1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/fdtable.h>
25 #include <linux/uaccess.h>
26 #include <linux/firmware.h>
27 #include <drm/drmP.h>
28 #include "amdgpu.h"
29 #include "amdgpu_amdkfd.h"
30 #include "amdgpu_ucode.h"
31 #include "gfx_v8_0.h"
32 #include "gca/gfx_8_0_sh_mask.h"
33 #include "gca/gfx_8_0_d.h"
34 #include "gca/gfx_8_0_enum.h"
35 #include "oss/oss_3_0_sh_mask.h"
36 #include "oss/oss_3_0_d.h"
37 #include "gmc/gmc_8_1_sh_mask.h"
38 #include "gmc/gmc_8_1_d.h"
39 #include "vi_structs.h"
40 #include "vid.h"
41 
42 enum hqd_dequeue_request_type {
43 	NO_ACTION = 0,
44 	DRAIN_PIPE,
45 	RESET_WAVES
46 };
47 
48 struct vi_sdma_mqd;
49 
50 /*
51  * Register access functions
52  */
53 
54 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
55 		uint32_t sh_mem_config,
56 		uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit,
57 		uint32_t sh_mem_bases);
58 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
59 		unsigned int vmid);
60 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
61 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
62 			uint32_t queue_id, uint32_t __user *wptr,
63 			uint32_t wptr_shift, uint32_t wptr_mask,
64 			struct mm_struct *mm);
65 static int kgd_hqd_dump(struct kgd_dev *kgd,
66 			uint32_t pipe_id, uint32_t queue_id,
67 			uint32_t (**dump)[2], uint32_t *n_regs);
68 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
69 			     uint32_t __user *wptr, struct mm_struct *mm);
70 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
71 			     uint32_t engine_id, uint32_t queue_id,
72 			     uint32_t (**dump)[2], uint32_t *n_regs);
73 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
74 		uint32_t pipe_id, uint32_t queue_id);
75 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
76 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
77 				enum kfd_preempt_type reset_type,
78 				unsigned int utimeout, uint32_t pipe_id,
79 				uint32_t queue_id);
80 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
81 				unsigned int utimeout);
82 static int kgd_address_watch_disable(struct kgd_dev *kgd);
83 static int kgd_address_watch_execute(struct kgd_dev *kgd,
84 					unsigned int watch_point_id,
85 					uint32_t cntl_val,
86 					uint32_t addr_hi,
87 					uint32_t addr_lo);
88 static int kgd_wave_control_execute(struct kgd_dev *kgd,
89 					uint32_t gfx_index_val,
90 					uint32_t sq_cmd);
91 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
92 					unsigned int watch_point_id,
93 					unsigned int reg_offset);
94 
95 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
96 		uint8_t vmid);
97 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
98 		uint8_t vmid);
99 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
100 static void set_scratch_backing_va(struct kgd_dev *kgd,
101 					uint64_t va, uint32_t vmid);
102 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
103 		uint32_t page_table_base);
104 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
105 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
106 
107 /* Because of REG_GET_FIELD() being used, we put this function in the
108  * asic specific file.
