);
200 	doorbell->db_status = GUC_DOORBELL_ENABLED;
201 	doorbell->cookie = 0;
202 }
203 
__destroy_doorbell(struct intel_guc_client * client)204 static void __destroy_doorbell(struct intel_guc_client *client)
205 {
206 	struct drm_i915_private *dev_priv = guc_to_i915(client->guc);
207 	struct guc_doorbell_info *doorbell;
208 	u16 db_id = client->doorbell_id;
209 
210 	doorbell = __get_doorbell(client);
211 	doorbell->db_status = GUC_DOORBELL_DISABLED;
212 	doorbell->cookie = 0;
213 
214 	/* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
215 	 * to go to zero after updating db_status before we call the GuC to
216 	 * release the doorbell
217 	 */
218 	if (wait_for_us(!(I915_READ(GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID), 10))
219 		WARN_ONCE(true, "Doorbell never became invalid after disable\n");
220 }
221 
create_doorbell(struct intel_guc_client * client)222 static int create_doorbell(struct intel_guc_client *client)
223 {
224 	int ret;
225 
226 	if (WARN_ON(!has_doorbell(client)))
227 		return -ENODEV; /* internal setup error, should never happen */
228 
229 	__update_doorbell_desc(client, client->doorbell_id);
230 	__create_doorbell(client);
231 
232 	ret = __guc_allocate_doorbell(client->guc, client->stage_id);
233 	if (ret) {
234 		__destroy_doorbell(client);
235 		__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
236 		DRM_DEBUG_DRIVER("Couldn't create client %u doorbell: %d\n",
237 				 client->stage_id, ret);
238 		return ret;
239 	}
240 
241 	return 0;
242 }
243 
destroy_doorbell(struct intel_guc_client * client)244 static int destroy_doorbell(struct intel_guc_client *client)
245 {
246 	int ret;
247 
248 	GEM_BUG_ON(!has_doorbell(client));
249 
250 	__destroy_doorbell(client);
251 	ret = __guc_deallocate_doorbell(client->guc, client->stage_id);
252 	if (ret)
253 		DRM_ERROR("Couldn't destroy client %u doorbell: %d\n",
254 			  client->stage_id, ret);
255 
256 	__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
257 
258 	return ret;
259 }
260 
__select_cacheline(struct intel_guc * guc)261 static unsigned long __select_cacheline(struct intel_guc *guc)
262 {
263 	unsigned long offset;
264 
265 	/* Doorbell uses a single cache line within a page */
266 	offset = offset_in_page(guc->db_cacheline);
267 
268 	/* Moving to next cache line to reduce contention */
269 	guc->db_cacheline += cache_line_size();
270 
271 	DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
272 			 offset, guc->db_cacheline, cache_line_size());
273 	return offset;
274 }
275 
276 static inline struct guc_process_desc *
__get_process_desc(struct intel_guc_client * client)277 __get_process_desc(struct intel_guc_client *client)
278 {
279 	return client->vaddr + client->proc_desc_offset;
280 }
281 
282 /*
283  * Initialise the process descriptor shared with the GuC firmware.
284  */
guc_proc_desc_init(struct intel_guc * guc,struct intel_guc_client * client)285 static void guc_proc_desc_init(struct intel_guc *guc,
286 			       struct intel_guc_client *client)
287 {
288 	struct guc_process_desc *desc;
289 
290 	desc = memset(__get_process_desc(client), 0, sizeof(*desc));
291 
292 	/*
293 	 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
294 	 * space for ring3 clients (set them as in mmap_ioctl) or kernel
295 	 * space for kernel clients (map on demand instead? May make debug
296 	 * easier to have it mapped).
297 	 */
298 	desc->wq_base_addr = 0;
299 	desc->db_base_addr = 0;
300 
301 	desc->stage_id = client->stage_id;
302 	desc->wq_size_bytes = GUC_WQ_SIZE;
303 	desc->wq_status = WQ_STATUS_ACTIVE;
304 	desc->priority = client->priority;
305 }
306 
guc_stage_desc_pool_create(struct intel_guc * guc)307 static int guc_stage_desc_pool_create(struct intel_guc *guc)
308 {
309 	struct i915_vma *vma;
310 	void *vaddr;
311 
312 	vma = intel_guc_allocate_vma(guc,
313 				     PAGE_ALIGN(sizeof(struct guc_stage_desc) *
314 				     GUC_MAX_STAGE_DESCRIPTORS));
315 	if (IS_ERR(vma))
316 		return PTR_ERR(vma);
317 
318 	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
319 	if (IS_ERR(vaddr)) {
320 		i915_vma_unpin_and_release(&vma);
321 		return PTR_ERR(vaddr);
322 	}
323 
324 	guc->stage_desc_pool = vma;
325 	guc->stage_desc_pool_vaddr = vaddr;
326 	ida_init(&guc->stage_ids);
327 
328 	return 0;
329 }
330 
guc_stage_desc_pool_destroy(struct intel_guc * guc)331 static void guc_stage_desc_pool_destroy(struct intel_guc *guc)
332 {
333 	ida_destroy(&guc->stage_ids);
334 	i915_gem_object_unpin_map(guc->stage_desc_pool->obj);
335 	i915_vma_unpin_and_release(&guc->stage_desc_pool);
336 }
337 
338 /*
339  * Initialise/clear the stage descriptor shared with the GuC firmware.
340  *
341  * This descriptor tells the GuC where (in GGTT space) to find the important
342  * data structures relating to this client (doorbell, process descriptor,
343  * write queue, etc).
