1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include <linux/fdtable.h>
24 #include <linux/uaccess.h>
25 #include <linux/firmware.h>
26 #include <drm/drmP.h>
27 #include "amdgpu.h"
28 #include "amdgpu_amdkfd.h"
29 #include "cikd.h"
30 #include "cik_sdma.h"
31 #include "amdgpu_ucode.h"
32 #include "gfx_v7_0.h"
33 #include "gca/gfx_7_2_d.h"
34 #include "gca/gfx_7_2_enum.h"
35 #include "gca/gfx_7_2_sh_mask.h"
36 #include "oss/oss_2_0_d.h"
37 #include "oss/oss_2_0_sh_mask.h"
38 #include "gmc/gmc_7_1_d.h"
39 #include "gmc/gmc_7_1_sh_mask.h"
40 #include "cik_structs.h"
41
42 enum hqd_dequeue_request_type {
43 NO_ACTION = 0,
44 DRAIN_PIPE,
45 RESET_WAVES
46 };
47
48 enum {
49 MAX_TRAPID = 8, /* 3 bits in the bitfield. */
50 MAX_WATCH_ADDRESSES = 4
51 };
52
53 enum {
54 ADDRESS_WATCH_REG_ADDR_HI = 0,
55 ADDRESS_WATCH_REG_ADDR_LO,
56 ADDRESS_WATCH_REG_CNTL,
57 ADDRESS_WATCH_REG_MAX
58 };
59
60 /* not defined in the CI/KV reg file */
61 enum {
62 ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
63 ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
64 ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
65 /* extend the mask to 26 bits to match the low address field */
66 ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
67 ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
68 };
69
70 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
71 mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
72 mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
73 mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
74 mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
75 };
76
77 union TCP_WATCH_CNTL_BITS {
78 struct {
79 uint32_t mask:24;
80 uint32_t vmid:4;
81 uint32_t atc:1;
82 uint32_t mode:2;
83 uint32_t valid:1;
84 } bitfields, bits;
85 uint32_t u32All;
86 signed int i32All;
87 float f32All;
88 };
89
90 /*
91 * Register access functions
92 */
93
94 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
95 uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
96 uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
97
98 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
99 unsigned int vmid);
100
101 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
102 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
103 uint32_t queue_id, uint32_t __user *wptr,
104 uint32_t wptr_shift, uint32_t wptr_mask,
105 struct mm_struct *mm);
106 static int kgd_hqd_dump(struct kgd_dev *kgd,
107 uint32_t pipe_id, uint32_t queue_id,
108 uint32_t (**dump)[2], uint32_t *n_regs);
109 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
110 uint32_t __user *wptr, struct mm_struct *mm);
111 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
112 uint32_t engine_id, uint32_t queue_id,
113 uint32_t (**dump)[2], uint32_t *n_regs);
114 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
115 uint32_t pipe_id, uint32_t queue_id);
116
117 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
118 enum kfd_preempt_type reset_type,
119 unsigned int utimeout, uint32_t pipe_id,
120 uint32_t queue_id);
121 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
122 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
123 unsigned int utimeout);
124 static int kgd_address_watch_disable(struct kgd_dev *kgd);
125 static int kgd_address_watch_execute(struct kgd_dev *kgd,
126 unsigned int watch_point_id,
127 uint32_t cntl_val,
128 uint32_t addr_hi,
129 uint32_t addr_lo);
130 static int kgd_wave_control_execute(struct kgd_dev *kgd,
131 uint32_t gfx_index_val,
132 uint32_t sq_cmd);
133 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
134 unsigned int watch_point_id,
135 unsigned int reg_offset);
136
137 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
138 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
139 uint8_t vmid);
140
141 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
142 static void set_scratch_backing_va(struct kgd_dev *kgd,
143 uint64_t va, uint32_t vmid);
144 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
145 uint32_t page_table_base);
146 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
147 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
148 static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd);
149
150 /* Because of REG_GET_FIELD() being used, we put this function in the
151 * asic specific file.
