1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4 * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
5 */
6
7 #include <linux/atomic.h>
8 #include <linux/auxiliary_bus.h>
9 #include <linux/bitfield.h>
10 #include <linux/bits.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/gpio/driver.h>
15 #include <linux/i2c.h>
16 #include <linux/iopoll.h>
17 #include <linux/module.h>
18 #include <linux/of_graph.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/pwm.h>
21 #include <linux/regmap.h>
22 #include <linux/regulator/consumer.h>
23
24 #include <asm/unaligned.h>
25
26 #include <drm/display/drm_dp_aux_bus.h>
27 #include <drm/display/drm_dp_helper.h>
28 #include <drm/drm_atomic.h>
29 #include <drm/drm_atomic_helper.h>
30 #include <drm/drm_bridge.h>
31 #include <drm/drm_bridge_connector.h>
32 #include <drm/drm_edid.h>
33 #include <drm/drm_mipi_dsi.h>
34 #include <drm/drm_of.h>
35 #include <drm/drm_panel.h>
36 #include <drm/drm_print.h>
37 #include <drm/drm_probe_helper.h>
38
39 #define SN_DEVICE_REV_REG 0x08
40 #define SN_DPPLL_SRC_REG 0x0A
41 #define DPPLL_CLK_SRC_DSICLK BIT(0)
42 #define REFCLK_FREQ_MASK GENMASK(3, 1)
43 #define REFCLK_FREQ(x) ((x) << 1)
44 #define DPPLL_SRC_DP_PLL_LOCK BIT(7)
45 #define SN_PLL_ENABLE_REG 0x0D
46 #define SN_DSI_LANES_REG 0x10
47 #define CHA_DSI_LANES_MASK GENMASK(4, 3)
48 #define CHA_DSI_LANES(x) ((x) << 3)
49 #define SN_DSIA_CLK_FREQ_REG 0x12
50 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG 0x20
51 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG 0x24
52 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG 0x2C
53 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG 0x2D
54 #define CHA_HSYNC_POLARITY BIT(7)
55 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG 0x30
56 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG 0x31
57 #define CHA_VSYNC_POLARITY BIT(7)
58 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG 0x34
59 #define SN_CHA_VERTICAL_BACK_PORCH_REG 0x36
60 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG 0x38
61 #define SN_CHA_VERTICAL_FRONT_PORCH_REG 0x3A
62 #define SN_LN_ASSIGN_REG 0x59
63 #define LN_ASSIGN_WIDTH 2
64 #define SN_ENH_FRAME_REG 0x5A
65 #define VSTREAM_ENABLE BIT(3)
66 #define LN_POLRS_OFFSET 4
67 #define LN_POLRS_MASK 0xf0
68 #define SN_DATA_FORMAT_REG 0x5B
69 #define BPP_18_RGB BIT(0)
70 #define SN_HPD_DISABLE_REG 0x5C
71 #define HPD_DISABLE BIT(0)
72 #define HPD_DEBOUNCED_STATE BIT(4)
73 #define SN_GPIO_IO_REG 0x5E
74 #define SN_GPIO_INPUT_SHIFT 4
75 #define SN_GPIO_OUTPUT_SHIFT 0
76 #define SN_GPIO_CTRL_REG 0x5F
77 #define SN_GPIO_MUX_INPUT 0
78 #define SN_GPIO_MUX_OUTPUT 1
79 #define SN_GPIO_MUX_SPECIAL 2
80 #define SN_GPIO_MUX_MASK 0x3
81 #define SN_AUX_WDATA_REG(x) (0x64 + (x))
82 #define SN_AUX_ADDR_19_16_REG 0x74
83 #define SN_AUX_ADDR_15_8_REG 0x75
84 #define SN_AUX_ADDR_7_0_REG 0x76
85 #define SN_AUX_ADDR_MASK GENMASK(19, 0)
86 #define SN_AUX_LENGTH_REG 0x77
87 #define SN_AUX_CMD_REG 0x78
88 #define AUX_CMD_SEND BIT(0)
89 #define AUX_CMD_REQ(x) ((x) << 4)
90 #define SN_AUX_RDATA_REG(x) (0x79 + (x))
91 #define SN_SSC_CONFIG_REG 0x93
92 #define DP_NUM_LANES_MASK GENMASK(5, 4)
93 #define DP_NUM_LANES(x) ((x) << 4)
94 #define SN_DATARATE_CONFIG_REG 0x94
95 #define DP_DATARATE_MASK GENMASK(7, 5)
96 #define DP_DATARATE(x) ((x) << 5)
97 #define SN_TRAINING_SETTING_REG 0x95
98 #define SCRAMBLE_DISABLE BIT(4)
99 #define SN_ML_TX_MODE_REG 0x96
100 #define ML_TX_MAIN_LINK_OFF 0
101 #define ML_TX_NORMAL_MODE BIT(0)
102 #define SN_PWM_PRE_DIV_REG 0xA0
103 #define SN_BACKLIGHT_SCALE_REG 0xA1
104 #define BACKLIGHT_SCALE_MAX 0xFFFF
105 #define SN_BACKLIGHT_REG 0xA3
106 #define SN_PWM_EN_INV_REG 0xA5
107 #define SN_PWM_INV_MASK BIT(0)
108 #define SN_PWM_EN_MASK BIT(1)
109 #define SN_AUX_CMD_STATUS_REG 0xF4
110 #define AUX_IRQ_STATUS_AUX_RPLY_TOUT BIT(3)
111 #define AUX_IRQ_STATUS_AUX_SHORT BIT(5)
112 #define AUX_IRQ_STATUS_NAT_I2C_FAIL BIT(6)
113
114 #define MIN_DSI_CLK_FREQ_MHZ 40
115
116 /* fudge factor required to account for 8b/10b encoding */
117 #define DP_CLK_FUDGE_NUM 10
118 #define DP_CLK_FUDGE_DEN 8
119
120 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
121 #define SN_AUX_MAX_PAYLOAD_BYTES 16
122
123 #define SN_REGULATOR_SUPPLY_NUM 4
124
125 #define SN_MAX_DP_LANES 4
126 #define SN_NUM_GPIOS 4
127 #define SN_GPIO_PHYSICAL_OFFSET 1
128
129 #define SN_LINK_TRAINING_TRIES 10
130
131 #define SN_PWM_GPIO_IDX 3 /* 4th GPIO */
132
133 /**
134 * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
135 * @bridge_aux: AUX-bus sub device for MIPI-to-eDP bridge functionality.
136 * @gpio_aux: AUX-bus sub device for GPIO controller functionality.
137 * @aux_aux: AUX-bus sub device for eDP AUX channel functionality.
138 * @pwm_aux: AUX-bus sub device for PWM controller functionality.
139 *
140 * @dev: Pointer to the top level (i2c) device.
141 * @regmap: Regmap for accessing i2c.
142 * @aux: Our aux channel.
143 * @bridge: Our bridge.
144 * @connector: Our connector.
145 * @host_node: Remote DSI node.
146 * @dsi: Our MIPI DSI source.
147 * @refclk: Our reference clock.
148 * @next_bridge: The bridge on the eDP side.
149 * @enable_gpio: The GPIO we toggle to enable the bridge.
150 * @supplies: Data for bulk enabling/disabling our regulators.
151 * @dp_lanes: Count of dp_lanes we're using.
152 * @ln_assign: Value to program to the LN_ASSIGN register.
153 * @ln_polrs: Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
154 * @comms_enabled: If true then communication over the aux channel is enabled.
155 * @comms_mutex: Protects modification of comms_enabled.
156 *
157 * @gchip: If we expose our GPIOs, this is used.
158 * @gchip_output: A cache of whether we've set GPIOs to output. This
159 * serves double-duty of keeping track of the direction and
160 * also keeping track of whether we've incremented the
161 * pm_runtime reference count for this pin, which we do
162 * whenever a pin is configured as an output. This is a
163 * bitmap so we can do atomic ops on it without an extra
164 * lock so concurrent users of our 4 GPIOs don't stomp on
165 * each other's read-modify-write.
166 *
167 * @pchip: pwm_chip if the PWM is exposed.
168 * @pwm_enabled: Used to track if the PWM signal is currently enabled.
169 * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
170 * @pwm_refclk_freq: Cache for the reference clock input to the PWM.