344  */
guc_stage_desc_init(struct intel_guc * guc,struct intel_guc_client * client)345 static void guc_stage_desc_init(struct intel_guc *guc,
346 				struct intel_guc_client *client)
347 {
348 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
349 	struct intel_engine_cs *engine;
350 	struct i915_gem_context *ctx = client->owner;
351 	struct guc_stage_desc *desc;
352 	unsigned int tmp;
353 	u32 gfx_addr;
354 
355 	desc = __get_stage_desc(client);
356 	memset(desc, 0, sizeof(*desc));
357 
358 	desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE |
359 			  GUC_STAGE_DESC_ATTR_KERNEL;
360 	if (is_high_priority(client))
361 		desc->attribute |= GUC_STAGE_DESC_ATTR_PREEMPT;
362 	desc->stage_id = client->stage_id;
363 	desc->priority = client->priority;
364 	desc->db_id = client->doorbell_id;
365 
366 	for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
367 		struct intel_context *ce = to_intel_context(ctx, engine);
368 		u32 guc_engine_id = engine->guc_id;
369 		struct guc_execlist_context *lrc = &desc->lrc[guc_engine_id];
370 
371 		/* TODO: We have a design issue to be solved here. Only when we
372 		 * receive the first batch, we know which engine is used by the
373 		 * user. But here GuC expects the lrc and ring to be pinned. It
374 		 * is not an issue for default context, which is the only one
375 		 * for now who owns a GuC client. But for future owner of GuC
376 		 * client, need to make sure lrc is pinned prior to enter here.
377 		 */
378 		if (!ce->state)
379 			break;	/* XXX: continue? */
380 
381 		/*
382 		 * XXX: When this is a GUC_STAGE_DESC_ATTR_KERNEL client (proxy
383 		 * submission or, in other words, not using a direct submission
384 		 * model) the KMD's LRCA is not used for any work submission.
385 		 * Instead, the GuC uses the LRCA of the user mode context (see
386 		 * guc_add_request below).
387 		 */
388 		lrc->context_desc = lower_32_bits(ce->lrc_desc);
389 
390 		/* The state page is after PPHWSP */
391 		lrc->ring_lrca = intel_guc_ggtt_offset(guc, ce->state) +
392 				 LRC_STATE_PN * PAGE_SIZE;
393 
394 		/* XXX: In direct submission, the GuC wants the HW context id
395 		 * here. In proxy submission, it wants the stage id
396 		 */
397 		lrc->context_id = (client->stage_id << GUC_ELC_CTXID_OFFSET) |
398 				(guc_engine_id << GUC_ELC_ENGINE_OFFSET);
399 
400 		lrc->ring_begin = intel_guc_ggtt_offset(guc, ce->ring->vma);
401 		lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
402 		lrc->ring_next_free_location = lrc->ring_begin;
403 		lrc->ring_current_tail_pointer_value = 0;
404 
405 		desc->engines_used |= (1 << guc_engine_id);
406 	}
407 
408 	DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
409 			 client->engines, desc->engines_used);
410 	WARN_ON(desc->engines_used == 0);
411 
412 	/*
413 	 * The doorbell, process descriptor, and workqueue are all parts
414 	 * of the client object, which the GuC will reference via the GGTT
415 	 */
416 	gfx_addr = intel_guc_ggtt_offset(guc, client->vma);
417 	desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
418 				client->doorbell_offset;
419 	desc->db_trigger_cpu = ptr_to_u64(__get_doorbell(client));
420 	desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
421 	desc->process_desc = gfx_addr + client->proc_desc_offset;
422 	desc->wq_addr = gfx_addr + GUC_DB_SIZE;
423 	desc->wq_size = GUC_WQ_SIZE;
424 
425 	desc->desc_private = ptr_to_u64(client);
426 }
427 
guc_stage_desc_fini(struct intel_guc * guc,struct intel_guc_client * client)428 static void guc_stage_desc_fini(struct intel_guc *guc,
429 				struct intel_guc_client *client)
430 {
431 	struct guc_stage_desc *desc;
432 
433 	desc = __get_stage_desc(client);
434 	memset(desc, 0, sizeof(*desc));
435 }
436 
437 /* Construct a Work Item and append it to the GuC's Work Queue */
guc_wq_item_append(struct intel_guc_client * client,u32 target_engine,u32 context_desc,u32 ring_tail,u32 fence_id)438 static void guc_wq_item_append(struct intel_guc_client *client,
439 			       u32 target_engine, u32 context_desc,
440 			       u32 ring_tail, u32 fence_id)
441 {
442 	/* wqi_len is in DWords, and does not include the one-word header */
443 	const size_t wqi_size = sizeof(struct guc_wq_item);
444 	const u32 wqi_len = wqi_size / sizeof(u32) - 1;
445 	struct guc_process_desc *desc = __get_process_desc(client);
446 	struct guc_wq_item *wqi;
447 	u32 wq_off;
448 
449 	lockdep_assert_held(&client->wq_lock);
450 
451 	/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
452 	 * should not have the case where structure wqi is across page, neither
453 	 * wrapped to the beginning. This simplifies the implementation below.
454 	 *
455 	 * XXX: if not the case, we need save data to a temp wqi and copy it to
456 	 * workqueue buffer dw by dw.