109  */
get_tile_config(struct kgd_dev * kgd,struct tile_config * config)110 static int get_tile_config(struct kgd_dev *kgd,
111 		struct tile_config *config)
112 {
113 	struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
114 
115 	config->gb_addr_config = adev->gfx.config.gb_addr_config;
116 	config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
117 				MC_ARB_RAMCFG, NOOFBANK);
118 	config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
119 				MC_ARB_RAMCFG, NOOFRANKS);
120 
121 	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
122 	config->num_tile_configs =
123 			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
124 	config->macro_tile_config_ptr =
125 			adev->gfx.config.macrotile_mode_array;
126 	config->num_macro_tile_configs =
127 			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
128 
129 	return 0;
130 }
131 
132 static const struct kfd2kgd_calls kfd2kgd = {
133 	.init_gtt_mem_allocation = alloc_gtt_mem,
134 	.free_gtt_mem = free_gtt_mem,
135 	.get_local_mem_info = get_local_mem_info,
136 	.get_gpu_clock_counter = get_gpu_clock_counter,
137 	.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
138 	.alloc_pasid = amdgpu_pasid_alloc,
139 	.free_pasid = amdgpu_pasid_free,
140 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
141 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
142 	.init_interrupts = kgd_init_interrupts,
143 	.hqd_load = kgd_hqd_load,
144 	.hqd_sdma_load = kgd_hqd_sdma_load,
145 	.hqd_dump = kgd_hqd_dump,
146 	.hqd_sdma_dump = kgd_hqd_sdma_dump,
147 	.hqd_is_occupied = kgd_hqd_is_occupied,
148 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
149 	.hqd_destroy = kgd_hqd_destroy,
150 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
151 	.address_watch_disable = kgd_address_watch_disable,
152 	.address_watch_execute = kgd_address_watch_execute,
153 	.wave_control_execute = kgd_wave_control_execute,
154 	.address_watch_get_offset = kgd_address_watch_get_offset,
155 	.get_atc_vmid_pasid_mapping_pasid =
156 			get_atc_vmid_pasid_mapping_pasid,
157 	.get_atc_vmid_pasid_mapping_valid =
158 			get_atc_vmid_pasid_mapping_valid,
159 	.get_fw_version = get_fw_version,
160 	.set_scratch_backing_va = set_scratch_backing_va,
161 	.get_tile_config = get_tile_config,
162 	.get_cu_info = get_cu_info,
163 	.get_vram_usage = amdgpu_amdkfd_get_vram_usage,
164 	.create_process_vm = amdgpu_amdkfd_gpuvm_create_process_vm,
165 	.acquire_process_vm = amdgpu_amdkfd_gpuvm_acquire_process_vm,
166 	.destroy_process_vm = amdgpu_amdkfd_gpuvm_destroy_process_vm,
167 	.get_process_page_dir = amdgpu_amdkfd_gpuvm_get_process_page_dir,
168 	.set_vm_context_page_table_base = set_vm_context_page_table_base,
169 	.alloc_memory_of_gpu = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu,
170 	.free_memory_of_gpu = amdgpu_amdkfd_gpuvm_free_memory_of_gpu,
171 	.map_memory_to_gpu = amdgpu_amdkfd_gpuvm_map_memory_to_gpu,
172 	.unmap_memory_to_gpu = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu,
173 	.sync_memory = amdgpu_amdkfd_gpuvm_sync_memory,
174 	.map_gtt_bo_to_kernel = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel,
175 	.restore_process_bos = amdgpu_amdkfd_gpuvm_restore_process_bos,
176 	.invalidate_tlbs = invalidate_tlbs,
177 	.invalidate_tlbs_vmid = invalidate_tlbs_vmid,
178 	.submit_ib = amdgpu_amdkfd_submit_ib,
179 	.get_vm_fault_info = amdgpu_amdkfd_gpuvm_get_vm_fault_info,
180 	.gpu_recover = amdgpu_amdkfd_gpu_reset,
181 	.set_compute_idle = amdgpu_amdkfd_set_compute_idle
182 };
183 
amdgpu_amdkfd_gfx_8_0_get_functions(void)184 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_8_0_get_functions(void)
185 {
186 	return (struct kfd2kgd_calls *)&kfd2kgd;
187 }
188 
get_amdgpu_device(struct kgd_dev * kgd)189 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
190 {
191 	return (struct amdgpu_device *)kgd;
192 }
193 
lock_srbm(struct kgd_dev * kgd,uint32_t mec,uint32_t pipe,uint32_t queue,uint32_t vmid)194 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
195 			uint32_t queue, uint32_t vmid)
196 {
197 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
198 	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
199 
200 	mutex_lock(&adev->srbm_mutex);
201 	WREG32(mmSRBM_GFX_CNTL, value);
202 }
203 
unlock_srbm(struct kgd_dev * kgd)204 static void unlock_srbm(struct kgd_dev *kgd)
205 {
206 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
207 
208 	WREG32(mmSRBM_GFX_CNTL, 0);
209 	mutex_unlock(&adev->srbm_mutex);
210 }
211 
acquire_queue(struct kgd_dev * kgd,uint32_t pipe_id,uint32_t queue_id)212 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
213 				uint32_t queue_id)
214 {