171 */
172 struct ti_sn65dsi86 {
173 struct auxiliary_device bridge_aux;
174 struct auxiliary_device gpio_aux;
175 struct auxiliary_device aux_aux;
176 struct auxiliary_device pwm_aux;
177
178 struct device *dev;
179 struct regmap *regmap;
180 struct drm_dp_aux aux;
181 struct drm_bridge bridge;
182 struct drm_connector *connector;
183 struct device_node *host_node;
184 struct mipi_dsi_device *dsi;
185 struct clk *refclk;
186 struct drm_bridge *next_bridge;
187 struct gpio_desc *enable_gpio;
188 struct regulator_bulk_data supplies[SN_REGULATOR_SUPPLY_NUM];
189 int dp_lanes;
190 u8 ln_assign;
191 u8 ln_polrs;
192 bool comms_enabled;
193 struct mutex comms_mutex;
194
195 #if defined(CONFIG_OF_GPIO)
196 struct gpio_chip gchip;
197 DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
198 #endif
199 #if defined(CONFIG_PWM)
200 struct pwm_chip pchip;
201 bool pwm_enabled;
202 atomic_t pwm_pin_busy;
203 #endif
204 unsigned int pwm_refclk_freq;
205 };
206
207 static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
208 { .range_min = 0, .range_max = 0xFF },
209 };
210
211 static const struct regmap_access_table ti_sn_bridge_volatile_table = {
212 .yes_ranges = ti_sn65dsi86_volatile_ranges,
213 .n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
214 };
215
216 static const struct regmap_config ti_sn65dsi86_regmap_config = {
217 .reg_bits = 8,
218 .val_bits = 8,
219 .volatile_table = &ti_sn_bridge_volatile_table,
220 .cache_type = REGCACHE_NONE,
221 .max_register = 0xFF,
222 };
223
ti_sn65dsi86_read_u16(struct ti_sn65dsi86 * pdata,unsigned int reg,u16 * val)224 static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
225 unsigned int reg, u16 *val)
226 {
227 u8 buf[2];
228 int ret;
229
230 ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
231 if (ret)
232 return ret;
233
234 *val = buf[0] | (buf[1] << 8);
235
236 return 0;
237 }
238
ti_sn65dsi86_write_u16(struct ti_sn65dsi86 * pdata,unsigned int reg,u16 val)239 static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
240 unsigned int reg, u16 val)
241 {
242 u8 buf[2] = { val & 0xff, val >> 8 };
243
244 regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
245 }
246
ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 * pdata)247 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata)
248 {
249 u32 bit_rate_khz, clk_freq_khz;
250 struct drm_display_mode *mode =
251 &pdata->bridge.encoder->crtc->state->adjusted_mode;
252
253 bit_rate_khz = mode->clock *
254 mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
255 clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
256
257 return clk_freq_khz;
258 }
259
260 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
261 static const u32 ti_sn_bridge_refclk_lut[] = {
262 12000000,
263 19200000,
264 26000000,
265 27000000,
266 38400000,
267 };
268
269 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
270 static const u32 ti_sn_bridge_dsiclk_lut[] = {
271 468000000,
272 384000000,
273 416000000,
274 486000000,
275 460800000,
276 };
277
ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 * pdata)278 static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
279 {
280 int i;
281 u32 refclk_rate;
282 const u32 *refclk_lut;
283 size_t refclk_lut_size;
284
285 if (pdata->refclk) {
286 refclk_rate = clk_get_rate(pdata->refclk);
287 refclk_lut = ti_sn_bridge_refclk_lut;
288 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
289 clk_prepare_enable(pdata->refclk);
290 } else {
291 refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
292 refclk_lut = ti_sn_bridge_dsiclk_lut;
293 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
294 }
295
296 /* for i equals to refclk_lut_size means default frequency */
297 for (i = 0; i < refclk_lut_size; i++)
298 if (refclk_lut[i] == refclk_rate)
299 break;
300
301 regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
302 REFCLK_FREQ(i));
303
304 /*
305 * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
306 * regardless of its actual sourcing.
307 */
308 pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
309 }
310
ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 * pdata)311 static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
312 {
313 mutex_lock(&pdata->comms_mutex);
314
315 /* configure bridge ref_clk */
316 ti_sn_bridge_set_refclk_freq(pdata);
317
318 /*
319 * HPD on this bridge chip is a bit useless. This is an eDP bridge
320 * so the HPD is an internal signal that's only there to signal that
321 * the panel is done powering up. ...but the bridge chip debounces
322 * this signal by between 100 ms and 400 ms (depending on process,
323 * voltage, and temperate--I measured it at about 200 ms). One
324 * particular panel asserted HPD 84 ms after it was powered on meaning
325 * that we saw HPD 284 ms after power on. ...but the same panel said
326 * that instead of looking at HPD you could just hardcode a delay of
327 * 200 ms. We'll assume that the panel driver will have the hardcoded
328 * delay in its prepare and always disable HPD.
329 *
330 * If HPD somehow makes sense on some future panel we'll have to
331 * change this to be conditional on someone specifying that HPD should
332 * be used.
333 */
334 regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
335 HPD_DISABLE);
336
337 pdata->comms_enabled = true;
338
339 mutex_unlock(&pdata->comms_mutex);
340 }
341
ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 * pdata)342 static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
343 {
344 mutex_lock(&pdata->comms_mutex);
345
346 pdata->comms_enabled = false;
347 clk_disable_unprepare(pdata->refclk);
348
349 mutex_unlock(&pdata->comms_mutex);
350 }
351
ti_sn65dsi86_resume(struct device * dev)352 static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
353 {
354 struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
355 int ret;
356
357 ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
358 if (ret) {
359 DRM_ERROR("failed to enable supplies %d\n", ret);
360 return ret;
361 }
362
363 /* td2: min 100 us after regulators before enabling the GPIO */
364 usleep_range(100, 110);
365
366 gpiod_set_value(pdata->enable_gpio, 1);
367
368 /*
369 * If we have a reference clock we can enable communication w/ the
370 * panel (including the aux channel) w/out any need for an input clock
371 * so we can do it in resume which lets us read the EDID before
372 * pre_enable(). Without a reference clock we need the MIPI reference
373 * clock so reading early doesn't work.
374 */
375 if (pdata->refclk)
376 ti_sn65dsi86_enable_comms(pdata);
377
378 return ret;
379 }
380
ti_sn65dsi86_suspend(struct device * dev)381 static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
382 {
383 struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
384 int ret;
385
386 if (pdata->refclk)
387 ti_sn65dsi86_disable_comms(pdata);
388
389 gpiod_set_value(pdata->enable_gpio, 0);
390
391 ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
392 if (ret)
393 DRM_ERROR("failed to disable supplies %d\n", ret);
394
395 return ret;
396 }
397
398 static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
399 SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
400 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
401 pm_runtime_force_resume)
402 };
403
status_show(struct seq_file * s,void * data)404 static int status_show(struct seq_file *s, void *data)
405 {
406 struct ti_sn65dsi86 *pdata = s->private;
407 unsigned int reg, val;
408
409 seq_puts(s, "STATUS REGISTERS:\n");
410
411 pm_runtime_get_sync(pdata->dev);
412
413 /* IRQ Status Registers, see Table 31 in datasheet */
414 for (reg = 0xf0; reg <= 0xf8; reg++) {
415 regmap_read(pdata->regmap, reg, &val);
416 seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
417 }
418
419 pm_runtime_put_autosuspend(pdata->dev);
420
421 return 0;
422 }
423
424 DEFINE_SHOW_ATTRIBUTE(status);
425
ti_sn65dsi86_debugfs_remove(void * data)426 static void ti_sn65dsi86_debugfs_remove(void *data)
427 {
428 debugfs_remove_recursive(data);
429 }
430
ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 * pdata)431 static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata)
432 {
433 struct device *dev = pdata->dev;
434 struct dentry *debugfs;
435 int ret;
436
437 debugfs = debugfs_create_dir(dev_name(dev), NULL);
438
439 /*
440 * We might get an error back if debugfs wasn't enabled in the kernel
441 * so let's just silently return upon failure.
442 */
443 if (IS_ERR_OR_NULL(debugfs))
444 return;
445
446 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs);
447 if (ret)
448 return;
449
450 debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
451 }
452
453 /* -----------------------------------------------------------------------------
454 * Auxiliary Devices (*not* AUX)
455 */
456
ti_sn65dsi86_uninit_aux(void * data)457 static void ti_sn65dsi86_uninit_aux(void *data)
458 {
459 auxiliary_device_uninit(data);
460 }
461
ti_sn65dsi86_delete_aux(void * data)462 static void ti_sn65dsi86_delete_aux(void *data)
463 {
464 auxiliary_device_delete(data);
465 }
466
467 /*
468 * AUX bus docs say that a non-NULL release is mandatory, but it makes no
469 * sense for the model used here where all of the aux devices are allocated
470 * in the single shared structure. We'll use this noop as a workaround.