457 	 */
458 	BUILD_BUG_ON(wqi_size != 16);
459 
460 	/* Free space is guaranteed. */
461 	wq_off = READ_ONCE(desc->tail);
462 	GEM_BUG_ON(CIRC_SPACE(wq_off, READ_ONCE(desc->head),
463 			      GUC_WQ_SIZE) < wqi_size);
464 	GEM_BUG_ON(wq_off & (wqi_size - 1));
465 
466 	/* WQ starts from the page after doorbell / process_desc */
467 	wqi = client->vaddr + wq_off + GUC_DB_SIZE;
468 
469 	/* Now fill in the 4-word work queue item */
470 	wqi->header = WQ_TYPE_INORDER |
471 		      (wqi_len << WQ_LEN_SHIFT) |
472 		      (target_engine << WQ_TARGET_SHIFT) |
473 		      WQ_NO_WCFLUSH_WAIT;
474 	wqi->context_desc = context_desc;
475 	wqi->submit_element_info = ring_tail << WQ_RING_TAIL_SHIFT;
476 	GEM_BUG_ON(ring_tail > WQ_RING_TAIL_MAX);
477 	wqi->fence_id = fence_id;
478 
479 	/* Make the update visible to GuC */
480 	WRITE_ONCE(desc->tail, (wq_off + wqi_size) & (GUC_WQ_SIZE - 1));
481 }
482 
guc_reset_wq(struct intel_guc_client * client)483 static void guc_reset_wq(struct intel_guc_client *client)
484 {
485 	struct guc_process_desc *desc = __get_process_desc(client);
486 
487 	desc->head = 0;
488 	desc->tail = 0;
489 }
490 
guc_ring_doorbell(struct intel_guc_client * client)491 static void guc_ring_doorbell(struct intel_guc_client *client)
492 {
493 	struct guc_doorbell_info *db;
494 	u32 cookie;
495 
496 	lockdep_assert_held(&client->wq_lock);
497 
498 	/* pointer of current doorbell cacheline */
499 	db = __get_doorbell(client);
500 
501 	/*
502 	 * We're not expecting the doorbell cookie to change behind our back,
503 	 * we also need to treat 0 as a reserved value.
504 	 */
505 	cookie = READ_ONCE(db->cookie);
506 	WARN_ON_ONCE(xchg(&db->cookie, cookie + 1 ?: cookie + 2) != cookie);
507 
508 	/* XXX: doorbell was lost and need to acquire it again */
509 	GEM_BUG_ON(db->db_status != GUC_DOORBELL_ENABLED);
510 }
511 
guc_add_request(struct intel_guc * guc,struct i915_request * rq)512 static void guc_add_request(struct intel_guc *guc, struct i915_request *rq)
513 {
514 	struct intel_guc_client *client = guc->execbuf_client;
515 	struct intel_engine_cs *engine = rq->engine;
516 	u32 ctx_desc = lower_32_bits(rq->hw_context->lrc_desc);
517 	u32 ring_tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64);
518 
519 	spin_lock(&client->wq_lock);
520 
521 	guc_wq_item_append(client, engine->guc_id, ctx_desc,
522 			   ring_tail, rq->global_seqno);
523 	guc_ring_doorbell(client);
524 
525 	client->submissions[engine->id] += 1;
526 
527 	spin_unlock(&client->wq_lock);
528 }
529 
530 /*
531  * When we're doing submissions using regular execlists backend, writing to
532  * ELSP from CPU side is enough to make sure that writes to ringbuffer pages
533  * pinned in mappable aperture portion of GGTT are visible to command streamer.
534  * Writes done by GuC on our behalf are not guaranteeing such ordering,
535  * therefore, to ensure the flush, we're issuing a POSTING READ.
536  */
flush_ggtt_writes(struct i915_vma * vma)537 static void flush_ggtt_writes(struct i915_vma *vma)
538 {
539 	struct drm_i915_private *dev_priv = vma->vm->i915;
540 
541 	if (i915_vma_is_map_and_fenceable(vma))
542 		POSTING_READ_FW(GUC_STATUS);
543 }
544 
inject_preempt_context(struct work_struct * work)545 static void inject_preempt_context(struct work_struct *work)
546 {
547 	struct guc_preempt_work *preempt_work =
548 		container_of(work, typeof(*preempt_work), work);
549 	struct intel_engine_cs *engine = preempt_work->engine;
550 	struct intel_guc *guc = container_of(preempt_work, typeof(*guc),
551 					     preempt_work[engine->id]);
552 	struct intel_guc_client *client = guc->preempt_client;
553 	struct guc_stage_desc *stage_desc = __get_stage_desc(client);
554 	u32 ctx_desc = lower_32_bits(to_intel_context(client->owner,
555 						      engine)->lrc_desc);
556 	u32 data[7];
557 
558 	/*
559 	 * The ring contains commands to write GUC_PREEMPT_FINISHED into HWSP.
560 	 * See guc_fill_preempt_context().
561 	 */
562 	spin_lock_irq(&client->wq_lock);
563 	guc_wq_item_append(client, engine->guc_id, ctx_desc,
564 			   GUC_PREEMPT_BREADCRUMB_BYTES / sizeof(u64), 0);
565 	spin_unlock_irq(&client->wq_lock);
566 
567 	/*
568 	 * If GuC firmware performs an engine reset while that engine had
569 	 * a preemption pending, it will set the terminated attribute bit
570 	 * on our preemption stage descriptor. GuC firmware retains all
571 	 * pending work items for a high-priority GuC client, unlike the
572 	 * normal-priority GuC client where work items are dropped. It
573 	 * wants to make sure the preempt-to-idle work doesn't run when
574 	 * scheduling resumes, and uses this bit to inform its scheduler
575 	 * and presumably us as well. Our job is to clear it for the next
576 	 * preemption after reset, otherwise that and future preemptions
577 	 * will never complete. We'll just clear it every time.
578 	 */
579 	stage_desc->attribute &= ~GUC_STAGE_DESC_ATTR_TERMINATED;
580 
581 	data[0] = INTEL_GUC_ACTION_REQUEST_PREEMPTION;
582 	data[1] = client->stage_id;
583 	data[2] = INTEL_GUC_PREEMPT_OPTION_DROP_WORK_Q |
584 		  INTEL_GUC_PREEMPT_OPTION_DROP_SUBMIT_Q;
585 	data[3] = engine->guc_id;
586 	data[4] = guc->execbuf_client->priority;
587 	data[5] = guc->execbuf_client->stage_id;
588 	data[6] = intel_guc_ggtt_offset(guc, guc->shared_data);
589 
590 	if (WARN_ON(intel_guc_send(guc, data, ARRAY_SIZE(data)))) {
591 		execlists_clear_active(&engine->execlists,
592 				       EXECLISTS_ACTIVE_PREEMPT);
593 		tasklet_schedule(&engine->execlists.tasklet);
594 	}
595 }
596 
597 /*
598  * We're using user interrupt and HWSP value to mark that preemption has
599  * finished and GPU is idle. Normally, we could unwind and continue similar to
600  * execlists submission path. Unfortunately, with GuC we also need to wait for
601  * it to finish its own postprocessing, before attempting to submit. Otherwise
602  * GuC may silently ignore our submissions, and thus we risk losing request at
603  * best, executing out-of-order and causing kernel panic at worst.