152 */
get_tile_config(struct kgd_dev * kgd,struct tile_config * config)153 static int get_tile_config(struct kgd_dev *kgd,
154 struct tile_config *config)
155 {
156 struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
157
158 config->gb_addr_config = adev->gfx.config.gb_addr_config;
159 config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
160 MC_ARB_RAMCFG, NOOFBANK);
161 config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
162 MC_ARB_RAMCFG, NOOFRANKS);
163
164 config->tile_config_ptr = adev->gfx.config.tile_mode_array;
165 config->num_tile_configs =
166 ARRAY_SIZE(adev->gfx.config.tile_mode_array);
167 config->macro_tile_config_ptr =
168 adev->gfx.config.macrotile_mode_array;
169 config->num_macro_tile_configs =
170 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
171
172 return 0;
173 }
174
175 static const struct kfd2kgd_calls kfd2kgd = {
176 .init_gtt_mem_allocation = alloc_gtt_mem,
177 .free_gtt_mem = free_gtt_mem,
178 .get_local_mem_info = get_local_mem_info,
179 .get_gpu_clock_counter = get_gpu_clock_counter,
180 .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
181 .alloc_pasid = amdgpu_pasid_alloc,
182 .free_pasid = amdgpu_pasid_free,
183 .program_sh_mem_settings = kgd_program_sh_mem_settings,
184 .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
185 .init_interrupts = kgd_init_interrupts,
186 .hqd_load = kgd_hqd_load,
187 .hqd_sdma_load = kgd_hqd_sdma_load,
188 .hqd_dump = kgd_hqd_dump,
189 .hqd_sdma_dump = kgd_hqd_sdma_dump,
190 .hqd_is_occupied = kgd_hqd_is_occupied,
191 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
192 .hqd_destroy = kgd_hqd_destroy,
193 .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
194 .address_watch_disable = kgd_address_watch_disable,
195 .address_watch_execute = kgd_address_watch_execute,
196 .wave_control_execute = kgd_wave_control_execute,
197 .address_watch_get_offset = kgd_address_watch_get_offset,
198 .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
199 .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
200 .get_fw_version = get_fw_version,
201 .set_scratch_backing_va = set_scratch_backing_va,
202 .get_tile_config = get_tile_config,
203 .get_cu_info = get_cu_info,
204 .get_vram_usage = amdgpu_amdkfd_get_vram_usage,
205 .create_process_vm = amdgpu_amdkfd_gpuvm_create_process_vm,
206 .acquire_process_vm = amdgpu_amdkfd_gpuvm_acquire_process_vm,
207 .destroy_process_vm = amdgpu_amdkfd_gpuvm_destroy_process_vm,
208 .get_process_page_dir = amdgpu_amdkfd_gpuvm_get_process_page_dir,
209 .set_vm_context_page_table_base = set_vm_context_page_table_base,
210 .alloc_memory_of_gpu = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu,
211 .free_memory_of_gpu = amdgpu_amdkfd_gpuvm_free_memory_of_gpu,
212 .map_memory_to_gpu = amdgpu_amdkfd_gpuvm_map_memory_to_gpu,
213 .unmap_memory_to_gpu = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu,
214 .sync_memory = amdgpu_amdkfd_gpuvm_sync_memory,
215 .map_gtt_bo_to_kernel = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel,
216 .restore_process_bos = amdgpu_amdkfd_gpuvm_restore_process_bos,
217 .invalidate_tlbs = invalidate_tlbs,
218 .invalidate_tlbs_vmid = invalidate_tlbs_vmid,
219 .submit_ib = amdgpu_amdkfd_submit_ib,
220 .get_vm_fault_info = amdgpu_amdkfd_gpuvm_get_vm_fault_info,
221 .read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
222 .gpu_recover = amdgpu_amdkfd_gpu_reset,
223 .set_compute_idle = amdgpu_amdkfd_set_compute_idle
224 };
225
amdgpu_amdkfd_gfx_7_get_functions(void)226 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
227 {
228 return (struct kfd2kgd_calls *)&kfd2kgd;
229 }
230
get_amdgpu_device(struct kgd_dev * kgd)231 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
232 {
233 return (struct amdgpu_device *)kgd;
234 }
235
lock_srbm(struct kgd_dev * kgd,uint32_t mec,uint32_t pipe,uint32_t queue,uint32_t vmid)236 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
237 uint32_t queue, uint32_t vmid)
238 {
239 struct amdgpu_device *adev = get_amdgpu_device(kgd);
240 uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
241
242 mutex_lock(&adev->srbm_mutex);
243 WREG32(mmSRBM_GFX_CNTL, value);
244 }
245
unlock_srbm(struct kgd_dev * kgd)246 static void unlock_srbm(struct kgd_dev *kgd)
247 {
248 struct amdgpu_device *adev = get_amdgpu_device(kgd);