471 */
ti_sn65dsi86_noop(struct device * dev)472 static void ti_sn65dsi86_noop(struct device *dev) {}
473
ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 * pdata,struct auxiliary_device * aux,const char * name)474 static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
475 struct auxiliary_device *aux,
476 const char *name)
477 {
478 struct device *dev = pdata->dev;
479 int ret;
480
481 aux->name = name;
482 aux->dev.parent = dev;
483 aux->dev.release = ti_sn65dsi86_noop;
484 device_set_of_node_from_dev(&aux->dev, dev);
485 ret = auxiliary_device_init(aux);
486 if (ret)
487 return ret;
488 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux);
489 if (ret)
490 return ret;
491
492 ret = auxiliary_device_add(aux);
493 if (ret)
494 return ret;
495 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux);
496
497 return ret;
498 }
499
500 /* -----------------------------------------------------------------------------
501 * AUX Adapter
502 */
503
aux_to_ti_sn65dsi86(struct drm_dp_aux * aux)504 static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
505 {
506 return container_of(aux, struct ti_sn65dsi86, aux);
507 }
508
ti_sn_aux_transfer(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)509 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
510 struct drm_dp_aux_msg *msg)
511 {
512 struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
513 u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
514 u32 request_val = AUX_CMD_REQ(msg->request);
515 u8 *buf = msg->buffer;
516 unsigned int len = msg->size;
517 unsigned int val;
518 int ret;
519 u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
520
521 if (len > SN_AUX_MAX_PAYLOAD_BYTES)
522 return -EINVAL;
523
524 pm_runtime_get_sync(pdata->dev);
525 mutex_lock(&pdata->comms_mutex);
526
527 /*
528 * If someone tries to do a DDC over AUX transaction before pre_enable()
529 * on a device without a dedicated reference clock then we just can't
530 * do it. Fail right away. This prevents non-refclk users from reading
531 * the EDID before enabling the panel but such is life.
532 */
533 if (!pdata->comms_enabled) {
534 ret = -EIO;
535 goto exit;
536 }
537
538 switch (request) {
539 case DP_AUX_NATIVE_WRITE:
540 case DP_AUX_I2C_WRITE:
541 case DP_AUX_NATIVE_READ:
542 case DP_AUX_I2C_READ:
543 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
544 /* Assume it's good */
545 msg->reply = 0;
546 break;
547 default:
548 ret = -EINVAL;
549 goto exit;
550 }
551
552 BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
553 put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
554 addr_len);
555 regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
556 ARRAY_SIZE(addr_len));
557
558 if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
559 regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
560
561 /* Clear old status bits before start so we don't get confused */
562 regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
563 AUX_IRQ_STATUS_NAT_I2C_FAIL |
564 AUX_IRQ_STATUS_AUX_RPLY_TOUT |
565 AUX_IRQ_STATUS_AUX_SHORT);
566
567 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
568
569 /* Zero delay loop because i2c transactions are slow already */
570 ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
571 !(val & AUX_CMD_SEND), 0, 50 * 1000);
572 if (ret)
573 goto exit;
574
575 ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
576 if (ret)
577 goto exit;
578
579 if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
580 /*
581 * The hardware tried the message seven times per the DP spec
582 * but it hit a timeout. We ignore defers here because they're
583 * handled in hardware.
584 */
585 ret = -ETIMEDOUT;
586 goto exit;
587 }
588
589 if (val & AUX_IRQ_STATUS_AUX_SHORT) {
590 ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &len);
591 if (ret)
592 goto exit;
593 } else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
594 switch (request) {
595 case DP_AUX_I2C_WRITE:
596 case DP_AUX_I2C_READ:
597 msg->reply |= DP_AUX_I2C_REPLY_NACK;
598 break;
599 case DP_AUX_NATIVE_READ:
600 case DP_AUX_NATIVE_WRITE:
601 msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
602 break;
603 }
604 len = 0;
605 goto exit;
606 }
607
608 if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
609 ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
610
611 exit:
612 mutex_unlock(&pdata->comms_mutex);
613 pm_runtime_mark_last_busy(pdata->dev);
614 pm_runtime_put_autosuspend(pdata->dev);
615
616 if (ret)
617 return ret;
618 return len;
619 }
620
ti_sn_aux_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)621 static int ti_sn_aux_probe(struct auxiliary_device *adev,
622 const struct auxiliary_device_id *id)
623 {
624 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
625 int ret;
626
627 pdata->aux.name = "ti-sn65dsi86-aux";
628 pdata->aux.dev = &adev->dev;
629 pdata->aux.transfer = ti_sn_aux_transfer;
630 drm_dp_aux_init(&pdata->aux);
631
632 ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
633 if (ret)
634 return ret;
635
636 /*
637 * The eDP to MIPI bridge parts don't work until the AUX channel is
638 * setup so we don't add it in the main driver probe, we add it now.
639 */
640 return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
641 }
642
643 static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
644 { .name = "ti_sn65dsi86.aux", },
645 {},
646 };
647
648 static struct auxiliary_driver ti_sn_aux_driver = {
649 .name = "aux",
650 .probe = ti_sn_aux_probe,
651 .id_table = ti_sn_aux_id_table,
652 };
653
654 /*------------------------------------------------------------------------------
655 * DRM Bridge
656 */
657
bridge_to_ti_sn65dsi86(struct drm_bridge * bridge)658 static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
659 {
660 return container_of(bridge, struct ti_sn65dsi86, bridge);
661 }
662
ti_sn_attach_host(struct ti_sn65dsi86 * pdata)663 static int ti_sn_attach_host(struct ti_sn65dsi86 *pdata)
664 {
665 int val;
666 struct mipi_dsi_host *host;
667 struct mipi_dsi_device *dsi;
668 struct device *dev = pdata->dev;
669 const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
670 .channel = 0,
671 .node = NULL,
672 };
673
674 host = of_find_mipi_dsi_host_by_node(pdata->host_node);
675 if (!host)
676 return -EPROBE_DEFER;
677
678 dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
679 if (IS_ERR(dsi))
680 return PTR_ERR(dsi);
681
682 /* TODO: setting to 4 MIPI lanes always for now */
683 dsi->lanes = 4;
684 dsi->format = MIPI_DSI_FMT_RGB888;
685 dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
686
687 /* check if continuous dsi clock is required or not */
688 pm_runtime_get_sync(dev);
689 regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
690 pm_runtime_put_autosuspend(dev);
691 if (!(val & DPPLL_CLK_SRC_DSICLK))
692 dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
693
694 pdata->dsi = dsi;
695
696 return devm_mipi_dsi_attach(dev, dsi);
697 }
698
ti_sn_bridge_attach(struct drm_bridge * bridge,enum drm_bridge_attach_flags flags)699 static int ti_sn_bridge_attach(struct drm_bridge *bridge,
700 enum drm_bridge_attach_flags flags)
701 {
702 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
703 int ret;
704
705 pdata->aux.drm_dev = bridge->dev;
706 ret = drm_dp_aux_register(&pdata->aux);
707 if (ret < 0) {
708 drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
709 return ret;
710 }
711
712 /*
713 * Attach the next bridge.
714 * We never want the next bridge to *also* create a connector.
715 */
716 ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge,
717 &pdata->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR);
718 if (ret < 0)
719 goto err_initted_aux;
720
721 if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
722 return 0;
723
724 pdata->connector = drm_bridge_connector_init(pdata->bridge.dev,
725 pdata->bridge.encoder);
726 if (IS_ERR(pdata->connector)) {
727 ret = PTR_ERR(pdata->connector);
728 goto err_initted_aux;
729 }
730
731 drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder);
732
733 return 0;
734
735 err_initted_aux:
736 drm_dp_aux_unregister(&pdata->aux);
737 return ret;
738 }
739
ti_sn_bridge_detach(struct drm_bridge * bridge)740 static void ti_sn_bridge_detach(struct drm_bridge *bridge)
741 {
742 drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
743 }
744
745 static enum drm_mode_status
ti_sn_bridge_mode_valid(struct drm_bridge * bridge,const struct drm_display_info * info,const struct drm_display_mode * mode)746 ti_sn_bridge_mode_valid(struct drm_bridge *bridge,
747 const struct drm_display_info *info,
748 const struct drm_display_mode *mode)
749 {
750 /* maximum supported resolution is 4K at 60 fps */
751 if (mode->clock > 594000)
752 return MODE_CLOCK_HIGH;
753
754 /*
755 * The front and back porch registers are 8 bits, and pulse width
756 * registers are 15 bits, so reject any modes with larger periods.