604  */
605 #define GUC_PREEMPT_POSTPROCESS_DELAY_MS 10
wait_for_guc_preempt_report(struct intel_engine_cs * engine)606 static void wait_for_guc_preempt_report(struct intel_engine_cs *engine)
607 {
608 	struct intel_guc *guc = &engine->i915->guc;
609 	struct guc_shared_ctx_data *data = guc->shared_data_vaddr;
610 	struct guc_ctx_report *report =
611 		&data->preempt_ctx_report[engine->guc_id];
612 
613 	WARN_ON(wait_for_atomic(report->report_return_status ==
614 				INTEL_GUC_REPORT_STATUS_COMPLETE,
615 				GUC_PREEMPT_POSTPROCESS_DELAY_MS));
616 	/*
617 	 * GuC is expecting that we're also going to clear the affected context
618 	 * counter, let's also reset the return status to not depend on GuC
619 	 * resetting it after recieving another preempt action
620 	 */
621 	report->affected_count = 0;
622 	report->report_return_status = INTEL_GUC_REPORT_STATUS_UNKNOWN;
623 }
624 
complete_preempt_context(struct intel_engine_cs * engine)625 static void complete_preempt_context(struct intel_engine_cs *engine)
626 {
627 	struct intel_engine_execlists *execlists = &engine->execlists;
628 
629 	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
630 
631 	if (inject_preempt_hang(execlists))
632 		return;
633 
634 	execlists_cancel_port_requests(execlists);
635 	execlists_unwind_incomplete_requests(execlists);
636 
637 	wait_for_guc_preempt_report(engine);
638 	intel_write_status_page(engine, I915_GEM_HWS_PREEMPT_INDEX, 0);
639 }
640 
641 /**
642  * guc_submit() - Submit commands through GuC
643  * @engine: engine associated with the commands
644  *
645  * The only error here arises if the doorbell hardware isn't functioning
646  * as expected, which really shouln't happen.
647  */
guc_submit(struct intel_engine_cs * engine)648 static void guc_submit(struct intel_engine_cs *engine)
649 {
650 	struct intel_guc *guc = &engine->i915->guc;
651 	struct intel_engine_execlists * const execlists = &engine->execlists;
652 	struct execlist_port *port = execlists->port;
653 	unsigned int n;
654 
655 	for (n = 0; n < execlists_num_ports(execlists); n++) {
656 		struct i915_request *rq;
657 		unsigned int count;
658 
659 		rq = port_unpack(&port[n], &count);
660 		if (rq && count == 0) {
661 			port_set(&port[n], port_pack(rq, ++count));
662 
663 			flush_ggtt_writes(rq->ring->vma);
664 
665 			guc_add_request(guc, rq);
666 		}
667 	}
668 }
669 
port_assign(struct execlist_port * port,struct i915_request * rq)670 static void port_assign(struct execlist_port *port, struct i915_request *rq)
671 {
672 	GEM_BUG_ON(port_isset(port));
673 
674 	port_set(port, i915_request_get(rq));
675 }
676 
rq_prio(const struct i915_request * rq)677 static inline int rq_prio(const struct i915_request *rq)
678 {
679 	return rq->sched.attr.priority;
680 }
681 
port_prio(const struct execlist_port * port)682 static inline int port_prio(const struct execlist_port *port)
683 {
684 	return rq_prio(port_request(port));
685 }
686 
__guc_dequeue(struct intel_engine_cs * engine)687 static bool __guc_dequeue(struct intel_engine_cs *engine)
688 {
689 	struct intel_engine_execlists * const execlists = &engine->execlists;
690 	struct execlist_port *port = execlists->port;
691 	struct i915_request *last = NULL;
692 	const struct execlist_port * const last_port =
693 		&execlists->port[execlists->port_mask];
694 	bool submit = false;
695 	struct rb_node *rb;
696 
697 	lockdep_assert_held(&engine->timeline.lock);
698 
699 	if (port_isset(port)) {
700 		if (intel_engine_has_preemption(engine)) {
701 			struct guc_preempt_work *preempt_work =
702 				&engine->i915->guc.preempt_work[engine->id];
703 			int prio = execlists->queue_priority;
704 
705 			if (__execlists_need_preempt(prio, port_prio(port))) {
706 				execlists_set_active(execlists,
707 						     EXECLISTS_ACTIVE_PREEMPT);
708 				queue_work(engine->i915->guc.preempt_wq,
709 					   &preempt_work->work);
710 				return false;
711 			}
712 		}
713 
714 		port++;
715 		if (port_isset(port))
716 			return false;
717 	}
718 	GEM_BUG_ON(port_isset(port));
719 
720 	while ((rb = rb_first_cached(&execlists->queue))) {
721 		struct i915_priolist *p = to_priolist(rb);
722 		struct i915_request *rq, *rn;
723 
724 		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
725 			if (last && rq->hw_context != last->hw_context) {
726 				if (port == last_port) {
727 					__list_del_many(&p->requests,
728 							&rq->sched.link);
729 					goto done;
730 				}
731 
732 				if (submit)
733 					port_assign(port, last);
734 				port++;
735 			}
736 
737 			INIT_LIST_HEAD(&rq->sched.link);
738 
739 			__i915_request_submit(rq);
740 			trace_i915_request_in(rq, port_index(port, execlists));
741 			last = rq;
742 			submit = true;
743 		}
744 
745 		rb_erase_cached(&p->node, &execlists->queue);
746 		INIT_LIST_HEAD(&p->requests);
747 		if (p->priority != I915_PRIORITY_NORMAL)
748 			kmem_cache_free(engine->i915->priorities, p);
749 	}
750 done:
751 	execlists->queue_priority = rb ? to_priolist(rb)->priority : INT_MIN;