215 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
216 
217 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
218 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
219 
220 	lock_srbm(kgd, mec, pipe, queue_id, 0);
221 }
222 
release_queue(struct kgd_dev * kgd)223 static void release_queue(struct kgd_dev *kgd)
224 {
225 	unlock_srbm(kgd);
226 }
227 
kgd_program_sh_mem_settings(struct kgd_dev * kgd,uint32_t vmid,uint32_t sh_mem_config,uint32_t sh_mem_ape1_base,uint32_t sh_mem_ape1_limit,uint32_t sh_mem_bases)228 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
229 					uint32_t sh_mem_config,
230 					uint32_t sh_mem_ape1_base,
231 					uint32_t sh_mem_ape1_limit,
232 					uint32_t sh_mem_bases)
233 {
234 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
235 
236 	lock_srbm(kgd, 0, 0, 0, vmid);
237 
238 	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
239 	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
240 	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
241 	WREG32(mmSH_MEM_BASES, sh_mem_bases);
242 
243 	unlock_srbm(kgd);
244 }
245 
kgd_set_pasid_vmid_mapping(struct kgd_dev * kgd,unsigned int pasid,unsigned int vmid)246 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
247 					unsigned int vmid)
248 {
249 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
250 
251 	/*
252 	 * We have to assume that there is no outstanding mapping.
253 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
254 	 * a mapping is in progress or because a mapping finished
255 	 * and the SW cleared it.
256 	 * So the protocol is to always wait & clear.
257 	 */
258 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
259 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
260 
261 	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
262 
263 	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
264 		cpu_relax();
265 	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
266 
267 	/* Mapping vmid to pasid also for IH block */
268 	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
269 
270 	return 0;
271 }
272 
kgd_init_interrupts(struct kgd_dev * kgd,uint32_t pipe_id)273 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
274 {
275 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
276 	uint32_t mec;
277 	uint32_t pipe;
278 
279 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
280 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
281 
282 	lock_srbm(kgd, mec, pipe, 0, 0);
283 
284 	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK);
285 
286 	unlock_srbm(kgd);
287 
288 	return 0;
289 }
290 
get_sdma_base_addr(struct vi_sdma_mqd * m)291 static inline uint32_t get_sdma_base_addr(struct vi_sdma_mqd *m)
292 {
293 	uint32_t retval;
294 
295 	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
296 		m->sdma_queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
297 	pr_debug("kfd: sdma base address: 0x%x\n", retval);
298 
299 	return retval;
300 }
301 
get_mqd(void * mqd)302 static inline struct vi_mqd *get_mqd(void *mqd)
303 {
304 	return (struct vi_mqd *)mqd;
305 }
306 
get_sdma_mqd(void * mqd)307 static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd)
308 {
309 	return (struct vi_sdma_mqd *)mqd;
310 }
311 
kgd_hqd_load(struct kgd_dev * kgd,void * mqd,uint32_t pipe_id,uint32_t queue_id,uint32_t __user * wptr,uint32_t wptr_shift,uint32_t wptr_mask,struct mm_struct * mm)312 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
313 			uint32_t queue_id, uint32_t __user *wptr,
314 			uint32_t wptr_shift, uint32_t wptr_mask,
315 			struct mm_struct *mm)
316 {
317 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
318 	struct vi_mqd *m;
319 	uint32_t *mqd_hqd;
320 	uint32_t reg, wptr_val, data;
321 	bool valid_wptr = false;
322 
323 	m = get_mqd(mqd);
324 
325 	acquire_queue(kgd, pipe_id, queue_id);
326 
327 	/* HIQ is set during driver init period with vmid set to 0*/
328 	if (m->cp_hqd_vmid == 0) {
329 		uint32_t value, mec, pipe;
330 
331 		mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
332 		pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
333 
334 		pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
335 			mec, pipe, queue_id);
336 		value = RREG32(mmRLC_CP_SCHEDULERS);
337 		value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
338 			((mec << 5) | (pipe << 3) | queue_id | 0x80));
339 		WREG32(mmRLC_CP_SCHEDULERS, value);
340 	}
341 
342 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
343 	mqd_hqd = &m->cp_mqd_base_addr_lo;
344 
345 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
346 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
347 
348 	/* Tonga errata: EOP RPTR/WPTR should be left unmodified.