757 */
758
759 if ((mode->hsync_start - mode->hdisplay) > 0xff)
760 return MODE_HBLANK_WIDE;
761
762 if ((mode->vsync_start - mode->vdisplay) > 0xff)
763 return MODE_VBLANK_WIDE;
764
765 if ((mode->hsync_end - mode->hsync_start) > 0x7fff)
766 return MODE_HSYNC_WIDE;
767
768 if ((mode->vsync_end - mode->vsync_start) > 0x7fff)
769 return MODE_VSYNC_WIDE;
770
771 if ((mode->htotal - mode->hsync_end) > 0xff)
772 return MODE_HBLANK_WIDE;
773
774 if ((mode->vtotal - mode->vsync_end) > 0xff)
775 return MODE_VBLANK_WIDE;
776
777 return MODE_OK;
778 }
779
ti_sn_bridge_atomic_disable(struct drm_bridge * bridge,struct drm_bridge_state * old_bridge_state)780 static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge,
781 struct drm_bridge_state *old_bridge_state)
782 {
783 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
784
785 /* disable video stream */
786 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
787 }
788
ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 * pdata)789 static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata)
790 {
791 unsigned int bit_rate_mhz, clk_freq_mhz;
792 unsigned int val;
793 struct drm_display_mode *mode =
794 &pdata->bridge.encoder->crtc->state->adjusted_mode;
795
796 /* set DSIA clk frequency */
797 bit_rate_mhz = (mode->clock / 1000) *
798 mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
799 clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
800
801 /* for each increment in val, frequency increases by 5MHz */
802 val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
803 (((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
804 regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
805 }
806
ti_sn_bridge_get_bpp(struct drm_connector * connector)807 static unsigned int ti_sn_bridge_get_bpp(struct drm_connector *connector)
808 {
809 if (connector->display_info.bpc <= 6)
810 return 18;
811 else
812 return 24;
813 }
814
815 /*
816 * LUT index corresponds to register value and
817 * LUT values corresponds to dp data rate supported
818 * by the bridge in Mbps unit.
819 */
820 static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
821 0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
822 };
823
ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 * pdata,unsigned int bpp)824 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata, unsigned int bpp)
825 {
826 unsigned int bit_rate_khz, dp_rate_mhz;
827 unsigned int i;
828 struct drm_display_mode *mode =
829 &pdata->bridge.encoder->crtc->state->adjusted_mode;
830
831 /* Calculate minimum bit rate based on our pixel clock. */
832 bit_rate_khz = mode->clock * bpp;
833
834 /* Calculate minimum DP data rate, taking 80% as per DP spec */
835 dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
836 1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
837
838 for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
839 if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
840 break;
841
842 return i;
843 }
844
ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 * pdata)845 static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
846 {
847 unsigned int valid_rates = 0;
848 unsigned int rate_per_200khz;
849 unsigned int rate_mhz;
850 u8 dpcd_val;
851 int ret;
852 int i, j;
853
854 ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
855 if (ret != 1) {
856 DRM_DEV_ERROR(pdata->dev,
857 "Can't read eDP rev (%d), assuming 1.1\n", ret);
858 dpcd_val = DP_EDP_11;
859 }
860
861 if (dpcd_val >= DP_EDP_14) {
862 /* eDP 1.4 devices must provide a custom table */
863 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
864
865 ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
866 sink_rates, sizeof(sink_rates));
867
868 if (ret != sizeof(sink_rates)) {
869 DRM_DEV_ERROR(pdata->dev,
870 "Can't read supported rate table (%d)\n", ret);
871
872 /* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
873 memset(sink_rates, 0, sizeof(sink_rates));
874 }
875
876 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
877 rate_per_200khz = le16_to_cpu(sink_rates[i]);
878
879 if (!rate_per_200khz)
880 break;
881
882 rate_mhz = rate_per_200khz * 200 / 1000;
883 for (j = 0;
884 j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
885 j++) {
886 if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
887 valid_rates |= BIT(j);
888 }
889 }
890
891 for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
892 if (valid_rates & BIT(i))
893 return valid_rates;
894 }
895 DRM_DEV_ERROR(pdata->dev,
896 "No matching eDP rates in table; falling back\n");
897 }
898
899 /* On older versions best we can do is use DP_MAX_LINK_RATE */
900 ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
901 if (ret != 1) {
902 DRM_DEV_ERROR(pdata->dev,
903 "Can't read max rate (%d); assuming 5.4 GHz\n",
904 ret);
905 dpcd_val = DP_LINK_BW_5_4;
906 }
907
908 switch (dpcd_val) {
909 default:
910 DRM_DEV_ERROR(pdata->dev,
911 "Unexpected max rate (%#x); assuming 5.4 GHz\n",
912 (int)dpcd_val);
913 fallthrough;
914 case DP_LINK_BW_5_4:
915 valid_rates |= BIT(7);
916 fallthrough;
917 case DP_LINK_BW_2_7:
918 valid_rates |= BIT(4);
919 fallthrough;
920 case DP_LINK_BW_1_62:
921 valid_rates |= BIT(1);
922 break;
923 }
924
925 return valid_rates;
926 }
927
ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 * pdata)928 static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata)
929 {
930 struct drm_display_mode *mode =
931 &pdata->bridge.encoder->crtc->state->adjusted_mode;
932 u8 hsync_polarity = 0, vsync_polarity = 0;
933
934 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
935 hsync_polarity = CHA_HSYNC_POLARITY;
936 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
937 vsync_polarity = CHA_VSYNC_POLARITY;
938
939 ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
940 mode->hdisplay);
941 ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
942 mode->vdisplay);
943 regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
944 (mode->hsync_end - mode->hsync_start) & 0xFF);
945 regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
946 (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
947 hsync_polarity);
948 regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
949 (mode->vsync_end - mode->vsync_start) & 0xFF);
950 regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
951 (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
952 vsync_polarity);
953
954 regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
955 (mode->htotal - mode->hsync_end) & 0xFF);
956 regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
957 (mode->vtotal - mode->vsync_end) & 0xFF);
958
959 regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
960 (mode->hsync_start - mode->hdisplay) & 0xFF);
961 regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
962 (mode->vsync_start - mode->vdisplay) & 0xFF);
963
964 usleep_range(10000, 10500); /* 10ms delay recommended by spec */
965 }
966
ti_sn_get_max_lanes(struct ti_sn65dsi86 * pdata)967 static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
968 {
969 u8 data;
970 int ret;
971
972 ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
973 if (ret != 1) {
974 DRM_DEV_ERROR(pdata->dev,
975 "Can't read lane count (%d); assuming 4\n", ret);
976 return 4;
977 }
978
979 return data & DP_LANE_COUNT_MASK;
980 }
981
ti_sn_link_training(struct ti_sn65dsi86 * pdata,int dp_rate_idx,const char ** last_err_str)982 static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
983 const char **last_err_str)
984 {
985 unsigned int val;
986 int ret;
987 int i;
988
989 /* set dp clk frequency value */
990 regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
991 DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
992
993 /* enable DP PLL */
994 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
995
996 ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
997 val & DPPLL_SRC_DP_PLL_LOCK, 1000,
998 50 * 1000);
999 if (ret) {
1000 *last_err_str = "DP_PLL_LOCK polling failed";
1001 goto exit;
1002 }
1003
1004 /*
1005 * We'll try to link train several times. As part of link training
1006 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER. If
1007 * the panel isn't ready quite it might respond NAK here which means
1008 * we need to try again.