752 	if (submit)
753 		port_assign(port, last);
754 	if (last)
755 		execlists_user_begin(execlists, execlists->port);
756 
757 	/* We must always keep the beast fed if we have work piled up */
758 	GEM_BUG_ON(port_isset(execlists->port) &&
759 		   !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
760 	GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
761 		   !port_isset(execlists->port));
762 
763 	return submit;
764 }
765 
guc_dequeue(struct intel_engine_cs * engine)766 static void guc_dequeue(struct intel_engine_cs *engine)
767 {
768 	unsigned long flags;
769 	bool submit;
770 
771 	local_irq_save(flags);
772 
773 	spin_lock(&engine->timeline.lock);
774 	submit = __guc_dequeue(engine);
775 	spin_unlock(&engine->timeline.lock);
776 
777 	if (submit)
778 		guc_submit(engine);
779 
780 	local_irq_restore(flags);
781 }
782 
guc_submission_tasklet(unsigned long data)783 static void guc_submission_tasklet(unsigned long data)
784 {
785 	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
786 	struct intel_engine_execlists * const execlists = &engine->execlists;
787 	struct execlist_port *port = execlists->port;
788 	struct i915_request *rq;
789 
790 	rq = port_request(port);
791 	while (rq && i915_request_completed(rq)) {
792 		trace_i915_request_out(rq);
793 		i915_request_put(rq);
794 
795 		port = execlists_port_complete(execlists, port);
796 		if (port_isset(port)) {
797 			execlists_user_begin(execlists, port);
798 			rq = port_request(port);
799 		} else {
800 			execlists_user_end(execlists);
801 			rq = NULL;
802 		}
803 	}
804 
805 	if (execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT) &&
806 	    intel_read_status_page(engine, I915_GEM_HWS_PREEMPT_INDEX) ==
807 	    GUC_PREEMPT_FINISHED)
808 		complete_preempt_context(engine);
809 
810 	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
811 		guc_dequeue(engine);
812 }
813 
814 static struct i915_request *
guc_reset_prepare(struct intel_engine_cs * engine)815 guc_reset_prepare(struct intel_engine_cs *engine)
816 {
817 	struct intel_engine_execlists * const execlists = &engine->execlists;
818 
819 	GEM_TRACE("%s\n", engine->name);
820 
821 	/*
822 	 * Prevent request submission to the hardware until we have
823 	 * completed the reset in i915_gem_reset_finish(). If a request
824 	 * is completed by one engine, it may then queue a request
825 	 * to a second via its execlists->tasklet *just* as we are
826 	 * calling engine->init_hw() and also writing the ELSP.
827 	 * Turning off the execlists->tasklet until the reset is over
828 	 * prevents the race.
829 	 */
830 	__tasklet_disable_sync_once(&execlists->tasklet);
831 
832 	/*
833 	 * We're using worker to queue preemption requests from the tasklet in
834 	 * GuC submission mode.
835 	 * Even though tasklet was disabled, we may still have a worker queued.
836 	 * Let's make sure that all workers scheduled before disabling the
837 	 * tasklet are completed before continuing with the reset.
838 	 */
839 	if (engine->i915->guc.preempt_wq)
840 		flush_workqueue(engine->i915->guc.preempt_wq);
841 
842 	return i915_gem_find_active_request(engine);
843 }
844 
845 /*
846  * Everything below here is concerned with setup & teardown, and is
847  * therefore not part of the somewhat time-critical batch-submission
848  * path of guc_submit() above.
849  */
850 
851 /* Check that a doorbell register is in the expected state */
doorbell_ok(struct intel_guc * guc,u16 db_id)852 static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
853 {
854 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
855 	u32 drbregl;
856 	bool valid;
857 
858 	GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID);
859 
860 	drbregl = I915_READ(GEN8_DRBREGL(db_id));
861 	valid = drbregl & GEN8_DRB_VALID;
862 
863 	if (test_bit(db_id, guc->doorbell_bitmap) == valid)
864 		return true;
865 
866 	DRM_DEBUG_DRIVER("Doorbell %d has unexpected state (0x%x): valid=%s\n",
867 			 db_id, drbregl, yesno(valid));
868 
869 	return false;
870 }
871 
guc_verify_doorbells(struct intel_guc * guc)872 static bool guc_verify_doorbells(struct intel_guc *guc)
873 {
874 	u16 db_id;
875 
876 	for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
877 		if (!doorbell_ok(guc, db_id))
878 			return false;
879 
880 	return true;
881 }
882 
guc_clients_doorbell_init(struct intel_guc * guc)883 static int guc_clients_doorbell_init(struct intel_guc *guc)
884 {
885 	int ret;
886 
887 	ret = create_doorbell(guc->execbuf_client);
888 	if (ret)
889 		return ret;
890 
891 	if (guc->preempt_client) {
892 		ret = create_doorbell(guc->preempt_client);
893 		if (ret) {
894 			destroy_doorbell(guc->execbuf_client);
895 			return ret;
896 		}
897 	}
898 
899 	return 0;
900 }
901 
guc_clients_doorbell_fini(struct intel_guc * guc)902 static void guc_clients_doorbell_fini(struct intel_guc *guc)
903 {
904 	/*
905 	 * By the time we're here, GuC has already been reset.