349 	 * This is safe since EOP RPTR==WPTR for any inactive HQD
350 	 * on ASICs that do not support context-save.
351 	 * EOP writes/reads can start anywhere in the ring.
352 	 */
353 	if (get_amdgpu_device(kgd)->asic_type != CHIP_TONGA) {
354 		WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
355 		WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
356 		WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
357 	}
358 
359 	for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
360 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
361 
362 	/* Copy userspace write pointer value to register.
363 	 * Activate doorbell logic to monitor subsequent changes.
364 	 */
365 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
366 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
367 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
368 
369 	/* read_user_ptr may take the mm->mmap_sem.
370 	 * release srbm_mutex to avoid circular dependency between
371 	 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
372 	 */
373 	release_queue(kgd);
374 	valid_wptr = read_user_wptr(mm, wptr, wptr_val);
375 	acquire_queue(kgd, pipe_id, queue_id);
376 	if (valid_wptr)
377 		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
378 
379 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
380 	WREG32(mmCP_HQD_ACTIVE, data);
381 
382 	release_queue(kgd);
383 
384 	return 0;
385 }
386 
kgd_hqd_dump(struct kgd_dev * kgd,uint32_t pipe_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs)387 static int kgd_hqd_dump(struct kgd_dev *kgd,
388 			uint32_t pipe_id, uint32_t queue_id,
389 			uint32_t (**dump)[2], uint32_t *n_regs)
390 {
391 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
392 	uint32_t i = 0, reg;
393 #define HQD_N_REGS (54+4)
394 #define DUMP_REG(addr) do {				\
395 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
396 			break;				\
397 		(*dump)[i][0] = (addr) << 2;		\
398 		(*dump)[i++][1] = RREG32(addr);		\
399 	} while (0)
400 
401 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
402 	if (*dump == NULL)
403 		return -ENOMEM;
404 
405 	acquire_queue(kgd, pipe_id, queue_id);
406 
407 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
408 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
409 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
410 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
411 
412 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_DONES; reg++)
413 		DUMP_REG(reg);
414 
415 	release_queue(kgd);
416 
417 	WARN_ON_ONCE(i != HQD_N_REGS);
418 	*n_regs = i;
419 
420 	return 0;
421 }
422 
kgd_hqd_sdma_load(struct kgd_dev * kgd,void * mqd,uint32_t __user * wptr,struct mm_struct * mm)423 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
424 			     uint32_t __user *wptr, struct mm_struct *mm)
425 {
426 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
427 	struct vi_sdma_mqd *m;
428 	unsigned long end_jiffies;
429 	uint32_t sdma_base_addr;
430 	uint32_t data;
431 
432 	m = get_sdma_mqd(mqd);
433 	sdma_base_addr = get_sdma_base_addr(m);
434 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
435 		m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
436 
437 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
438 	while (true) {
439 		data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
440 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
441 			break;
442 		if (time_after(jiffies, end_jiffies))
443 			return -ETIME;
444 		usleep_range(500, 1000);
445 	}
446 	if (m->sdma_engine_id) {
447 		data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
448 		data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
449 				RESUME_CTX, 0);
450 		WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
451 	} else {
452 		data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
453 		data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
454 				RESUME_CTX, 0);
455 		WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
456 	}
457 
458 	data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
459 			     ENABLE, 1);
460 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
461 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdmax_rlcx_rb_rptr);
462 
463 	if (read_user_wptr(mm, wptr, data))
464 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
465 	else
466 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
467 		       m->sdmax_rlcx_rb_rptr);
468 
469 	WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