1009 */
1010 for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
1011 /* Semi auto link training mode */
1012 regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
1013 ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
1014 val == ML_TX_MAIN_LINK_OFF ||
1015 val == ML_TX_NORMAL_MODE, 1000,
1016 500 * 1000);
1017 if (ret) {
1018 *last_err_str = "Training complete polling failed";
1019 } else if (val == ML_TX_MAIN_LINK_OFF) {
1020 *last_err_str = "Link training failed, link is off";
1021 ret = -EIO;
1022 continue;
1023 }
1024
1025 break;
1026 }
1027
1028 /* If we saw quite a few retries, add a note about it */
1029 if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
1030 DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
1031
1032 exit:
1033 /* Disable the PLL if we failed */
1034 if (ret)
1035 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1036
1037 return ret;
1038 }
1039
ti_sn_bridge_atomic_enable(struct drm_bridge * bridge,struct drm_bridge_state * old_bridge_state)1040 static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge,
1041 struct drm_bridge_state *old_bridge_state)
1042 {
1043 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1044 struct drm_connector *connector;
1045 const char *last_err_str = "No supported DP rate";
1046 unsigned int valid_rates;
1047 int dp_rate_idx;
1048 unsigned int val;
1049 int ret = -EINVAL;
1050 int max_dp_lanes;
1051 unsigned int bpp;
1052
1053 connector = drm_atomic_get_new_connector_for_encoder(old_bridge_state->base.state,
1054 bridge->encoder);
1055 if (!connector) {
1056 dev_err_ratelimited(pdata->dev, "Could not get the connector\n");
1057 return;
1058 }
1059
1060 max_dp_lanes = ti_sn_get_max_lanes(pdata);
1061 pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
1062
1063 /* DSI_A lane config */
1064 val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
1065 regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
1066 CHA_DSI_LANES_MASK, val);
1067
1068 regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
1069 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
1070 pdata->ln_polrs << LN_POLRS_OFFSET);
1071
1072 /* set dsi clk frequency value */
1073 ti_sn_bridge_set_dsi_rate(pdata);
1074
1075 /*
1076 * The SN65DSI86 only supports ASSR Display Authentication method and
1077 * this method is enabled for eDP panels. An eDP panel must support this
1078 * authentication method. We need to enable this method in the eDP panel
1079 * at DisplayPort address 0x0010A prior to link training.
1080 *
1081 * As only ASSR is supported by SN65DSI86, for full DisplayPort displays
1082 * we need to disable the scrambler.
1083 */
1084 if (pdata->bridge.type == DRM_MODE_CONNECTOR_eDP) {
1085 drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
1086 DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
1087
1088 regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1089 SCRAMBLE_DISABLE, 0);
1090 } else {
1091 regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1092 SCRAMBLE_DISABLE, SCRAMBLE_DISABLE);
1093 }
1094
1095 bpp = ti_sn_bridge_get_bpp(connector);
1096 /* Set the DP output format (18 bpp or 24 bpp) */
1097 val = bpp == 18 ? BPP_18_RGB : 0;
1098 regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
1099
1100 /* DP lane config */
1101 val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
1102 regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
1103 val);
1104
1105 valid_rates = ti_sn_bridge_read_valid_rates(pdata);
1106
1107 /* Train until we run out of rates */
1108 for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata, bpp);
1109 dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
1110 dp_rate_idx++) {
1111 if (!(valid_rates & BIT(dp_rate_idx)))
1112 continue;
1113
1114 ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
1115 if (!ret)
1116 break;
1117 }
1118 if (ret) {
1119 DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
1120 return;
1121 }
1122
1123 /* config video parameters */
1124 ti_sn_bridge_set_video_timings(pdata);
1125
1126 /* enable video stream */
1127 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
1128 VSTREAM_ENABLE);
1129 }
1130
ti_sn_bridge_atomic_pre_enable(struct drm_bridge * bridge,struct drm_bridge_state * old_bridge_state)1131 static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge,
1132 struct drm_bridge_state *old_bridge_state)
1133 {
1134 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1135
1136 pm_runtime_get_sync(pdata->dev);
1137
1138 if (!pdata->refclk)
1139 ti_sn65dsi86_enable_comms(pdata);
1140
1141 /* td7: min 100 us after enable before DSI data */
1142 usleep_range(100, 110);
1143 }
1144
ti_sn_bridge_atomic_post_disable(struct drm_bridge * bridge,struct drm_bridge_state * old_bridge_state)1145 static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge,
1146 struct drm_bridge_state *old_bridge_state)
1147 {
1148 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1149
1150 /* semi auto link training mode OFF */
1151 regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
1152 /* Num lanes to 0 as per power sequencing in data sheet */
1153 regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
1154 /* disable DP PLL */
1155 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1156
1157 if (!pdata->refclk)
1158 ti_sn65dsi86_disable_comms(pdata);
1159
1160 pm_runtime_put_sync(pdata->dev);
1161 }
1162
ti_sn_bridge_detect(struct drm_bridge * bridge)1163 static enum drm_connector_status ti_sn_bridge_detect(struct drm_bridge *bridge)
1164 {
1165 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1166 int val = 0;
1167
1168 pm_runtime_get_sync(pdata->dev);
1169 regmap_read(pdata->regmap, SN_HPD_DISABLE_REG, &val);
1170 pm_runtime_put_autosuspend(pdata->dev);
1171
1172 return val & HPD_DEBOUNCED_STATE ? connector_status_connected
1173 : connector_status_disconnected;
1174 }
1175
ti_sn_bridge_get_edid(struct drm_bridge * bridge,struct drm_connector * connector)1176 static struct edid *ti_sn_bridge_get_edid(struct drm_bridge *bridge,
1177 struct drm_connector *connector)
1178 {
1179 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1180
1181 return drm_get_edid(connector, &pdata->aux.ddc);
1182 }
1183
1184 static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
1185 .attach = ti_sn_bridge_attach,
1186 .detach = ti_sn_bridge_detach,
1187 .mode_valid = ti_sn_bridge_mode_valid,
1188 .get_edid = ti_sn_bridge_get_edid,
1189 .detect = ti_sn_bridge_detect,
1190 .atomic_pre_enable = ti_sn_bridge_atomic_pre_enable,
1191 .atomic_enable = ti_sn_bridge_atomic_enable,
1192 .atomic_disable = ti_sn_bridge_atomic_disable,
1193 .atomic_post_disable = ti_sn_bridge_atomic_post_disable,
1194 .atomic_reset = drm_atomic_helper_bridge_reset,
1195 .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1196 .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1197 };
1198
ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 * pdata,struct device_node * np)1199 static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
1200 struct device_node *np)
1201 {
1202 u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1203 u32 lane_polarities[SN_MAX_DP_LANES] = { };
1204 struct device_node *endpoint;
1205 u8 ln_assign = 0;
1206 u8 ln_polrs = 0;
1207 int dp_lanes;
1208 int i;
1209
1210 /*
1211 * Read config from the device tree about lane remapping and lane
1212 * polarities. These are optional and we assume identity map and
1213 * normal polarity if nothing is specified. It's OK to specify just
1214 * data-lanes but not lane-polarities but not vice versa.
1215 *
1216 * Error checking is light (we just make sure we don't crash or
1217 * buffer overrun) and we assume dts is well formed and specifying
1218 * mappings that the hardware supports.
1219 */
1220 endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1221 dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES);
1222 if (dp_lanes > 0) {
1223 of_property_read_u32_array(endpoint, "data-lanes",
1224 lane_assignments, dp_lanes);
1225 of_property_read_u32_array(endpoint, "lane-polarities",
1226 lane_polarities, dp_lanes);
1227 } else {
1228 dp_lanes = SN_MAX_DP_LANES;
1229 }
1230 of_node_put(endpoint);
1231
1232 /*
1233 * Convert into register format. Loop over all lanes even if
1234 * data-lanes had fewer elements so that we nicely initialize
1235 * the LN_ASSIGN register.