249
250 WREG32(mmSRBM_GFX_CNTL, 0);
251 mutex_unlock(&adev->srbm_mutex);
252 }
253
acquire_queue(struct kgd_dev * kgd,uint32_t pipe_id,uint32_t queue_id)254 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
255 uint32_t queue_id)
256 {
257 struct amdgpu_device *adev = get_amdgpu_device(kgd);
258
259 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
260 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
261
262 lock_srbm(kgd, mec, pipe, queue_id, 0);
263 }
264
release_queue(struct kgd_dev * kgd)265 static void release_queue(struct kgd_dev *kgd)
266 {
267 unlock_srbm(kgd);
268 }
269
kgd_program_sh_mem_settings(struct kgd_dev * kgd,uint32_t vmid,uint32_t sh_mem_config,uint32_t sh_mem_ape1_base,uint32_t sh_mem_ape1_limit,uint32_t sh_mem_bases)270 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
271 uint32_t sh_mem_config,
272 uint32_t sh_mem_ape1_base,
273 uint32_t sh_mem_ape1_limit,
274 uint32_t sh_mem_bases)
275 {
276 struct amdgpu_device *adev = get_amdgpu_device(kgd);
277
278 lock_srbm(kgd, 0, 0, 0, vmid);
279
280 WREG32(mmSH_MEM_CONFIG, sh_mem_config);
281 WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
282 WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
283 WREG32(mmSH_MEM_BASES, sh_mem_bases);
284
285 unlock_srbm(kgd);
286 }
287
kgd_set_pasid_vmid_mapping(struct kgd_dev * kgd,unsigned int pasid,unsigned int vmid)288 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
289 unsigned int vmid)
290 {
291 struct amdgpu_device *adev = get_amdgpu_device(kgd);
292
293 /*
294 * We have to assume that there is no outstanding mapping.
295 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
296 * a mapping is in progress or because a mapping finished and the
297 * SW cleared it. So the protocol is to always wait & clear.
298 */
299 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
300 ATC_VMID0_PASID_MAPPING__VALID_MASK;
301
302 WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
303
304 while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
305 cpu_relax();
306 WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
307
308 /* Mapping vmid to pasid also for IH block */
309 WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
310
311 return 0;
312 }
313
kgd_init_interrupts(struct kgd_dev * kgd,uint32_t pipe_id)314 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
315 {
316 struct amdgpu_device *adev = get_amdgpu_device(kgd);
317 uint32_t mec;
318 uint32_t pipe;
319
320 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
321 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
322
323 lock_srbm(kgd, mec, pipe, 0, 0);
324
325 WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
326 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
327
328 unlock_srbm(kgd);
329
330 return 0;
331 }
332
get_sdma_base_addr(struct cik_sdma_rlc_registers * m)333 static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
334 {
335 uint32_t retval;
336
337 retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
338 m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
339
340 pr_debug("kfd: sdma base address: 0x%x\n", retval);
341
342 return retval;
343 }
344
get_mqd(void * mqd)345 static inline struct cik_mqd *get_mqd(void *mqd)
346 {
347 return (struct cik_mqd *)mqd;
348 }
349
get_sdma_mqd(void * mqd)350 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
351 {
352 return (struct cik_sdma_rlc_registers *)mqd;
353 }
354
kgd_hqd_load(struct kgd_dev * kgd,void * mqd,uint32_t pipe_id,uint32_t queue_id,uint32_t __user * wptr,uint32_t wptr_shift,uint32_t wptr_mask,struct mm_struct * mm)355 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
356 uint32_t queue_id, uint32_t __user *wptr,
357 uint32_t wptr_shift, uint32_t wptr_mask,
358 struct mm_struct *mm)
359 {
360 struct amdgpu_device *adev = get_amdgpu_device(kgd);
361 struct cik_mqd *m;
362 uint32_t *mqd_hqd;
363 uint32_t reg, wptr_val, data;
364 bool valid_wptr = false;
365
366 m = get_mqd(mqd);
367
368 acquire_queue(kgd, pipe_id, queue_id);
369
370 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
371 mqd_hqd = &m->cp_mqd_base_addr_lo;
372
373 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
374 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
375
376 /* Copy userspace write pointer value to register.