470 				m->sdmax_rlcx_virtual_addr);
471 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
472 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
473 			m->sdmax_rlcx_rb_base_hi);
474 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
475 			m->sdmax_rlcx_rb_rptr_addr_lo);
476 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
477 			m->sdmax_rlcx_rb_rptr_addr_hi);
478 
479 	data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
480 			     RB_ENABLE, 1);
481 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
482 
483 	return 0;
484 }
485 
kgd_hqd_sdma_dump(struct kgd_dev * kgd,uint32_t engine_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs)486 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
487 			     uint32_t engine_id, uint32_t queue_id,
488 			     uint32_t (**dump)[2], uint32_t *n_regs)
489 {
490 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
491 	uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
492 		queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
493 	uint32_t i = 0, reg;
494 #undef HQD_N_REGS
495 #define HQD_N_REGS (19+4+2+3+7)
496 
497 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
498 	if (*dump == NULL)
499 		return -ENOMEM;
500 
501 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
502 		DUMP_REG(sdma_offset + reg);
503 	for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
504 	     reg++)
505 		DUMP_REG(sdma_offset + reg);
506 	for (reg = mmSDMA0_RLC0_CSA_ADDR_LO; reg <= mmSDMA0_RLC0_CSA_ADDR_HI;
507 	     reg++)
508 		DUMP_REG(sdma_offset + reg);
509 	for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_DUMMY_REG;
510 	     reg++)
511 		DUMP_REG(sdma_offset + reg);
512 	for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL;
513 	     reg++)
514 		DUMP_REG(sdma_offset + reg);
515 
516 	WARN_ON_ONCE(i != HQD_N_REGS);
517 	*n_regs = i;
518 
519 	return 0;
520 }
521 
kgd_hqd_is_occupied(struct kgd_dev * kgd,uint64_t queue_address,uint32_t pipe_id,uint32_t queue_id)522 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
523 				uint32_t pipe_id, uint32_t queue_id)
524 {
525 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
526 	uint32_t act;
527 	bool retval = false;
528 	uint32_t low, high;
529 
530 	acquire_queue(kgd, pipe_id, queue_id);
531 	act = RREG32(mmCP_HQD_ACTIVE);
532 	if (act) {
533 		low = lower_32_bits(queue_address >> 8);
534 		high = upper_32_bits(queue_address >> 8);
535 
536 		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
537 				high == RREG32(mmCP_HQD_PQ_BASE_HI))
538 			retval = true;
539 	}
540 	release_queue(kgd);
541 	return retval;
542 }
543 
kgd_hqd_sdma_is_occupied(struct kgd_dev * kgd,void * mqd)544 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
545 {
546 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
547 	struct vi_sdma_mqd *m;
548 	uint32_t sdma_base_addr;
549 	uint32_t sdma_rlc_rb_cntl;
550 
551 	m = get_sdma_mqd(mqd);
552 	sdma_base_addr = get_sdma_base_addr(m);
553 
554 	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
555 
556 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
557 		return true;
558 
559 	return false;
560 }
561 
kgd_hqd_destroy(struct kgd_dev * kgd,void * mqd,enum kfd_preempt_type reset_type,unsigned int utimeout,uint32_t pipe_id,uint32_t queue_id)562 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
563 				enum kfd_preempt_type reset_type,
564 				unsigned int utimeout, uint32_t pipe_id,
565 				uint32_t queue_id)
566 {
567 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
568 	uint32_t temp;
569 	enum hqd_dequeue_request_type type;
570 	unsigned long flags, end_jiffies;
571 	int retry;
572 	struct vi_mqd *m = get_mqd(mqd);
573 
574 	if (adev->in_gpu_reset)
575 		return -EIO;
576 
577 	acquire_queue(kgd, pipe_id, queue_id);
578 
579 	if (m->cp_hqd_vmid == 0)
580 		WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
581 
582 	switch (reset_type) {
583 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
584 		type = DRAIN_PIPE;
585 		break;
586 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
587 		type = RESET_WAVES;
588 		break;
589 	default:
590 		type = DRAIN_PIPE;
591 		break;
592 	}
593 
594 	/* Workaround: If IQ timer is active and the wait time is close to or
595 	 * equal to 0, dequeueing is not safe. Wait until either the wait time
596 	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
597 	 * cleared before continuing. Also, ensure wait times are set to at
598 	 * least 0x3.