1236 */
1237 for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1238 ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1239 ln_polrs = ln_polrs << 1 | lane_polarities[i];
1240 }
1241
1242 /* Stash in our struct for when we power on */
1243 pdata->dp_lanes = dp_lanes;
1244 pdata->ln_assign = ln_assign;
1245 pdata->ln_polrs = ln_polrs;
1246 }
1247
ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 * pdata)1248 static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
1249 {
1250 struct device_node *np = pdata->dev->of_node;
1251
1252 pdata->host_node = of_graph_get_remote_node(np, 0, 0);
1253
1254 if (!pdata->host_node) {
1255 DRM_ERROR("remote dsi host node not found\n");
1256 return -ENODEV;
1257 }
1258
1259 return 0;
1260 }
1261
ti_sn_bridge_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)1262 static int ti_sn_bridge_probe(struct auxiliary_device *adev,
1263 const struct auxiliary_device_id *id)
1264 {
1265 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1266 struct device_node *np = pdata->dev->of_node;
1267 int ret;
1268
1269 pdata->next_bridge = devm_drm_of_get_bridge(pdata->dev, np, 1, 0);
1270 if (IS_ERR(pdata->next_bridge))
1271 return dev_err_probe(pdata->dev, PTR_ERR(pdata->next_bridge),
1272 "failed to create panel bridge\n");
1273
1274 ti_sn_bridge_parse_lanes(pdata, np);
1275
1276 ret = ti_sn_bridge_parse_dsi_host(pdata);
1277 if (ret)
1278 return ret;
1279
1280 pdata->bridge.funcs = &ti_sn_bridge_funcs;
1281 pdata->bridge.of_node = np;
1282 pdata->bridge.type = pdata->next_bridge->type == DRM_MODE_CONNECTOR_DisplayPort
1283 ? DRM_MODE_CONNECTOR_DisplayPort : DRM_MODE_CONNECTOR_eDP;
1284
1285 if (pdata->bridge.type == DRM_MODE_CONNECTOR_DisplayPort)
1286 pdata->bridge.ops = DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_DETECT;
1287
1288 drm_bridge_add(&pdata->bridge);
1289
1290 ret = ti_sn_attach_host(pdata);
1291 if (ret) {
1292 dev_err_probe(pdata->dev, ret, "failed to attach dsi host\n");
1293 goto err_remove_bridge;
1294 }
1295
1296 return 0;
1297
1298 err_remove_bridge:
1299 drm_bridge_remove(&pdata->bridge);
1300 return ret;
1301 }
1302
ti_sn_bridge_remove(struct auxiliary_device * adev)1303 static void ti_sn_bridge_remove(struct auxiliary_device *adev)
1304 {
1305 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1306
1307 if (!pdata)
1308 return;
1309
1310 drm_bridge_remove(&pdata->bridge);
1311
1312 of_node_put(pdata->host_node);
1313 }
1314
1315 static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
1316 { .name = "ti_sn65dsi86.bridge", },
1317 {},
1318 };
1319
1320 static struct auxiliary_driver ti_sn_bridge_driver = {
1321 .name = "bridge",
1322 .probe = ti_sn_bridge_probe,
1323 .remove = ti_sn_bridge_remove,
1324 .id_table = ti_sn_bridge_id_table,
1325 };
1326
1327 /* -----------------------------------------------------------------------------
1328 * PWM Controller
1329 */
1330 #if defined(CONFIG_PWM)
ti_sn_pwm_pin_request(struct ti_sn65dsi86 * pdata)1331 static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
1332 {
1333 return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
1334 }
1335
ti_sn_pwm_pin_release(struct ti_sn65dsi86 * pdata)1336 static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
1337 {
1338 atomic_set(&pdata->pwm_pin_busy, 0);
1339 }
1340
pwm_chip_to_ti_sn_bridge(struct pwm_chip * chip)1341 static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
1342 {
1343 return container_of(chip, struct ti_sn65dsi86, pchip);
1344 }
1345
ti_sn_pwm_request(struct pwm_chip * chip,struct pwm_device * pwm)1346 static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
1347 {
1348 struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1349
1350 return ti_sn_pwm_pin_request(pdata);
1351 }
1352
ti_sn_pwm_free(struct pwm_chip * chip,struct pwm_device * pwm)1353 static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
1354 {
1355 struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1356
1357 ti_sn_pwm_pin_release(pdata);
1358 }
1359
1360 /*
1361 * Limitations:
1362 * - The PWM signal is not driven when the chip is powered down, or in its
1363 * reset state and the driver does not implement the "suspend state"
1364 * described in the documentation. In order to save power, state->enabled is
1365 * interpreted as denoting if the signal is expected to be valid, and is used
1366 * to determine if the chip needs to be kept powered.
1367 * - Changing both period and duty_cycle is not done atomically, neither is the
1368 * multi-byte register updates, so the output might briefly be undefined
1369 * during update.
1370 */
ti_sn_pwm_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)1371 static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
1372 const struct pwm_state *state)
1373 {
1374 struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1375 unsigned int pwm_en_inv;
1376 unsigned int backlight;
1377 unsigned int pre_div;
1378 unsigned int scale;
1379 u64 period_max;
1380 u64 period;
1381 int ret;
1382
1383 if (!pdata->pwm_enabled) {
1384 ret = pm_runtime_get_sync(pdata->dev);
1385 if (ret < 0) {
1386 pm_runtime_put_sync(pdata->dev);
1387 return ret;
1388 }
1389 }
1390
1391 if (state->enabled) {
1392 if (!pdata->pwm_enabled) {
1393 /*
1394 * The chip might have been powered down while we
1395 * didn't hold a PM runtime reference, so mux in the
1396 * PWM function on the GPIO pin again.
1397 */
1398 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1399 SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
1400 SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
1401 if (ret) {
1402 dev_err(pdata->dev, "failed to mux in PWM function\n");
1403 goto out;
1404 }
1405 }
1406
1407 /*
1408 * Per the datasheet the PWM frequency is given by:
1409 *
1410 * REFCLK_FREQ
1411 * PWM_FREQ = -----------------------------------
1412 * PWM_PRE_DIV * BACKLIGHT_SCALE + 1
1413 *
1414 * However, after careful review the author is convinced that
1415 * the documentation has lost some parenthesis around
1416 * "BACKLIGHT_SCALE + 1".
1417 *
1418 * With the period T_pwm = 1/PWM_FREQ this can be written:
1419 *
1420 * T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1)
1421 *
1422 * In order to keep BACKLIGHT_SCALE within its 16 bits,
1423 * PWM_PRE_DIV must be:
1424 *
1425 * T_pwm * REFCLK_FREQ
1426 * PWM_PRE_DIV >= -------------------------
1427 * BACKLIGHT_SCALE_MAX + 1
1428 *
1429 * To simplify the search and to favour higher resolution of
1430 * the duty cycle over accuracy of the period, the lowest
1431 * possible PWM_PRE_DIV is used. Finally the scale is
1432 * calculated as:
1433 *
1434 * T_pwm * REFCLK_FREQ
1435 * BACKLIGHT_SCALE = ---------------------- - 1
1436 * PWM_PRE_DIV
1437 *
1438 * Here T_pwm is represented in seconds, so appropriate scaling
1439 * to nanoseconds is necessary.