377 * Activate doorbell logic to monitor subsequent changes.
378 */
379 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
380 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
381 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
382
383 /* read_user_ptr may take the mm->mmap_sem.
384 * release srbm_mutex to avoid circular dependency between
385 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
386 */
387 release_queue(kgd);
388 valid_wptr = read_user_wptr(mm, wptr, wptr_val);
389 acquire_queue(kgd, pipe_id, queue_id);
390 if (valid_wptr)
391 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
392
393 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
394 WREG32(mmCP_HQD_ACTIVE, data);
395
396 release_queue(kgd);
397
398 return 0;
399 }
400
kgd_hqd_dump(struct kgd_dev * kgd,uint32_t pipe_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs)401 static int kgd_hqd_dump(struct kgd_dev *kgd,
402 uint32_t pipe_id, uint32_t queue_id,
403 uint32_t (**dump)[2], uint32_t *n_regs)
404 {
405 struct amdgpu_device *adev = get_amdgpu_device(kgd);
406 uint32_t i = 0, reg;
407 #define HQD_N_REGS (35+4)
408 #define DUMP_REG(addr) do { \
409 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
410 break; \
411 (*dump)[i][0] = (addr) << 2; \
412 (*dump)[i++][1] = RREG32(addr); \
413 } while (0)
414
415 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
416 if (*dump == NULL)
417 return -ENOMEM;
418
419 acquire_queue(kgd, pipe_id, queue_id);
420
421 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
422 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
423 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
424 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
425
426 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
427 DUMP_REG(reg);
428
429 release_queue(kgd);
430
431 WARN_ON_ONCE(i != HQD_N_REGS);
432 *n_regs = i;
433
434 return 0;
435 }
436
kgd_hqd_sdma_load(struct kgd_dev * kgd,void * mqd,uint32_t __user * wptr,struct mm_struct * mm)437 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
438 uint32_t __user *wptr, struct mm_struct *mm)
439 {
440 struct amdgpu_device *adev = get_amdgpu_device(kgd);
441 struct cik_sdma_rlc_registers *m;
442 unsigned long end_jiffies;
443 uint32_t sdma_base_addr;
444 uint32_t data;
445
446 m = get_sdma_mqd(mqd);
447 sdma_base_addr = get_sdma_base_addr(m);
448
449 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
450 m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
451
452 end_jiffies = msecs_to_jiffies(2000) + jiffies;
453 while (true) {
454 data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
455 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
456 break;
457 if (time_after(jiffies, end_jiffies))
458 return -ETIME;
459 usleep_range(500, 1000);
460 }
461 if (m->sdma_engine_id) {
462 data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
463 data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
464 RESUME_CTX, 0);
465 WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
466 } else {
467 data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
468 data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
469 RESUME_CTX, 0);
470 WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
471 }
472
473 data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
474 ENABLE, 1);
475 WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
476 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr);
477
478 if (read_user_wptr(mm, wptr, data))
479 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
480 else
481 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
482 m->sdma_rlc_rb_rptr);
483
484 WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
485 m->sdma_rlc_virtual_addr);
486 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