599 	 */
600 	local_irq_save(flags);
601 	preempt_disable();
602 	retry = 5000; /* wait for 500 usecs at maximum */
603 	while (true) {
604 		temp = RREG32(mmCP_HQD_IQ_TIMER);
605 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
606 			pr_debug("HW is processing IQ\n");
607 			goto loop;
608 		}
609 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
610 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
611 					== 3) /* SEM-rearm is safe */
612 				break;
613 			/* Wait time 3 is safe for CP, but our MMIO read/write
614 			 * time is close to 1 microsecond, so check for 10 to
615 			 * leave more buffer room
616 			 */
617 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
618 					>= 10)
619 				break;
620 			pr_debug("IQ timer is active\n");
621 		} else
622 			break;
623 loop:
624 		if (!retry) {
625 			pr_err("CP HQD IQ timer status time out\n");
626 			break;
627 		}
628 		ndelay(100);
629 		--retry;
630 	}
631 	retry = 1000;
632 	while (true) {
633 		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
634 		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
635 			break;
636 		pr_debug("Dequeue request is pending\n");
637 
638 		if (!retry) {
639 			pr_err("CP HQD dequeue request time out\n");
640 			break;
641 		}
642 		ndelay(100);
643 		--retry;
644 	}
645 	local_irq_restore(flags);
646 	preempt_enable();
647 
648 	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
649 
650 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
651 	while (true) {
652 		temp = RREG32(mmCP_HQD_ACTIVE);
653 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
654 			break;
655 		if (time_after(jiffies, end_jiffies)) {
656 			pr_err("cp queue preemption time out.\n");
657 			release_queue(kgd);
658 			return -ETIME;
659 		}
660 		usleep_range(500, 1000);
661 	}
662 
663 	release_queue(kgd);
664 	return 0;
665 }
666 
kgd_hqd_sdma_destroy(struct kgd_dev * kgd,void * mqd,unsigned int utimeout)667 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
668 				unsigned int utimeout)
669 {
670 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
671 	struct vi_sdma_mqd *m;
672 	uint32_t sdma_base_addr;
673 	uint32_t temp;
674 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
675 
676 	m = get_sdma_mqd(mqd);
677 	sdma_base_addr = get_sdma_base_addr(m);
678 
679 	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
680 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
681 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
682 
683 	while (true) {
684 		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
685 		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
686 			break;
687 		if (time_after(jiffies, end_jiffies))
688 			return -ETIME;
689 		usleep_range(500, 1000);
690 	}
691 
692 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
693 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
694 		RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
695 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
696 
697 	m->sdmax_rlcx_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
698 
699 	return 0;
700 }
701 
get_atc_vmid_pasid_mapping_valid(struct kgd_dev * kgd,uint8_t vmid)702 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
703 							uint8_t vmid)
704 {
705 	uint32_t reg;
706 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
707 
708 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
709 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
710 }
711 
get_atc_vmid_pasid_mapping_pasid(struct kgd_dev * kgd,uint8_t vmid)712 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
713 								uint8_t vmid)
714 {
715 	uint32_t reg;
716 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
717 
718 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
719 	return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
720 }
721 
kgd_address_watch_disable(struct kgd_dev * kgd)722 static int kgd_address_watch_disable(struct kgd_dev *kgd)
723 {
724 	return 0;
725 }
726 
kgd_address_watch_execute(struct kgd_dev * kgd,unsigned int watch_point_id,uint32_t cntl_val,uint32_t addr_hi,uint32_t addr_lo)727 static int kgd_address_watch_execute(struct kgd_dev *kgd,
728 					unsigned int watch_point_id,
729 					uint32_t cntl_val,
730 					uint32_t addr_hi,
731 					uint32_t addr_lo)
732 {
733 	return 0;
734 }
735 
kgd_wave_control_execute(struct kgd_dev * kgd,uint32_t gfx_index_val,uint32_t sq_cmd)736 static int kgd_wave_control_execute(struct kgd_dev *kgd,