1440 */
1441
1442 /* Minimum T_pwm is 1 / REFCLK_FREQ */
1443 if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) {
1444 ret = -EINVAL;
1445 goto out;
1446 }
1447
1448 /*
1449 * Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ
1450 * Limit period to this to avoid overflows
1451 */
1452 period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1),
1453 pdata->pwm_refclk_freq);
1454 period = min(state->period, period_max);
1455
1456 pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq,
1457 (u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1));
1458 scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1;
1459
1460 /*
1461 * The documentation has the duty ratio given as:
1462 *
1463 * duty BACKLIGHT
1464 * ------- = ---------------------
1465 * period BACKLIGHT_SCALE + 1
1466 *
1467 * Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according
1468 * to definition above and adjusting for nanosecond
1469 * representation of duty cycle gives us:
1470 */
1471 backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq,
1472 (u64)NSEC_PER_SEC * pre_div);
1473 if (backlight > scale)
1474 backlight = scale;
1475
1476 ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
1477 if (ret) {
1478 dev_err(pdata->dev, "failed to update PWM_PRE_DIV\n");
1479 goto out;
1480 }
1481
1482 ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
1483 ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
1484 }
1485
1486 pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) |
1487 FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
1488 ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
1489 if (ret) {
1490 dev_err(pdata->dev, "failed to update PWM_EN/PWM_INV\n");
1491 goto out;
1492 }
1493
1494 pdata->pwm_enabled = state->enabled;
1495 out:
1496
1497 if (!pdata->pwm_enabled)
1498 pm_runtime_put_sync(pdata->dev);
1499
1500 return ret;
1501 }
1502
ti_sn_pwm_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)1503 static void ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
1504 struct pwm_state *state)
1505 {
1506 struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1507 unsigned int pwm_en_inv;
1508 unsigned int pre_div;
1509 u16 backlight;
1510 u16 scale;
1511 int ret;
1512
1513 ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
1514 if (ret)
1515 return;
1516
1517 ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
1518 if (ret)
1519 return;
1520
1521 ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
1522 if (ret)
1523 return;
1524
1525 ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
1526 if (ret)
1527 return;
1528
1529 state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
1530 if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
1531 state->polarity = PWM_POLARITY_INVERSED;
1532 else
1533 state->polarity = PWM_POLARITY_NORMAL;
1534
1535 state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1),
1536 pdata->pwm_refclk_freq);
1537 state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight,
1538 pdata->pwm_refclk_freq);
1539
1540 if (state->duty_cycle > state->period)
1541 state->duty_cycle = state->period;
1542 }
1543
1544 static const struct pwm_ops ti_sn_pwm_ops = {
1545 .request = ti_sn_pwm_request,
1546 .free = ti_sn_pwm_free,
1547 .apply = ti_sn_pwm_apply,
1548 .get_state = ti_sn_pwm_get_state,
1549 .owner = THIS_MODULE,
1550 };
1551
ti_sn_pwm_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)1552 static int ti_sn_pwm_probe(struct auxiliary_device *adev,
1553 const struct auxiliary_device_id *id)
1554 {
1555 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1556
1557 pdata->pchip.dev = pdata->dev;
1558 pdata->pchip.ops = &ti_sn_pwm_ops;
1559 pdata->pchip.npwm = 1;
1560 pdata->pchip.of_xlate = of_pwm_single_xlate;
1561 pdata->pchip.of_pwm_n_cells = 1;
1562
1563 return pwmchip_add(&pdata->pchip);
1564 }
1565
ti_sn_pwm_remove(struct auxiliary_device * adev)1566 static void ti_sn_pwm_remove(struct auxiliary_device *adev)
1567 {
1568 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1569
1570 pwmchip_remove(&pdata->pchip);
1571
1572 if (pdata->pwm_enabled)
1573 pm_runtime_put_sync(pdata->dev);
1574 }
1575
1576 static const struct auxiliary_device_id ti_sn_pwm_id_table[] = {
1577 { .name = "ti_sn65dsi86.pwm", },
1578 {},
1579 };
1580
1581 static struct auxiliary_driver ti_sn_pwm_driver = {
1582 .name = "pwm",
1583 .probe = ti_sn_pwm_probe,
1584 .remove = ti_sn_pwm_remove,
1585 .id_table = ti_sn_pwm_id_table,
1586 };
1587
ti_sn_pwm_register(void)1588 static int __init ti_sn_pwm_register(void)
1589 {
1590 return auxiliary_driver_register(&ti_sn_pwm_driver);
1591 }
1592
ti_sn_pwm_unregister(void)1593 static void ti_sn_pwm_unregister(void)
1594 {
1595 auxiliary_driver_unregister(&ti_sn_pwm_driver);
1596 }
1597
1598 #else
ti_sn_pwm_pin_request(struct ti_sn65dsi86 * pdata)1599 static inline int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; }
ti_sn_pwm_pin_release(struct ti_sn65dsi86 * pdata)1600 static inline void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {}
1601
ti_sn_pwm_register(void)1602 static inline int ti_sn_pwm_register(void) { return 0; }
ti_sn_pwm_unregister(void)1603 static inline void ti_sn_pwm_unregister(void) {}
1604 #endif
1605
1606 /* -----------------------------------------------------------------------------
1607 * GPIO Controller
1608 */
1609 #if defined(CONFIG_OF_GPIO)
1610
tn_sn_bridge_of_xlate(struct gpio_chip * chip,const struct of_phandle_args * gpiospec,u32 * flags)1611 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
1612 const struct of_phandle_args *gpiospec,
1613 u32 *flags)
1614 {
1615 if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
1616 return -EINVAL;
1617
1618 if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
1619 return -EINVAL;
1620
1621 if (flags)
1622 *flags = gpiospec->args[1];
1623
1624 return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1625 }
1626
ti_sn_bridge_gpio_get_direction(struct gpio_chip * chip,unsigned int offset)1627 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1628 unsigned int offset)
1629 {
1630 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1631
1632 /*
1633 * We already have to keep track of the direction because we use
1634 * that to figure out whether we've powered the device. We can
1635 * just return that rather than (maybe) powering up the device
1636 * to ask its direction.
1637 */
1638 return test_bit(offset, pdata->gchip_output) ?
1639 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1640 }
1641
ti_sn_bridge_gpio_get(struct gpio_chip * chip,unsigned int offset)1642 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1643 {
1644 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1645 unsigned int val;
1646 int ret;
1647
1648 /*
1649 * When the pin is an input we don't forcibly keep the bridge
1650 * powered--we just power it on to read the pin. NOTE: part of
1651 * the reason this works is that the bridge defaults (when
1652 * powered back on) to all 4 GPIOs being configured as GPIO input.
1653 * Also note that if something else is keeping the chip powered the
1654 * pm_runtime functions are lightweight increments of a refcount.
1655 */
1656 pm_runtime_get_sync(pdata->dev);
1657 ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1658 pm_runtime_put_autosuspend(pdata->dev);
1659
1660 if (ret)
1661 return ret;
1662
1663 return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1664 }
1665
ti_sn_bridge_gpio_set(struct gpio_chip * chip,unsigned int offset,int val)1666 static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1667 int val)
1668 {
1669 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1670 int ret;
1671
1672 if (!test_bit(offset, pdata->gchip_output)) {
1673 dev_err(pdata->dev, "Ignoring GPIO set while input\n");
1674 return;
1675 }
1676
1677 val &= 1;
1678 ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1679 BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1680 val << (SN_GPIO_OUTPUT_SHIFT + offset));
1681 if (ret)
1682 dev_warn(pdata->dev,
1683 "Failed to set bridge GPIO %u: %d\n", offset, ret);
1684 }
1685
ti_sn_bridge_gpio_direction_input(struct gpio_chip * chip,unsigned int offset)1686 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1687 unsigned int offset)
1688 {
1689 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1690 int shift = offset * 2;
1691 int ret;
1692
1693 if (!test_and_clear_bit(offset, pdata->gchip_output))
1694 return 0;
1695
1696 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1697 SN_GPIO_MUX_MASK << shift,
1698 SN_GPIO_MUX_INPUT << shift);
1699 if (ret) {
1700 set_bit(offset, pdata->gchip_output);
1701 return ret;
1702 }
1703
1704 /*
1705 * NOTE: if nobody else is powering the device this may fully power
1706 * it off and when it comes back it will have lost all state, but
1707 * that's OK because the default is input and we're now an input.