487 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
488 m->sdma_rlc_rb_base_hi);
489 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
490 m->sdma_rlc_rb_rptr_addr_lo);
491 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
492 m->sdma_rlc_rb_rptr_addr_hi);
493
494 data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
495 RB_ENABLE, 1);
496 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
497
498 return 0;
499 }
500
kgd_hqd_sdma_dump(struct kgd_dev * kgd,uint32_t engine_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs)501 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
502 uint32_t engine_id, uint32_t queue_id,
503 uint32_t (**dump)[2], uint32_t *n_regs)
504 {
505 struct amdgpu_device *adev = get_amdgpu_device(kgd);
506 uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
507 queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
508 uint32_t i = 0, reg;
509 #undef HQD_N_REGS
510 #define HQD_N_REGS (19+4)
511
512 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
513 if (*dump == NULL)
514 return -ENOMEM;
515
516 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
517 DUMP_REG(sdma_offset + reg);
518 for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
519 reg++)
520 DUMP_REG(sdma_offset + reg);
521
522 WARN_ON_ONCE(i != HQD_N_REGS);
523 *n_regs = i;
524
525 return 0;
526 }
527
kgd_hqd_is_occupied(struct kgd_dev * kgd,uint64_t queue_address,uint32_t pipe_id,uint32_t queue_id)528 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
529 uint32_t pipe_id, uint32_t queue_id)
530 {
531 struct amdgpu_device *adev = get_amdgpu_device(kgd);
532 uint32_t act;
533 bool retval = false;
534 uint32_t low, high;
535
536 acquire_queue(kgd, pipe_id, queue_id);
537 act = RREG32(mmCP_HQD_ACTIVE);
538 if (act) {
539 low = lower_32_bits(queue_address >> 8);
540 high = upper_32_bits(queue_address >> 8);
541
542 if (low == RREG32(mmCP_HQD_PQ_BASE) &&
543 high == RREG32(mmCP_HQD_PQ_BASE_HI))
544 retval = true;
545 }
546 release_queue(kgd);
547 return retval;
548 }
549
kgd_hqd_sdma_is_occupied(struct kgd_dev * kgd,void * mqd)550 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
551 {
552 struct amdgpu_device *adev = get_amdgpu_device(kgd);
553 struct cik_sdma_rlc_registers *m;
554 uint32_t sdma_base_addr;
555 uint32_t sdma_rlc_rb_cntl;
556
557 m = get_sdma_mqd(mqd);
558 sdma_base_addr = get_sdma_base_addr(m);
559
560 sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
561
562 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
563 return true;
564
565 return false;
566 }
567
kgd_hqd_destroy(struct kgd_dev * kgd,void * mqd,enum kfd_preempt_type reset_type,unsigned int utimeout,uint32_t pipe_id,uint32_t queue_id)568 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
569 enum kfd_preempt_type reset_type,
570 unsigned int utimeout, uint32_t pipe_id,
571 uint32_t queue_id)
572 {
573 struct amdgpu_device *adev = get_amdgpu_device(kgd);
574 uint32_t temp;
575 enum hqd_dequeue_request_type type;
576 unsigned long flags, end_jiffies;
577 int retry;
578
579 if (adev->in_gpu_reset)
580 return -EIO;
581
582 acquire_queue(kgd, pipe_id, queue_id);
583 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
584
585 switch (reset_type) {
586 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
587 type = DRAIN_PIPE;
588 break;
589 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
590 type = RESET_WAVES;
591 break;
592 default:
593 type = DRAIN_PIPE;
594 break;
595 }
596
597 /* Workaround: If IQ timer is active and the wait time is close to or
598 * equal to 0, dequeueing is not safe. Wait until either the wait time
599 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
600 * cleared before continuing. Also, ensure wait times are set to at
601 * least 0x3.