906 	 * Instead of trying (in vain) to communicate with it, let's just
907 	 * cleanup the doorbell HW and our internal state.
908 	 */
909 	if (guc->preempt_client) {
910 		__destroy_doorbell(guc->preempt_client);
911 		__update_doorbell_desc(guc->preempt_client,
912 				       GUC_DOORBELL_INVALID);
913 	}
914 
915 	if (guc->execbuf_client) {
916 		__destroy_doorbell(guc->execbuf_client);
917 		__update_doorbell_desc(guc->execbuf_client,
918 				       GUC_DOORBELL_INVALID);
919 	}
920 }
921 
922 /**
923  * guc_client_alloc() - Allocate an intel_guc_client
924  * @dev_priv:	driver private data structure
925  * @engines:	The set of engines to enable for this client
926  * @priority:	four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
927  *		The kernel client to replace ExecList submission is created with
928  *		NORMAL priority. Priority of a client for scheduler can be HIGH,
929  *		while a preemption context can use CRITICAL.
930  * @ctx:	the context that owns the client (we use the default render
931  *		context)
932  *
933  * Return:	An intel_guc_client object if success, else NULL.
934  */
935 static struct intel_guc_client *
guc_client_alloc(struct drm_i915_private * dev_priv,u32 engines,u32 priority,struct i915_gem_context * ctx)936 guc_client_alloc(struct drm_i915_private *dev_priv,
937 		 u32 engines,
938 		 u32 priority,
939 		 struct i915_gem_context *ctx)
940 {
941 	struct intel_guc_client *client;
942 	struct intel_guc *guc = &dev_priv->guc;
943 	struct i915_vma *vma;
944 	void *vaddr;
945 	int ret;
946 
947 	client = kzalloc(sizeof(*client), GFP_KERNEL);
948 	if (!client)
949 		return ERR_PTR(-ENOMEM);
950 
951 	client->guc = guc;
952 	client->owner = ctx;
953 	client->engines = engines;
954 	client->priority = priority;
955 	client->doorbell_id = GUC_DOORBELL_INVALID;
956 	spin_lock_init(&client->wq_lock);
957 
958 	ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
959 			     GFP_KERNEL);
960 	if (ret < 0)
961 		goto err_client;
962 
963 	client->stage_id = ret;
964 
965 	/* The first page is doorbell/proc_desc. Two followed pages are wq. */
966 	vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
967 	if (IS_ERR(vma)) {
968 		ret = PTR_ERR(vma);
969 		goto err_id;
970 	}
971 
972 	/* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
973 	client->vma = vma;
974 
975 	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
976 	if (IS_ERR(vaddr)) {
977 		ret = PTR_ERR(vaddr);
978 		goto err_vma;
979 	}
980 	client->vaddr = vaddr;
981 
982 	client->doorbell_offset = __select_cacheline(guc);
983 
984 	/*
985 	 * Since the doorbell only requires a single cacheline, we can save
986 	 * space by putting the application process descriptor in the same
987 	 * page. Use the half of the page that doesn't include the doorbell.
988 	 */
989 	if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
990 		client->proc_desc_offset = 0;
991 	else
992 		client->proc_desc_offset = (GUC_DB_SIZE / 2);
993 
994 	guc_proc_desc_init(guc, client);
995 	guc_stage_desc_init(guc, client);
996 
997 	ret = reserve_doorbell(client);
998 	if (ret)
999 		goto err_vaddr;
1000 
1001 	DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: stage_id %u\n",
1002 			 priority, client, client->engines, client->stage_id);
1003 	DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
1004 			 client->doorbell_id, client->doorbell_offset);
1005 
1006 	return client;
1007 
1008 err_vaddr:
1009 	i915_gem_object_unpin_map(client->vma->obj);
1010 err_vma:
1011 	i915_vma_unpin_and_release(&client->vma);
1012 err_id:
1013 	ida_simple_remove(&guc->stage_ids, client->stage_id);
1014 err_client:
1015 	kfree(client);
1016 	return ERR_PTR(ret);
1017 }
1018 
guc_client_free(struct intel_guc_client * client)1019 static void guc_client_free(struct intel_guc_client *client)
1020 {
1021 	unreserve_doorbell(client);
1022 	guc_stage_desc_fini(client->guc, client);
1023 	i915_gem_object_unpin_map(client->vma->obj);
1024 	i915_vma_unpin_and_release(&client->vma);
1025 	ida_simple_remove(&client->guc->stage_ids, client->stage_id);
1026 	kfree(client);
1027 }
1028 
ctx_save_restore_disabled(struct intel_context * ce)1029 static inline bool ctx_save_restore_disabled(struct intel_context *ce)
1030 {
1031 	u32 sr = ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1];
1032 
1033 #define SR_DISABLED \
1034 	_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | \
1035 			   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)
1036 
1037 	return (sr & SR_DISABLED) == SR_DISABLED;
1038 
1039 #undef SR_DISABLED
1040 }
1041 
guc_fill_preempt_context(struct intel_guc * guc)1042 static void guc_fill_preempt_context(struct intel_guc *guc)
1043 {
1044 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1045 	struct intel_guc_client *client = guc->preempt_client;
1046 	struct intel_engine_cs *engine;
1047 	enum intel_engine_id id;
1048 
1049 	for_each_engine(engine, dev_priv, id) {
1050 		struct intel_context *ce =
1051 			to_intel_context(client->owner, engine);
1052 		u32 addr = intel_hws_preempt_done_address(engine);
1053 		u32 *cs;
1054 
1055 		GEM_BUG_ON(!ce->pin_count);
1056 
1057 		/*
1058 		 * We rely on this context image *not* being saved after
1059 		 * preemption. This ensures that the RING_HEAD / RING_TAIL
1060 		 * remain pointing at initial values forever.