737 					uint32_t gfx_index_val,
738 					uint32_t sq_cmd)
739 {
740 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
741 	uint32_t data = 0;
742 
743 	mutex_lock(&adev->grbm_idx_mutex);
744 
745 	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
746 	WREG32(mmSQ_CMD, sq_cmd);
747 
748 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
749 		INSTANCE_BROADCAST_WRITES, 1);
750 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
751 		SH_BROADCAST_WRITES, 1);
752 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
753 		SE_BROADCAST_WRITES, 1);
754 
755 	WREG32(mmGRBM_GFX_INDEX, data);
756 	mutex_unlock(&adev->grbm_idx_mutex);
757 
758 	return 0;
759 }
760 
kgd_address_watch_get_offset(struct kgd_dev * kgd,unsigned int watch_point_id,unsigned int reg_offset)761 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
762 					unsigned int watch_point_id,
763 					unsigned int reg_offset)
764 {
765 	return 0;
766 }
767 
set_scratch_backing_va(struct kgd_dev * kgd,uint64_t va,uint32_t vmid)768 static void set_scratch_backing_va(struct kgd_dev *kgd,
769 					uint64_t va, uint32_t vmid)
770 {
771 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
772 
773 	lock_srbm(kgd, 0, 0, 0, vmid);
774 	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
775 	unlock_srbm(kgd);
776 }
777 
get_fw_version(struct kgd_dev * kgd,enum kgd_engine_type type)778 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
779 {
780 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
781 	const union amdgpu_firmware_header *hdr;
782 
783 	switch (type) {
784 	case KGD_ENGINE_PFP:
785 		hdr = (const union amdgpu_firmware_header *)
786 						adev->gfx.pfp_fw->data;
787 		break;
788 
789 	case KGD_ENGINE_ME:
790 		hdr = (const union amdgpu_firmware_header *)
791 						adev->gfx.me_fw->data;
792 		break;
793 
794 	case KGD_ENGINE_CE:
795 		hdr = (const union amdgpu_firmware_header *)
796 						adev->gfx.ce_fw->data;
797 		break;
798 
799 	case KGD_ENGINE_MEC1:
800 		hdr = (const union amdgpu_firmware_header *)
801 						adev->gfx.mec_fw->data;
802 		break;
803 
804 	case KGD_ENGINE_MEC2:
805 		hdr = (const union amdgpu_firmware_header *)
806 						adev->gfx.mec2_fw->data;
807 		break;
808 
809 	case KGD_ENGINE_RLC:
810 		hdr = (const union amdgpu_firmware_header *)
811 						adev->gfx.rlc_fw->data;
812 		break;
813 
814 	case KGD_ENGINE_SDMA1:
815 		hdr = (const union amdgpu_firmware_header *)
816 						adev->sdma.instance[0].fw->data;
817 		break;
818 
819 	case KGD_ENGINE_SDMA2:
820 		hdr = (const union amdgpu_firmware_header *)
821 						adev->sdma.instance[1].fw->data;
822 		break;
823 
824 	default:
825 		return 0;
826 	}
827 
828 	if (hdr == NULL)
829 		return 0;
830 
831 	/* Only 12 bit in use*/
832 	return hdr->common.ucode_version;
833 }
834 
set_vm_context_page_table_base(struct kgd_dev * kgd,uint32_t vmid,uint32_t page_table_base)835 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
836 		uint32_t page_table_base)
837 {
838 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
839 
840 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
841 		pr_err("trying to set page table base for wrong VMID\n");
842 		return;
843 	}
844 	WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8, page_table_base);
845 }
846 
invalidate_tlbs(struct kgd_dev * kgd,uint16_t pasid)847 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
848 {
849 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
850 	int vmid;
851 	unsigned int tmp;
852 
853 	if (adev->in_gpu_reset)
854 		return -EIO;
855 
856 	for (vmid = 0; vmid < 16; vmid++) {
857 		if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
858 			continue;
859 
860 		tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
861 		if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
862 			(tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
863 			WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
864 			RREG32(mmVM_INVALIDATE_RESPONSE);
865 			break;
866 		}
867 	}
868 
869 	return 0;
870 }
871 
invalidate_tlbs_vmid(struct kgd_dev * kgd,uint16_t vmid)872 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
873 {
874 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
875 
876 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
877 		pr_err("non kfd vmid %d\n", vmid);
878 		return -EINVAL;
879 	}
880 
881 	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
882 	RREG32(mmVM_INVALIDATE_RESPONSE);
883 	return 0;
884 }
885