602 */
603 local_irq_save(flags);
604 preempt_disable();
605 retry = 5000; /* wait for 500 usecs at maximum */
606 while (true) {
607 temp = RREG32(mmCP_HQD_IQ_TIMER);
608 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
609 pr_debug("HW is processing IQ\n");
610 goto loop;
611 }
612 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
613 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
614 == 3) /* SEM-rearm is safe */
615 break;
616 /* Wait time 3 is safe for CP, but our MMIO read/write
617 * time is close to 1 microsecond, so check for 10 to
618 * leave more buffer room
619 */
620 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
621 >= 10)
622 break;
623 pr_debug("IQ timer is active\n");
624 } else
625 break;
626 loop:
627 if (!retry) {
628 pr_err("CP HQD IQ timer status time out\n");
629 break;
630 }
631 ndelay(100);
632 --retry;
633 }
634 retry = 1000;
635 while (true) {
636 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
637 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
638 break;
639 pr_debug("Dequeue request is pending\n");
640
641 if (!retry) {
642 pr_err("CP HQD dequeue request time out\n");
643 break;
644 }
645 ndelay(100);
646 --retry;
647 }
648 local_irq_restore(flags);
649 preempt_enable();
650
651 WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
652
653 end_jiffies = (utimeout * HZ / 1000) + jiffies;
654 while (true) {
655 temp = RREG32(mmCP_HQD_ACTIVE);
656 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
657 break;
658 if (time_after(jiffies, end_jiffies)) {
659 pr_err("cp queue preemption time out\n");
660 release_queue(kgd);
661 return -ETIME;
662 }
663 usleep_range(500, 1000);
664 }
665
666 release_queue(kgd);
667 return 0;
668 }
669
kgd_hqd_sdma_destroy(struct kgd_dev * kgd,void * mqd,unsigned int utimeout)670 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
671 unsigned int utimeout)
672 {
673 struct amdgpu_device *adev = get_amdgpu_device(kgd);
674 struct cik_sdma_rlc_registers *m;
675 uint32_t sdma_base_addr;
676 uint32_t temp;
677 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
678
679 m = get_sdma_mqd(mqd);
680 sdma_base_addr = get_sdma_base_addr(m);
681
682 temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
683 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
684 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
685
686 while (true) {
687 temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
688 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
689 break;
690 if (time_after(jiffies, end_jiffies))
691 return -ETIME;
692 usleep_range(500, 1000);
693 }
694
695 WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
696 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
697 RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
698 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
699
700 m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
701
702 return 0;
703 }
704
kgd_address_watch_disable(struct kgd_dev * kgd)705 static int kgd_address_watch_disable(struct kgd_dev *kgd)
706 {
707 struct amdgpu_device *adev = get_amdgpu_device(kgd);
708 union TCP_WATCH_CNTL_BITS cntl;
709 unsigned int i;
710
711 cntl.u32All = 0;
712
713 cntl.bitfields.valid = 0;
714 cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
715 cntl.bitfields.atc = 1;
716
717 /* Turning off this address until we set all the registers */
718 for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
719 WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
720 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
721
722 return 0;
723 }
724
kgd_address_watch_execute(struct kgd_dev * kgd,unsigned int watch_point_id,uint32_t cntl_val,uint32_t addr_hi,uint32_t addr_lo)725 static int kgd_address_watch_execute(struct kgd_dev *kgd,
726 unsigned int watch_point_id,
727 uint32_t cntl_val,
728 uint32_t addr_hi,
729 uint32_t addr_lo)
730 {
731 struct amdgpu_device *adev = get_amdgpu_device(kgd);
732 union TCP_WATCH_CNTL_BITS cntl;
733
734 cntl.u32All = cntl_val;
735
736 /* Turning off this watch point until we set all the registers */
737 cntl.bitfields.valid = 0;
738 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
739 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
740
741 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
742 ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
743
744 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
745 ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
746
747 /* Enable the watch point */
748 cntl.bitfields.valid = 1;
749
750 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
751 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
752
753 return 0;
754 }
755
kgd_wave_control_execute(struct kgd_dev * kgd,uint32_t gfx_index_val,uint32_t sq_cmd)756 static int kgd_wave_control_execute(struct kgd_dev *kgd,
757 uint32_t gfx_index_val,
758 uint32_t sq_cmd)
759 {
760 struct amdgpu_device *adev = get_amdgpu_device(kgd);
761 uint32_t data;
762
763 mutex_lock(&adev->grbm_idx_mutex);
764
765 WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
766 WREG32(mmSQ_CMD, sq_cmd);
767
768 /* Restore the GRBM_GFX_INDEX register */