1061 		 */
1062 		GEM_BUG_ON(!ctx_save_restore_disabled(ce));
1063 
1064 		cs = ce->ring->vaddr;
1065 		if (id == RCS) {
1066 			cs = gen8_emit_ggtt_write_rcs(cs,
1067 						      GUC_PREEMPT_FINISHED,
1068 						      addr);
1069 		} else {
1070 			cs = gen8_emit_ggtt_write(cs,
1071 						  GUC_PREEMPT_FINISHED,
1072 						  addr);
1073 			*cs++ = MI_NOOP;
1074 			*cs++ = MI_NOOP;
1075 		}
1076 		*cs++ = MI_USER_INTERRUPT;
1077 		*cs++ = MI_NOOP;
1078 
1079 		GEM_BUG_ON((void *)cs - ce->ring->vaddr !=
1080 			   GUC_PREEMPT_BREADCRUMB_BYTES);
1081 
1082 		flush_ggtt_writes(ce->ring->vma);
1083 	}
1084 }
1085 
guc_clients_create(struct intel_guc * guc)1086 static int guc_clients_create(struct intel_guc *guc)
1087 {
1088 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1089 	struct intel_guc_client *client;
1090 
1091 	GEM_BUG_ON(guc->execbuf_client);
1092 	GEM_BUG_ON(guc->preempt_client);
1093 
1094 	client = guc_client_alloc(dev_priv,
1095 				  INTEL_INFO(dev_priv)->ring_mask,
1096 				  GUC_CLIENT_PRIORITY_KMD_NORMAL,
1097 				  dev_priv->kernel_context);
1098 	if (IS_ERR(client)) {
1099 		DRM_ERROR("Failed to create GuC client for submission!\n");
1100 		return PTR_ERR(client);
1101 	}
1102 	guc->execbuf_client = client;
1103 
1104 	if (dev_priv->preempt_context) {
1105 		client = guc_client_alloc(dev_priv,
1106 					  INTEL_INFO(dev_priv)->ring_mask,
1107 					  GUC_CLIENT_PRIORITY_KMD_HIGH,
1108 					  dev_priv->preempt_context);
1109 		if (IS_ERR(client)) {
1110 			DRM_ERROR("Failed to create GuC client for preemption!\n");
1111 			guc_client_free(guc->execbuf_client);
1112 			guc->execbuf_client = NULL;
1113 			return PTR_ERR(client);
1114 		}
1115 		guc->preempt_client = client;
1116 
1117 		guc_fill_preempt_context(guc);
1118 	}
1119 
1120 	return 0;
1121 }
1122 
guc_clients_destroy(struct intel_guc * guc)1123 static void guc_clients_destroy(struct intel_guc *guc)
1124 {
1125 	struct intel_guc_client *client;
1126 
1127 	client = fetch_and_zero(&guc->preempt_client);
1128 	if (client)
1129 		guc_client_free(client);
1130 
1131 	client = fetch_and_zero(&guc->execbuf_client);
1132 	if (client)
1133 		guc_client_free(client);
1134 }
1135 
1136 /*
1137  * Set up the memory resources to be shared with the GuC (via the GGTT)
1138  * at firmware loading time.
1139  */
intel_guc_submission_init(struct intel_guc * guc)1140 int intel_guc_submission_init(struct intel_guc *guc)
1141 {
1142 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1143 	struct intel_engine_cs *engine;
1144 	enum intel_engine_id id;
1145 	int ret;
1146 
1147 	if (guc->stage_desc_pool)
1148 		return 0;
1149 
1150 	ret = guc_stage_desc_pool_create(guc);
1151 	if (ret)
1152 		return ret;
1153 	/*
1154 	 * Keep static analysers happy, let them know that we allocated the
1155 	 * vma after testing that it didn't exist earlier.
1156 	 */
1157 	GEM_BUG_ON(!guc->stage_desc_pool);
1158 
1159 	WARN_ON(!guc_verify_doorbells(guc));
1160 	ret = guc_clients_create(guc);
1161 	if (ret)
1162 		goto err_pool;
1163 
1164 	for_each_engine(engine, dev_priv, id) {
1165 		guc->preempt_work[id].engine = engine;
1166 		INIT_WORK(&guc->preempt_work[id].work, inject_preempt_context);
1167 	}
1168 
1169 	return 0;
1170 
1171 err_pool:
1172 	guc_stage_desc_pool_destroy(guc);
1173 	return ret;
1174 }
1175 
intel_guc_submission_fini(struct intel_guc * guc)1176 void intel_guc_submission_fini(struct intel_guc *guc)
1177 {
1178 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1179 	struct intel_engine_cs *engine;
1180 	enum intel_engine_id id;
1181 
1182 	for_each_engine(engine, dev_priv, id)
1183 		cancel_work_sync(&guc->preempt_work[id].work);
1184 
1185 	guc_clients_destroy(guc);
1186 	WARN_ON(!guc_verify_doorbells(guc));
1187 
1188 	if (guc->stage_desc_pool)
1189 		guc_stage_desc_pool_destroy(guc);
1190 }
1191 
guc_interrupts_capture(struct drm_i915_private * dev_priv)1192 static void guc_interrupts_capture(struct drm_i915_private *dev_priv)
1193 {
1194 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1195 	struct intel_engine_cs *engine;
1196 	enum intel_engine_id id;
1197 	int irqs;
1198 
1199 	/* tell all command streamers to forward interrupts (but not vblank)
1200 	 * to GuC
1201 	 */
1202 	irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
1203 	for_each_engine(engine, dev_priv, id)
1204 		I915_WRITE(RING_MODE_GEN7(engine), irqs);
1205 
1206 	/* route USER_INTERRUPT to Host, all others are sent to GuC. */
1207 	irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
1208 	       GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1209 	/* These three registers have the same bit definitions */
1210 	I915_WRITE(GUC_BCS_RCS_IER, ~irqs);
1211 	I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs);
1212 	I915_WRITE(GUC_WD_VECS_IER, ~irqs);
1213 
1214 	/*
1215 	 * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
1216 	 * (unmasked) PM interrupts to the GuC. All other bits of this
1217 	 * register *disable* generation of a specific interrupt.