1708 */
1709 pm_runtime_put_autosuspend(pdata->dev);
1710
1711 return 0;
1712 }
1713
ti_sn_bridge_gpio_direction_output(struct gpio_chip * chip,unsigned int offset,int val)1714 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1715 unsigned int offset, int val)
1716 {
1717 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1718 int shift = offset * 2;
1719 int ret;
1720
1721 if (test_and_set_bit(offset, pdata->gchip_output))
1722 return 0;
1723
1724 pm_runtime_get_sync(pdata->dev);
1725
1726 /* Set value first to avoid glitching */
1727 ti_sn_bridge_gpio_set(chip, offset, val);
1728
1729 /* Set direction */
1730 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1731 SN_GPIO_MUX_MASK << shift,
1732 SN_GPIO_MUX_OUTPUT << shift);
1733 if (ret) {
1734 clear_bit(offset, pdata->gchip_output);
1735 pm_runtime_put_autosuspend(pdata->dev);
1736 }
1737
1738 return ret;
1739 }
1740
ti_sn_bridge_gpio_request(struct gpio_chip * chip,unsigned int offset)1741 static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset)
1742 {
1743 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1744
1745 if (offset == SN_PWM_GPIO_IDX)
1746 return ti_sn_pwm_pin_request(pdata);
1747
1748 return 0;
1749 }
1750
ti_sn_bridge_gpio_free(struct gpio_chip * chip,unsigned int offset)1751 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1752 {
1753 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1754
1755 /* We won't keep pm_runtime if we're input, so switch there on free */
1756 ti_sn_bridge_gpio_direction_input(chip, offset);
1757
1758 if (offset == SN_PWM_GPIO_IDX)
1759 ti_sn_pwm_pin_release(pdata);
1760 }
1761
1762 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1763 "GPIO1", "GPIO2", "GPIO3", "GPIO4"
1764 };
1765
ti_sn_gpio_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)1766 static int ti_sn_gpio_probe(struct auxiliary_device *adev,
1767 const struct auxiliary_device_id *id)
1768 {
1769 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1770 int ret;
1771
1772 /* Only init if someone is going to use us as a GPIO controller */
1773 if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1774 return 0;
1775
1776 pdata->gchip.label = dev_name(pdata->dev);
1777 pdata->gchip.parent = pdata->dev;
1778 pdata->gchip.owner = THIS_MODULE;
1779 pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1780 pdata->gchip.of_gpio_n_cells = 2;
1781 pdata->gchip.request = ti_sn_bridge_gpio_request;
1782 pdata->gchip.free = ti_sn_bridge_gpio_free;
1783 pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1784 pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1785 pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1786 pdata->gchip.get = ti_sn_bridge_gpio_get;
1787 pdata->gchip.set = ti_sn_bridge_gpio_set;
1788 pdata->gchip.can_sleep = true;
1789 pdata->gchip.names = ti_sn_bridge_gpio_names;
1790 pdata->gchip.ngpio = SN_NUM_GPIOS;
1791 pdata->gchip.base = -1;
1792 ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
1793 if (ret)
1794 dev_err(pdata->dev, "can't add gpio chip\n");
1795
1796 return ret;
1797 }
1798
1799 static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
1800 { .name = "ti_sn65dsi86.gpio", },
1801 {},
1802 };
1803
1804 MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
1805
1806 static struct auxiliary_driver ti_sn_gpio_driver = {
1807 .name = "gpio",
1808 .probe = ti_sn_gpio_probe,
1809 .id_table = ti_sn_gpio_id_table,
1810 };
1811
ti_sn_gpio_register(void)1812 static int __init ti_sn_gpio_register(void)
1813 {
1814 return auxiliary_driver_register(&ti_sn_gpio_driver);
1815 }
1816
ti_sn_gpio_unregister(void)1817 static void ti_sn_gpio_unregister(void)
1818 {
1819 auxiliary_driver_unregister(&ti_sn_gpio_driver);
1820 }
1821
1822 #else
1823
ti_sn_gpio_register(void)1824 static inline int ti_sn_gpio_register(void) { return 0; }
ti_sn_gpio_unregister(void)1825 static inline void ti_sn_gpio_unregister(void) {}
1826
1827 #endif
1828
1829 /* -----------------------------------------------------------------------------
1830 * Probe & Remove
1831 */
1832
ti_sn65dsi86_runtime_disable(void * data)1833 static void ti_sn65dsi86_runtime_disable(void *data)
1834 {
1835 pm_runtime_dont_use_autosuspend(data);
1836 pm_runtime_disable(data);
1837 }
1838
ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 * pdata)1839 static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
1840 {
1841 unsigned int i;
1842 const char * const ti_sn_bridge_supply_names[] = {
1843 "vcca", "vcc", "vccio", "vpll",
1844 };
1845
1846 for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
1847 pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
1848
1849 return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
1850 pdata->supplies);
1851 }
1852
ti_sn65dsi86_probe(struct i2c_client * client,const struct i2c_device_id * id)1853 static int ti_sn65dsi86_probe(struct i2c_client *client,
1854 const struct i2c_device_id *id)
1855 {
1856 struct device *dev = &client->dev;
1857 struct ti_sn65dsi86 *pdata;
1858 int ret;
1859
1860 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1861 DRM_ERROR("device doesn't support I2C\n");
1862 return -ENODEV;
1863 }
1864
1865 pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL);
1866 if (!pdata)
1867 return -ENOMEM;
1868 dev_set_drvdata(dev, pdata);
1869 pdata->dev = dev;
1870
1871 mutex_init(&pdata->comms_mutex);
1872
1873 pdata->regmap = devm_regmap_init_i2c(client,
1874 &ti_sn65dsi86_regmap_config);
1875 if (IS_ERR(pdata->regmap))
1876 return dev_err_probe(dev, PTR_ERR(pdata->regmap),
1877 "regmap i2c init failed\n");
1878
1879 pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
1880 GPIOD_OUT_LOW);
1881 if (IS_ERR(pdata->enable_gpio))
1882 return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
1883 "failed to get enable gpio from DT\n");
1884
1885 ret = ti_sn65dsi86_parse_regulators(pdata);
1886 if (ret)
1887 return dev_err_probe(dev, ret, "failed to parse regulators\n");
1888
1889 pdata->refclk = devm_clk_get_optional(dev, "refclk");
1890 if (IS_ERR(pdata->refclk))
1891 return dev_err_probe(dev, PTR_ERR(pdata->refclk),
1892 "failed to get reference clock\n");
1893
1894 pm_runtime_enable(dev);
1895 pm_runtime_set_autosuspend_delay(pdata->dev, 500);
1896 pm_runtime_use_autosuspend(pdata->dev);
1897 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
1898 if (ret)
1899 return ret;
1900
1901 ti_sn65dsi86_debugfs_init(pdata);
1902
1903 /*
1904 * Break ourselves up into a collection of aux devices. The only real
1905 * motiviation here is to solve the chicken-and-egg problem of probe
1906 * ordering. The bridge wants the panel to be there when it probes.
1907 * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
1908 * when it probes. The panel and maybe backlight might want the DDC
1909 * bus or the pwm_chip. Having sub-devices allows the some sub devices
1910 * to finish probing even if others return -EPROBE_DEFER and gets us
1911 * around the problems.
1912 */
1913
1914 if (IS_ENABLED(CONFIG_OF_GPIO)) {
1915 ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
1916 if (ret)
1917 return ret;
1918 }
1919
1920 if (IS_ENABLED(CONFIG_PWM)) {
1921 ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm");
1922 if (ret)
1923 return ret;
1924 }
1925
1926 /*
1927 * NOTE: At the end of the AUX channel probe we'll add the aux device
1928 * for the bridge. This is because the bridge can't be used until the
1929 * AUX channel is there and this is a very simple solution to the
1930 * dependency problem.
1931 */
1932 return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
1933 }
1934
1935 static struct i2c_device_id ti_sn65dsi86_id[] = {
1936 { "ti,sn65dsi86", 0},
1937 {},
1938 };
1939 MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
1940
1941 static const struct of_device_id ti_sn65dsi86_match_table[] = {
1942 {.compatible = "ti,sn65dsi86"},
1943 {},
1944 };
1945 MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
1946
1947 static struct i2c_driver ti_sn65dsi86_driver = {
1948 .driver = {
1949 .name = "ti_sn65dsi86",
1950 .of_match_table = ti_sn65dsi86_match_table,
1951 .pm = &ti_sn65dsi86_pm_ops,
1952 },
1953 .probe = ti_sn65dsi86_probe,
1954 .id_table = ti_sn65dsi86_id,
1955 };
1956
ti_sn65dsi86_init(void)1957 static int __init ti_sn65dsi86_init(void)
1958 {
1959 int ret;
1960
1961 ret = i2c_add_driver(&ti_sn65dsi86_driver);
1962 if (ret)
1963 return ret;
1964
1965 ret = ti_sn_gpio_register();
1966 if (ret)
1967 goto err_main_was_registered;
1968
1969 ret = ti_sn_pwm_register();
1970 if (ret)
1971 goto err_gpio_was_registered;
1972
1973 ret = auxiliary_driver_register(&ti_sn_aux_driver);
1974 if (ret)
1975 goto err_pwm_was_registered;
1976
1977 ret = auxiliary_driver_register(&ti_sn_bridge_driver);
1978 if (ret)
1979 goto err_aux_was_registered;
1980
1981 return 0;
1982
1983 err_aux_was_registered:
1984 auxiliary_driver_unregister(&ti_sn_aux_driver);
1985 err_pwm_was_registered:
1986 ti_sn_pwm_unregister();
1987 err_gpio_was_registered:
1988 ti_sn_gpio_unregister();
1989 err_main_was_registered:
1990 i2c_del_driver(&ti_sn65dsi86_driver);
1991
1992 return ret;
1993 }
1994 module_init(ti_sn65dsi86_init);
1995
ti_sn65dsi86_exit(void)1996 static void __exit ti_sn65dsi86_exit(void)
1997 {
1998 auxiliary_driver_unregister(&ti_sn_bridge_driver);
1999 auxiliary_driver_unregister(&ti_sn_aux_driver);
2000 ti_sn_pwm_unregister();
2001 ti_sn_gpio_unregister();
2002 i2c_del_driver(&ti_sn65dsi86_driver);
2003 }
2004 module_exit(ti_sn65dsi86_exit);
2005
2006 MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
2007 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
2008 MODULE_LICENSE("GPL v2");
2009