769
770 data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
771 GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
772 GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
773
774 WREG32(mmGRBM_GFX_INDEX, data);
775
776 mutex_unlock(&adev->grbm_idx_mutex);
777
778 return 0;
779 }
780
kgd_address_watch_get_offset(struct kgd_dev * kgd,unsigned int watch_point_id,unsigned int reg_offset)781 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
782 unsigned int watch_point_id,
783 unsigned int reg_offset)
784 {
785 return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
786 }
787
get_atc_vmid_pasid_mapping_valid(struct kgd_dev * kgd,uint8_t vmid)788 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
789 uint8_t vmid)
790 {
791 uint32_t reg;
792 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
793
794 reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
795 return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
796 }
797
get_atc_vmid_pasid_mapping_pasid(struct kgd_dev * kgd,uint8_t vmid)798 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
799 uint8_t vmid)
800 {
801 uint32_t reg;
802 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
803
804 reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
805 return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
806 }
807
set_scratch_backing_va(struct kgd_dev * kgd,uint64_t va,uint32_t vmid)808 static void set_scratch_backing_va(struct kgd_dev *kgd,
809 uint64_t va, uint32_t vmid)
810 {
811 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
812
813 lock_srbm(kgd, 0, 0, 0, vmid);
814 WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
815 unlock_srbm(kgd);
816 }
817
get_fw_version(struct kgd_dev * kgd,enum kgd_engine_type type)818 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
819 {
820 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
821 const union amdgpu_firmware_header *hdr;
822
823 switch (type) {
824 case KGD_ENGINE_PFP:
825 hdr = (const union amdgpu_firmware_header *)
826 adev->gfx.pfp_fw->data;
827 break;
828
829 case KGD_ENGINE_ME:
830 hdr = (const union amdgpu_firmware_header *)
831 adev->gfx.me_fw->data;
832 break;
833
834 case KGD_ENGINE_CE:
835 hdr = (const union amdgpu_firmware_header *)
836 adev->gfx.ce_fw->data;
837 break;
838
839 case KGD_ENGINE_MEC1:
840 hdr = (const union amdgpu_firmware_header *)
841 adev->gfx.mec_fw->data;
842 break;
843
844 case KGD_ENGINE_MEC2:
845 hdr = (const union amdgpu_firmware_header *)
846 adev->gfx.mec2_fw->data;
847 break;
848
849 case KGD_ENGINE_RLC:
850 hdr = (const union amdgpu_firmware_header *)
851 adev->gfx.rlc_fw->data;
852 break;
853
854 case KGD_ENGINE_SDMA1:
855 hdr = (const union amdgpu_firmware_header *)
856 adev->sdma.instance[0].fw->data;
857 break;
858
859 case KGD_ENGINE_SDMA2:
860 hdr = (const union amdgpu_firmware_header *)
861 adev->sdma.instance[1].fw->data;
862 break;
863
864 default:
865 return 0;
866 }
867
868 if (hdr == NULL)
869 return 0;
870
871 /* Only 12 bit in use*/
872 return hdr->common.ucode_version;
873 }
874
set_vm_context_page_table_base(struct kgd_dev * kgd,uint32_t vmid,uint32_t page_table_base)875 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
876 uint32_t page_table_base)
877 {
878 struct amdgpu_device *adev = get_amdgpu_device(kgd);
879
880 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
881 pr_err("trying to set page table base for wrong VMID\n");
882 return;
883 }
884 WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8, page_table_base);
885 }
886
invalidate_tlbs(struct kgd_dev * kgd,uint16_t pasid)887 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
888 {
889 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
890 int vmid;
891 unsigned int tmp;
892
893 if (adev->in_gpu_reset)
894 return -EIO;
895
896 for (vmid = 0; vmid < 16; vmid++) {
897 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
898 continue;
899
900 tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
901 if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
902 (tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
903 WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
904 RREG32(mmVM_INVALIDATE_RESPONSE);
905 break;
906 }
907 }
908
909 return 0;
910 }
911
invalidate_tlbs_vmid(struct kgd_dev * kgd,uint16_t vmid)912 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
913 {
914 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
915
916 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
917 pr_err("non kfd vmid\n");
918 return 0;
919 }
920
921 WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
922 RREG32(mmVM_INVALIDATE_RESPONSE);
923 return 0;
924 }
925
926 /**
927 * read_vmid_from_vmfault_reg - read vmid from register
928 *
929 * adev: amdgpu_device pointer
930 * @vmid: vmid pointer
931 * read vmid from register (CIK).
932 */
read_vmid_from_vmfault_reg(struct kgd_dev * kgd)933 static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd)
934 {
935 struct amdgpu_device *adev = get_amdgpu_device(kgd);
936
937 uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
938
939 return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
940 }
941