1218 	 *
1219 	 * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
1220 	 * writing to the PM interrupt mask register, i.e. interrupts
1221 	 * that must not be disabled.
1222 	 *
1223 	 * If the GuC is handling these interrupts, then we must not let
1224 	 * the PM code disable ANY interrupt that the GuC is expecting.
1225 	 * So for each ENABLED (0) bit in this register, we must SET the
1226 	 * bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
1227 	 * GuC needs ARAT expired interrupt unmasked hence it is set in
1228 	 * pm_intrmsk_mbz.
1229 	 *
1230 	 * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
1231 	 * result in the register bit being left SET!
1232 	 */
1233 	rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1234 	rps->pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1235 }
1236 
guc_interrupts_release(struct drm_i915_private * dev_priv)1237 static void guc_interrupts_release(struct drm_i915_private *dev_priv)
1238 {
1239 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1240 	struct intel_engine_cs *engine;
1241 	enum intel_engine_id id;
1242 	int irqs;
1243 
1244 	/*
1245 	 * tell all command streamers NOT to forward interrupts or vblank
1246 	 * to GuC.
1247 	 */
1248 	irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
1249 	irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
1250 	for_each_engine(engine, dev_priv, id)
1251 		I915_WRITE(RING_MODE_GEN7(engine), irqs);
1252 
1253 	/* route all GT interrupts to the host */
1254 	I915_WRITE(GUC_BCS_RCS_IER, 0);
1255 	I915_WRITE(GUC_VCS2_VCS1_IER, 0);
1256 	I915_WRITE(GUC_WD_VECS_IER, 0);
1257 
1258 	rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1259 	rps->pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
1260 }
1261 
guc_submission_park(struct intel_engine_cs * engine)1262 static void guc_submission_park(struct intel_engine_cs *engine)
1263 {
1264 	intel_engine_unpin_breadcrumbs_irq(engine);
1265 }
1266 
guc_submission_unpark(struct intel_engine_cs * engine)1267 static void guc_submission_unpark(struct intel_engine_cs *engine)
1268 {
1269 	intel_engine_pin_breadcrumbs_irq(engine);
1270 }
1271 
guc_set_default_submission(struct intel_engine_cs * engine)1272 static void guc_set_default_submission(struct intel_engine_cs *engine)
1273 {
1274 	/*
1275 	 * We inherit a bunch of functions from execlists that we'd like
1276 	 * to keep using:
1277 	 *
1278 	 *    engine->submit_request = execlists_submit_request;
1279 	 *    engine->cancel_requests = execlists_cancel_requests;
1280 	 *    engine->schedule = execlists_schedule;
1281 	 *
1282 	 * But we need to override the actual submission backend in order
1283 	 * to talk to the GuC.
1284 	 */
1285 	intel_execlists_set_default_submission(engine);
1286 
1287 	engine->execlists.tasklet.func = guc_submission_tasklet;
1288 
1289 	engine->park = guc_submission_park;
1290 	engine->unpark = guc_submission_unpark;
1291 
1292 	engine->reset.prepare = guc_reset_prepare;
1293 
1294 	engine->flags &= ~I915_ENGINE_SUPPORTS_STATS;
1295 }
1296 
intel_guc_submission_enable(struct intel_guc * guc)1297 int intel_guc_submission_enable(struct intel_guc *guc)
1298 {
1299 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1300 	struct intel_engine_cs *engine;
1301 	enum intel_engine_id id;
1302 	int err;
1303 
1304 	/*
1305 	 * We're using GuC work items for submitting work through GuC. Since
1306 	 * we're coalescing multiple requests from a single context into a
1307 	 * single work item prior to assigning it to execlist_port, we can
1308 	 * never have more work items than the total number of ports (for all
1309 	 * engines). The GuC firmware is controlling the HEAD of work queue,
1310 	 * and it is guaranteed that it will remove the work item from the
1311 	 * queue before our request is completed.
1312 	 */
1313 	BUILD_BUG_ON(ARRAY_SIZE(engine->execlists.port) *
1314 		     sizeof(struct guc_wq_item) *
1315 		     I915_NUM_ENGINES > GUC_WQ_SIZE);
1316 
1317 	GEM_BUG_ON(!guc->execbuf_client);
1318 
1319 	guc_reset_wq(guc->execbuf_client);
1320 	if (guc->preempt_client)
1321 		guc_reset_wq(guc->preempt_client);
1322 
1323 	err = intel_guc_sample_forcewake(guc);
1324 	if (err)
1325 		return err;
1326 
1327 	err = guc_clients_doorbell_init(guc);
1328 	if (err)
1329 		return err;
1330 
1331 	/* Take over from manual control of ELSP (execlists) */
1332 	guc_interrupts_capture(dev_priv);
1333 
1334 	for_each_engine(engine, dev_priv, id) {
1335 		engine->set_default_submission = guc_set_default_submission;
1336 		engine->set_default_submission(engine);
1337 	}
1338 
1339 	return 0;
1340 }
1341 
intel_guc_submission_disable(struct intel_guc * guc)1342 void intel_guc_submission_disable(struct intel_guc *guc)
1343 {
1344 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1345 
1346 	GEM_BUG_ON(dev_priv->gt.awake); /* GT should be parked first */
1347 
1348 	guc_interrupts_release(dev_priv);
1349 	guc_clients_doorbell_fini(guc);
1350 }
1351 
1352 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1353 #include "selftests/intel_guc.c"
1354 #endif
1355